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Artificial Intelligence (AI)

Theory and development of systems able to perform tasks requiring human intelligence
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AI vs Machine Learning vs Deep Learning

d John McCarthy coined the term Al

O Machine learning is the study of computer algorithms that improve automatically through experience

O Deep Learning imitates the workings of the human brain in processing data and creating patterns for use in
decision making.
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AI- Intelligence
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Challenges: Existing Technology

Q AI algorithms run on conventional Von Neumann architecture such as
O CPUs, GPUs, FPGA's and TPUs
O Memory bottleneck: data retrieving, transportation and storage lead to high latency and energy
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Device downscaling is challenging
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Need of new architectures and new device technologies




Research in CE department

O Computing based on “Computation-in-memory” (CIM) platform
O Complementary to von Neumann systems
Q It equips the memory subsystem with the ability to perform computation
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Research in CE department

O Emerging bio-inspired computing using non-volatile technologies based CIM platform
O Advantages: highly connected and parallel, scalable, low-power, small size and better

memory processing
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Master thesis project

Design of cross-bar structure and periphery circuits
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Master thesis project

Design of innovative training circuits
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Master thesis project

Ultra low-power spiking neural network computing for edge-devices

Tasks:

o Improve the energy efficiency by Eneirgy
« Design circuits that can support near threshold
computing
» Approximate computing approach for multimedia
and big data applications

 Trading-off accuracy to improve energy
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Master thesis project

Reliability enhancement in neural network design
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Master thesis project

Functionality testing of neural network design
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Master thesis project

Ncsim: Neuromorphic computing simulator tool

Tasks:

o A circuit-level accuracy, performance, frggsfgsﬂegfg':s_ ;Céfr‘]fig:':ti;”lai'/eetrz”; 2?2‘{:‘:;2(:?3: ekr?eortg);/:
energy, and area model for neuromorphic bar buildina block i A officiency ve area
computing g rows, training criteria ... y

o A python language based framework l l l

o Design space exploration to determine the Neuromorphic computing simulator tool
best required output for the given
parameters
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