PQCrypto 2022

A New Fault Attack on UOV Multivariate Signature Scheme

<u>Hiroki Furue</u>¹, Yutaro Kiyomura², Tatsuya Nagasawa¹, Tsuyoshi Takagi¹

- 1. The University of Tokyo, Japan
- 2. NTT Social Informatics Laboratories, Japan

Outline

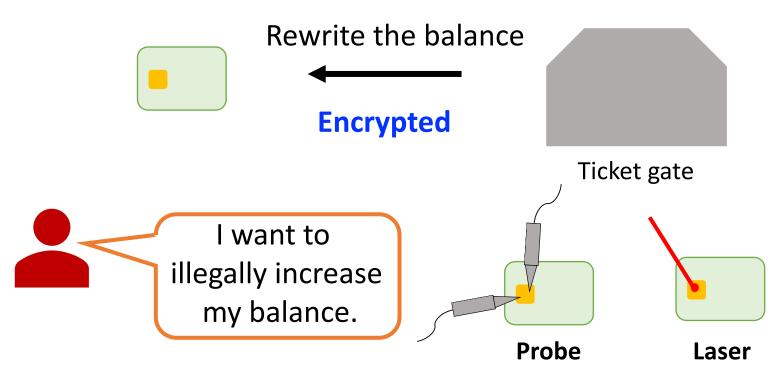
- Fault Attacks
- UOV
- Our Proposed Attack
- Conclusion

Physical Attacks

Physical Attacks:

utilize physical access to the cryptographic devices

Ex) Smart cards



Physical Attack

Probing attack

Extract sensitive information by direct access to the internal.

Fault attack

Stress the device by voltage or light and generate errors which lead to a security failure of the system.

• Side-channel attack

Exploit timing information, power consumption,

and electromagnetic leaks.

Outline

- Fault Attacks
- UOV
- Our Proposed Attack
- Conclusion

MPKC

- Multivariate Public Key Cryptosystems (MPKC)
 - based on the difficulty of MQ problem
 - candidates for post quantum cryptosystems
 - mainly used for digital signature

MQ (Multivariate Quadratic equations) problem

<u>Given</u> $\mathcal{F} = (f_1, \dots, f_m) \in \mathbb{F}_q[x_1, \dots, x_n]^m$ with deg $f_i = 2$,

find one solution $(a_1, ..., a_n) \in \mathbb{F}_q^n$ such that

 $\mathcal{F}(a_1,\ldots,a_n)=\mathbf{0}\in\mathbb{F}_q^m.$

Unbalanced Oil and Vinegar

[Kipnis et al., EUROCRYPT 1999]

- One of multivariate signature schemes
- UOV has essentially not been broken for over 20 years.
- Rainbow (third-round finalist) is a variant of UOV.

<u>Advantage</u>

- Small signature
- Short execution time

<u>Disadvantage</u>

• Large public key

Key Generation

 $n,m \in \mathbb{N} \quad (n > m)$

n: the number of variables, m: the number of equations

① Central map

 $\mathcal{F} = (f_1, \dots, f_m) \colon \mathbb{F}_q^n \to \mathbb{F}_q^m \quad \text{[invertible quadratic map]}$ $f_k = \sum_{i=1}^n \sum_{j=1}^v \alpha_{ij}^{(k)} x_i x_j \quad (v = n - m)$ $(2) \mathcal{T} \colon \mathbb{F}_q^n \to \mathbb{F}_q^n \quad \text{[linear map]}$ $(3) \mathcal{P} = \mathcal{F} \circ \mathcal{T} \quad \text{[quadratic map]}$

Public Key: \mathcal{P} , Secret Key: $(\mathcal{F}, \mathcal{T})$

Unbalanced Oil and Vinegar

Message	$oldsymbol{m} \in \mathbb{F}_q^m$
Signature	$\boldsymbol{s} = \mathcal{T}^{-1} \circ \mathcal{F}^{-1}(\boldsymbol{m})$
Verification	$m \stackrel{?}{=} \mathcal{P}(s)$

Computing \mathcal{F}^{-1}

1 Fix variables x_1, \dots, x_{ν} randomly

$$f_k = \sum_{i=1}^{\nu} \sum_{j=1}^{\nu} \alpha_{ij}^{(k)} x_i x_j + \sum_{i=\nu+1}^{n} \sum_{j=1}^{\nu} \alpha_{ij}^{(k)} x_i x_j$$

(2) Solving a linear polynomial in $x_{v+1}, ..., x_n$ (*m* equations, *m* variables)

 \times If there does not exist a solution, return to 1.

