
LECTURE 3: 
* B-PHYSICS EXPERIMENTS
* TIME-DEPENDENT CP-VIOLATION



Essentials for “quark flavour” physics
• ”decay vertex resolution”

• “momentum resolution”

• “particle ID”



Essentials for “quark flavour” physics
• ”decay vertex resolution”

• to identify weak decays
• to measure decaytime

• “momentum resolution”
• to identify different final states (‘mass peak’)
• to measure decay time and kinematics of decay (‘decay angles’)

• “particle ID”
• separate final state pions, kaons, protons, electrons, muons, photons
• also needed for “flavour tagging”



Why it matters
example: decay time resolution

JHEP 2021, 137 (2021)

example: B mass resolution

with boundaries 0.0, 0.25, 0.4, 0.5, 0.6, 0.7, and 1.0;
candidates having BDT < 0.25 are not included in the fit to
the dimuon mass distribution. The mass distribution of the
B0
ðsÞ → μþμ− candidates with BDT > 0.5 is shown

in Fig. 1.
The BDT distributions of B0

ðsÞ → μþμ− decays are
calibrated using simulated samples which have been
reweighted to improve the agreement with the data. The
pT , η, and χ2IP quantities of simulated B0 and B0

s samples are
corrected [41] using data samples of Bþ → J=ψKþ and
B0
s → J=ψϕ decays, respectively. The event occupancy is

also corrected, separately for each BDT region, by compar-
ing the fraction of Bþ → J=ψKþ candidates in four
intervals of the number of tracks in simulated events and
in data. To align the reconstruction with that of the B0

s →
μþμ− signal, the BDT response for the Bþ → J=ψKþ

candidates is evaluated using the information from the
final state muons and the Bþ candidate, with two excep-
tions: the B vertex-fit χ2 is replaced with that of the J=ψ ,
and the muon isolation variables are computed without
considering the final-state kaon. The effect of the trigger
selection on the BDT distribution is estimated using control
channels in data. The resulting B0 → μþμ− and B0

s → μþμ−

BDT variable distributions are found to be compatible with
that of B0 → Kþπ− decays selected in data when corrected
for the different trigger and particle identification selection
and, in the case of B0

s → μþμ−, the different lifetime.

The mass distributions of the B0
s → μþμ− and B0 →

μþμ− signals are described by two-sided Crystal Ball
functions [42] with core Gaussian parameters calibrated
from the mass distributions of B0

s → KþK− and B0 →
Kþπ− data samples, respectively. A mass resolution of
about 22 MeV=c2 is determined by interpolating the
measured resolutions of charmonium and bottomonium
resonances decaying into two muons. The radiative tails are
obtained from simulation [43]. Small differences in the
resolution and tail parameters of the mass shape for the
different BDT regions are taken into account. The mass
distribution of the B0

s → μþμ−γ decays is described with a
threshold function modeled on simulated events that were
generated using the theoretical predictions of Refs. [14,15],
convoluted with the experimental resolution.
The signal branching fractions are determined using the

relation

BðB0
ðsÞ → μþμ−Þ ¼ Bnormϵnormfnorm

NnormϵsigfdðsÞ
NB0

ðsÞ→μþμ−

≡ αnormB0
ðsÞ→μþμ−NB0

ðsÞ→μþμ− ;

where NB0
ðsÞ→μþμ− is the signal yield determined in the mass

fit, Nnorm is the number of selected normalization decays
(Bþ → J=ψKþ or B0 → Kþπ−), Bnorm the corresponding
branching fraction [44], and ϵsig (ϵnorm) is the total
efficiency for the signal (normalization) channel. For each
signal mode, the two single event sensitivities, αnormB0

ðsÞ→μþμ− ,

are then averaged in a combined αB0
ðsÞ→μþμ− taking the

correlations into account. The fraction fdðsÞ indicates
the probability for a b quark to fragment into a B0

ðsÞ meson.
The value of fs=fd has been measured by LHCb to be
0.254% 0.008 in pp collision data at

ffiffiffi
s

p
¼ 13 TeV, while

the average value in Run 1 is lower by a factor of 1.064%
0.007 [45]. The fragmentation probabilities for the B0 and
Bþ are assumed to be equal, hence fnorm ¼ fd for both
normalization modes.
The acceptance, reconstruction, and selection efficiencies

are computed with samples of simulated events generated
with the decay-time distribution predicted by the SM. The
tracking and particle identification efficiencies are deter-
mined using control channels in data [46,47]. The trigger
efficiencies are evaluated with control channels in data [48].
The yields of selected Bþ → J=ψKþ and B0 → Kþπ−

decays are ð4733% 3Þ × 103 and ð94% 1Þ × 103, res-
pectively. The normalization factors measured with the
two channels are consistent and their weighted averages,
taking correlations into account, are αB0

