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Learning objectives

At the end of this week you will be able to:

Define and analyze numerical methods to solve systems governed by Partial Differential Equations. This entails:

1. Define the the system of PDEs that characterize the behavior of structures composed by rods and beams

2. Define numerical methods to solve a system of PDEs

3. Implement a solver for a system of PDEs

4. Analize and justify the results



Introduction to Finite
Differences

3.1



Finite Differences

Where does the term “Finite Differences” come from?

The goal is to go evaluate an infinitesimal quantity 
𝜕𝑓(𝑥,𝑡)

𝜕𝑥
using finite operation.

The definition of a (partial) derivative is: 
𝜕𝑓(𝑥, 𝑡)

𝜕𝑥
= lim

𝑏→𝑎

𝑓 𝑏, 𝑡 − 𝑓(𝑎, 𝑡)

𝑏 − 𝑎
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Where does the term “Finite Differences” come from?

The goal is to go evaluate an infinitesimal quantity 
𝜕𝑓(𝑥,𝑡)
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using finite operation.

The definition of a (partial) derivative is: 
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𝜕𝑥
= lim

𝑏→𝑎

𝑓 𝑏, 𝑡 − 𝑓(𝑎, 𝑡)

𝑏 − 𝑎

Question: Can we obtain the exact value of the limit for any function 𝑓?

Answer: No, in general this limit is not computable (division by zero). 

We cannot obtain the exact value of the derivative (in general), so we’ll have to approximate it. Here it comes the notion 

of finite difference. Instead of computing the limit, we just select a point b “close enough” to a:

𝜕𝑓(𝑥, 𝑡)

𝜕𝑥
≈
𝑓 𝑥 + Δ𝑥, 𝑡 − 𝑓(𝑥, 𝑡)

Δ𝑥



Finite Differences

Is there only one FD scheme to compute derivatives?

We have seen that we can approximate 
𝜕𝑓(𝑥,𝑡)

𝜕𝑥
using Finite Differences by: 

𝜕𝑓(𝑥, 𝑡)

𝜕𝑥
≈
𝑓 𝑥 + Δ𝑥, 𝑡 − 𝑓(𝑥, 𝑡)

Δ𝑥
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Finite Differences

Is there only one FD scheme to compute derivatives?

We have seen that we can approximate 
𝜕𝑓(𝑥,𝑡)

𝜕𝑥
using Finite Differences by: 

𝜕𝑓(𝑥, 𝑡)

𝜕𝑥
≈
𝑓 𝑥 + Δ𝑥, 𝑡 − 𝑓(𝑥, 𝑡)

Δ𝑥

Consider the following two additional expressions:

𝜕𝑓(𝑥, 𝑡)

𝜕𝑥
≈
𝑓 𝑥, 𝑡 − 𝑓(𝑥 − Δ𝑥, 𝑡)

Δ𝑥

𝜕𝑓(𝑥, 𝑡)

𝜕𝑥
≈
𝑓 𝑥 +

Δ𝑥
2
, 𝑡 − 𝑓 𝑥 −

Δ𝑥
2
, 𝑡

Δ𝑥

Question: Will they give the same result? If not which one is the best?

Answer: Not the same result. Second option gives 2nd order accuracy, usually preferable.



Finite Differences

Let’s analyse the error of the three different options using a TSE

Forward:  
𝜕𝑓(𝑥,𝑡)

𝜕𝑥
≈

𝑓 𝑥+𝛥𝑥,𝑡 −𝑓(𝑥,𝑡)

𝛥𝑥
, Backward:

𝜕𝑓(𝑥,𝑡)

𝜕𝑥
≈

𝑓 𝑥,𝑡 −𝑓(𝑥−Δ𝑥,𝑡)

Δ𝑥
, Central:

𝜕𝑓(𝑥,𝑡)

𝜕𝑥
≈

𝑓 𝑥+
Δ𝑥

2
,𝑡 −𝑓 𝑥−

Δ𝑥

2
,𝑡

Δ𝑥

Exercise: Using Taylor Series, determine the order of accuracy of these schemes



Solving PDEs with Finite
Differences

3.2



Solving the rod equation using Finite Differences

Consider the EOM of a rod (a PDE):

𝜌𝐴 ሷ𝑢 + 𝐸𝐴𝑢′′ = 0 where 𝑢 𝑥, 𝑡 ∀ 𝑥 ∈ (0, 𝐿)

▪ Let’s use 𝑁 + 1 points, indexed with 𝑛, starting at 𝑛 = 0 and ending at 𝑛 = 𝑁

▪ Element size   𝑙 =
𝐿

𝑁

▪ Point 𝑛 is located at 𝑥𝑛 = 𝑛𝑙

▪ The displacement of the rod at 𝑥𝑛, 𝑢 𝑥𝑛 is simplified as 𝑢𝑛

𝑛 = 0 𝑁 − 11 𝑁

𝐿

𝑙

Element indexing

𝑥0 = 0 𝑥𝑛 = 𝑛𝑙 𝑥𝑁 = 𝑁𝑙 = 𝐿

𝐿

𝑙

Element location



Solving the rod equation using Finite Differences
Consider the EOM of a rod (a PDE):

𝜌𝐴 ሷ𝑢 + 𝐸𝐴𝑢′′ = 0 where 𝑢 𝑥, 𝑡 ∀ 𝑥 ∈ (0, 𝐿)

The domain of the rod has been discretized. Each point 𝑛 has to satisfy the EOM and so:

𝜌𝐴 ሷ𝑢𝑛 − 𝐸𝐴𝑢𝑛
′′ = 0

Now we just need a way to compute the second derivative in space. Let’s use central difference:

𝑢𝑛
′′ =

1

𝑙2
𝑢 𝑥𝑛−1 − 2𝑢 𝑥𝑛 + 𝑢 𝑥𝑛+1 + 𝑂 Δ𝑥

2

𝑢𝑛
′′ =

1

𝑙2
𝑢𝑛−1 − 2𝑢𝑛 + 𝑢𝑛+1 + 𝑂 Δ𝑥

2

Substitute the FD relation into the EOM to obtain the EOM of the element 𝑛:

𝜌𝐴 ሷ𝑢𝑛 −
𝐸𝐴

𝑙2
𝑢𝑛−1 − 2𝑢𝑛 + 𝑢𝑛+1 = 0, ∀ 𝑛 = 0. . 𝑁

Note that this gives 𝑁 + 1 equations!! Not 1. 



Solving the rod equation using Finite Differences

What happens with the boundary nodes?

Consider the EOM at the first point 𝑛 = 0:

𝜌𝐴 ሷ𝑢0 −
𝐸𝐴

𝑙2
𝑢−1 − 2𝑢0 + 𝑢1 = 0

𝑢−1 falls outside the domain of the rod! This is called a ghost point.

𝑥−1

0 1−1



Solving the rod equation using Finite Differences

What happens with the boundary nodes?

Consider the EOM at the first point 𝑛 = 0:

𝜌𝐴 ሷ𝑢0 −
𝐸𝐴

𝑙2
𝑢−1 − 2𝑢0 + 𝑢1 = 0

𝑢−1 falls outside the domain of the rod! This is called a ghost point.

Question: How do we handle this?

𝑥−1

0 1−1



Solving the rod equation using Finite Differences

What happens with the boundary nodes?

Consider the EOM at the first point 𝑛 = 0:

𝜌𝐴 ሷ𝑢0 −
𝐸𝐴

𝑙2
𝑢−1 − 2𝑢0 + 𝑢1 = 0
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Solving the rod equation using Finite Differences

What happens with the boundary nodes?

Consider the EOM at the first point 𝑛 = 0:

𝜌𝐴 ሷ𝑢0 −
𝐸𝐴

𝑙2
𝑢−1 − 2𝑢0 + 𝑢1 = 0

𝑢−1 falls outside the domain of the rod! This is called a ghost point.