Representation Matrices

$$\cdot (p_1, \dots, p_m) = (f_1, \dots, f_m) \circ \mathcal{T}$$

$$f_{i}(x) = (x_{1} \cdots x_{n}) \begin{bmatrix} MF_{i} & \widehat{x}_{1} \\ \vdots & \mathcal{T}(x) = \\ MT & \vdots \\ x_{n} \end{bmatrix} \begin{bmatrix} m \times m \widehat{v} \\ \vdots \\ x_{n} \end{bmatrix}$$
$$p_{i}(x) = (x_{1} \cdots x_{n}) \begin{bmatrix} MP_{i} & \widehat{x}_{1} \\ \vdots \\ x_{n} \end{bmatrix}$$
$$= (x_{1} \cdots x_{n}) \begin{bmatrix} MT^{\top} & MF_{i} \\ MT & \vdots \\ x_{n} \end{bmatrix}$$

10

Outline

- Fault Attacks
- UOV
- Our Proposed Attack
- Conclusion

Fault Attacks on UOV

- cause a fault to change a coefficient of the secret key
- cause a fault such that random values in computing \mathcal{F}^{-1} are fixed to the same values.

signature scheme	fault on secret key	fault on random values
UOV	Our Result	1
Rainbow	1	1
LUOV	2*	(1)

- (1) [Hashimoto et al., PQCrypto 2011]
- ② [Mus et al., CCS 2020]

Attack Model

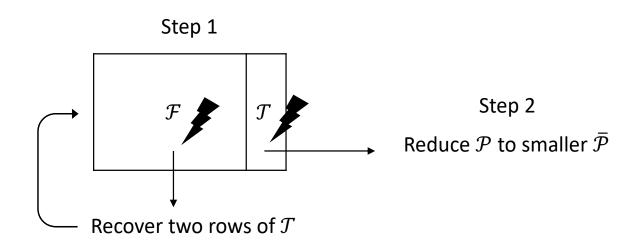
(following ① [Hashimoto et al., PQCrypto 2011])

- One fault changes one coefficient of the secret key \mathcal{F} , \mathcal{T} .
- A coefficient of *F*, *T* changed by a fault is randomly chosen.
 F: *O*([log *q*] · *n*² · *m*) bit, *T*: *O*([log *q*] · *n*²) bit
 ⇒ Faults are caused on *F* with high probability.
- The attacker cannot know the location of the faults.
- Coefficients changed by the faults do not return to the original values (even if new faults are injected).

Rough Description

Step1: Recover some rows of the secret key \mathcal{T} by utilizing faults caused on \mathcal{F} .

Step2: Transform the public key \mathcal{P} into a public key system $\overline{\mathcal{P}}$ with fewer variables.



Step1: Basic Strategy

Assumption:
$$\mathcal{F}$$
 is changed into \mathcal{F}' by a fault.
 $\left(\alpha_{ij}^{(k)} \to \alpha'_{ij}^{(k)}: f_k = \sum_{i=1}^n \sum_{j=1}^v \alpha_{ij}^{(k)} x_i x_j\right)$

