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Preface

It is 50 years ago that the present author (van Ingen, 1956a,b, �)1 and Smith and Gamberoni
(Smith, 1956; Smith and Gamberoni, 1956) independently and simultaneously introduced
their first versions of the e9 (later eN ) method for the practical prediction of transition of
incompressible two-dimensional boundary layers, based on linear stability theory. Over the
last 50 years the method has proved its value and remained a useful tool in engineering
aerodynamics. Because the present author’s first publication, although still referenced in the
literature, is not easily accessible anymore, and some other, older publications might still be
of interest, it was decided to collect a series of these publications on a cd-rom.

Different versions of the method have been used for airfoil design at the Low Speed Laboratory
(LSL) of Delft Aerospace, notably by L.M.M. Boermans (Boermans) The close co-operation
between design oriented engineers and students on the one hand and more fundamental bound-
ary layer researchers at LSL on the other hand, has proved to be very fruitful over the years.
The present author had the pleasure to be the Head of LSL for most of his working life at
Delft Aerospace from 1952 (student-assistant) until 1997 (Dean). In this period it was shown
that the eN method could be applied successfully to two-dimensional boundary layers with
pressure gradient including separation and suction. At the Delft Aerospace Low Speed Labo-
ratory for a long time airfoil design has been performed using a computer program developed
at LSL. This program included earlier versions of the present authors eN method. More
information on these earlier versions can be found in various reports on the cd-rom. At
present the group of Associate Professor L.M.M. Boermans employs Drela’s xfoil program.
In this program the envelope version of the eN method by Drela has been replaced by earlier
versions of the present author’s method.

Recently L.M.M. Boermans started work on the design of low-speed airfoils with laminarisa-
tion by suction, in first instance to be applied to sailplanes and general aviation aircraft. It
was realized that the available eN method, although capable of including the effect of suc-

1The icon depicted here and further on in the report can be used in the electronic version of the report to
link directly to the corresponding article on the cd-rom. Also all text in the electronic version of the report
shown in blue links directly to the referred location in the report. In Acrobat Reader 8 or higher a toolbar
called the “Navigation Toolbar” (see in the menu “View”, then “Toolbars”, and then “Navigation”) can be
used to have a “back” button available to return to the link in the report. For the bibliography such a feature is
implemented by including linked pagenumbers (see, Bibliography) at which reference to the specific publication
is given. Furthermore the cd-rom includes a set of matlab programs and datafiles. One of these programs
named ”N factor show.m” is discussed in some detail in chapter 13. With this program the information given
in the report can be supplemented.
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iv Preface

tion, was in the first place aimed at calculating the amplification of unstable disturbances
and predicting transition and less on the possible re-laminarisation that occurs for strong
suction. Therefore prof. Boermans asked the present author to develop a new version of the
method, better suited to design suction distributions. Stimulated by the presently available
computational facilities, unimaginable 50 years ago, the present author agreed to take a fresh
look at the method. The discussion in the present report is restricted to two-dimensional
incompressible flow.

The later stages of the development of the new data base method have been done in the same
period that the author assisted in the tutoring of Mr Jeroen Bongers during his Master Thesis
work at the Delft Aerospace Low Speed Laboratory in the group of Prof. Boermans. The
subject of the thesis was the implementation of the new data base method into the fortran
environment of the xfoil program. In addition suction distributions had to be designed
for the practical application to an ASW-28 standard class sailplane. While transferring the
preliminary version of the new method into the xfoil system, its handling and performance
were thoroughly scrutinized by Jeroen Bongers which resulted in many suggestions for im-
provement. The great help this has provided to the author is gratefully acknowledged. Jeroen
graduated from Delft University in August 2006 after his final examination on the thesis ”Im-
plementation of a new transition prediction method in xfoil, Predicting transition in suction
boundary layers” (Bongers, 2006, �). The author is very pleased that both Jeroen Bongers
and Prof. Boermans gave permission to include the Master Thesis on the cd-rom, showing
the possibilities for practical application of the new method. Jeroen has also been a great
help during the preparation of the final text of the present report in LATEX and the design
and realisation of the cd-rom.

The new database method was derived using a set of linear stability data that were published
by Arnal, Arnal (1986). The author is indebted to Dr. Arnal for his permission to include
these tables in the present digital form on the cd-rom.

