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Some applications of the new calculation methods.

Introductory remarks.

The present chapter contains some applications of the new calculation
methods discussed in chapters 5 and 7., The results will be compared to
available exact solutions. If for a specific example no results of the

momentum method are quoted they have been presented already in chapter 5.

The flat plate without suction.

For the flat plate without suction gg =v, = O and hence eguations (7.58)
dx
and {7.59) show that A 1= A 5 = 0. Equations (7.62) and (7.63) then

lead to a; = a, = 0 whéle from (7.681) it follows that a3 = -1/6 if a
a

similar solution with —2 = O is to be obtained.
dx

a «++. are determined by equations (7.64) to

4" 75’
(7.66). It is noted that the eguations are non-linear and therefore may

The values of ao, a

possess several solutions. For instance, a solution of the complete set
of equations (7.61) to (7.66) is a, Z 0 for all values of N which
however is physically unrealistic. For N = 4 no moment equations are
needed and the remaining equations (7.61) to (7.65) have only one
selution in addition to the irrelevant one an = 0. The solution is found
to he a, = 1/24 = 0.041867; a, = a, = 0; a, = -1/6 and a, = 1/8. From
Blasius' theory, discussed in section 3.1.3, it is known that

X
a = ;%- \f ﬁ% = 0.33206 or a = 0.11026 which shows that the approximation
to the exact solution is rather poor for N = 4. A substantial improvement
is obtained however for N > 4, which implies the use of moment eqjuations.
REesults for N = 5 to 9 were obtained, using the procedures outlined in
section 7.8; as starting value for aO in the iteration method ao = 0,11
was used throughout. Since the final results for the a, show a regular
pattern (see table 8.1) it was easy to estimate good starting values for
the other an's at N = Nl once the results for N < Nl were known,

It may be remarked that no gifficulties were encountered from the
occurrence of multiple solutions; in a wide region around the relevant

one there were no other solutions.
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Values for the an's at different values of N have been collected in
table 8.1. From the férmulae given in section 7.10 the functions s(u),
the velocity profiles and some familiar boundary layer parameters were
calculated. The results are given in table 8.2 and figs 8.1 and 8.3.
All data show a monotonic convergence towards the exact solution with
increasing values of N, However, the convergence slows down for N > 7
and therefore it seems to be of little use to go beyond N = 7 or 8 for
practical applications. Table 8.2. and fig. 8.3. show, that in this
way the usual boundary layer parameters are predicted within a few
percent of the exact values.
The results, given in table 8,2, suggest that the differences with the
exact solution are approximately halved if N is increased from 6 to 7
or from 7 to 8. Hence to obtain a more accurate result from the values
for N = 6 and 7 corrected values for N = 7 - to be denoted by N = ™ -
may he determined from

an* = Z(an) - (an) (8.1)

N=7 N=6

The corrected results, obtained in this way, have been included in
tables 8.1 and 8.2, The S(u) and velocity profiles for N = 7* are
found to be so close to the exact solution that they have not been

shown in fig. 8.1.

The plane stagnation point without suction.

For the plane stagnation point the potential flow velocity distribution
is given by U = u,x (equation 3.19). Hence it follows that A ;= 1 end
since Vo = 0 the suction paraméter A 9 is equal to zero.
Results for different values of N have been determined in the same way
as described in section 8.2 for the flat plate. The final results have
been collected in tables 8.3 and 8.4 and figs 8.2 and 8.3.
It follows that the approximation to the exact solution is better than
for the flat plate. Again more accurate results can be obtained from
the results for N = 6 and 7 using egquation (8.1). The results for

=

N=7, 8, 9 and 10 are so close to the exact values that they could

not be shown in fig. 8.2.
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Hartree's bhoundary layers without suction.

For the Hartree boundary layers the pressure distribution is defined by
m

= =1

U = ul X (see equation 3.1 and section 3.1.2.). Hence it follows that

A 1= ml and equation (3.4) then gives
_ B ' .
/\1 = 3= (8.2)

For several values of [ between B = 1 (plane stagnation point) and

P = -0.198838 (separation according to the exact solution) calculations
have been made in the same way as described in sections 8.2 and 8.3 for
the special cases p = 0 and B = 1. Results for 2, which is essentially
the square of the wall shear stress, are shown in figs 8.5a and 8,5h,.
It follows that ao converges monotonically towards the exact solution
for P 7> -0.06, Near separation however, (f < -D.06) a first
decreases when N is increased from 5 to 6 and then increases towards
the exact solution. Detailed results for B = -0.16 are given in table
8.5 while the velocity profiles are shown in fig, 8.6. It follows that
not only ao but also other relevant parameters show & non-monotonic
convergence to the exact solution.