1 Randomly choose $m_{\ell} \in \mathbb{F}_q^m$.

$$2 s_{\ell} \coloneqq \mathcal{T}^{-1} \circ \mathcal{F}'^{-1}(m_{\ell})$$

(using signing oracle with the fault)

$$(\textbf{3} \ \delta_{\ell} \coloneqq \mathcal{P}(s_{\ell}) - m_{\ell}$$

Step1: Basic Strategy

$$(1) m_{\ell} \in \mathbb{F}_{q}^{m}$$

$$(2) s_{\ell} \coloneqq \mathcal{T}^{-1} \circ \mathcal{T}'^{-1}(m_{\ell})$$

$$(3) \delta_{\ell} \coloneqq \mathcal{P}(s_{\ell}) - m_{\ell}$$

$$\delta_{\ell} = (\mathcal{F} \circ \mathcal{T})(s_{\ell}) - (\mathcal{F}' \circ \mathcal{T})(s_{\ell})$$

$$= (\mathcal{F} - \mathcal{F}') \circ \mathcal{T}(s_{\ell})$$

$$(0, \dots, 0, (\alpha_{ij}^{(k)} - \alpha_{ij}^{(k)}) x_{i}x_{j}, 0, \dots, 0)$$

$$= (0, \dots, 0, (\alpha_{ij}^{(k)} - \alpha_{ij}^{(k)}) (\mathcal{T}(s_{\ell}))_{i} (\mathcal{T}(s_{\ell}))_{j}, 0, \dots, 0)$$

The *i*-th and *j*-th elements of $\mathcal{T}(s_{\ell})$

Step1: Basic Strategy

$$\begin{split} (\delta_{\ell})_{k} &= \left(\alpha_{ij}^{(k)} - \alpha_{ij}^{\prime(k)}\right) \left(\mathcal{T}(s_{\ell})\right)_{i} \left(\mathcal{T}(s_{\ell})\right)_{j} \\ &= \beta \qquad = \Sigma_{p=1}^{n} t_{ip}(s_{\ell})_{p} \quad (t_{ij}:(i,j)\text{-th element of } MT) \\ &= \beta (t_{i1}(s_{\ell})_{1} + \dots + t_{in}(s_{\ell})_{n}) \left(t_{j1}(s_{\ell})_{1} + \dots + t_{jn}(s_{\ell})_{n}\right) \\ &= \beta \sum_{p \leq q} (s_{\ell})_{p} (s_{\ell})_{q} \begin{cases} (t_{ip}t_{jq} + t_{iq}t_{jp}) & (p \neq q) \\ t_{ip}t_{jp} & (p = q) \end{cases} \\ &= y_{pq} \end{cases}$$

- $(\delta_{\ell})_k$, s_{ℓ} are known \Rightarrow a linear polynomial in variables y_{pq}
- $(t_{i1}, \dots, t_{in}), (t_{j1}, \dots, t_{jn})$ can be recovered from y_{pq} .

Step1: Description

1 Cause a new fault $(\mathcal{F} \to \mathcal{F}')$

2 Prepare $((\delta_1)_k, s_1), \ldots, ((\delta_N)_k, s_N).$ $(\delta_\ell = (\mathcal{F} - \mathcal{F}') \circ \mathcal{T}(s_\ell))$ **3** Solve a linear system $(\delta_\ell)_k = \sum_{p \leq q} (s_\ell)_p (s_\ell)_q y_{pq} \quad (1 \leq \ell \leq N)$ $in \{y_{pq}\}_{1 \leq p \leq q \leq n}$ (If $N \geq n(n+1)/2$, then a solution will be uniquely determined.) **4** Obtain $(t_{i1}, \ldots, t_{in}), (t_{j1}, \ldots, t_{jn})$ from $\{y_{pq}\}_{1 \leq p \leq q \leq n}$

• $1 \sim 4$ is iterated until a new fault is caused on T.

Step2: Description

Assumption: α rows of \mathcal{T} are recovered in Step1.