The author would be pleased to receive remarks, observed errors and suggestions for improve-
ment by email at: prof.J.L.van.Ingen@planet.nl with a cc to B.W.vanOudheusden@TUDelft.nl.
Information on possible further developments, correction of errors, answers to questions etc.
will be made available at www.lr.tudelft.nl/aerodynamics/e-to-the-N

The developement of the new method was mostly done using the student version of matlab 5.
The various splines therefore are in the matlab 5 format. These, however, are also accepted
by matlab 7. Appendix A contains some information on how to translate these splines into
other formats. Because the allowable array size in the student version of matlab is limited
the ”Tss” splines had to be stored in ”cell arrays”.

http://www.lr.tudelft.nl/aerodynamics/e-to-the-N
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Chapter 1

Introduction

The new data base method is based on a one parameter series of stability diagrams calculated
by Arnal (Arnal, 1986). Scanned versions of the tables are provided on the cd-rom (see
appendix B). The velocity profiles used are 11 Hartree profiles as attached flow solutions
of the Falkner-Skan equation for similar flows and 4 Stewartson second branch solutions of
the Falkner-Skan equation for separated flow. All profiles are for zero suction. They will be
characterized by the velocity profile shape parameter H. The Falkner-Skan equation and its
solutions will be briefly discussed in chapter 3.

With strong suctionH may assume values less than the Hartree stagnation point value (2.216);
for instance the value 2 for the asymptotic suction profile. This specific boundary layer will
be briefly discussed in section 3.2. It will be shown that the shape of the asymptotic suction
profile is strongly related to the Hartree profiles. As will be shown in chapter 9 the stability
diagram for the asymptotic suction profile can be estimated by extrapolation from that for
the profiles used by Arnal. Hence it is easy to extend the stability data base to H = 2.

An important question to answer is whether the eN method can be based on a one parameter
family of stability diagrams only. Because in the literature there were no more extensive
families of stability diagrams available, in earlier methods often the shape factor H has been
used as a single parameter characterising all possible stability diagrams with and without
suction. Chapter 4 of the present report will discuss this important aspect in some detail.
It is concluded that also in the present fresh look it seems unavoidable and can even be
recommended to use H as the basic parameter.

In chapter 5 a short study is made to see whether the asymptotic suction profile can be
extrapolated from the Hartree profiles without suction.

The Arnal data will be analysed in detail in chapter 6. It will be shown that by proper scaling
and shifting much of the variation with H can be removed from the stability diagrams. The
resulting data base contains 15× 59 = 885 splines representing 59 cross sections at constant
values of r =10 log(Reθ) −10 log(Reθcrit

) (the ”r grid”) for each of the 15 basic stability
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2 Introduction

diagrams; in total the database contains about 150,000 numbers.

Chapter 7 will give a comparison of stability diagrams according to the database with the
original Arnal data.

It is shown in chapter 8 that the 6 scaled and shifted diagrams for 2.216 ≤ H ≤ 2.591 (that
is from stagnation point to flat plate boundary layer) are so very nearly equal that it can
reasonably be assumed that the (scaled and shifted) diagram for the stagnation point flow is
also applicable to the asymptotic suction profile. Chapter 9 will describe the estimation of
the stability diagram for the asymptotic suction profile based on this assumption.

The most important element of the data base method is the matlab function cross_cut.m.
This function generates the cross section at constantReθ for an arbitrary value of 10log(Reθcrit

)
(hence an arbitrary value of the shape factor H). This function is described in some detail in
chapter 10. A slightly altered, faster (but less accurate) version using some approximations
is described in chapter 11.

The amplification of unstable disturbances can be calculated using the matlab m-file
amplification.m; this function will be described in chapter 12. In various chapters of the
present report the reader is referred to the matlab m-file “N_factor_show.m”. This is a
collection of matlab programs that are discussed in the text. By running these programs
the information given in the text and the figures in the report can be supplemented. This
program is discussed in chapter 13.

The necessary boundary layer calculations for some examples have been made by a finite
difference method that was developed by the author (van Ingen, 1998, �). A brief description
is given in chapter 3.5.

Applications to airfoil design of the xfoil (FORTRAN77) version of the present method
can be consulted in the Master thesis of Jeroen Bongers Implementation of a new transition
prediction method in xfoil, Predicting transition in suction boundary layers (�)

The work described in the present report has been performed by the author on his home
PC after his formal retirement from Delft Aerospace. All computations were done using the
Student Version 5 of matlab. All relevant matlab m-files and the data files are mentioned
in Appendix B and C respectively and provided on the present cd-rom. All splines are in the
format of the matlab 5 student version. For easy translation to other formats a translation
procedure is described in appendix A.



Chapter 2

Basics of linear stability theory and
the eN method

The stability theory considers a given laminar main flow upon which small disturbances are
superimposed. The present report will discuss only two-dimensional incompressible flow. To
simplify the problem the boundary layer is locally approximated by a parallel flow with con-
stant velocity profile (shape and thickness) in downstream direction. It is assumed that both
the undisturbed and the disturbed flow satisfy the Navier-Stokes equations. The disturbance
is assumed to be two-dimensional because it can be shown that the onset of instability is de-
termined by the two-dimensional disturbances and not by the three-dimensional ones, which
of course may also occur (Schlichting, 1978, chapter XVI) A suitable more recent textbook
is White (2006). An extensive modern treatment of stability theory can be found in Schmid
and Henningson (2000).

