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Nik|hef Particle decays

Consider a number of independent particles, each having probability A to decay

The number of decayed particle within dt is given by

dN=-\N(t)dt Half-life, ¢, 12

N(t) t .
NdN = | -\dt Mean life
l
J J og N(r) / (Lifetime)
T

N(t)=N,e™

Decay half life (t12): the time it takes for half of
the sample of particles to decay

Mean lifetime (1): The average time a particle
exists before decaying
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Particle decays (cont.)

The wave function of a particle at rest is given by

y(t)=y(0)e ™"
If the energy is real the probability of finding the particle is not time-dependent

w(D)]*=y(0)|*

Allow the particle to decay, one has to introduce an imaginary part to the energy,
such that

E=E,-i :
=Fy-1—
"2
The probability of finding the particle becomes then
[w(2)]*= |y(0)]*e™™"

@ which agrees with the decay law for

I'=Ah

The wave function is then given by

y(t)=y(0)e ™ e
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Nik|hef Particle decays (cont.)

The probability density of finding a particle with energy E is given by

h’ [y(0)|?
2r  (E-E,)*+(I/2)?

P(E)=(const)

" P(E)dE =1—>(const)=
f‘ ® h? [y(0)|

I’ 1
P(E)= S
2t (B-E,)*+([72)

The energy of a decaying particle is not sharp but has a width = natural line width

The shape is called Breit-Wigner

[ is the full width half maximum (FWHM) T'=h
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Nik|hef Particle decays (cont.)

n\v\’

Mass Decay Energy Lifetime

Particle (MeV/c2) Main Decays (MeV) (sec)
106 eV 105 2.2 x 1076
140 my 34 2.6 x 1078
135 vy 135 8.7 x 10—17
549 549 6.3 x 10— 19

4.3 x 10—24
0.90 x 103
2.6 x 10~10
6 x 1024
9.2 x 10~13
4.3 x 10~ 13
6 x 10~22

Strong interactions: ~10-23 s
E/M interactions: ~10-18 s

Weak interactions: ~10-10 s
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Nik|hef Scattering theory

Almost everything we know about nuclear and atomic physics has been discovered
by scattering experiments,

@ Rutherford’s discovery of the nucleus,

@ the discovery of sub-atomic particles (such as quarks), etc.

In low energy physics, scattering phenomena provide the standard tool to explore
solid state systems

@ neutron, electron, x-ray scattering, etc.

As a general topic, it therefore remains central to any advanced course on quantum
mechanics.
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Nik|hef Scattering phenomena

In an idealised scattering experiment, a sharp beam of particles (A) of definite
momentum k are scattered from a localised target (B).

As a result of collision, several outcomes are possible:

(A+B (elastic)
A+B— 1 A+B+C (or A+B") (inelastic)
C (absorption)

In high energy and nuclear physics, we are usually interested in deep inelastic
processes.

To keep our discussion simple, we will focus on elastic processes in which both the
energy and particle number are conserved although many of the concepts that we

will develop are general.
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Differential cross section

Both classical and quantum mechanical scattering phenomena are characterized by
the scattering cross section, o

Consider a collision experiment in which a detector measures the number of
particles per unit time, NdQ, scattered into an element of solid angle dQ in direction

(6.9).

This number is proportional to the incident flux of particles, ji, defined as the number
of particles per unit time crossing a unit area normal to direction of incidence.

Collisions are characterised by the differential cross section defined as the ratio of
the number of particles scattered into direction (8,@) per unit time per unit solid
angle, divided by incident flux

do N

Q "~ j,
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Total cross section

From the differential, we can obtain the total cross section by integrating over all
solid angles

B do JO — Zxd 040 do
o= G 1=y e J; im0 ® G

The cross section, which typically depends sensitively on energy of incoming
particles, has dimensions of area and can be separated into Oelastic, Tinelastic,
Oabsorption, and Ototal.

In the following, we will focus on elastic scattering where internal energies remain
constant and no further particles are created or annihilated, e.g. low energy
scattering of neutrons from protons.

Let us consider classical scattering theory
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Scattering phenomena: classical theory %

In classical mechanics, for a central potential, V(r), the angle of scattering is
determined by the impact parameter b(0)

The number of particles scattered per unit time between 6 and (6 + d6) is equal to
the number incident particles per unit time between b and b + db.