Figs 8.7 and 8,8 show the exact values of 8 = ?2 end T as function of
u for a series of values for B.

From fig. 8.8 it is seen that T behaves like \[—E“near the wall

(u = 0) for the separation profile. This illustrates the advantage of

using T2 instead of T as dependent variable.

Wl

The flat plate with v, x 2,

-V
For this similar solution (see section 5.4.4) A 1= 0 and A . -sz\[?%gj
is an arbitrary constant.
Both from the exact solution and from the momentum method (see section
5.4.4) it is known that for this flow the boundary layer tends to the
asymptotic suction layer for A i€>°°. This result also holds for the
multimoment method. For A 5 = O of course the flat plate without suction,
discussed in section 8.2, is obtained.

For other values of X 9 calculations were performed for different values
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of N; the parameter ao for N = 5 is shown in fig. 8.4 and compared to
the exact results due to Thwaites [66] and Schlichting-Bussmann (guoted
by Mangler [57]). Only the results for N = 5 are shown in the Iigure

since those for higher values of N are close to the exact solution.

The plane stagnation point with constant suction velocity.

For the plane stagnation poinf A 1= 1 (see section 8.3) and to cbtain

-V
a similar solution A 5 = —§9W/ %; should be constant. For A 9 = 0O the

plane stagnation point without suction is obtained while for k 2—-—-;>°’j
the asymptotic suction layer is found.

Results of the multimoment method for N = & are shown in fig. 8.9 and
compared to the exact solution of Schlichting-Bussmann (guoted by

Mangler [;7]).

Howarth' boundary layer flow for U = 1 - x without suction.

. General.

In [44]‘Howarth studied the boundary layer flow corresponding to & main

stream velocity U defined by

= - .4
U=b, ~b x (8.4)

in which bo and b1 are constants. Defining the reference speed U and

-length ¢ by
b
U= bo and c = Bg (8.5)
1
equation (8.4) reduces to
T=1-% (8.8)

This boundary layer was calculated by Howarth using a series method

with the following expansion for the stream function

V’=\’ 2 U,,» x [fo(n) + X £() + X fz(q) + ... ] (8.7}
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in which
Ti = —2-;-)";{ y (8-8)

(see also section 3.2.3.).

The function fo(n) was shown to satisfy the Blasius equation (3.14) while
the functions fn(n) for n > 1 had to be calculated from a set of linear
differential equations. Howarth calculated the functionS'fn fer ng 6
which however was not sufficient for an accurate determination of the
separation point. Therefore the result was improved as follows. It was
noted by Howarth that the functions fs(n) and fﬁ(n) have the same shape
and this led him to assume that all fn for n_} 5 are the same in shape

so that equation (8.7) can be written in the form

(<3
Y o=\/ou, v x Oz X £ () + AR £,(0) (8.9)

The function A(x) is different from zero only in regions where the

series (8.7) is not sufficiently convergent using 7 terms only; this

occurs near seperation, The function A(x) was determined by Howarth from
the requirement that (8.9) should satisfy the von KArmAn momentum

equation (2.15). In this way separation was found at x = 0.120; this result
was confirmed from later calculations made by Hartree [81], Tant [45],

Leigh [ 82 | and werrit1[ 837,

The momentum method.

For U= 1 - X the momentum equation (5.18) can be writtem in the form

=2

do _ M-_ (8.10)
dx 1-x
which can be integrated to
52
— 48°
~In (1-x) = f = (8.11)

(o]

From U= 1 - x it follows that in this case the pressure gradient
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parameter-[\.1 =5 W eguces to
dx
case M is a function of.f\1 only (see table 5.3 and fig. 5.6) this

J\1 ~ .B>. Since in the no-suction

parameter can also be considered as a function of 52. Hence the integral
(8.11) can easily be calculated. Some results are shown in fig. 8.10
and compared to the exact solution due to Howarth. Separation is found
= 0.120 for the exact solution.

at x = 0,123 as compared with X
sep

A comparison of the velocity profiles for ¥ = 0,10 and 0.12 isshown

in fig. 8.11,

The multi-moment method.

For U= 1 - x the pressure gradient parameter A‘l becomes

X =X

k:i.:T g=—_ (8;12)
u dx 1l-x
and hence the power series expansion (7.80) for ,K 1 is easily found to
be
AN - x-2-2_%7. .. . (8.13) =

Since the zero-order term in (8.13) is absent it follows that the

boundary layer at X = 0 will start as the similar solution for which

A

1
8.2 . Therefore the zero-order terms of the expansion for an follow

= 0; this is the flat plate boundary layer, discussed in section

from table 8.1.

