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Week 2. 
Dynamics of 
rigid bodies



Learning objectives

At the end of this week you will be able to:

Define and analyze numerical methods to solve the dynamic motion of rigid body systems. This entails:

1. Characterize a structure as a set of point masses, rigid bodies, rods and beams interacting between each other

2. Define the Equations of Motion of a system through a Hamiltonian approach

3. Define the linearized Equation of Motion of a nonlinear system

4. Define numerical methods to solve a system of ODEs

5. Implement a solver for a system of ODEs

6. Analize and justify the results



Structural Elements

2.1
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Types of structural elements

In this unit we will deal with the following structural elements:

▪ Point mass Mass (𝑚)

▪ Rigid body Mass (𝑚) and inertia (𝐼)

▪ Rods and bars Density (𝜌), Young’s modulus (𝐸) and cross section area (𝐴)

▪ Beams (Euler-Bernoulli) Density (𝜌), Young’s modulus (𝐸), cross section area (𝐴) and inertia (𝐼)

Question: What are the characteristics of such elements?



Types of structural elements

In this unit we will deal with the following structural connections:

▪ Rigid connection

▪ (Elastic) hinge

▪ Springs (𝑘)

▪ Dampers (𝑐)



Equations of motion

For a point mass we will typically consider the mass-damper-spring system: 

𝑚 ሷ𝑥 + 𝑐 ሶ𝑥 + 𝑘𝑥 = 𝐹

For a rigid body we will include rotation, in 2D we will usually have 3 Degrees of freedom (DOFs). Assuming no 

coupling between DOFs, the Equation of motion (EOM) of a rigid body could be defined as:
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Equations of motion

For a rod, the equation of motion is defined as (𝑢 is the rod elongation):

𝜌𝐴 𝑥
𝜕2𝑢

𝜕𝑡2
−

𝜕

𝜕𝑥
𝐸𝐴(𝑥)

𝜕𝑢

𝜕𝑥
= 𝑝(𝑥)

For an Euler-Bernoulli beam, the equation of motion is defined as (𝑣 is the beam deflection):

𝜌𝐴 𝑥
𝜕2𝑣
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+

𝜕2

𝜕𝑥2
𝐸𝐼(𝑥)

𝜕2𝑣

𝜕𝑥2
= 𝑞(𝑥)



Lagrangian mechanics

2.2



Introduction

We want to obtain the EOMs of an nDOF system whose individual bodies have to satisfy certain constraints. For example, two 
rigid bodies that are connected (same displacement) at 1 point. 

We want a general way of deriving EOM that could be used for all systems
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Introduction

We want to obtain the EOMs of an nDOF system whose individual bodies have to satisfy certain constraints. For example, two 
rigid bodies that are connected (same displacement) at 1 point. 

We want a general way of deriving EOM that could be used for all systems

Question: how?

Answer: Using the Hamilton’s principle and the Lagrange formalism (Euler-Lagrange equation).  



Hamilton’s principle

“the dynamics of a physical system are determined by a variational problem for a functional based on a single function, the 
Lagrangian, which may contain all physical information concerning the system and the forces acting on it. 

The variational problem is equivalent to and allows for the derivation of the differential equations of motion of the physical 
system.”

Let’s start with some definitions:

𝒒 𝑡 : Vector of degrees of freedom of a given system

𝑆(𝒒): Action functional (takes a function and returns a scalar)

𝐿 𝒒 𝑡 , ሶ𝒒 𝑡 : Lagrangian function

𝑆 𝒒 = න

𝑡1

𝑡2

𝐿 𝒒 𝑡 , ሶ𝒒 𝑡 𝑑𝑡



Hamilton’s principle

Hamilton’s principle:

The true evolution 𝒒(𝑡) of a system described by 𝑁 generalized coordinates 𝒒 = 𝑞1, 𝑞2, … , 𝑞𝑁 between two specified states 
𝒒1 = 𝒒(𝑡1) and 𝒒2 = 𝒒 𝑡2 at two specified times 𝑡1 and 𝑡2 is a stationary point (a point where the variation is zero) of the action 
functional 𝑆.