s→μþμ− ¼ ð3.51%
0.13Þ × 10−11, αB0→μþμ− ¼ ð9.20% 0.17Þ × 10−12, and
αB0

s→μþμ−γ ¼ ð4.57% 0.17Þ × 10−11. Assuming SM predic-
tions for the branching fractions, the analyzed data sample
is expected to contain an average of 104% 6 B0

s → μþμ−,
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FIG. 1. Mass distribution of the selected B0
ðsÞ → μþμ− candi-

dates (black dots) with BDT > 0.5. The result of the fit is overlaid
and the different components are detailed: B0

s → μþμ− (red solid
line), B0 → μþμ− (green solid line), B0

s → μþμ−γ (violet solid
line), combinatorial background (blue dashed line), B0

ðsÞ → hþh0−

(magenta dashed line), B0 → π−μþνμ, B0
s → K−μþνμ, Bþ

c →
J=ψμþνμ, and Λ0

b → pμ−ν̄μ (orange dashed line), and B0ðþÞ →
π0ðþÞμþμ− (cyan dashed line). The solid bands around the signal
shapes represent the variation of the branching fractions by their
total uncertainty.
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Why it matters
example: Κ/π separation
(and momentum resolution)

example: decay time resolution

JHEP 2021, 137 (2021)



“B-physics” experiments
at high energy: !"!/$$ → &"&at the '(') → Υ 4, → &"& resonance

previously also: BaBar (at SLAC), 
CLEO (Cornell), ARGUS(DESY), … previously also: Tevatron, SLD, LEP, … 



Υ resonances: "#" bound states
cross section for e+ e- to hadrons

threshold for
$% #$% or $&$'
production



!(#$ %#$) : !(#'#() : !(everything else) = 1 : 1 : ~6 Nicola Neri IDPASC School - Valencia May 2013 - Instrumentation for flavor Physics - Lesson I

       production mechanisms

Hadron colliders: e.g.Tevatron, LHC

       from QCD mediated process

incoherent production of b hadrons

not defined hadron energy  

    

Electron colliders: e.g. B factories
coherent production of         at ECM=10.58 GeV

well defined B meson energy  

9

bb̄

�(bb̄) ⇠ 150µb at pp collisions, ECM = 14 TeV

�(bb̄) ⇠ 10µb at pp̄ collisions, ECM = 1.96 TeV

gluon-gluon fusion is the leading mechanism at LHCb

Tevatron
LHCb

bb̄

e+e� ! ⌥(4S) ! BB̄

BB̄

�(BB̄) ⇠ 1.1nb at e+e� collisions, ECM = 10.58 GeVat 10.48 GeV: 

3.1 Factories and PEP-II 75

Table 3-1. Production cross-sections at . The cross-section is the effective
cross-section, expected within the experimental acceptance.

Cross-section (nb)

1.05
1.30
0.35
1.39
0.35
0.94
1.16

known properties and the beam-energy spread of the machine. Since the BABAR beam spread
is very close to being the same as it is for CLEO, we take the peak cross-section obtained in CLEO
and adjust for the slightly larger beam spread expected in BABAR. This yields a peak cross-section of
1.05 nb with an uncertainty of less than 0.1 nb (the BABAR TDR [2] used 1.15 nb for most analyses).

While in principle the cross-section can be calculated if the value of is known,
initial-state radiation assures that the value depends sensitively on the minimum value of center-
of-mass energy that is required in an analysis. Events with very hard radiated photons look more
like 2-photon processes than typical events. For most purposes in this book, it is only necessary
to know how to normalize the Monte Carlo samples that have been generated. In this case we use
the cross-section calculated from Jetset7.4 with the usual photon-energy cutoff of 0.99 ,
corresponding to a minimum center-of-mass energy of 1.06 GeV. This cross-section is found to be
3.39 nb.

3.1.2 Data Taking in the Continuum

It is intended to run PEP-II at the resonance, for the majority of its running. However,
off-resonance data are essential for all precision measurements of meson decays since Monte
Carlo simulations for decay backgrounds from the continuum are less reliable than their direct
determination from real data (the non- physics (charm, tau, . . . ) does not require any data
taking off the (4S) resonance since these data come simultanuously with events). For decays
with very little background, like with background/signal ratios a few %,
a very high fraction of data taking on the resonance gives the smallest error on the

REPORT OF THE BABAR PHYSICS WORKSHOP



• nice feature of Ups(4S) resonance
• detector empty apart from BB decay products
• kinematic constraint from energy of initial state

• great for
• “flavour tagging”
• ‘inclusive’ measurements such as !"# with $ → &"ℓ(
• other rare decays with neutrinos in final state



Belle-II at SuperKEKB
• “asymmetric-energy collider”

• to measure ‘decaytime’, B-mesons 
need to have non-zero velocity

• achieved by using beams with 
different energy

electrons: ~7 GeV
positrons: ~4 GeV

• main challenge: collider luminosity
• aim: 1010 ! "! per year
• LHCb: >1011 #"# per year

So why another e+e- B-factory?