Results for ao at N = 7 and different orders p of the series solution
are shown in fig. 8.12. It follows that the series converges well until
very close to separation. Included in the figure as a dotted line is the
result of a step by step calculation started at X = 0.08.

Fig. 8.12 shows that in the step by step solution zero skin friction is

only asymptotically reached. This behaviour is caused by equation (7.61)

\. =

2 M) reduces to

which for zero suction (az =

da
'—_2%"0
ax

for ao——> o] (8.14)
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This anomalous behaviour is the prize to be paid for the convenience of
using equation (7.61) which gives an easy means to determine a,. In
section 8.14 this difficulty will bhe discussed further.

Results for different values of N have been collected in fig. 8.13; in
each case the series method was used from x = O to 0.08 including terms
of the 10th degree in x, Downstream of x = 0.08 the step by step method
was used; for all valﬁes of N differences between the series- and

step by step sclutions became noticeable only for X > 0.10. Included
in fig. 8.13 are the values of a, according to the exact solution.

It should be noted that far from separation there is a monotonic
convergence to the exact solution with increasing N. Near separation
however, the convergence is of the type displayed by the Hartree flows
for B < -0.086.

A comparison of figs 8,10 and 8.13 shows that the momentum method and
the multimoment method with N = 8 have about the same accuracy for a, -
Results of Gbrtler's series for \/_;; and ao are given in fig. 8.14
and 8.15, It follows that GBriler's method, which is exact at X = 0,

is not wvery accurate near separation due to lack of convergence. The
present series method is in this region at least équally accurate and
morecover easily allows a Step.by step continuation,

Finally £fig'. 8.16 shows, to a large scale, results for ao in the region

near separation according to different methods.

Tani's boundary layers for U= 1 - x°,

Using essentially Howarth' procedure (see section 2.7.1) the boundary

layer flows for

T=1-3%4 (8.15)

heve been calculated by Tani | 45 | for j = 2, 4 and 8. The position of

the separation point obtained in this way is shown in table 8.6,
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For U=1 - xJ without suction A 9 = O while A 1 bhecomes

(2]

= i

d L

N ) (s.16)
U dx i=1

Introducing & new variable z according to equation (7.79) with f = j,

equation (8.16) may be written in the form

(2]

)\1 = - ZE:. J 2’ : | (8.17)
p=1

Since (8.18) and (8.17) do not contain a zero-order term it follows that
the multimoment method reproduces the result from exact theory that
Tani's boundary layers start at X = 0 in the same way as the Blasius
boundary layer.
Detailed results of the multimoment method with N = 7 for U = 1 - X2
are shown in fig. 8,17. It follows that the series solution including
terms with ;20 gives a good correspondence with the step by step
solution until close to separation,
Final results for N = 5, 6 and 7 are shown in fig. 8.18 where also a
comparison is made with the exact solution due to Tani, It is seen that
an accurate extimate of the position of separation can be obtained
from a linear extrapolation of &  for x £ 0.26.
In the same way results have been obtained for j = 4 and 8. The
positions of separation for j =1, 2, 4 and 8 at N = 7 are collected in
table 8.6. '

The boundary layer on a circular cylinder without suction: U = sin X.

General.

Boundary layer calculations for the pressure distribution corresponding
to potential filow around a cirecular cylinder have been made by many
authors, Possibly the most accurate result has been obtained to date by
Terrill [831, using & numerical procedure.

For this flow the velocity U is given by (see fig. 8.19)

U= 2V sin ¢ = 2V sin( %J (8.18)
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If the reference speed and -length U,, and ¢ are defined by

U, = 2V c =R (8.19)
equation (8.18) reduces to

U= sin x (8.20)

The momentum method.

For small X eguation (8.20) reduces to U = x which shows that the
boundary layer on the circular cylinder starts near X = 0 as the plane
stagnation point flow. Hence starting values for the step by step
calculation can be obtained from section 5.4.2. Results for & are shown
in fig. 8.20 and compared to the exact sciution due to Terrill., The
momentum method gives separation at x = 1.78 while the accurate value

is 1.823.

The multimoment method.