Question: How do we handle this?

Answer: Have to apply boundary conditions (BC)

Let’s consider the two possible BCs: a prescribe force or a prescribed displacement

𝑥−1

0 1−1



Solving the rod equation using Finite Differences

Prescribing the displacement

Consider a prescribed displacement at 𝑥 = 0:

𝑢 0, 𝑡 = 𝑢0 𝑡 = 𝛿 𝑡 = 𝑈 cos Ω𝑡

Since this gives the displacement 𝑢0 at any point in time, no longer have to solve the EOM at 𝑛 = 0. So the ghost point 

disappears. 

But 𝑢0 is also part of the EOM of point 𝑛 = 1:

𝜌𝐴 ሷ𝑢1 −
𝐸𝐴

𝑙2
𝑢0 − 2𝑢1 + 𝑢2 = 0 → 𝜌𝐴 ሷ𝑢1 −

𝐸𝐴

𝑙2
𝛿 𝑡 − 2𝑢1 + 𝑢2 = 0

Simply move it to the right hand side:

𝜌𝐴 ሷ𝑢1 −
𝐸𝐴

𝑙2
−2𝑢1 + 𝑢2 =

𝛿 𝑡 𝐸

𝑙2

𝑥−1

0 1−1



Solving the rod equation using Finite Differences

Prescribing the force

At the other edge of the beam there is another ghost point, 𝑁 + 1.

Consider a force 𝐹 𝑡 = 𝑓 cos Ω𝑡 at 𝑥 = 𝐿:

𝐸𝐴𝑢′ 𝐿 = 𝐹 𝑡

Use central difference to approximate this derivative

𝑢′ 𝐿 =
𝑢𝑁+1 − 𝑢𝑁−1

2𝑙

Substitute and isolate for 𝑢𝑁+1:

𝐸𝐴
𝑢𝑁+1 − 𝑢𝑁−1

2𝑙
= 𝐹 𝑡

𝑢𝑁+1 = 𝑢𝑁−1 +
2𝑙𝐹 𝑡

𝐸𝐴

𝑁 𝑁 + 1𝑁 − 1



Solving the rod equation using Finite Differences

Prescribing the force

With this expression for 𝑢𝑁+1 the ghost point can be removed for all equations it shows up in. In this case it is only the 

EOM of node 𝑁:

𝜌𝐴 ሷ𝑢𝑁 −
𝐸𝐴

𝑙2
𝑢𝑁−1 − 2𝑢𝑁 + 𝑢𝑁+1 = 0

Substitute the expression for 𝑢𝑁+1 into the EOM of node N:

𝜌𝐴 ሷ𝑢𝑁 −
𝐸𝐴

𝑙2
𝑢𝑁−1 − 2𝑢𝑁 + 𝑢𝑁−1 +

2𝑙𝐹 𝑡

𝐸𝐴
= 0

𝜌𝐴 ሷ𝑢𝑁 −
𝐸𝐴

𝑙2
2𝑢𝑁−1 − 2𝑢𝑁 =

𝐸𝐴

𝑙2
2𝑙𝐹 𝑡

𝐸𝐴
=
2𝐹 𝑡

𝑙

𝑁 𝑁 + 1𝑁 − 1



Solving the rod equation using Finite Differences

How do we simplify the implementation?

We have the following set of equations:

▪𝑢0 𝑡 = 𝛿 𝑡 = 𝑈 cos Ω𝑡

▪𝜌𝐴 ሷ𝑢1 −
𝐸𝐴

𝑙2
−2𝑢1 + 𝑢2 =

𝛿 𝑡 𝐸

𝑙2

▪𝜌𝐴 ሷ𝑢𝑛 −
𝐸𝐴

𝑙2
𝑢𝑛−1 − 2𝑢𝑛 + 𝑢𝑛+1 = 0, ∀ 𝑛 = 2, . . . 𝑁 − 1

▪𝜌𝐴 ሷ𝑢𝑁 −
𝐸𝐴

𝑙2
2𝑢𝑁−1 − 2𝑢𝑁 =

𝐸𝐴

𝑙2
2𝑙𝐹 𝑡

𝐸𝐴
=

2𝐹 𝑡

𝑙



Solving the rod equation using Finite Differences

How do we simplify the implementation?

Consider EOM for a fixed-forced rod, where 𝑁 + 1 = 5.

Without applying boundary conditions, we would have:

𝜌𝐴 ሷ𝑢𝑛 −
𝐸𝐴

𝑙2
𝑢𝑛−1 − 2𝑢𝑛 + 𝑢𝑛+1 = 0, ∀ 𝑛 = 0, . . . 𝑁

In a matrix form: ሷ𝒖 =
E

𝜌𝑙

1
0
0
0
0

−2
1
0
0
0

1
−2
1
0
0

0
1
−2
1
0

0
0
1
−2
1

0
0
0
1
−2

0
0
0
0
1 𝑁+1,𝑁+3

𝑢−1
𝑢0
𝑢1
𝑢2
𝑢3
𝑢4
𝑢5

Enforcing displacement: ሷ𝒖 =
E

𝜌𝑙

−2
1
0
0

1
−2
1
0

0
1
−2
1

0
0
1
−2

0
0
0
1

𝑢1
𝑢2
𝑢3
𝑢4
𝑢5

+

𝐸𝛿 𝑡

𝜌𝑙2

0
0
0
0



Solving the rod equation using Finite Differences

How do we simplify the implementation?

Consider EOM for a fixed-forced rod, where 𝑁 + 1 = 5.

Without applying boundary conditions, we would have:

𝜌𝐴 ሷ𝑢𝑛 −
𝐸𝐴

𝑙2
𝑢𝑛−1 − 2𝑢𝑛 + 𝑢𝑛+1 = 0, ∀ 𝑛 = 0, . . . 𝑁

Enforcing force: ሷ𝒖 =
E

𝜌𝑙

−2
1
0
0

1
−2
1
0

0
1
−2
2

0
0
1
−2

𝑢1
𝑢2
𝑢3
𝑢4

+

𝐸𝛿 𝑡

𝜌𝑙2

0
0

2𝐹 𝑡

𝜌𝑙𝐴

Final matrix form: 

ሷ𝒖 = 𝑲𝒖 + 𝑭 with 𝑲 =
E

𝜌𝑙

−2
1
0
0

1
−2
1
0

0
1
−2
2

0
0
1
−2

, 𝑭 =

𝐸𝛿 𝑡

𝜌𝑙2

0
0

2𝐹 𝑡

𝜌𝑙𝐴



Solving the rod equation using Finite Differences

Exercise: Go through tutorial 3.1 on solving the dynamic motion of a rod using Finite Differences



Finite Elements

3.3



Finite Elements

The basic concepts of Finite Element method:

Goal: Model a structure by dividing it into an equivalent system of many smaller structures or units (finite elements)

Allows to obtain a set of algebraic equations to solve for an unknown quantity

It can handle:

▪ Irregular Boundaries 

▪ General Loads 

▪ Different Materials 

▪ Different Boundary Conditions 

▪ Variable Element Size 

▪ Easy Modification 

▪ Dynamics 

▪ Nonlinear Problems (Geometric or Material)



Finite Elements
How do we define a FE method in practice? 

A bit of abstract math… 

Let’s consider we want to solve a PDE: 

𝐿 𝑢 = 𝑓 𝑖𝑛 Ω

(𝐿 𝑢 can contain derivatives of arbitrary order in time and space)

1. Discretize the domain 𝛀:

- 𝑛𝑒 elements Ωk for 𝑘 = 1,… , 𝑛𝑒

- 𝑛𝑛 nodes (in 1D 𝑛𝑛 = 𝑛𝑒 + 1)



Finite Elements
How do we define a FE method in practice? 