Belle II & SuperKEKB can 

raise the challenge with 

an increase of peak 

luminosity x40 !!

27/08/19 L.Vitale - Belle II experiment: status and prospects 8

Still several goals can be achieved, the among others: 

• Search/Limits of/on New Physics - Beyond Standard Model

• Precision measurements of CKM matrix elements 

• CPV: TD in B decays, direct 

• Rare or forbidden B,D, ! decays

• Dark sector searches



at the LHC: gluon-gluon fusion  

• about 1 !"! pair in every 200 collisions (and 1 c ̅% pair in every 20 collisions)
• large ‘background’ from underlying event

• dominant production mechanism is gluon-gluon fusion



at the LHC: gluon-gluon fusion  

• LHCb catches a larger fraction of B events
• ATLAS/CMS have (much) larger primary interaction rates

• b-quarks are light compared to LHC energy: strongly ‘boosted’

p T
of

  B
-h

ad
ro

n

η of  B-hadron

LHCb in a nutshell

• LHCb originally designed for CP violation and rare decays measurements ! nowdays a
general purpose detector!

• b̄b production in pp collisions mostly in the forward direction
• Run 1+2: 9 fb�1 of pp collisions (+ heavy ions, fixed target mode)
• Forward spectrometer (2 < ⌘ < 5) with excellent vertexing, tracking and particle identification

[JINST 3 (2008) S08005]

M. Fontana (LPNHE) 19-10-2022 2 / 23



Comparison of current B-physics experiments

at high energy: !"! → $"$%&%' → Υ 4*
Belle-II LHCb ATLAS/CMS

clean events yes no no
which B hadrons? B0/B+ all all
decay time resolution +++ (*) +++ ++
momentum resolution +++ +++ ++
electron/muon ID +++ +++ +++
kaon/pion/proton ID +++ +++ +

these detectors were designed for flavour physics



Different detectors

Nicola Neri IDPASC School - Valencia May 2013 - Instrumentation for flavor Physics - Lesson I

Detector geometry 

15

BaBar onion-like geometry around the 
interaction point (IP). Solenoidal magnetic 
field B=1.5 T along e-  beam axis.

LHCb single arm magnetic spectrometer.
Dipole magnetic field ∫B⋅dl=3.73 T⋅m, 
perpendicular to beam axis 

e- e+ 
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Courtesy: N.Neri, IDPASC school, May 2013



pp interaction vertex
(a.k.a. primary vertex=PV)

kaon

pion

B decay vertex
(a.k.a. secondary vertex=SV)

~10mm
“impact parameter”

the “impact parameter”



IP/decay time resolution
• typical requirement: IP resolution ~10μm

• needed to separate B from (short-lived) background
• needed to measure B oscillations (in particular Δ"# )

• resolution depends on 3 critical parameters:
1. intrinsic hit position resolution

2. extrapolation distance between hits and vertex

3. multiple scattering between  collision point and measured points 
from detector material



distance to vertex

Fig.: Minimum radius of silicon vertex detectors at hadron and lepton colliders, up to start of LHC Run 3.

Courtesy: K.Akiba

resolution at LHCb:
- σ(IP) ~10μm
- σ(t) ~50fs



Particle identification
• Many different B-decays!

• “BtooKstarpipiDsgamma” 
• …

• Need to distinguish:
• e, µ, g, p, K, p, …

Niels Tuning (20)



Niels Tuning (21)

Nicola Neri IDPASC School - Valencia May 2013 - Instrumentation for flavor Physics - Lesson I

Detector geometry 

15

BaBar onion-like geometry around the 
interaction point (IP). Solenoidal magnetic 
field B=1.5 T along e-  beam axis.

LHCb single arm magnetic spectrometer.
Dipole magnetic field ∫B⋅dl=3.73 T⋅m, 
perpendicular to beam axis 

e- e+ 

p p
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one solution: ring imaging cherenkov detector

• particles traversing medium with velocity 
! > #/% , emit cherenkov radiation

• angle of wave-front with direction is 
measure for velocity: &'()* = #/!%



one solution: ring imaging cherenkov detector
• in combination with momentum measurement, ! = #$%, provides 

estimate of particle mass
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Figure 38: Reconstructed Cherenkov angle for isolated tracks, as a function of track momentum
in the C4F10 radiator [81]. The Cherenkov bands for muons, pions, kaons and protons are clearly
visible.

ring will generally overlap with several neighbouring rings. Solitary rings from isolated
tracks, where no overlap is found, provide a useful test of the RICH performance, since
isolated rings can be cleanly and unambiguously associated with a single track. Figure 38
shows the Cherenkov angle as a function of particle momentum using information from
the C4F10 radiator for isolated tracks selected in data (⇠ 2% of all tracks). As expected,
the events populate distinct bands according to their mass.