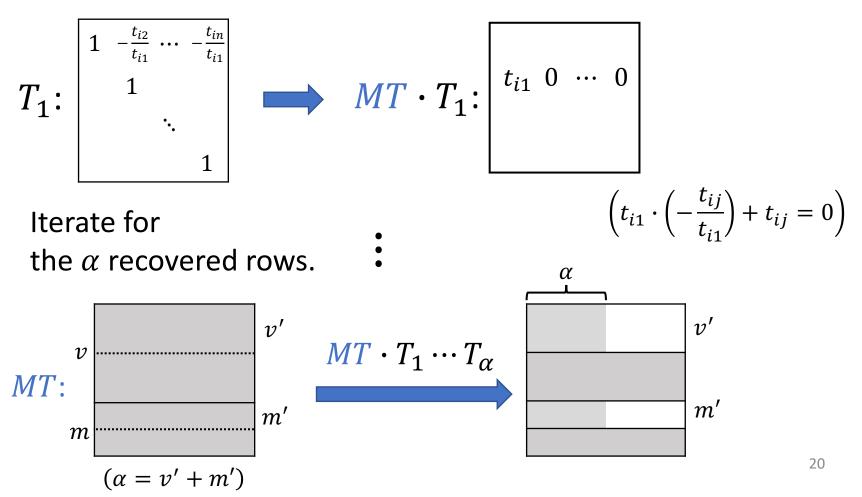
1 Transform \mathcal{T} into a special form

2 Reduce the public key ${\mathcal P}$ into a smaller system

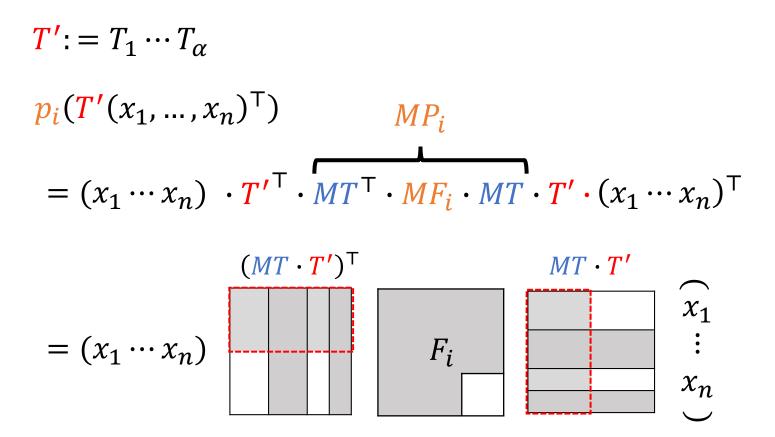
It can be broken with **smaller complexity** than the original system.

Step2: Transformation of \mathcal{T}

 $(t_{i1}, ..., t_{in})$: the *i*-th row vector of *MT* recovered in Step1

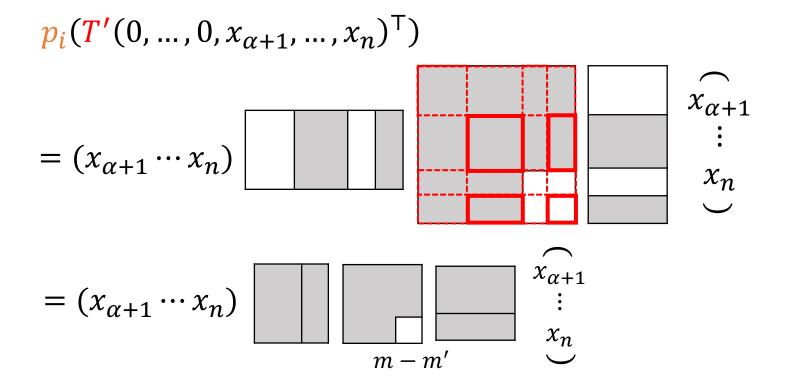


Step2: Reduction



Substitute $(x_1, \dots, x_{\alpha}) = (0, \dots, 0)$

Step2: Reduction



Reduction to the UOV public key in $n - \alpha$ variables (v - v': vinegar variables, m - m': oil variables)

Our Results

Existing key recovery attacks can be performed with smaller complexity on the resulting system.

Simulations for some parameters (100-bit security)

- The proposed attack can reduce the given system into one with only 90-bit security with a probability of approximately 80 ~ 90%.
- The proposed attack works even when the number of faults is limited.

Outline

- Fault Attacks
- UOV
- Our Proposed Attack
- Conclusion

Conclusion

- We propose a new fault attack on UOV signature scheme.
- The proposed attack is the first attack on UOV utilizing faults caused on the secret key.
- A naive countermeasure against the proposed attack would be to check whether the secret key is faulty.