𝛿𝑆

𝛿𝒒 𝑡
= 0



Euler-Lagrange equations

Hamilton’s principle:
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Euler-Lagrange equations

Hamilton’s principle:
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𝑑
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Euler-Lagrange equations

(derivation in structural 
dynamics)



Euler-Lagrange equations

What is a Lagrangian?

The Lagrangian of a system, ℒ, is given by:
ℒ = 𝑇 − 𝑉 −𝑊

Where 𝑇 is the total kinetic energy of the system, 𝑉 the total potential energy of the system and 𝑊 the external work. 



Euler-Lagrange equations

What is a Lagrangian?

The Lagrangian of a system, ℒ, is given by:
ℒ = 𝑇 − 𝑉 −𝑊

Where 𝑇 is the total kinetic energy of the system, 𝑉 the total potential energy of the system and 𝑊 the external work. 

General strategy for constructing 𝓛

1. Kinematic equations: describe the location (GCS) of each relevant point using the generalized coordinates of the system 
(DOFs). 

Relevant are: points that have mass, connection points, etc.

If multiple bodies are connected to each other, express the location of consecutive points relative to each other.

2. Energy equations: write down the kinetic and potential energy of all elements.

3. Substitute the kinematic relations into the energy equations. 

4. Done!



Euler-Lagrange equations

Deriving equations of motion from the Lagrangian:

The EOMs of a system can be obtained Euler-Lagrange equations: 

𝜕𝐿

𝜕𝒒
−

𝑑

𝑑𝑡

𝜕𝐿

𝜕 ሶ𝒒
= 0

So, to derive the EOM we need two steps:

1. Construct 𝐿

2. Take derivatives.

For large systems, we will do the second step with Python/Maple (to simplify the process)
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Example

Derive the EOM of the following system:

1. Construct the Lagrangian

1. Kinematic realations:
𝑥2 = 𝑥1 + 𝑟1cos(𝜑)
𝑧2 = 𝑧1 + 𝑟1sin(𝜑)

ሶ𝑥2 = ሶ𝑥1 − 𝑟1 sin 𝜑 ሶ𝜑
ሶ𝑧2 = ሶ𝑧1 + 𝑟1 cos 𝜑 ሶ𝜑

2. Energy equations:

𝑇 =
1

2
𝑚 𝑣 2 =

1

2
𝑚 ሶ𝑥2

2 + ሶ𝑧2
2

2

=
1

2
𝑚 ሶ𝑥2

2 + ሶ𝑧2
2 =

1

2
𝑚𝑟1

2 ሶ𝜑2

𝑉 =
1

2
𝑘Δ𝑙2 =

1

2
𝑘 𝑥3 − 𝑥2

2 + 𝑧3 − 𝑧2
2 − 𝑟2

2
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3. Lagrangian:

𝐿 =
1

2
𝑚𝑟1

2 ሶ𝜑2 −
1

2
𝑘 𝑥3 − 𝑥2
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Example
Derive the EOM of the following system:

2. Take derivatives

𝜕𝐿

𝜕𝒒
−

𝑑

𝑑𝑡

𝜕𝐿

𝜕 ሶ𝒒
= 0

What Degrees of freedom do we have in this problem?
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Linearization

In some (most) cases, the equations of motion of a system are nonlinear.

Question: Why would we be interested in linearizing a nonlinear system?



Linearization

In some (most) cases, the equations of motion of a system are nonlinear.

Question: Why would we be interested in linearizing a nonlinear system?

▪ Faster to compute responses

▪ Get natural frequencies

▪ Use a frequency domain approach

▪ …



Linearization

Question: How do we linearize?