4.2.2 Photoelectron yield

The average number of detected photons for each track traversing the Cherenkov radiator
media, called the photoelectron yield (Npe), is another important measure of the perfor-
mance of a RICH detector. The yields for the three radiators used in LHCb are measured
in data using two di↵erent samples of events [81]. The first sample is representative of
normal LHCb data taking conditions, and consists of the kaons and pions originating from
the decay D0 ! K�⇡+, where the D0 is selected from D⇤+ ! D0⇡+ decays. The second
sample consists of low detector occupancy p p ! p p µ+µ� events, which provide a clean
track sample with very low background levels. In both samples, only high-momentum
tracks are selected, to ensure that the Cherenkov angle is close to saturation.

51

• different radiators suitable for different momentum range:
• Belle/Babar and LHCb make different choices



momentum resolution
• momentum measured by ‘deflection’ (or ‘curvature’ or ‘sagita’)

• detector resolution determined by
• “B-ΔL” : strength of magnetic field times detector ‘length’ (arm)
• hit resolution
• multiple scattering

• different choices
• LHCb is forward detector with very long arm
• CMS/Belle-II have a strong superconducting magnet

• note: Belle-II works with much lower momenta: need less ‘sagitta’ resolution for 
same momentum resolution, but suffers more from multiple scattering



Time-dependent CP-violation
• will now discuss formalism of ‘time-dependent’ CP violation

• very interesting method to probe ‘phases’ in Vckm with relatively small 
‘hadronic’ uncertainties

• will reuse mixing formalism discussed this morning, but also need to 
consider the ‘decay’ to the final state



Reminder: mixing formalism
• This is what we found this morning
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• next step: consider decay amplitude

expressed in !, Γ, Δ!, ΔΓ



Including decay amplitudes
• consider decay of !" to final state ‘f’ accessible to both !" and anti-!"

August 11, 2023 15:11 WSPC/INSTRUCTION FILE main

6 Wouter Hulsbergen

derived for the decay of B
0
to the CP conjugate state f̄ by a suitable redefinition

of �. It is important to note that, in contrast to M12, �12 and the elements of the
CKM matrix, �f is a phase convention-independent physical observable.
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Fig. 2. Graphical illustration of the interference of two amplitudes leading to time-dependent CP
violation in decay of a neutral meson to a CP eigenstate.
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Fig. 3. Leading order Feynman diagrams for a few B
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We now consider two cases relevant for this review. Flavour-specific final states
are final states for which |Af | ⌧ |Af | such that � ' 0. Important examples are

the tree-level transitions B
0

s ! D
+

s ⇡
�

and B
0

s ! D
+

s µ
�
⌫̄µ shown in Fig. 3. Under

the assumption of no CP -violation in mixing (|q/p| = 1) and no CP -violation in
the decay (|Af | = |A

f̄
|), we can derive the following expression for the so-called

9 Decay amplitude
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10 More on eigenvalues
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• computation needs to include the decay amplitudes
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Time-dependent amplitude

• two contributing amplitudes

• functions !± # are complex
• relative size and phase depends on time
• leads to “time-dependent CP violation”, 

provided $% and $̅% are approximately of equal size

• if the meson started as a '(, then time-dependent amplitude is

9 Decay amplitude
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Āf = A(B̄0 ! f) = hf |Hweak

��B̄0
↵

AB0!f (t) = g+(t) Af +
q

p
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Time-dependent rate
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not yet the decay to an observable final state f . For a given final state we define
two transition amplitudes

Af ⌘ hf |H |B0i and Af ⌘ hf |H |B0i , (15)

where H is the weak interaction Hamiltonian responsible for the decay. For a meson
produced in an initial flavour eigenstate B

0
the decay width to the final state f

receives two contributions, namely one from Af and another one from Af where

the B
0
first oscillated to a B
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, schematically depicted in Fig. 2. The partial decay
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The decay rate for B
0 ! f is obtained from this expression by changing the sign of

Cf and Sf and multiplying by an overall factor |p/q|2. Similar expressions can be

a
There exist alternative notations for these three quantities, in particular A

dir
f ⌘ Cf , A

mix
f ⌘ �Sf

and A
��
f ⌘ Df . However, be aware that di↵erent conventions are used regarding the signs of these

quantities.