A bit of abstract math… 

Let’s consider we want to solve a PDE: 

𝐿 𝑢 = 𝑓 𝑖𝑛 Ω

(𝐿 𝑢 can contain derivatives of arbitrary order in time and space)

2. Approximate the solution with element-wise shape functions (typically polynomials)

For each node (𝑖) we define piece-wise interpolation functions defined on the set of elements 𝑆𝑖 that are attached to the 

node 𝑖: 

𝑁𝑖 𝑥 = ቐ
𝑝 𝑥 , 𝑥 ∈ Ω𝑘 ∀ 𝑘 ∈ 𝑆𝑖
1, 𝑥 = 𝑥𝑖
0, otherwise



Finite Elements
How do we define a FE method in practice? 

A bit of abstract math… 

Let’s consider we want to solve a PDE: 

𝐿 𝑢 = 𝑓 𝑖𝑛 Ω

(𝐿 𝑢 can contain derivatives of arbitrary order in time and space)

2. Approximate the solution with element-wise shape functions (typically polynomials)

With these shape functions and the value of the function at the node 𝑢𝑖, we can interpolate any solution as: 

𝑢 𝑥 =

𝑖=1

𝑛𝑛

𝑁𝑖 𝑥 𝑢𝑖



Finite Elements
How do we define a FE method in practice? 

A bit of abstract math… 

Let’s consider we want to solve a PDE: 

𝐿 𝑢 = 𝑓 𝑖𝑛 Ω

3. The problem is satisfied in a weak sense (virtual work principle)

Define the weak form at each element k:  

1. starting from the strong form  𝐿 𝑢 = 𝑓

2. Multiply by a virtual displacement (𝑣)

3. Integrate over the element

𝑎 𝑢, 𝑣 𝑘 ≔ න

Ω𝑘

𝐿 𝑢 ⋅ 𝑣 𝑑Ω𝑘

𝑏 𝑣 𝑘 ≔ න

Ω𝑘

𝑓 ⋅ 𝑣 𝑑Ω𝑘

https://en.wikipedia.org/wiki/Finite_element_method_in_structural_mechanics


Finite Elements
How do we define a FE method in practice? 

A bit of abstract math… 

Let’s consider we want to solve a PDE: 

𝐿 𝑢 = 𝑓 𝑖𝑛 Ω

3. The problem is satisfied in a weak sense (virtual work principle)

The weak form has to be satisfied for any function 𝑣 in the space of solutions:  

𝑎 𝑢, 𝑣 = 

𝑘=1

𝑛𝑒

𝑎 𝑢, 𝑣 𝑘 = 

𝑘=1

𝑛𝑒

𝑏 𝑣 𝑘 = 𝑏(𝑣) ∀𝑣

In particular, we can select 𝑣 to be function from the space of shape functions 𝑁𝑖(𝑥) for all 𝑖 = 1,… , 𝑛𝑛

https://en.wikipedia.org/wiki/Finite_element_method_in_structural_mechanics


Finite Elements
How do we define a FE method in practice? 

A bit of abstract math… 

Let’s consider we want to solve a PDE: 

𝐿 𝑢 = 𝑓 𝑖𝑛 Ω

4. Construct the global algebraic system

- Take 𝑣 = 𝑁𝑖 for all 𝑖 = 1,… , 𝑛𝑛

- Assume the solution is given by 

𝑢 𝑥 =

𝑗=1

𝑛𝑛

𝑁𝑗 𝑥 𝑢𝑗

𝑎 𝑢,𝑁𝑖 = 𝑏 𝑁𝑖 ∀𝑖 = 1,… , 𝑛𝑛



𝑘=1

𝑛𝑒

න

Ω𝑘

𝐿 

𝑗=1

𝑛𝑛

𝑁𝑗 𝑥 𝑢𝑗 𝑁𝑖(𝑥) 𝑑Ω𝑘 = 

𝑘=1

𝑛𝑒

න

Ω𝑘

𝑓𝑁𝑖(𝑥) 𝑑Ω𝑘 ⇒ 

𝑗=1

𝑛𝑛



𝑘=1

𝑛𝑒

න

Ω𝑘

𝐿 𝑁𝑗 𝑁𝑖 𝑑Ω𝑘 𝑢𝑗 = 

𝑘=1

𝑛𝑒

න

Ω𝑘

𝑓𝑁𝑖(𝑥) 𝑑Ω𝑘



Finite Elements
How do we define a FE method in practice? 

A bit of abstract math… 

Let’s consider we want to solve a PDE: 

𝐿 𝑢 = 𝑓 𝑖𝑛 Ω

4. Construct the global algebraic system



𝑗=1

𝑛𝑛



𝑘=1

𝑛𝑒

න

Ω𝑘

𝐿 𝑁𝑗 𝑁𝑖 𝑑Ω𝑘 𝑢𝑗 = 

𝑘=1

𝑛𝑒

න

Ω𝑘

𝑓𝑁𝑖(𝑥) 𝑑Ω𝑘 ⇒ 

𝑗=1

𝑛𝑛

𝐴𝑖𝑗 𝑢𝑗 = 𝑏𝑖 ∀𝑖 = 1,… , 𝑛𝑛 ⇒ 𝑨𝒖 = 𝒃



Finite Elements
Finite Elements vs Finite Differences?

FEM pros and cons:

▪ Easy to consider different types of boundary conditions 

(equations do not change)

▪ Easy do consider heterogeneous domains (each 

element can have distinct properties)

▪ Easy to consider irregular domains (non-squared, 

irregular discretization)

▪ A direct relation between nodal displacements and 

nodal forces (internal forces) is obtained

FD pros and cons:

▪ Easy to understand (very intuitive)



Solving PDEs with Finite 
Elements

3.4



Solving the rod equation using Finite Elements

Consider the EOM of a rod (a PDE):

𝜌𝐴 ሷ𝑢 + 𝐸𝐴𝑢′′ = 0 where 𝑢 𝑥, 𝑡 ∀ 𝑥 ∈ (0, 𝐿)

Remember the steps of a FEM:

1. Discretize the domain

2. Define shape functions

3. Define elemental weak form

4. Assemble the global system



Solving the rod equation using Finite Elements

1. Discretize the domain



Solving the rod equation using Finite Elements

2. Define shape functions

We consider that the axial displacement can be well approximated using piece-wise linear functions:

𝑁𝑖
𝑘 𝑥 = 𝑎 + 𝑏𝑥

How do we define a and b?



Solving the rod equation using Finite Elements

3. Define elemental weak form

Starting from the strong form (EOM):

𝑚 ሷ𝑢 𝑥 − 𝐸𝐴 𝑢′′ 𝑥 = 𝑞 𝑥

1. Multiply by a test function 𝑣 and integrate over an element:

න
Ω𝑘

𝑚 ሷ𝑢 𝑥 𝑣 𝑥 𝑑Ω − න
Ω𝑘

𝐸𝐴 𝑢′′ 𝑥 𝑣 𝑥 𝑑Ω = න
Ω𝑘

𝑞 𝑥 𝑣 𝑥 𝑑Ω



Solving the rod equation using Finite Elements

3. Define elemental weak form

Starting from the strong form (EOM):

𝑚 ሷ𝑢 𝑥 − 𝐸𝐴 𝑢′′ 𝑥 = 𝑞 𝑥

1. Multiply by a test function 𝑣 and integrate over an element:

න
Ω𝑘

𝑚 ሷ𝑢 𝑥 𝑣 𝑥 𝑑Ω − න
Ω𝑘

𝐸𝐴 𝑢′′ 𝑥 𝑣 𝑥 𝑑Ω = න
Ω𝑘

𝑞 𝑥 𝑣 𝑥 𝑑Ω

2. Integrate by parts the terms with second-order derivative:

−න
Ω𝑘

𝐸𝐴 𝑢′′ 𝑥 𝑣 𝑥 𝑑Ω = න
Ω𝑘

𝐸𝐴 𝑢′ 𝑥 𝑣′(𝑥)𝑑Ω − 𝐸𝐴𝑢′ 𝑥 𝑣 𝑥 ቚ
𝑥=𝑥𝑎

𝑥=𝑥𝑏



Solving the rod equation using Finite Elements

3. Define elemental weak form

Starting from the strong form (EOM):