Answer: Taylor series, truncated at 1st order term

𝑓 𝑥 ≈ 𝑓𝑙𝑖𝑛 𝑥 = 𝑓 𝑥0 + 𝑥 − 𝑥0 𝑓′(𝑥0)

𝑓𝑙𝑖𝑛 𝑥0 + 𝛿𝑥 = 𝑓 𝑥0 + 𝑓′(𝑥0)𝛿𝑥



Example

Exercice: Find the equation of motion of a pendulum and its linearized version

Kinematic relations

𝑥2 = 𝑥1 + 𝑟cos(𝜑)
𝑧2 = 𝑧1 + 𝑟sin(𝜑)

ሶ𝑥2 = ሶ𝑥1 − 𝑟 sin 𝜑 ሶ𝜑
ሶ𝑧2 = ሶ𝑧1 + 𝑟 cos 𝜑 ሶ𝜑

Energy equations:

𝑇 =
1

2
𝑚 𝑣 2 =

1

2
𝑚 ሶ𝑥2

2 + ሶ𝑧2
2

2

=
1

2
𝑚 ሶ𝑥2

2 + ሶ𝑧2
2 =

1

2
𝑚𝑟2 ሶ𝜑2

𝑉 = 𝑚𝑔𝑟 sin(𝜑)

Lagrangian:

𝐿 =
1

2
𝑚𝑟1

2 ሶ𝜑2 −𝑚𝑔𝑟 sin(𝜑)



Example

Exercice: Find the equation of motion of a pendulum and its linearized version

Euler-Lagrange equations

𝜕𝐿

𝜕𝒒
−

𝑑

𝑑𝑡

𝜕𝐿

𝜕 ሶ𝒒
= 0

𝜕𝐿

𝜕𝜑
=
𝜕

1
2
𝑚𝑟2 ሶ𝜑2 −𝑚𝑔𝑟 sin(𝜑)

𝜕𝜑
= −mgr cos 𝜑

𝜕𝐿

𝜕 ሶ𝜑
=
𝜕

1
2
𝑚𝑟2 ሶ𝜑2 −𝑚𝑔𝑟 sin(𝜑)

𝜕 ሶ𝜑
= 𝑚𝑟2 ሶ𝜑

ሷ𝝋 = −
𝒈

𝒓
𝐜𝐨𝐬(𝝋)



Example

Exercice: Find the equation of motion of a pendulum and its linearized version

Now we want to linearize the EOM:

ሷ𝜑 = −
𝑔

𝑟
cos 𝜑 = f(𝜑)

𝑓 𝜑 ≈ ሚ𝑓 𝜑 = 𝑓 𝜑0 + 𝜑 − 𝜑0 𝑓′(𝜑0)

𝑓′ 𝜑0 =
𝑔

𝑟
sin 𝜑0

ሚ𝑓 𝜑0 + 𝛿𝜑 = −
𝑔

𝑟
cos 𝜑0 +

𝑔

𝑟
sin 𝜑0 𝛿𝜑

If 𝜑0 =
3𝜋

2
:

ሷ𝜑 = 𝑓 𝜑 ≈ −
𝑔

𝑟
𝛿𝜑



Thank you for your attention
Oriol Colomés


	Slide 1
	Slide 2: Learning objectives
	Slide 3
	Slide 4: Types of structural elements
	Slide 5: Types of structural elements
	Slide 6: Types of structural elements
	Slide 7: Types of structural elements
	Slide 8: Types of structural elements
	Slide 9: Types of structural elements
	Slide 10: Types of structural elements
	Slide 11: Equations of motion
	Slide 12: Equations of motion
	Slide 13
	Slide 14: Introduction
	Slide 15: Introduction
	Slide 16: Introduction
	Slide 17: Hamilton’s principle
	Slide 18: Hamilton’s principle
	Slide 19: Euler-Lagrange equations
	Slide 20: Euler-Lagrange equations
	Slide 21: Euler-Lagrange equations
	Slide 22: Euler-Lagrange equations
	Slide 23: Euler-Lagrange equations
	Slide 24: Example
	Slide 25: Example
	Slide 26: Example
	Slide 27: Example
	Slide 28
	Slide 29: Linearization
	Slide 30: Linearization
	Slide 31: Linearization
	Slide 32: Example
	Slide 33: Example
	Slide 34: Example
	Slide 35: Thank you for your attention