Time-dependent rate
• now substitute the functions g 

• after some straightforward but time-consuming algebra:
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interference terms



Time-dependent rate for anti-B0 to f
• expression for anti-B0 to f follows with substitution

with
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these terms change sign

9 Decay amplitude

Af = A(B0 ! f) = hf |Hweak

��B0
↵
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10 More on eigenvalues

Something confused me about the eigenvalue/vector story, so I redid it. If you
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H =
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H11 H12

H21 H11

◆
(78)

20

• together, expressions then look like



Rates to CP-conjugate final state
• we are not quite there yet: also need to consider the rates to ̅"
• it is mostly a matter of notation:
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|Āf | ⌧ |Af |

20

• note: if there is no CP violation in the decay, then
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Two important cases
• case 1: f is flavour-specific final state 

• example: B0 -> J/psi K*, but many others

• case 2: f is CP eigenstate with only single contributing amplitude

• example B0 -> J/psi Ks and Bs -> J/psi phi (“golden modes”)
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9.1 Flavour specific

|Af̄ | ⌧ |Af | =) �f ⇡ �̄f̄ ⇡ 0

9.2 CP eigenstate

|Af | = |Āf | =) �f =
q

p
⌘fe

�i2�D

�D = arg(Af )

10 More on eigenvalues

Something confused me about the eigenvalue/vector story, so I redid it. If you
diagnialize the hamiltonian

H =

✓
H11 H12

H21 H11

◆
(83)

with

H12 = M12 �
i

2
�12 and H21 = M⇤

12
� i

2
�⇤
12

The eigenvalues are
!± = H11 ±

p
H12H21 (84)

You can now parametrize the eigenvectors with a complex parameter ✏ as

v± =
1p

1 + |✏|2

✓
1 + ✏

±(1� ✏)

◆
(85)

where

✏ =
H12 �

p
H12H21

H12 +
p
H12H21

=

p
H12H21 �H21p
H12H21 +H21

(86)

Note that the normalization of the functions is not quite right in Grossman and
Tanedo.

Now I just need to understand what exactly the square-root means for complex
numbers.
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Two important cases
• case 1: f is flavour-specific final state 
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Now I just need to understand what exactly the square-root means for complex
numbers.
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• this is how we measure mixing frequency
• example: B0 -> J/psi K*, but many others
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11 More on eigenvalues
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Note that the normalization of the functions is not quite right in Grossman and
Tanedo.

Now I just need to understand what exactly the square-root means for complex
numbers.

Oh, and we need to check that we get the ratio p/q right:
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Two important cases
• case 2: f is CP eigenstate with only single contributing amplitude
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Āf g�(t) (91)

�B0!f (t) = |AB0!f (t)|2

�B0!f (t) = |Af |2
h
|g+(t)|2 + |�f |2 |g�(t)|2 + 2Re (�f g�(t) g+(t)

⇤ )
i

�̄f =
1

�f

|Āf | ⌧ |Af |

Af =
X

diagrams

”CKM matrix elements”⇥ hf | O
��B0

↵
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• this measures CKM phases à “angles of unitarity triangle”  
• example B0 -> J/psi Ks and Bs -> J/psi phi (“golden modes”)

|q/p|=1, ΔΓ=0



Three types of CP violation
1. “direct” CP violation

• Decay rates Γ "# → %&%' ≠ Γ "# → %&%'
• Also called: CPV in decay

2. “indirect” CP Violation:  1964 (CCFT)
• Prob("#→ "#) ≠ Prob ("# → "#)
• Also called: CPV in mixing

3. “mixing induced” CP violation: 2001  (Belle & Babar): 
• Also: CPV in interference of mixing and decay

38

A = a0(K!⇡⇡) + a2(K!⇡⇡)

Interfere decay amplitudes:

Interfere dispersive and absorptive:

"# "#
�

i

2
�12

M12

+
,+

⁄. / "0
Interfere direct and mixed:

35



Example: !" → J/& '(

Fhfvcvv



Example: !" → J/& '(Fhfvcvv



Example: !" → J/& '(
Fthcghcghcghcgy

to get the interference, also need
to take into account K0-K0bar mixing
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Niels Tuning (44)

λf for B0 ® J/yK0S
* * *

/ * * *s

tb td cb cs cs cd
J K

tb td cb cs cs cd

V V V V V V
V V V V V Vyl
æ öæ öæ ö

= -ç ÷ç ÷ç ÷
è øè øè ø

• Theoretically clean way to measure b
• Clean experimental signature
• Branching fraction: O(10-4)

• “Large” compared to other CP modes!

