

Platform-aware Model-driven Optimization of Cyber-Physical Systems

Approximate Computing for Energy Efficient Computing

Sayandip De

Eindhoven University of Technology, The Netherlands

Supervisors: Henk Corporaal, Jos Huisken

This project has received funding from the European Union's Horizon 2020 Framework Programme for Research and Innovation under grant agreement no 674875.

Particular Technology Node

Opposite View to Traditional Computing

¹¹[Source: A Comprehensive Analysis of Approximate Computing Techniques: From Component- to Application-Level [DATE 2019]

Some Examples Loop Perforation Quality for (i = 0; i < n; i += 1) { body for (i = 0; i < n; i += 2) { body for (i = 0; i < n; i += 4) { body for (i = 0; i < n; i += 8) { body

OCPS

Precision Scaling

²³[Source: A Comprehensive Analysis of Approximate Computing Techniques: From Component- to Application-Level [DATE 2019]

Error Resilient Applications

Image Processing & Compression

Navigation

Biometric Security

Web Browsing

OCPS OCPS

No single accurate result!!!

Image Processing benefits from Approximate Computing!

But they are always part of bigger systems.

Image-approximation in-the-loop

Lane keeping assist system (LKAS)

Lane keeping assist system (LKAS)

What is the impact of image approximation on the bigger closed-loop system? How to analyse this impact?

What should we approximate?

Image Signal Processor [ISP]

Traditional pipelines are optimized for vision. Do we really need a vision optimized pipeline for control?

ISP Approximation: tuning knobs

³⁶ Reconfiguring the Imaging Pipeline for Computer Vision, Buckler et al. [ICCV 2017]

Reduced Execution Time

WCET

ERRORS

WCET

ERRORS

Reduced Execution Time

Loss in Image Quality

Reduced Execution Time

Loss in Image Quality

 \rightarrow shorten both sampling period h and delay τ

 \rightarrow better control performance

 \rightarrow inaccurate computation of state y_L

 \rightarrow errors might be significant

Their interplay determines if we gain or lose

How can we gain on IBC system performance?

Impact on execution times: Profiling

Output of accurate_{ISP}

Output of approximate_{ISP} knob1

Output of approximate_{ISP} knob2

Impact on image quality

Impact on image quality

- Features of image may not be detected
 - Algorithm should be resilient to approximation
 - Application-specific testing needed!

Impact of image quality on QoC

Without considering improved timing

- Performance deteriorates for approximated images (S1 S8)
- Still acceptable for control Baseline (S0) MSE SSIM 1.00 higher than baseline is better Lateral Deviation (cm) **ה** accurateISP 0.75 – MSE_{norm}), (SSIM – approximate_{ISP} knob1 0.50 approximate_{ISP} knob2 0.25 0.00 0.5 -0.25 -0.50 5 1.5 2.0 2.5 3.0 3.5 1.0 4.0 Time (s) 0 **S8 S**2 **S**4 S5 **S6 S**7 **S1 S**3

But timing is improved due to approximation!

How to check if it is <u>safe</u> to <u>approximate images</u> for safety-critical IBC systems?

An analysis framework is needed!!!

IMACS framework: software-in-the-loop & hardware-in-the-loop simulation

S. Mohamed et al., "IMACS: A Framework for Performance Evaluation of Image Approximation in a Closed-loop System," MECO, 2019.

IMACS: SiL simulator

OCPS

http://www.es.ele.tue.nl/cps/automotive/#imacs 50

IMACS: HiL simulator

Results: Degree of approximation vs QoC

Results: Trade offs w.r.t Degree of Approximation

1.05

0.65

	Sotting	ISD Stages	Description
0.95	Setting	s ist stages	Description
	S 0	DM, DN, CM, GM, TM, C	Accurate (all stages included)
	S 1	DM, CM, GM, TM, C	Skip Denoising
	S2	DM, DN, GM, TM, C	Skip Color Mapping
	S 3	DM, DN, CM, TM, C	Skip Gamut Mapping
0.85	S 4	DM, DN, CM, GM, C	Skip Tone Mapping
	S5	DM, DN, C	Keep only Denoising
	S 6	DM, CM, C	Keep only Color Mapping
	S 7	DM, GM, C	Keep only Gamut Mapping
	S 8	DM, TM, C	Keep only Tone Mapping
0.75			

Straight Road Scenario

54

Conclusions

- Image-based control suffers from long processing delay;
- Image-approximation is one promising approach to deal with long delay and save compute energy;
- There are several knobs that decides the performance of the overall IBC system;
- Extensive design space exploration is required to design sweet-spots;