𝑚 ሷ𝑢 𝑥 − 𝐸𝐴 𝑢′′ 𝑥 = 𝑞 𝑥

1. Multiply by a test function 𝑣 and integrate over an element:

න
Ω𝑘

𝑚 ሷ𝑢 𝑥 𝑣 𝑥 𝑑Ω − න
Ω𝑘

𝐸𝐴 𝑢′′ 𝑥 𝑣 𝑥 𝑑Ω = න
Ω𝑘

𝑞 𝑥 𝑣 𝑥 𝑑Ω

2. Integrate by parts the terms with second-order derivative:

−න
Ω𝑘

𝐸𝐴 𝑢′′ 𝑥 𝑣 𝑥 𝑑Ω = න
Ω𝑘

𝐸𝐴 𝑢′ 𝑥 𝑣′(𝑥)𝑑Ω − 𝐸𝐴𝑢′ 𝑥 𝑣 𝑥 ቚ
𝑥=𝑥𝑎

𝑥=𝑥𝑏

3. Final weak form:

න
Ω𝑘

𝑚 ሷ𝑢 𝑥 𝑣 𝑥 𝑑Ω + න
Ω𝑘

𝐸𝐴 𝑢′ 𝑥 𝑣′(𝑥)𝑑Ω − 𝐸𝐴𝑢′ 𝑥 𝑣 𝑥 ቚ
𝑥=𝑥𝑎

𝑥=𝑥𝑏
= න

Ω𝑘

𝑞 𝑥 𝑣 𝑥 𝑑Ω



Solving the rod equation using Finite Elements

3. Define elemental weak form

Final weak form:

න
Ω𝑘

𝑚 ሷ𝑢 𝑥 𝑣 𝑥 𝑑Ω + න
Ω𝑘

𝐸𝐴 𝑢′ 𝑥 𝑣′(𝑥)𝑑Ω = න
Ω𝑘

𝑞 𝑥 𝑣 𝑥 𝑑Ω + 𝑇 𝑥 𝑣 𝑥 ቚ
𝑥=𝑥𝑎

𝑥=𝑥𝑏

Choose 𝑣 𝑥 = 𝑁𝑖(𝑥) for all 𝑖 = 1,… , 𝑛𝑛.

In a given element 𝑘 between nodes 𝑎 and 𝑏, the only non-zero shape functions will be 𝑁𝑎(𝑥) and 𝑁𝑏(𝑥).

Replace the solution by the approximated function: 

𝑢 𝑥 = σ𝑗=1
𝑛𝑛 𝑁𝑗 𝑥 𝑢𝑗,     𝑢′ 𝑥 = σ𝑗=1

𝑛𝑛 𝑁𝑗 ′ 𝑥 𝑢𝑗,      ሷ𝑢 𝑥 = σ𝑗=1
𝑛𝑛 𝑁𝑗 𝑥 ሷ𝑢𝑗



𝑗=𝑎,𝑏

න
Ω𝑘

𝑚𝑁𝑗 𝑥 𝑁𝑖 𝑥 𝑑Ω ሷ𝑢𝑗 + 

𝑗=𝑎,𝑏

𝑛𝑛

න
Ω𝑘

𝐸𝐴 𝑁𝑗
′ 𝑥 𝑁𝑖

′(𝑥)𝑑Ω 𝑢𝑗 = න
Ω𝑘

𝑞 𝑥 𝑁𝑖 𝑥 𝑑Ω + 𝑇 𝑥 𝑁𝑖 𝑥 ቚ
𝑥=𝑥𝑎

𝑥=𝑥𝑏

𝑀𝑖𝑗
𝑘 ሷ𝑢𝑗 + 𝐾𝑖𝑗

𝑘𝑢𝑗 = 𝑄𝑖
𝑘 + 𝑆𝑖

𝑘 𝑴𝑘 ሷ𝒖 + 𝑲𝑘𝒖 = 𝑸𝑘 + 𝑺𝑘



Solving the rod equation using Finite Elements

3. Define elemental weak form

Let’s compute the mass matrix  

Using linear shape functions and noting ℎ = 𝑥𝑏 − 𝑥𝑎: 

𝑁𝑎 𝑥 =
𝑥𝑏−𝑥

ℎ
, 𝑁𝑎

′ 𝑥
= −

1

ℎ
, 𝑁𝑏 𝑥 =

𝑥−𝑥𝑎

ℎ
, 𝑁𝑏

′(𝑥) =
1

ℎ

𝑀𝑎𝑎 = න
𝑥𝑎

𝑥𝑏

𝑚 𝑁𝑎 𝑥 𝑁𝑎 𝑥 𝑑Ω = ?

𝑀𝑎𝑏 = 𝑀𝑏𝑎 = න
𝑥𝑎

𝑥𝑏

𝑚 𝑁𝑎 𝑥 𝑁𝑏 𝑥 𝑑Ω = ?

𝑀𝑏𝑏 = න
𝑥𝑎

𝑥𝑏

𝑚 𝑁𝑏 𝑥 𝑁𝑏 𝑥 𝑑Ω = ?



Solving the rod equation using Finite Elements

3. Define elemental weak form

Let’s compute the mass matrix  

Using linear shape functions and noting ℎ = 𝑥𝑏 − 𝑥𝑎: 

𝑁𝑎 𝑥 =
𝑥𝑏−𝑥

ℎ
, 𝑁𝑎

′ 𝑥
= −

1

ℎ
, 𝑁𝑏 𝑥 =

𝑥−𝑥𝑎

ℎ
, 𝑁𝑏

′(𝑥) =
1

ℎ

𝑀𝑎𝑎 = න
𝑥𝑎

𝑥𝑏

𝑚 𝑁𝑎 𝑥 𝑁𝑎 𝑥 𝑑Ω =
𝑚

ℎ2
𝑥𝑏 − 𝑥 3

3
ቚ
𝑥𝑎

𝑥𝑏
=
𝒎𝒉

𝟑

𝑀𝑎𝑏 = 𝑀𝑏𝑎 = න
𝑥𝑎

𝑥𝑏

𝑚 𝑁𝑎 𝑥 𝑁𝑏 𝑥 𝑑Ω =
𝑚

ℎ2
−

𝑥 − 𝑥𝑎
3

3
+
ℎ 𝑥 − 𝑥𝑎

2

2
ቚ
𝑥𝑎

𝑥𝑏
=
𝒎𝒉

𝟔

𝑀𝑏𝑏 = න
𝑥𝑎

𝑥𝑏

𝑚 𝑁𝑏 𝑥 𝑁𝑏 𝑥 𝑑Ω = −
𝑚

ℎ2
𝑥𝑏 − 𝑥 3

3
ቚ
𝑥𝑎

𝑥𝑏
=
𝒎𝒉

𝟑

𝑴𝑘 =
𝑚ℎ

6
2 1
1 2



Solving the rod equation using Finite Elements

3. Define elemental weak form

Looking carefully at the internal forces:

𝑆𝑖
𝑘 = 𝑇 𝑥 𝑁𝑖 𝑥 ቚ

𝑥=𝑥𝑎

𝑥=𝑥𝑏
= 𝑇 𝑥𝑏 𝑁𝑖 𝑥𝑏 − 𝑇 𝑥𝑎 𝑁𝑖(𝑥𝑎)

When 𝑖 = 𝑎: 𝑆𝑎
𝑘 = −𝑇(𝑥𝑎)

When 𝑖 = 𝑏: 𝑆𝑏
𝑘 = 𝑇(𝑥𝑏)

Since 𝑆𝑎
𝑘+1 = −𝑆𝑏

𝑘, when adding the contributions of the internal forces to the global system they will cancel. 