With U = sin x the expression for X 1 hecomes

- T _ _
A o= _gcoosx (8.21)
U X sin x

o,

which can be developed in the following power series

ot

Lo x
45 945 T 4725 ~ 93555

1 -2
)\1=l_§x_

(8.22)

Since in (8.22) the zeroc order ferm is 1 the boundary layer starts at

X = 0 in the same way as the plane stagnation point without suction
discussed in section 8.3, Hence, the zevo-order terms of the series

for a can be obtained from table 8.3. Results of the series method up
till and including terms with 70 nave been obtained for N = 5, 6 and 7.
The series (8.22) contains only terms of even order and hence this is
also the case with the resulting series for an. Results for a0 at N =7

and different orders of the approximation are shown in fig. 8.20; the
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curve for p = 8 which is not shown lies between those for p = 6 and 10.

Results of a step by step calculation started at X =

a dotted line in fig. 8,20, It follows

1.50 are shown as

from the figure that only near

separation the step by step solution differs from the series solution

for p = 10. It should be emphasized that - in principle - the present

series method can be used to much higher orders p which certainly would

improve the correspondence between the
However, this has not been done in the
easy to continue with the step by step
Results for N = 5 and 6 are very close

have not been given in fig. 8.20. Only

step by step- and the series solution.
present example since it is very
calculation.
to those for N = 7 and therefore

near separation the solutions

for N =5 and 6 lay slightly above those for N = 7.

Included in fig. 8.20 are the exact results due to Terrill; for this

solution separation occurs at x =
method for N =
near separation. However, with a short
x < 1.80 an accurate estimate of the
Results obtained from G¥rtler's series
the figure for \/_g: is dncluded since
which express the wall shear stress in

instead of ao.

1.823.

It is seen that the multimoment

7 accurately approximates the exact solution except very

linear extrapolation of ao for
separation point is cobtained.
are shown in fig, 8.21 and 8.22;

Gértler's method employs variables

a parameter equivalent to \f ao

A comparison of figs 8,21 and 8 22 clearly shows the advantage of using

= — Y
T instead of T {(and hence ao instead of \f;;) as dependent variable.

Near a separation point gsep

and hence

;ythe function ao

hehaves like

(8.23)

(8.24)

(see also Goldstein [84 | and Terrill [ 83]).

0f course it is easiler to approximate (8.23) with a series than (8.24).

From a comparison of figs 8.20 and 8.21 it follows that both the momentum

method and the multimoment method give

than G8rtler's method.

a better accuracy near gseparation
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3.10. Curle's boundary layer flow for U = X - x°.

3.10.1. General.
The boundary layer flow for the pressure distribution defined by

T=% - = (8.25)

haé been calculated by Curle [85] using Howarth' procedure, described
in section 8.7.1. For this boundary layer separation was found at

X = 0.655.

3.10.2. The momentum method.

For small values of x equation (8.25) reduces to U = x and hence the
boundary layer starts as the plane stagnation point. Hence the step by
step calculation can be started at a small distance from the stagnation
point (x = O) with a starting value for & obtained from section 5.4.
Results for ao are shown in fig., 8.23 and compared to the exact solution;

separation is predicted at x = 0.640.

1,10.3., The multi-moment method.

With U = x —.§3 the series expansion for )\1 hecomes

N=1-2%8_235¢_2%°

1 e e (8.286)

which again shows that the boundary layer starts at x = O as the plane
stagnation point. Calculations have been performed for N = 5, 6 and 7
using the series method from x = O to 0.55 and the step by step method
downstream of x = 0.55. Final results for N = 7 are shown in fig. 8.23
where also the exact solution is shown. Results for N = 5 and 6 are so
close to those for N = 7 that the differences cannot be shown in the
figure except very close to separation., Only the results for N = 5 are
shown, those for N = 6 are between those for N = 5 and 7. It follows that
the multimoment method gives a very good approximation to the exact
solution. Also near separation the accuracy is gradually improved with

increasing N. Although for this example again separation is reached with
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da
—:g —= 0 the curve for ao bends s¢ sharply into the horizontal axis,
dx
especially for N = 7, that a short linear extrapolation is sufficient

to provide an accurate determination of the separation point. From a
large scale version of fig. 8.23 the value of X at separation was found

to be x = 0.652 which is very close to the exact value 0.655.

8.11. Iglisch® solution for the flat plate with constant suction velocity.

8.11.1. General.

For the fiat plate with constant suction velocity v_, an exact solution
of the boundary layer eguations has been given by Iglisch [6#1. In this
gsolution a new independent variable x is introduced by

2

— X _Vo) Ux
X = E= T ? (8.27)

which implies that the reference length ¢ is defined by

c = UY ‘ (8.28)

2
(—vo)
If for the reference speed U,, the constant main stream velocity U is

used it follows that

ﬁ: = 1 (8.29)

Cld

w

From Iglisch' solution it is known that at X = 0 the boundary layer starts
as the Blasius boundary layer while for x—-2» «I the asymptotic suction

layer is obtained.