Therefore, for incident flux ji, the number of particles scattered into the solid angle
dQ =21rsin6 dO per unit time is given by

NQ=2x sinb dON=2nbdbj ,

do N

b ‘ db
aQ  j, sin@ | dO
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Nik|hef Scattering phenomena on a hard sphere

For elastic scattering from a hard (impenetrable) sphere the differential cross
section is given by

And thus the total scattering cross section is
do 5
[ ==da=rr
d<

@ The projected area of the sphere
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Ni@ﬁef Scattering phenomena on a hard sphere
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The golden rule of Fermi

For a given process, the physical quantity we would like to calculate in particle
physics is its cross-section

Experimentally this is done by placing detectors covering given stereo angles and
measuring the particles emitted by such process

Theoretically, this can be done with the help of the golden rule of Fermi

@ Two additional ingredients are needed
I  The amplitude (or matrix element) of a process
P It contains all dynamical information originating from our theory (e.g. QED)

Il The phase space available (the density of final states)

27 >
I_‘ifz? |Mif| p(E)
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Nik|hef The golden rule of Fermi

The matrix element is calculated using Feynman diagrams and the corresponding
Feynman rules

@ Specific rules for each of the gauge theories of the Standard Model

The phase space factor is purely kinematic
@ It depends on the masses, 4-momenta of the particles involved in the process

@ It reflects the fact that an interaction is more likely to happen if there is enough “free
space” in the final state

1 e.g. of enough “free space” in the final state: a decay of a heavy particle into a set of light
daughters

1  Counterexample: n—p+e + v

e

27 >
I_‘ifz? |Mif| p(E)
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Feynman rules for QED

A tool to describe interactions and calculate

processes (e.g. cross-sections)

Convenient set of rules to calculate the matrix

element and the density of state factor

spin 1/2 fermion
Massive spin 1 boson

massless spin 1 photon

VERTEX FACTORS
spin 1/2 (—e) — photon

Following the Feynman rules for QED we have:

/ [(Ps) (ige " u(Py )]<_[:3#v>[H(P-t)(iﬂu}’v)“(Pz)} [@ayst @i —Py—q)| - [(27)*6* P~ Py +q)| -

2,

= fg;<2n>4/mP3>y“u<P1> BBV (Pg)y u(Ps) - 84 (Py — Py —q) - 8* (P — Py + q)d*q

)
q-

But P; — P3 = q and the previous can be written:

ige (2m)*a(P3) Y  u(Py) - ——H

By pyp HPY u(P2) 8'(P1+P,—P3—Py)d'q

To get the matrix element, one simply cancels the d-function and gets rid of the imaginary factor:

"
— ‘Q-

M= ——°¢
I (P —P3)?

[(P3) P u(P1) guvi(Pa) 7 u(Py) |

"

My, — ﬁ [H(P3)y*‘zl(P| )H(P4)y,,u(P2)}

d*q
(2m)*
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Nik|hef Feynman rules for QCD

e Labeling: We label every external line with the ingoing and outgoing momenta Py...., Py, adding also an arrow where the parameters 1% are the Gell-Man A -matrices of SU(3).
indicating whether a particle is approaching or moving away from the vertex. If the diagram includes antiparticles, we For a 3-gluon vertex (see fig. 3.4) the factor is of the form:
still label them as particles but with the reverse direction of the arrow. We then label the 4-momenta for all internal

lines qy...., q; and we give an arbitrary direction to the relevant arrow. b ) ‘ )
I 9 g 2 N —g:faﬁl{gﬂvlkl -k )p +8vp (ka —kJJu ‘”gpuil‘J -k Jv}

e External lines: Each external line contribute the following factors:

) where the factors j'aB" are the structure constants of SU(3) and k; are the 4-momenta of each internal line (with
Incoming quark — u” - ¢ i=1.2.3).

Outgoing quark — 7 - ¢’ Finally, for a 4-gluon vertex (see fig. 3.4) the factor is of the form:

adn fﬁ'm {

—i8s .faanrb"(guong —Bup8ve)+f (8uv&op — Buc8vp) +famfbﬁn (8up8ve — Buv&ap ‘)]

Incoming anti-quark — V* - ¢’

Outgoing anti-quark — v-¢ Propagators: For each internal line, we give a factor of

_ i(¢g+m)
Incoming gluon — & -a” -9 q? —m?
Outgoing gluon — &, -a**
gluon: —iguvéaﬁ

where u and v are the relevant Dirac spinors. In the previous c are the matrices that represent the colour: .
where ¢ =1vq" .

1 0 0 e J-functions and integration: The remaining steps are identical as in the general rules described before.
O)forR,| 1]} forG,{0|forB

0 0 1 Figure 3.4 presents the lines for the basic particles and anti-particles but also the propagators for the strong interactions.

and a are the 8-element column matrices, one for each gluon state (i.e. & goes from 1 to 8):
External lines

anti-quarks

OO~ 000 O
CO=0 000 CO
O= 00000 O
- 000000 O

SO0 O =00 C

OO0 O—~=0QC

OO0 O OO0 -
OO0 OO0 =0

quark-gluon vertex 3-gluon vertex 4-gluon vertex

e Vertices: For each vertex we note down in the diagram the coupling constant factor ~ g;. This factor is connected to
the coupling constant via the equation
8=V 47“1:
For a quark-gluon vertex (see fig. 3.4) the factor is of the form:

_igs
T/{a}'ﬂ Fig. 3.4: The most characteristic lines for the Feynman diagrams in strong interactions.
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