Time-dependent CP asymmetry

sin 2  ( ) sin( )CPA t mtb= - D

2ie b-= -



Exercises
• see README.md file at

• now: exercises 8-9

• (my apologies: still need to finish notebook for exercise 10)

https://github.com/wouterhuls/FlavourPhysicsBND2023/

https://github.com/wouterhuls/FlavourPhysicsBND2023/blob/main/README.md
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Computation of M_12 and G_123.3 Eigenvalues and -vectors of Mass-decay Matrix 31

M12

−iΓ122

P0

P0P 0 f

P0

via on−shell states,

via off−shell states,
weak box−diagram

Figure 3.1: The neutral meson oscillation consists of two contributions, namely through
off-shell states and on-shell states.

.

In general there can be a relative phase between Γ12 and M12 [15]:

φ = arg
(

−
M12

Γ12

)

(3.2)

which is the relative phase difference between the on-shell (or dispersive) and off-shell (or
absorbative) transition. This leads to the relations

∆m = 2|M12| (3.3)

∆Γ = 2|Γ12| cosφ. (3.4)

If T is conserved then it follows that Γ∗
12/Γ12 = M∗

12/M12 so that by introducing a free
phase we can make Γ12 and M12 real.

Under these assumptions we can now find the eigenvalues and eigenvectors of the Hamil-
tonian. These will describe the masses and decay widths and the P 0, P̄ 0 superpositions,
that describe the physical particles.

3.3 Eigenvalues and -vectors of Mass-decay Matrix

Given the Schrödinger equation (3.1) we find the eigenvalues of the mass-decay matrix,
by solving the determinantal equation [16]:

∣

∣

∣

∣

M − i
2Γ− λ M12 − i

2Γ12

M∗
12 − i

2Γ
∗
12 M − i

2Γ− λ

∣

∣

∣

∣

= 0

Using the shorthand notation F =
√

(M12 − i
2Γ12)(M∗

12 − i
2Γ

∗
12) we find the eigenvalues

λ± = M − i
2Γ±F . Splitting the real and imaginary part by defining λ− = m1 +

i
2Γ1 and

3.5 The Amplitude of the Box diagram 35

3.5 The Amplitude of the Box diagram

The short distance contribution to the P 0 ↔ P̄ 0 transitions of neutral meson oscillations
is described by ∆m and can be represented by a Feynman diagram known as the box
diagram, and can be calculated in perturbation theory.

In this section we will calculate the value of ∆m by studying this so-called box diagram.
We will investigate the process of K0 ↔ K̄0 using the CKM matrix. To describe mixing
between a K0 which has strangeness S = 1 and a K̄0 which has S = −1 we must introduce
an amplitude which creates a ∆S = 2 transition. This must necessarily be a second order
weak interaction. The transition necessary for mixing is shown in Fig. 3.2. The calculation
of the box diagram is quite complicated but we will illustrate some of the features in the
calculation of the K0

L −K0
S mass difference.

The mass difference is given by

∆m = mK0
L
−mK0

S
= 〈K0

L|H|K0
L〉 − 〈K0

S|H|K0
S〉 (3.13)

As we saw in the previous section, the mass eigenstates can be expressed as a linear
combination of the flavour eigenstates. The amplitude 〈K0|H|K̄0〉 can now be calculated
via the box diagram of Fig. 3.2. As an example we use the Feynman rules to derive an
expression for the amplitude where both the intermediate quarks are u quarks:
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2
√
2

)4
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∗
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u
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]

Here we readily recognise the weak coupling constant to the fourth power, the CKMmatrix
elements for the vertices, the W propagator terms, the quark and anti-quark spinors and
the factors for the intermediate fermion lines.

d
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Figure 3.2: Box diagrams responsible for K0 → K̄0 mixing.
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The Unitary Triangle

unitarity relations, e.g. V ∗
ubVud + V ∗

cbVcd + V ∗
tbVtd = 0

γ β

α

VudV ∗
ub VtdV ∗
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α = arg
[
−
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tb

VudV ∗
ub

]
β = arg

[
−

VcdV ∗
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]
γ = arg

[
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VcdV ∗
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]
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tbVtd = 0
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3.5 The Amplitude of the Box diagram

The short distance contribution to the P 0 ↔ P̄ 0 transitions of neutral meson oscillations
is described by ∆m and can be represented by a Feynman diagram known as the box
diagram, and can be calculated in perturbation theory.

In this section we will calculate the value of ∆m by studying this so-called box diagram.
We will investigate the process of K0 ↔ K̄0 using the CKM matrix. To describe mixing
between a K0 which has strangeness S = 1 and a K̄0 which has S = −1 we must introduce
an amplitude which creates a ∆S = 2 transition. This must necessarily be a second order
weak interaction. The transition necessary for mixing is shown in Fig. 3.2. The calculation
of the box diagram is quite complicated but we will illustrate some of the features in the
calculation of the K0

L −K0
S mass difference.