8.11.,2. The momentum method.

Using equations (8.27) to (8.29) it follows that for the present case

_ v, U,.c
VO = m —j—J_ =1 (8.30)
ANISE - (8.31)
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and _/\2 =V 86=0 (8.32)

Hence the momentum eguation (5.18) reduces to the simple form

2
dl. ")y
2 _ 45 _A (8.33)
— 2
dx

which can be written as

A

x ’ TA?' a

X:f &, Y (8.34)
o]

Since for the flat plate-/\-1 = 0, the parameter £ is a mnown function
of/\2 (see chapter 5) and egquation (8.34) can easily be integrated
numerically. It follows from equation (8.34) that x—» ©? for {— 1\2;
this occurs for {,=1/\2 = 0,50 which represents the asymptotic suction
profile, Since the momentum method was designed to represent the
asymptotic suction layer exactly it follows that the method gives exact
results for x—=in . ve

Tor x = O the momentum loss thickness 9 is zero and hence-f\r2 = ° . 0;

1%
which implies that the boundary layer starts at x = O as that on a flat

plate without suction.
Different parameters are shown as a function of \j X in fig. 8.24 and
compared to Iglisch' exact solution and an approximate solution due

to Schlichting [55] (see also section 4.3).

The multimoment method.

From equations (8.27) and (8.29) it follows that

A % av
1

-v '
and A2= T ?: \ § (8.36)

This shows that for X = 0 both A 1 and X 9 are zero and hence the

It

= 0 (8.35)

o]
=]
S

multimoment method reproduces the exact result that at x = O the

boundary layer starts as that for the flat plate without suction.
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It can easily be shown that for A , = 0 and A g = Y X a solution of
equations (7.61) to (7.66) for all N 2> 2 is

a = x

o
al = 2%
_ > (8.37)
3.2 = X
a =0 for n» 3
n Fa
With (7.60) this leads to
— - —_2
8 = Tz = x{1-u) (8.38)
ou _y= . -
or _Ll— =T=v;(1—u) (8-39)

ag\[?

After integration of (8.39) and using (8.27) it is found that
vy

T=l-e (8.40)
This reproduces the asymptotic suction profile discussed in section
3.1.5. Formally the solution (8.37) is valid from x = O 0 X% «?;
however this would lead to the unrealistic solution an =0 forx= 0
discussed in section 8.2 for the flat plate without suction. Therefore
it is expected that the solution (8.37) is only approached asymptotically
for x—=¢% ; this is confirmed by further calculations, to be discussed

below.

In view of (8.36) a new variable z = \/mg?was ﬁsed in the series method.
Results of the series method for N = 7 are shown in fig. 8.25 where

also results of a step by step calculation and the exact solution are
shown.

Since a _4>, x for large values of X it is advantageous to plet the
quantlty x/a versus \[—hﬂ This has been done in fig. 8.26 where results
for N = 5, 6 and 7 are compared to the exact solution. In the same

figure results of the momentum method have been included for comparison.
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¥rom the definitions of ao and x (equation 8.27) it follows that

3% 2

x
—=| — (8.41)

and hence §7a0 can easily be found from the results of fig. 8.24,

It is seen from fig. 8.26 that the result of the multimoment method
converges well to the exact solution for increasing N. The accuracy for
N = 7 is comparable to that of the momentum method. The advantage of the
muitimoment method is that its accuracy can be improved by increasing

N; results for N = 8 are very close to the exact solution.

2.12. Rheinboldt’s boundary layer on a flat plate with discontinuous suction.

3,12,1. General.

Rheinboldt [56] designed a special procedure for the calculation of

suction boundary layers with discontinuities in the suction velocity;

the method was illustrated with several examples.

The Tirst example discusses the boundary layer on a flat plate with non-

porous entry length ¢ followed by a porous region with constant suction

for x > ¢ (see fig. 8.27a).

In a second example there is only suction for c { ¥ 1.15¢c with a suction
_Vo Ue

velocity vo given by - - = 1.5 (see fig. 8.27b). In what follows

¢ and U will be used as reference length and velocity and hence

X = g and T=1 (8.42)

1.12,2 . The momentum method.

The momentum method is found to be unable to cope with large discontinuities
in the suction velocity; this may be seen as follows,

For the present case qf zero pressure gradient only one independent
parameter occurs in the momentum method (see chapter 5); it is convenient

-v_e

to select—"\-2 = ]? for this parameter.
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For the non-porous entry length the flat plate boundary layer without
suction occurs which is represented byi\-z = 0. From this solution it is.
known that g-\l U;—X = 0.661 (see table 5.1) and hence 5:-%\] [L—C = 0.661

at x = 1.