We only need to account for the internal forces at the boundary → Structure reactions.



Solving the rod equation using Finite Elements

3. Define elemental weak form

Looking carefully at the internal forces:

𝑆𝑖
𝑘 = 𝑇 𝑥 𝑁𝑖 𝑥 ቚ

𝑥=𝑥𝑎

𝑥=𝑥𝑏
= 𝑇 𝑥𝑏 𝑁𝑖 𝑥𝑏 − 𝑇 𝑥𝑎 𝑁𝑖(𝑥𝑎)

When 𝑖 = 𝑎: 𝑆𝑎
𝑘 = −𝑇(𝑥𝑎)

When 𝑖 = 𝑏: 𝑆𝑏
𝑘 = 𝑇(𝑥𝑏)

Since 𝑆𝑎
𝑘+1 = −𝑆𝑏

𝑘, when adding the contributions of the internal forces to the global system they will cancel. 

We only need to account for the internal forces at the boundary → Structure reactions.



Solving the rod equation using Finite Elements

3. Define elemental weak form

Let’s compute the stiffness matrix

𝑁𝑎 𝑥 =
𝑥𝑏−𝑥

ℎ
, 𝑁𝑎

′ 𝑥
= −

1

ℎ
, 𝑁𝑏 𝑥 =

𝑥−𝑥𝑎

ℎ
, 𝑁𝑏

′(𝑥) =
1

ℎ

𝑲𝑘 =?



