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Motivation

< Task: robust multi-modal fusion for 3D object detection

<+ Existing approaches fail catastrophically when one sensor
modality is missing

<+ Our goal: a robust object detector which fuses LIDAR and
camera, but also works when one sensor input is missing
without needing to load a different set of model parameters

Contributions

< We propose UniBEV, a multi-modal 3D object detector
designed for robustness against missing modalities
< Uniform architecture across sensors, each backbone
creates BEV map in a shared feature space
< BEV maps fused by a new Channel Normalized Weights
(CNW) module to align features across modalities, and to
learn how much each channel can rely on each modality
< We Investigate the impact of various feature fusion
strategies: concatenation, averaging and CNW
“* We explore the impact of the probability for dropping sensor
modalities during the training process

UnIBEV Architecture

Feature Extractors BEV Feature Encoders
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|deally LIDAR and Camera (L+C) are present.
“Missing modality” cases:

only LIDAR (L) or Camera (C) is available
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Key Designs
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@ : element-wise addition

@ : channel-wise multiplication

+ Deformable attention-based BEV feature encoders are uniformly applied to all sensor modalities
+ Shared queries for shared attention across modalities, helps aligning the feature maps
+ CNW computes weighted average of all available (non-missing) sensor BEV maps

< CNW learns a per-channel weight for each modality, as one modality could be more reliable for fusion

<* When a modality is missing (i.e., sensor failure), CNW does not weigh the BEV map of remaining sensor

“* Modality Dropout (MD) training strategy to expose network for 50% of the time to only LIDAR or camera
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Quantitative Results
Three test cases: LIDAR+Camera, LIDAR-only, Camera-only. Robustness Summary averages L+C, L and C.
Training
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Inference

BEVFusion [1]
MetaBEV [2]
UniBEV (ours)

Modality

_+C (MD)
_+C (MD)
_+C (MD)

65.3
67.5
68.5

58.7

62.5

64.2

60.6
65.2
65.3

49.1
5/7.8
58.2

29.6
33.6
42.4

22.6
25.9
35.0

Summary
NDS MmAP
51.8 43.5
20.4 48.7
58.7 52.5

speed
0.7 FPS

1.4 FPS
1.6 FPS

*. all methods are training with same protocols, e.g. no CBGS data augmentation and all with MD training strategy. camera sev features

Visualization of BEV Feature Maps
< UniBEV’'s camera and LIDAR BEV features more clearly discern

similar object locations than BEVFusion [1]
< Lift-Splat-Shoot(LSS)-based BEVFusion [1] and MetaBEV [2]

enforce an inductive bias on its camera BEV features not present
in its LIDAR features, as exhibited by the hexagon-shaped outline
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Ablation: different fusion modules in UniBEV
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(b) histogram of mean value per channel (single sample)
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Conclusions and Insights

< UniBEV is more robust than baselines, achieving 52.5 % mAP on nuScenes (averaged for
LIDAR+Camera, Lidar-only and Camera-only test cases) without loss of inference speed

“» LIDAR is a more informative sensor compared to camera on nuScenes, our CNW module
captures this property in its learned fusion weights

[1] Liang, Tingting, et al. BevFusion: A simple and robust lidar-camera fusion framework. NeurlPS 2022.
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Visualization of CNW's Learned Weights

(a) CNW's LIDAR weights (149.9) > camera wights
(106.1) - More reliance on LIDAR than on camera

(b) Distribution of the average channel activations is
the same for both modalities - CNW does not just
scale channels to compensate for different magnitudes

Qualitative Results
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[2] Ge, Chongjian, et al. MetaBEV: Solving sensor failures for 3d detection and map segmentation. CVPR 2023.