At discontinuities in vO the momentum loss thickness © is suppesed to
be continuous and hence directly downstream of X = 1 it is found that

A =v .0 = 0.66L v
2 o ]

If the suction velocity has such a magnitude that v 0.50 it follows

o~ 0.661
thatl\uz = 0,50; this implies that directly downstream of X = 1 suddenly
the asymptotic suction profile would be established. (compare also
section 8.11). It can be expected however that in reality the boundary
layer will only gradually approach asymptotic conditions.

Similarly the momentum method produces the erroneous resuli that the
boundary -layer velocity profile immediately returns to the Blasius shape
if the suction is suddenly stopped at some station.

The way in which the boundary layer develops according to the momentunm
method can easily be calculated as follows,

From U=1 ™~

J\_Z ¥ o
_/\1 > (8.44)

0
-v \ / N
- o Uc
and VO - vl constant y

it is found that the momentum equation (5.18) can be written in the form

It

A
—2 2
VO dx = K':/\—z d-A—z (8.45)

or after integration

j\z
-2 _ j A g A
VO (X—].) = m—-" d- 9 (8.46) .

0.661v 2
O
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The integration constant in (8.46) has been chosen in such a way that
for x = 1 the suction parameter-/\2 has the value 0.661 ;6 (see equation
8.43). Values of the shape factor H, as determined from equation 8.46;
for different values of ;; are shown in fig. 8,28 and compared to
available results from Rheinboldt's calculation. It is seen that the
momentum method is very inaccurate directly downstream of large

discontinuities in the suction velocity.

1.12.3. The multimoment method.

To check the accuracy of the multimoment method for discontinuously
varying suction velocity only Rheinboldt's second example will be used.
This is the most severe case of the two since here suction is started
suddenly at x = 1 and stopped again at x = 1.15.

In the non-porous entry length x < 1 the fiat plate boundary layer
without sucticn, discussed in section 8.2, is found. Hence table 8.1
provides the starting values at X = 1 for the step by step solution.
Bince the boundary layer changes very rapidly near x = 1 very small
steps had to be used in this region. Fig. 8.29 shows ao in the suction
region for N = 5, 6 and 7; also the exact solution is given in the
figure. It is seen that the results for N = 5 and 6 are not very
accurate; those for N = 7 agree with the exact solution within the
accuracy to which Rheinboldt's results can be read from the graphs in
[s6].

For the non-porous region downstream of x = 1.15 only results for N = 7
are shown; a reasonably good correspondence with the exact solution is
obtained. It should be noted that far downstream of the porous region
again ao—qea 0,106 which is the value obtained for the flat plate without

suction.

.13, Schubauer's elliptic cylinder.

.13.1., General.

A detailed experimental observation of the laminar boundary layer on

an elliptic cylinder has been made by Schubauer [25]. The lengths of the
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major and minor axes of the cylinder were 11.78 and 3.98 inches
respectively. The cylinder was placed in a wind tunnel with its major
axis parallel to the flow. The measurements were performed at a windspeed
of 11.5 ft/sec which resulted in the low value 72000 for the Reynolds
numper Rc based on the length of the major axis.

The pressure distribution around the cylinder was measured by means of
orifices in the surface. Velocity profiles in the boundary layer were
determined using hot wires. From the experiments Schubauer concluded
that separation occurred at X = 1.99 + 0.02 where x = x/c and ¢ is the
length of the minor axis of the cylinder. It was shown by Schubauer

that application of Pohlhausen's method to the observed pressure
distribution failed to show separation. Later an accurate numerical
golution of the boundary layer equations for the observed pressure
distribution was obtained by Hartree [26]. Again the theoretical results
did not show separation. However, it was also shown by Hartree that a
slight modification of the observed pressure distribution was sufficient
to predict separation near X =.l.99.

Due to the uncertainty about the experimentally determined pressure
distributions to be used for the calculations it has - for so far the
author knows - never been shown conclusively whether or not the boundary
layer equations will be able to predict geparation for experimentally
determined pressure distributions.

In chapter 10 some new measurements will be described which - in
agreement with Schubauer®s data - show that it is very difficult to assess

the validity of the boundary layer equations clese to separation from
measured pressure distributions. In the next section some results will be
presented of calculations with the momentum method and the multimoment
method for Schubauers observed pressure distribution and for the modified

distribution.