The mass difference is given by

∆m = mK0
L
−mK0

S
= 〈K0

L|H|K0
L〉 − 〈K0

S|H|K0
S〉 (3.13)

As we saw in the previous section, the mass eigenstates can be expressed as a linear
combination of the flavour eigenstates. The amplitude 〈K0|H|K̄0〉 can now be calculated
via the box diagram of Fig. 3.2. As an example we use the Feynman rules to derive an
expression for the amplitude where both the intermediate quarks are u quarks:

Muu = i

(

−igw
2
√
2

)4

(V ∗
usVudV

∗
usVud)

∫

d4k

(2π)4

(

−igλσ − kλkσ/m2
W

k2 −m2
W

)(

−igαρ − kαkρ/m2
W

k2 −m2
W

)

[

ūsγλ(1− γ5)
k/ +mu

k2 −m2
u

γρ(1− γ5)ud

] [

v̄sγα(1− γ5)
k/+mu

k2 −m2
u

γσ(1− γ5)vd

]

Here we readily recognise the weak coupling constant to the fourth power, the CKMmatrix
elements for the vertices, the W propagator terms, the quark and anti-quark spinors and
the factors for the intermediate fermion lines.

d

K0 K
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du, c, t
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u, c, t
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us,cs,ts

Vud,cd,td V ∗
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d

K0 K
0

dW

u, c, t

s

W

u, c, t

s

Vud,cd,tdV ∗
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Vud,cd,td V ∗

us,cs,ts

Figure 3.2: Box diagrams responsible for K0 → K̄0 mixing.
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2. Hadronic corrections
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3.5 The Amplitude of the Box diagram

The short distance contribution to the P 0 ↔ P̄ 0 transitions of neutral meson oscillations
is described by ∆m and can be represented by a Feynman diagram known as the box
diagram, and can be calculated in perturbation theory.

In this section we will calculate the value of ∆m by studying this so-called box diagram.
We will investigate the process of K0 ↔ K̄0 using the CKM matrix. To describe mixing
between a K0 which has strangeness S = 1 and a K̄0 which has S = −1 we must introduce
an amplitude which creates a ∆S = 2 transition. This must necessarily be a second order
weak interaction. The transition necessary for mixing is shown in Fig. 3.2. The calculation
of the box diagram is quite complicated but we will illustrate some of the features in the
calculation of the K0

L −K0
S mass difference.

The mass difference is given by

∆m = mK0
L
−mK0

S
= 〈K0

L|H|K0
L〉 − 〈K0

S|H|K0
S〉 (3.13)

As we saw in the previous section, the mass eigenstates can be expressed as a linear
combination of the flavour eigenstates. The amplitude 〈K0|H|K̄0〉 can now be calculated
via the box diagram of Fig. 3.2. As an example we use the Feynman rules to derive an
expression for the amplitude where both the intermediate quarks are u quarks:

Muu = i

(

−igw
2
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2

)4

(V ∗
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∫
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(
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γρ(1− γ5)ud

] [
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γσ(1− γ5)vd

]

Here we readily recognise the weak coupling constant to the fourth power, the CKMmatrix
elements for the vertices, the W propagator terms, the quark and anti-quark spinors and
the factors for the intermediate fermion lines.
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Figure 3.2: Box diagrams responsible for K0 → K̄0 mixing.

2. Hadronic corrections
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• for different mesons, different quarks ‘dominate’ inside the loop
• e.g. for B mesons, the top quark dominates:
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where we introduced the commonly used CP violating phase

�f ⌘ � arg(�f ) = �M � 2�D . (25)

By measuring the amplitude of the sinusoid in the time-dependent asymmetry we
constrain the phase �f . Since this phase is related to the phase of M12, the CP

asymmetry is a direct probe of new contributions to M12.
For decays to CP -eigenstates with a single contributing amplitude the phase �f

can be directly expressed in terms of elements of Vckm. In particular, we have for
the so-called ‘golden modes’, that occur through a tree-level b ! cc̄s transition,

B
0

d ! J/ K
0

S : �
cc̄s

d = 2�

B
0

s ! J/ � : �
cc̄s

s = �2�s
(26)

where the CKM phases � and �s are defined by
12

� ⌘ arg

✓
�VcdV

⇤
cb

VtdV
⇤
tb

◆
and �s ⌘ arg

✓
� VtsV

⇤
tb

VcsV
⇤
cb

◆
. (27)

We discuss the measurement of �
cc̄s

s with B
0

s ! J/ � and B
0

s ! J/ f
0
decays in

section 4.2.
Finally, we consider lifetimes. The ‘untagged’ decay time distribution for a final

state f can be obtained from Eq. 16 by setting C = S = 0. The average decay time
(sometimes called the ‘e↵ective lifetime’) is given by

13

⌧f =
(1�Df )/�

2

L + (1 +Df )/�
2

H

(1�Df )/�L + (1 +Df )/�H

=
1

�

1 + 2Dfy + y
2

(1� y
2
)(1 +Dfy)

(28)

where Df was defined above and y = ��/2�. For flavour-specific modes Df = 0
while for decays to CP -eigenstates with a single contribution amplitude it is Df =
�⌘f cos�f . In section 4.3 we shall discuss constraints on �s and ��s from various
final states.