Solving the rod equation using Finite Elements

3. Define elemental weak form

Let’s compute the stiffness matrix

𝑁𝑎 𝑥 =
𝑥𝑏−𝑥

ℎ
, 𝑁𝑎

′ 𝑥
= −

1

ℎ
, 𝑁𝑏 𝑥 =

𝑥−𝑥𝑎

ℎ
, 𝑁𝑏

′(𝑥) =
1

ℎ

𝐾𝑎𝑎 = න
𝑥𝑎

𝑥𝑏

𝐸𝐴 𝑁𝑎
′ 𝑥 𝑁𝑎

′ 𝑥 𝑑Ω =
𝐸𝐴

ℎ2
𝑥 ቚ

𝑥𝑎

𝑥𝑏
=
𝑬𝑨

𝒉

𝐾𝑎𝑏 = 𝐾𝑏𝑎 = න
𝑥𝑎

𝑥𝑏

𝐸𝐴 𝑁𝑎
′ 𝑥 𝑁𝑏

′ 𝑥 𝑑Ω = −
𝐸𝐴

ℎ2
𝑥 ቚ

𝑥𝑎

𝑥𝑏
= −

𝑬𝑨

𝒉

𝐾𝑏𝑏 = න
𝑥𝑎

𝑥𝑏

𝐸𝐴 𝑁𝑏
′ 𝑥 𝑁𝑏

′ 𝑥 𝑑Ω =
𝐸𝐴

ℎ2
𝑥 ቚ

𝑥𝑎

𝑥𝑏
=
𝑬𝑨

𝒉

𝑲𝑘 =
𝐸𝐴

ℎ
1 −1
−1 1



Solving the rod equation using Finite Elements

4. Assemble the global system

From the elemental weak forms we have: 𝑀𝑖𝑗
𝑘 ሷ𝑢𝑗 + 𝐾𝑖𝑗

𝑘𝑢𝑗 = 𝑄𝑖
𝑘

ሷ𝑢1
ሷ𝑢2
ሷ𝑢3
ሷ𝑢4

+

𝑢1
𝑢2
𝑢3
𝑢4

= +

𝑆1
0
0
𝑆4

1 2 3

1 2 3 4



Solving the rod equation using Finite Elements

4. Assemble the global system

From the elemental weak forms we have: 𝑀𝑖𝑗
𝑘 ሷ𝑢𝑗 + 𝐾𝑖𝑗

𝑘𝑢𝑗 = 𝑄𝑖
𝑘

𝑀11
1 𝑀12

1 0 0

𝑀21
1 𝑀22

1

0
0

ሷ𝑢1
ሷ𝑢2
ሷ𝑢3
ሷ𝑢4

+

𝐾11
1 𝐾12

1 0 0

𝐾21
1 𝐾22

1

0
0

𝑢1
𝑢2
𝑢3
𝑢4

=

𝑄1
1

𝑄2
1
+

𝑆1
0
0
𝑆4

When 𝑘 = 1:  𝑀𝑖𝑗
1 = 𝐾𝑖𝑗

1 = 𝑄𝑖
1 = 0 for all 𝑗, 𝑖 ≠ 1,2

1 2 3

1 2 3 4



Solving the rod equation using Finite Elements

4. Assemble the global system

From the elemental weak forms we have: 𝑀𝑖𝑗
𝑘 ሷ𝑢𝑗 + 𝐾𝑖𝑗

𝑘𝑢𝑗 = 𝑄𝑖
𝑘

𝑀11
1 𝑀12

1 0 0

𝑀21
1 𝑀22

1 +𝑀22
2 𝑀23

1 0

0 𝑀32
2 𝑀33

2

0 0

ሷ𝑢1
ሷ𝑢2
ሷ𝑢3
ሷ𝑢4

+

𝐾11
1 𝐾12

1 0 0

𝐾21
1 𝐾22

1 + 𝐾22
2 𝐾23

2 0

0 𝐾32
2 𝐾33

2

0 0

𝑢1
𝑢2
𝑢3
𝑢4

=

𝑄1
1

𝑄2
1 + 𝑄2

2

𝑄3
2

+

𝑆1
0
0
𝑆4

When 𝑘 = 1:  𝑀𝑖𝑗
1 = 𝐾𝑖𝑗

1 = 𝑄𝑖
1 = 0 for all 𝑗, 𝑖 ≠ 1,2

When 𝑘 = 2:  𝑀𝑖𝑗
2 = 𝐾𝑖𝑗

2 = 𝑄𝑖
2 = 0 for all 𝑗, 𝑖 ≠ 2,3

1 2 3

1 2 3 4



Solving the rod equation using Finite Elements

4. Assemble the global system

From the elemental weak forms we have: 𝑀𝑖𝑗
𝑘 ሷ𝑢𝑗 + 𝐾𝑖𝑗

𝑘𝑢𝑗 = 𝑄𝑖
𝑘

𝑀11
1 𝑀12

1 0 0

𝑀21
1 𝑀22

1 +𝑀22
2 𝑀23

2 0

0 𝑀32
2 𝑀33

2 +𝑀33
3 𝑀34

3

0 0 𝑀43
3 𝑀44

3

ሷ𝑢1
ሷ𝑢2
ሷ𝑢3
ሷ𝑢4

+

𝐾11
1 𝐾12

1 0 0

𝐾21
1 𝐾22

1 + 𝐾22
2 𝐾23

2 0

0 𝐾32
2 𝐾33

2 + 𝐾33
3 𝐾34

3

0 0 𝐾43
3 𝐾44

3

𝑢1
𝑢2
𝑢3
𝑢4

=

𝑄1
1

𝑄2
1 + 𝑄2

2

𝑄3
2 + 𝑄3

3

𝑄4
3

+

𝑆1
0
0
𝑆4

When 𝑘 = 1:  𝑀𝑖𝑗
1 = 𝐾𝑖𝑗

1 = 𝑄𝑖
1 = 0 for all 𝑗, 𝑖 ≠ 1,2

When 𝑘 = 2:  𝑀𝑖𝑗
2 = 𝐾𝑖𝑗

2 = 𝑄𝑖
2 = 0 for all 𝑗, 𝑖 ≠ 2,3

When 𝑘 = 3:  𝑀𝑖𝑗
3 = 𝐾𝑖𝑗

3 = 𝑄𝑖
3 = 0 for all 𝑗, 𝑖 ≠ 3,4

1 2 3

1 2 3 4



Solving the rod equation using Finite Elements

▪ Bonus: apply boundary conditions

Assume we have known displacement at node 1: 𝑢1 = 𝑈, ሷ𝑢1 = ሷ𝑈

𝑀11
1 𝑀12

1 0 0

𝑀21
1 𝑀22

1 +𝑀22
2 𝑀23

1 0

0 𝑀32
2 𝑀33

2 +𝑀33
3 𝑀34

3

0 0 𝑀43
3 𝑀44

3

ሷ𝑈
ሷ𝑢2
ሷ𝑢3
ሷ𝑢4

+

𝐾11
1 𝐾12

1 0 0

𝐾21
1 𝐾22

1 + 𝐾22
2 𝐾23

2 0

0 𝐾32
2 𝐾33

2 + 𝐾33
3 𝐾34

3

0 0 𝐾43
3 𝐾44

3

𝑈
𝑢2
𝑢3
𝑢4

=

𝑄1
1

𝑄2
1 + 𝑄2

2

𝑄3
2 + 𝑄3

3

𝑄4
3

+

𝑆1
0
0
𝑆4

𝑀22
1 +𝑀22

2 𝑀23
1 0

𝑀32
2 𝑀33

2 +𝑀33
3 𝑀34

3

0 𝑀43
3 𝑀44

3

ሷ𝑢2
ሷ𝑢3
ሷ𝑢4

+

𝐾22
1 + 𝐾22

2 𝐾23
2 0

𝐾32
2 𝐾33

2 + 𝐾33
3 𝐾34

3

0 𝐾43
3 𝐾44

3

𝑢2
𝑢3
𝑢4

=

𝑄2
1 + 𝑄2

2

𝑄3
2 + 𝑄3

3

𝑄4
3

+
𝑀21
1 ሷ𝑈 + 𝐾21

1 𝑈
0
0

+
0
0
𝑆4

1 2 3

1 2 3 4



Solving the rod equation using Finite Elements

▪ Bonus: apply boundary conditions

Assume we have a force applied at node 4:   𝑞 𝑥 = 𝑃𝛿 𝑥 − 𝑥4 , 𝑆4 = 0 (free node => no internal force)

𝑄𝑖
𝑘 = න

Ω𝑘

𝑞 𝑥 𝑁𝑖 𝑥 𝑑Ω = න
Ω𝑘

𝑃𝛿 𝑥 − 𝑥4 𝑁𝑖 𝑥 𝑑Ω = 𝑃𝑁𝑖(𝑥4)

𝑁𝑖 𝑥4 = ቊ
0, for 𝑖 = 1,2,3
1, for 𝑖 = 4

𝑀22
1 +𝑀22

2 𝑀23
1 0

𝑀32
2 𝑀33

2 +𝑀33
3 𝑀34

3

0 𝑀43
3 𝑀44

3

ሷ𝑢2
ሷ𝑢3
ሷ𝑢4

+

𝐾22
1 + 𝐾22

2 𝐾23
2 0

𝐾32
2 𝐾33

2 + 𝐾33
3 𝐾34

3

0 𝐾43
3 𝐾44

3

𝑢2
𝑢3
𝑢4

=
0
0
𝑃

−
𝑀21
1 ሷ𝑈
0
0

−
𝐾21
1 𝑈
0
0

1 2 3

1 2 3 4

𝑃



Solving the rod equation using Finite Elements

▪ Bonus: apply boundary conditions

The final expression:

𝑚ℎ

6

4 1 0
1 4 1
0 1 2

ሷ𝑢2
ሷ𝑢3
ሷ𝑢4

+
𝐸𝐴

ℎ

2 −1 0
−1 2 −1
0 −1 1

𝑢2
𝑢3
𝑢4

=
−
𝑚ℎ

6
ሷ𝑈 +

𝐸𝐴

ℎ
𝑈

0
𝑃

𝑆1 = 𝑀1𝑗 ሷ𝑢𝑗 + 𝐾1𝑗𝑢𝑗 =
𝑚ℎ

6
2 ሷ𝑈 + ሷ𝑢2 +

𝐸𝐴

ℎ
(𝑈 − 𝑢2)

1 2 3

1 2 3 4

𝑃



Finite Elements for beams

3.5



Solving the Euler-Bernoulli beam equation using Finite Elements

Consider the EOM of a rod (a PDE):

𝑚 ሷ𝑢 𝑥 + 𝐸𝐼 𝑢′′′′(𝑥) = 𝑞(𝑥) where 𝑢 𝑥, 𝑡 ∀ 𝑥 ∈ (0, 𝐿)

Remember the steps of a FEM:

1. Discretize the domain

2. Define shape functions

3. Define elemental weak form

4. Assemble the global system



Solving the Euler-Bernoulli beam equation using Finite Elements

1. Discretize the domain



Solving the Euler-Bernoulli beam equation using Finite Elements
2. Define the shape functions

We consider that the beam motion can be well approximated using piece-wise cubic functions:

𝑁𝑖
𝑘 𝑥 = 𝑎𝑖 + 𝑏𝑖𝑥 + 𝑐𝑖𝑥

2 + 𝑑𝑖𝑥
3

We will use vertical displacements and rotations as unknowns. How do we define a, b, c and d for each DOF?

At each element we’ll have 4 DOFs (2 at each node):

𝑢 𝑥 = σ
𝑗=1

𝑛𝑑𝑜𝑓
𝑁𝑗 𝑥 𝑤𝑗 and      𝜃 𝑥 = σ

𝑗=1

𝑛𝑑𝑜𝑓
𝑁𝑗
′ 𝑥 𝑤𝑗

𝒘 = 𝑢𝑙 𝜃𝑙 𝑢𝑟 𝜃𝑟
𝑇

𝐿

𝑢𝑙 , 𝜃𝑙

𝑢𝑟 , 𝜃𝑟𝑥

𝑢(𝑥) 𝜃 𝑥 = 𝑢′(𝑥)



Solving the Euler-Bernoulli beam equation using Finite Elements
2. Define the shape functions

We want each shape function associated to each DOF to be 1 at the DOF location and 0 at the other DOFs:

𝑢𝑙 = 𝑢 𝑥𝑙 = 

𝑗=1

𝑛𝑑𝑜𝑓

𝑁𝑗 𝑥𝑙 𝑤𝑗

𝜃𝑙 = 𝜃 𝑥𝑙 = 

𝑗=1

𝑛𝑑𝑜𝑓

𝑁𝑗
′ 𝑥𝑙 𝑤𝑗

𝑢𝑟 = 𝑢 𝑥𝑟 = 

𝑗=1

𝑛𝑑𝑜𝑓

𝑁𝑗 𝑥𝑟 𝑤𝑗

𝜃𝑟 = 𝜃 𝑥𝑟 = 

𝑗=1

𝑛𝑑𝑜𝑓

𝑁𝑗
′ 𝑥𝑟 𝑤𝑗

𝐿

𝑢𝑙 , 𝜃𝑙

𝑢𝑟 , 𝜃𝑟𝑥

𝑢(𝑥) 𝜃 𝑥 = 𝑢′(𝑥)



Solving the Euler-Bernoulli beam equation using Finite Elements
2. Define the shape functions

We want each shape function associated to each DOF to be 1 at the DOF location and 0 at the other DOFs:

𝑢𝑙 = 𝑢 𝑥𝑙 = σ
𝑗=1

𝑛𝑑𝑜𝑓
𝑁𝑗 𝑥𝑙 𝑤𝑗

𝜃𝑙 = 𝜃 𝑥𝑙 = σ
𝑗=1

𝑛𝑑𝑜𝑓
𝑁𝑗
′ 𝑥𝑙 𝑤𝑗

𝑢𝑟 = 𝑢 𝑥𝑟 = σ
𝑗=1

𝑛𝑑𝑜𝑓
𝑁𝑗 𝑥𝑟 𝑤𝑗

𝜃𝑟 = 𝜃 𝑥𝑟 = σ
𝑗=1

𝑛𝑑𝑜𝑓
𝑁𝑗
′ 𝑥𝑟 𝑤𝑗

⇒

𝑁1 𝑥𝑙 𝑁2 𝑥𝑙 𝑁3 𝑥𝑙 𝑁4 𝑥𝑙
𝑁1
′ 𝑥𝑙 𝑁2

′ 𝑥𝑙 𝑁3
′ 𝑥𝑙 𝑁4

′ 𝑥𝑙
𝑁1 𝑥𝑟 𝑁2 𝑥𝑟 𝑁3 𝑥𝑟 𝑁4 𝑥𝑟
𝑁1
′ 𝑥𝑟 𝑁2

′ 𝑥𝑟 𝑁3
′ 𝑥𝑟 𝑁4

′ 𝑥𝑟

𝑢𝑙
𝜃𝑙
𝑢𝑟
𝜃𝑟

=

𝑢𝑙
𝜃𝑙
𝑢𝑟
𝜃𝑟

⇒

𝑁1 𝑥𝑙 𝑁2 𝑥𝑙 𝑁3 𝑥𝑙 𝑁4 𝑥𝑙
𝑁1
′ 𝑥𝑙 𝑁2

′ 𝑥𝑙 𝑁3
′ 𝑥𝑙 𝑁4

′ 𝑥𝑙
𝑁1 𝑥𝑟 𝑁2 𝑥𝑟 𝑁3 𝑥𝑟 𝑁4 𝑥𝑟
𝑁1
′ 𝑥𝑟 𝑁2

′ 𝑥𝑟 𝑁3
′ 𝑥𝑟 𝑁4

′ 𝑥𝑟

=

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⇒

𝑁1 𝑥𝑙
𝑁1
′ 𝑥𝑙

𝑁1 𝑥𝑟
𝑁1
′ 𝑥𝑟

=

1
0
0
0

⇒

1 𝑥𝑙 𝑥𝑙
2 𝑥𝑙

3

0 1 2𝑥𝑙 3𝑥𝑙
2

1 𝑥𝑟 𝑥𝑟
2 𝑥𝑟

3

0 1 2𝑥𝑟 3𝑥𝑟
2

𝑎1
𝑏1
𝑐1
𝑑1

=

1
0
0
0

⇒

𝑁1 𝑥 = 1 −
3𝑥2

ℎ2
+

2𝑥3

ℎ3
→ 𝑁1

′ 𝑥 = −
6𝑥

ℎ2
+

6𝑥2

ℎ3

𝑁2 𝑥 = 𝑥 −
2𝑥2

ℎ
+

𝑥3

ℎ2
→ 𝑁2

′ 𝑥 = 1 −
4𝑥

ℎ
+

3𝑥2

ℎ2

𝑁3 𝑥 =
3𝑥2

ℎ2
−

2𝑥3

ℎ3
→ 𝑁3

′ 𝑥 =
6𝑥

ℎ2
−

6𝑥2

ℎ3

𝑁4 𝑥 = −
𝑥2

ℎ
+

𝑥3

ℎ2
→ 𝑁4

′ 𝑥 = −
2𝑥

ℎ
+

3𝑥2

ℎ2



Solving the Euler-Bernoulli beam equation using Finite Elements
3. Elemental weak form

Starting from the strong form (EOM):

𝑚 ሷ𝑢 𝑥 + 𝐸𝐼 𝑢′′′′ 𝑥 = 𝑞 𝑥

Multiply by a test function 𝑣 and integrate over an element:

න
Ω𝑘

𝑚 ሷ𝑢 𝑥 𝑣 𝑥 𝑑Ω + න
Ω𝑘

𝐸𝐼 𝑢′′′′ 𝑥 𝑣 𝑥 𝑑Ω = න
Ω𝑘

𝑞 𝑥 𝑣 𝑥 𝑑Ω

Integrate by parts the terms with fourth-order derivative (twice):

න
Ω𝑘

𝐸𝐼 𝑢′′′′ 𝑥 𝑣 𝑥 𝑑Ω = −න
Ω𝑘

𝐸𝐼 𝑢′′′ 𝑥 𝑣′ 𝑥 𝑑Ω + 𝐸𝐼𝑢′′′ 𝑥 𝑣 𝑥 ቚ
𝑥=𝑥𝑎

𝑥=𝑥𝑏

= න
Ω𝑘

𝐸𝐼 𝑢′′ 𝑥 𝑣′′ 𝑥 𝑑Ω − 𝐸𝐼𝑢′′ 𝑥
𝑀(𝑥)

𝑣′ 𝑥 ቚ
𝑥=𝑥𝑎

𝑥=𝑥𝑏
+ 𝐸𝐼𝑢′′′ 𝑥

𝑉(𝑥)

𝑣 𝑥 ቚ
𝑥=𝑥𝑎

𝑥=𝑥𝑏

Final weak form:

න
Ω𝑘

𝑚 ሷ𝑢 𝑥 𝑣 𝑥 𝑑Ω +න
Ω𝑘

𝐸𝐼 𝑢′′ 𝑥 𝑣′′(𝑥)𝑑Ω = න
Ω𝑘

𝑞 𝑥 𝑣 𝑥 𝑑Ω + 𝑀 𝑥 𝑣′ 𝑥 − 𝑉 𝑥 𝑣(𝑥) ቚ
𝑥=𝑥𝑎

𝑥=𝑥𝑏



Solving the Euler-Bernoulli beam equation using Finite Elements
3. Elemental weak form

Final weak form:

න
Ω𝑘

𝑚 ሷ𝑢 𝑥 𝑣 𝑥 𝑑Ω +න
Ω𝑘

𝐸𝐼 𝑢′′ 𝑥 𝑣′′(𝑥)𝑑Ω = න
Ω𝑘

𝑞 𝑥 𝑣 𝑥 𝑑Ω + 𝑀 𝑥 𝑣′ 𝑥 − 𝑉 𝑥 𝑣(𝑥) ቚ
𝑥=𝑥𝑎

𝑥=𝑥𝑏

Choose 𝑣 𝑥 = 𝑁𝑖(𝑥) for all 𝑖 = 1,… , 𝑛𝑑𝑜𝑓. In a given element 𝑘 between nodes 𝑎 and 𝑏, the only non-zero shape 

functions will be 𝑁𝑎(𝑥) and 𝑁𝑏(𝑥).