Results of boundary layer calculations,

Calculations have been made with both new methods for the observed
and the modified pressure distribution. To facilitate the computations,

values of U and gg taken from [26] have been plotted on a large scale.
d".—f dx

Then U and — have been read from the graph for equidistant values of x;
dx
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the results have been colledted in table 8.7. In the table 2also values

x 4au
for A L= 2 Z5, to be used in the multimoment method, are given.

U dx
It has been shown by Hartree that near the stagnation point (x = 0} the

values of U can be approximated by

ﬁ=8.7§-243?2+24§3+.... (8.47)

which leads to the following expression for A

1
}\1 =1 . 2.75862 X - 2.0027 %° + 1.837 %> + 10.84 2 o2a8% 4 ...,
(8.48)
To facilitate calculations with the multimoment method the values of A 1
further downstream have been approximated by polynomial expressions of
the form
U
=2 e, % (8.49)
n=0
The coefficients e have been collected in iable 8.8. Fig. 8.30 shows
the functions U, Qg and >\1 in graphical form.
ax :

Results of boundary layer calculations with the momentum method and the
multimomentmethod are presented in figs 8.31 to 8.32, Fig. 8,31 shows
ao for the observed pressure distribution according to the momentum
method and to the multimoment method for N = 7. Results for N = 5 and 6
are close to those for N = 7 and therefore are not shown in the figure.
The same curves are drawn to a larger scale in fig. 8.32 for

1.6 € % & 2.10; now also results of the multimoment method for N = 5 and
6 are included.

It can be concluded that the results of the multimoment method for
increasing N converge well to Hariree's solution. The accuracy of the
momentum method is somewhat less than for the multimoment method at

N = 7. However, all methods agree in this respect that they do not show
separation. ‘

Similar results for the modified pressure distribution are included.
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in fig. 8.32. It is noticed that the momentum method predicts separation
at x = 1.92 as compared to 1.983 for Hartree's calculation and 1.99 + 0.02
for the experiment. As usual the multimoment method gives no clear
indication of separation,.

However, if the results for N = 6 and 7 are extrapolated using equation
(8.1) the resulting curve comes very close to Hartree's values until

neaxr separation.

8.14. Concluding remarks on the new calculation methods.

From the examples discussed in the present chapter the following

conclusions may be drawn.

1. The momentum method leads to accurate results as long as né large
discontinuities in the suction éelocity occur.

2, The azccuracy of the multimoment method for N = 7 or 8 is comparable
to or better than the accuracy of the momentum method. If
discontinuities in the suction velocity occur, the multimoment
method retains its accuracy while the momentum method (and all
comparable methods) will fail.

3. A more rapid convergence of the multimoment method with increasing
N would be desirable near separation.

4, A disadvantage of the multimoment method in the case of no suction
is the following.

For the no-suction case A 5 = 0 and hence equation (7.61) reduces to

da
¥ —%-a(1-3A +6a) (8.50)
-— o 1 3
dx
dao
This equation shows that near separation where ao——;: O also — will
dx

tend to zero unless ‘1 -3 Al + 6 asltends to infinity,

From the resulis presented in this chapter it may he noticed that indeed
da

—:3-—;»0 near separation making it difficult to give an accurate

dx

estimate of the position of separation. For some examples (see for
instance figs 8.20 and 8.,23) it is observed that the curve for a,

bends sharply into the x-axis especially at high values of N so that
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the position of separation can easily be determined from a short

extrapolation of the straight part of the curve. da

It is suggested by these results that for N-—= ¢ the derivative )
dx

may tend to a constant non-zero value when separation is approached.

This would be in agreement with Goldstein's theory] 84]. Equation

(8.61) shows that in this case 1-3 Al + 6 as\ has to appreoach

infinity near separation. As an example fig. 8.33 shows —(l-SA:l + 6a3)
as function of x and ao for U = sin X near separation. It is found indeed
that -(1_31\1 + 6a3) becomes very large for ao-—E; o,

In view of these remarks it seems to be worth while to induire whether
the results near separation can be improved by omitting equation (7.61)
and replacing it by an additional moment equation.