2.3. Standard Model predictions

In the SM the computation of B
0
mixing parameters is performed by evaluating the

amplitudes corresponding to the box diagrams shown in Fig. 1. Since quarks are
not free particles, these amplitudes need to be corrected for hadronization e↵ects.
The calculations have been the cumulative e↵ort of many people, over a period of
over twenty years. (See Refs. 14, 15, 16, 17 and references therein.)

The latest complete computation of the mixing observables can be found in
Ref. 16, with an update of numerical estimates in Ref. 18. The value of M12 is
obtained from a calculation of the box diagram in Fig. 1 with a virtual top quark
in the loop. The result can be expressed as

16

M
q

12 =
G

2

Fm
2

W

12⇡
2

�
V

⇤
tqVtb

�2
S0

 
m

2

t

m
2

W

!
⌘B B̂Bq

f
2

Bq
mBq

(29)

CKM phase of M_12: we’ll need this later on
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• this if for B mesons as well:
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Constraining new physics in B
0
s mixing 9

The part of this expression to the left of ⌘B follows from a computation of the
box diagram for free quarks in perturbation theory. It depends on parameters of
the SM, such as the Fermi coupling constant GF , the CKM matrix elements Vij

and the top quark and W boson masses. The function S0(x) is a known kinematic
function, called the Inami-Lim function,

19
and S0(m

2

t/m
2

W ) ⇡ 2.3. The numerical
factor ⌘B ⇡ 0.55 accounts for QCD corrections. The factors to its right account
for the fact that the quarks are confined in hadrons. While the B meson mass mB

is just taken from measurements, the decay constant fB and the bag factor B̂B

are computed using Lattice gauge theory. (For a recent review see Ref. 20). The
uncertainty on the prediction of M12 is dominated by the theoretical uncertainty in
B̂Bf

2

B .
The computation of �12 involves the evaluation of the box diagram with ‘on-shell’

internal quarks, the dominant contribution coming from the b ! cc̄s transition.
Since the latter is a tree-level transition, �12 is expected to be less sensitive to new
physics than M12 is. It can be written as

21

�
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Fm
2
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2

"
�
V
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tqVtb

�2
+ V
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tqVtbV
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m
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m
2
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m
2
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0
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f
2
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(30)

where the QCD correction factor ⌘
0
B is of order unity. Note that �12 is proportional

to B̂Bf
2

B as well, such that predictions for the ratio �12/M12 have smaller theoretical
uncertainty than those for M12 and �12 separately. Furthermore, since the ratio is
proportional to m

2

b/m
2

W ⇡ 0.005, we expect |�12| ⌧ |M12| in the SM.
The only source of a complex phase in the expressions for M12 and �12 are

the CKM matrix elements. The size of the CKM matrix elements in Eq. 30 is
such that the term proportional to

�
V

⇤
tqVtb

�
dominates. Consequently, taking into

account the minus sign in front of �12, the phase di↵erence between M12 and �12 is
approximately ⇡ and �12 is small in the SM. This also implies, by virtue of Eq. 8,
that �� is positive: the heavier mass eigenstate has the smaller decay width.

The SM does not predict the size of coupling constants, quark masses and the
elements of the CKM matrix. Consequently, theoretical predictions of mixing ob-
servables always rely on other measurements to determine the SM parameters. The
latter are usually obtained from global fits to the experimental data that do not
include the mixing observables themselves.

22,23

The SM predictions are summarized in table 2. Note that, for some results in the
table, experimental measurements are used to reduce the uncertainties. For example,
the ratio ��d/�md has smaller uncertainties than ��d by itself. Consequently, for
the prediction of ��d, the measured value of �md was used.

Likewise, the computation of �ms requires an estimate of Vts. Since the com-
putation of the perturbative parts of the amplitude is identical for B

0

s and B
0

d , the

• to take away from this
• computations are very hard work
• only source of phases are CKM phases
• uncertainty on size and phase of M_12/G_12 reasonably small 

top doesn’t actually contribute: 
this uses unitarity to replace phase of
up quark contribution