Replace the solution by the approximated function: 

𝑢 𝑥 = σ𝑗=1
𝑛𝑛 𝑁𝑗 𝑥 𝑤𝑗,     𝑢′′ 𝑥 = σ𝑗=1

𝑛𝑛 𝑁𝑗
′′ 𝑥 𝑤𝑗,      ሷ𝑢 𝑥 = σ𝑗=1

𝑛𝑛 𝑁𝑗 𝑥 ሷ𝑤𝑗



𝑗=1

𝑛𝑑𝑜𝑓

න
Ω𝑘

𝑚 𝑁𝑗 𝑥 𝑁𝑖 𝑥 𝑑Ω ሷ𝑤𝑗 + 

𝑗=1

𝑛𝑑𝑜𝑓

න
Ω𝑘

𝐸𝐼 𝑁𝑗
′′ 𝑥 𝑁𝑖

′′(𝑥)𝑑Ω 𝑢𝑗 = න
Ω𝑘

𝑞 𝑥 𝑁𝑖 𝑥 𝑑Ω + 𝑀 𝑥 𝑁𝑖
′ 𝑥 − 𝑉 𝑥 𝑁𝑖(𝑥) ቚ

𝑥=𝑥𝑎

𝑥=𝑥𝑏

𝑀𝑖𝑗
𝑘 ሷ𝑢𝑗 + 𝐾𝑖𝑗

𝑘𝑢𝑗 = 𝑄𝑖
𝑘 + 𝑆𝑖

𝑘 𝑴𝑘 ሷ𝒖 + 𝑲𝑘𝒖 = 𝑸𝑘 + 𝑺𝑘



Solving the Euler-Bernoulli beam equation using Finite Elements
3. Elemental weak form

Let’s compute the mass matrix  

Using the shape functions that we found in the previous slide: 

𝑴𝑘 =
𝑚ℎ

420

156 22ℎ 54 −13ℎ
22ℎ 4ℎ2 13ℎ −3ℎ2

54 13ℎ 156 −22ℎ
−13ℎ −3ℎ2 −22ℎ 4ℎ2



Solving the Euler-Bernoulli beam equation using Finite Elements
3. Elemental weak form

Looking carefully at the internal forces:

𝑆𝑖 = 𝑀 𝑥 𝑁𝑖
′ 𝑥 − 𝑉 𝑥 𝑁𝑖(𝑥) ቚ

𝑥=𝑥𝑎

𝑥=𝑥𝑏
= 𝑀 𝑥𝑏 𝑁𝑖

′ 𝑥𝑏 − 𝑉 𝑥𝑏 𝑁𝑖(𝑥𝑏) − 𝑀 𝑥𝑎 𝑁𝑖
′ 𝑥𝑎 − 𝑉 𝑥𝑎 𝑁𝑖 𝑥𝑎

When 𝑖 = 1: 𝑆1 = 𝑉 𝑥𝑎

When 𝑖 = 2: 𝑆2 = −𝑀 𝑥𝑎

When 𝑖 = 3: 𝑆3 = −𝑉 𝑥𝑏

When 𝑖 = 4: 𝑆4 = 𝑀 𝑥𝑏

Since 𝑆1 = −𝑆3 and 𝑆2 = −𝑆4, when adding the contributions of the internal forces to the global system they will cancel. 

We only need to account for the internal forces at the boundary → Structure reactions.



Solving the Euler-Bernoulli beam equation using Finite Elements
3. Elemental weak form

Let’s compute the stiffness matrix

Using the shape functions that we found in the previous slide: 

𝑲𝑘 =
𝐸𝐼

ℎ

12

ℎ2
6

ℎ
−
12

ℎ2
6

ℎ
6

ℎ
4 −

6

ℎ
2

−
12

ℎ2
−
6

ℎ

12

ℎ2
−
6

ℎ
6

ℎ
2 −

6

ℎ
4



Solving the Euler-Bernoulli beam equation using Finite Elements

4. Assemble the global system

Same process as the axial rod…



Solving the Euler-Bernoulli beam equation using Finite Elements

Bonus: more on loading options



Finite Element Method for 
multiple elements

3.6



Finite Elements for a space frame structure

Let’s see the FEM in practice for a structure with multiple elements:

▪ Remember the steps of a FEM:

1. Discretize the domain

2. Define shape functions

3. Define elemental weak form

4. Assemble the global system

Consider a structure that is subject to axial displacement and bending. At each element the EOM has to be satisfied:

𝑚 ሷ𝑢 𝑥 − 𝐸𝐴 𝑢′′ 𝑥 = 𝑞ℎ 𝑥
𝑚 ሷ𝑣 𝑥 + 𝐸𝐼 𝑣′′′′ 𝑥 = 𝑞𝑣 𝑥

1

2

4

3



Finite Elements for a space frame structure

1. Discretize the domain

1

2

4

3



Finite Elements for a space frame structure

2. Define the shape functions

We consider that the axial displacement is approximated with piece-wise linear functions and the vertical motion motion

can be well approximated using piece-wise cubic functions:

𝑁𝑢𝑖
𝑘 𝑥 = 𝑎𝑖 + 𝑏𝑖𝑥

𝑁𝑣𝑖
𝑘 𝑥 = 𝑐𝑖 + 𝑑𝑖𝑥 + 𝑒𝑖𝑥

2 + 𝑓𝑖𝑥
3

We will use horizontal and vertical displacements and rotations as unknowns. 

Follow the same process to define a, b, c, d, e and  f.

𝑁1 𝑥 =
ℎ − 𝑥

ℎ
→ 𝑁1

′ 𝑥 = −
1

ℎ

𝑁2 𝑥 =
𝑥

ℎ
→ 𝑁2

′ 𝑥 =
1

ℎ

𝑁3 𝑥 = 1 −
3𝑥2

ℎ2
+
2𝑥3

ℎ3
→ 𝑁3

′ 𝑥 = −
6𝑥

ℎ2
+
6𝑥2

ℎ3

𝑁4 𝑥 = 𝑥 −
2𝑥2

ℎ
+
𝑥3

ℎ2
→ 𝑁4

′ 𝑥 = 1 −
4𝑥

ℎ
+
3𝑥2

ℎ2

𝑁5 𝑥 =
3𝑥2

ℎ2
−
2𝑥3

ℎ3
→ 𝑁5

′ 𝑥 =
6𝑥

ℎ2
−
6𝑥2

ℎ3

𝑁6 𝑥 = −
𝑥2

ℎ
+
𝑥3

ℎ2
→ 𝑁6

′ 𝑥 = −
2𝑥

ℎ
+
3𝑥2

ℎ2



Finite Elements for a space frame structure

3. Elemental weak form

Starting from the strong form (EOM):

𝑚 ሷ𝑢 𝑥 − 𝐸𝐴 𝑢′′ 𝑥 = 𝑞ℎ 𝑥
𝑚 ሷ𝑣 𝑥 + 𝐸𝐼 𝑣′′′′ 𝑥 = 𝑞𝑣 𝑥

1. Multiply by a test function 𝑣 and integrate over an element.

2. Integrate by parts the terms with fourth-order derivative (twice).

3. Choose 𝑣 𝑥 = 𝑁𝑖(𝑥) for all 𝑖 = 1,… , 𝑛𝑑𝑜𝑓. 

4. Replace the solution by the approximated function.



Finite Elements for a space frame structure

3. Elemental weak form

Starting from the strong form (EOM):

𝑚 ሷ𝑢 𝑥 − 𝐸𝐴 𝑢′′ 𝑥 = 𝑞ℎ 𝑥
𝑚 ሷ𝑣 𝑥 + 𝐸𝐼 𝑣′′′′ 𝑥 = 𝑞𝑣 𝑥

1. Multiply by a test function 𝑣 and integrate over an element.

2. Integrate by parts the terms with fourth-order derivative (twice).

3. Choose 𝑣 𝑥 = 𝑁𝑖(𝑥) for all 𝑖 = 1,… , 𝑛𝑑𝑜𝑓. 

4. Replace the solution by the approximated function.



Finite Elements for a space frame structure

4. Assemble the global system

Same process as the axial rod and beam… But careful! The elements have different orientation!!! 
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The final recipe

1. Number all the nodes of your structure

2. Loop on the elements

a. Define left and right node

b. Calculate local matrices K, M and load vector Pext

c. Calculate orientation angle (α)

d. Calculate rotation matrix T and calculate global K* and M* matrices and global P* ext vector

M* = T M TT

K* = T K TT

P*ext = T Pext

e. Assemble global matrices M*, K* and vector P*ext in “big matrices”

f. The internal forces of each element will cancel with external applied forces, neighbouring elements and 

eventual reactions from supports, and thus are not needed for the final system of equations

3. Loop on nodes

a. assemble applied external point forces on “big” F vector

b. (attention: if forces applied at directly at the nodes have been already considered as forces applied at the 

elements, then skip this part)



Thank you for your attention
Oriol Colomés
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