The modification will slightly complicate the application of the method
for the case of suction since then the non-linear factor \[7;; appears

as unknown parameter in equations (7.62) and (7.63). This possible
modification of the method will not be pursued further in the present

work however.
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Table 8.7: The pressure

distribution used in the boundary layer calculations for Schubauer's

cylinder. -
X [ au N
d=

0.16 — +0,5220
¢.18 — — +0,4835
6.20 +0.,966 +1.925 +0,4090
0.22 +1.002 +1.628 +0.3565
0.24 +1.031 41,392 +0.3241
0,26 +1.057 +1.210 +0.2977
0,28 +1,080 +1.050 +0.2723
0.30 +1.100 +0.925 +0.2522
0.32 +1.118 +0,821 +0.2350
0.34 +1.133 +0.,729 40,2188
0.36 +1.147 +0.654 +0,2053
0.38 +1.160 +0,588 +0.1826
0.40 +1.371 +0.534 +0.1824
0.42 +1.180 40,486 +0.1730
0,44 +1.190 40,444 +0.1641
0.48 +1.198 +0.406 +0.1559
0.48 +1.206 +0,372 +0.1481
0.50 £1.213 +0.344 +0.1418
0.52 +1.220 +0.318 +0.1355
0,54 41,226 " 40.205 +0.1299
0.56 +1,232 +0.275 +0,1250
0.58 +1,237 +0,256 +0.1200
0.60 +1,242 +0,240 40,1159
0.62 1,247 +0.223 +0.1108
0.64 +1.251 40.207 +0.1050
0.66 +1.255 +0.192 +0.1010
0.68 +1,258 +0.178 +0,0962
.70 +1.262 +0.165 +0.0915
0.72 +1.265 10,152 +0.0865
0.74 + 1.268 +0.141 +0.0823
0.76 +1.,270 +0.130 +0,0778
.78 +1.273 +0.119 +0.0729
0.80 +1.275 40.110 +0.0690
0.82 +1,278 +0.100 40,0642
0.84 +1,280 +0.082 +0,0604
0.88 +1.281 +0.084 +0.0564
0.88 +1,283 +0,077 +0.0528
©.80 +1,285 +0.070 +0,0490
0.92 +1,286 +0.064 +0.0458
0.94 +1,287 +0.057 +0.0416
0.96 +1.288 +0,051 +0,0380
0.98 +1,289 +0,046 +0,0350
1,00 +1.290 +0.040 +0.0310
1,02 +1.201 +0.,036 +0.0284
1.04 +1,292 +0.,032 +0.0258
1.06 +1.283 +0.028 +0,0238
1.08 +1.264 +0.026 +0.0217
1.10 +1.294 +0.023 +0.,0196

elliptic

X ] au x,
dx

1.12 +1,294 +0.020 +0.0173
1.14 +1.295 +0.018 +0.0158
1.16 +1.293 +0.018 +0.0143
1,18 +1.295 +0.014 +0.0128
1.20 +1,295 +0,012 +0.0111
1.22 +1.295 +0.008 +0.0085
1.24 +1.295 +0.006 +0.0057
1.26 +1.295 +0.003 +0.0029
1.28 +1.295 +0,000 +0.,0000
1.30 +1.295 -0.003 -0.0030
1.32 +1.295 -0.006 -0.0061
1.34 +1,295 -0.009 -0.0023
1.36 +1,295 -0.013 -0.0136
1.38 +1.295 -0,017 -0.0181
1.40 +1.,2985 -0,021 -0.0227
1.42 +1.295 ~-0.026 -0.0285
1.44 +1.294 -0.031 ~0.0345
1.46 +1.293 -0.038 -0.0407
1,48 +1.292 ~-0.042 -0.0481
1.50 +1.281 -G.047 -0 ,0546
1.52 +1.2980 -0.053 -0,0624
1.54 +1,289 ~0.038 -0.0693
1.56 +1.288 -0.064 -0.0775
1.58 +1.287 -0.070 -0.,0859
1.60 +1.285 -C.076 -0.0946
1.52 +1.283 -0.082 -0.1035
1.64 +1,282 -0.087 -0.1113
1.66 +1.280 -G.093 -0,1206
1.68 +1.278 -0.098 -0,1288
1.70 +1.276 -0.102 -0.1359
1.72 +1.274 -0.106 ~0,1431
1.74 +1.272 -0.110 -0,1505
1,76 +1.270 -0.113 -0.1566
1.78 +1.268 -0,115 -0.1614
1.80 +1.265 -0,117 -0.1685
1.82 +1.262 -0,118 -0.1702
1.84 +1.260 -0.,119 -0.1738
1.86 +1.258 -0.119 -0.1759
1.88 +1.254 -0,118 -0.1768
1.90 +1.253 -0.118 -0.1789
1.92 +1.251 -0.117 -0.1796
1.94 +1.249 -0.115 -0.1786
1.96 +1.246 -0.113 -0.1777
1.98 +1.244 -0.110 -0,1750
2.00 +1.242 -0,107 -0.1723
2.02 +1.240 -0.,104 -0.1694
2,04 +1.238 -0.100 -0.1648
2.06 +1.236 -0.095 -0.1583
2.08 +1,234 -0.080 -0.1517
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