After linearization and non-dimensionalising, assuming small disturbances, the following Orr-
Sommerfeld equation is obtained. (primes denote differentation w.r.t. y)

(u− c)(φ′′ − α2φ)− u′′φ =
−i
αRe

[
φ′′′′ − 2α2φ′′ + α4φ

]
(2.1)

This homogeneous linear equation in the disturbance amplitude function φ of course has
the trivial zero solution representing the original undisturbed flow. The resulting eigenvalue
problem may under certain circumstances also possess unstable solutions. A more detailed
description of the derivation of the Orr-Sommerfeld equation can be consulted in (van Ingen,
1965, �) and the books mentioned above. Note that the velocity profile and its curvature
play a prominent role in the equation. Since the curvature of the velocity profile is influenced
by pressure gradient, suction and blowing, heating and cooling at the wall, etc. these factors
have a strong influence on the solutions of the Orr-Sommerfeld equation and therefore on
boundary layer stability. Furthermore the Reynolds number and the frequency of the imposed
disturbances are found to be very important.

In the present report we will only discuss the effects of pressure gradient and suction/blowing
at the wall.
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4 Basics of linear stability theory and the eN method

In the derivation of the Orr-Sommerfeld equation a disturbance stream function ψ is defined
as:

ψ(y) = φ(y)ei(αx−ωt) (2.2)

In the so-called spatial mode of the stability analysis we take the circular frequency ω to be
real and the wave number α to be complex. Also φ and ψ are complex but in the present
report we will only need to specify α.

α = αr + iαi (2.3)

and:
c =

ω

α
(2.4)

Introducing (2.3) into (2.2) leads to:

ψ(y) = φ(y)e−αixei(αrx−ωt) (2.5)

It follows from (2.5) that disturbances grow, remain constant or decrease with x for αi < 0,= 0
and > 0 respectively, meaning that the given flow is unstable, neutral or stable against
the given disturbance. Which case occurs depends on the shape of the velocity profile, the
frequency and the Reynolds number Reθ.

The results of stability calculations are normally presented in a “stability diagram” (fig. 2.1).
Below the so-called critical Reynolds number Reθcrit

the boundary layer is stable to small
disturbances of all frequencies. At higher Reynolds numbers there is a range of frequencies
for which instability occurs. As can be seen from equation (2.5) the rate of amplification or
damping is determined by −αi. From numerical computations it is found that the shape of
the stability diagram is strongly dependent upon the shape of the velocity profile (fig. 2.2).
For a convex profile, such as occurs for a ”favourable” pressure gradient near the leading edge
of an airfoil the critical Reynolds number is high (type (b)). For a concave profile such as
occurs for increasing pressure in downstream direction the critical Reynolds number is low(
type (a)). Moreover for type (b) near a stagnation point the rate of amplification is orders
of magnitude smaller than for type (a) near separation. Figures 2.3, 2.4 and 2.5 show as
examples the neutral curves according to Arnal and the database representation for β = 1
(stagnation point), β = 0 (flat plate) and β = −0.198838 (separation). For β ≥ 0 we have
type (b) diagrams, for β < 0 type (a) diagrams occur. The effects of suction or blowing are
similar to those for favourable and adverse pressure gradients respectively.

For the flow over an airfoil both the thickness of the boundary layer and its velocity profile
shape may change in streamwise direction. Therefore, strictly speaking, the stability theory
as developed for a parallel flow is not applicable. It has been shown however that the local
stability can be determined with sufficient accuracy from the results of the Orr-Sommerfeld
equation for the local profile. For each x-station then a cross section through the stability
diagram should be computed for the local velocity profile and Reynolds number Reθ.

Since even in the present computer era the numerical solution of the Orr-Sommerfeld equation
is rather involved, it is customary for design computations to use a set of pre-computed results
for a series of boundary layer velocity profiles. In general the Hartree and Stewartson solutions
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Figure 2.1: Principle of the stability diagram Figure 2.2: Type (a) and type (b) stability dia-
grams
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Figure 2.3: Neutral curve for β = 1 (stagnation point)
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Figure 2.4: Neutral curve for β = 0 (flat plate)
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Figure 2.5: Neutral curve for β = −0.198838 (separation)
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of the Falkner-Skan equation are used for this purpose (see section 3.4). The solutions that
will be used in this report are for zero suction/blowing. In chapter 4 we will argue that
they also may, with some confidence, be applied to suction cases. Fig. 2.6 shows a typical
distribution of Reθ and Reθcrit

over an airfoil. The intersection of these two curves gives
the instability point, downstream of which for certain frequencies the amplitude will start
growing. Provided that stability diagrams are available for a sufficient number of streamwise

Figure 2.6: Typical 10log(Reθ) and 10log(Reθcrit) distribution over an airfoil

x-stations the amplitude a of the disturbance can be computed as a function of x. Using
equation (2.5) it follows that the ratio of the amplitudes a and a+da at x and x+dx is given
by

a+ da

a
=
e−αi(x+dx)

e−αix
= e−αidx (2.6)

or

ln(a+ da)− ln(a) = −αidx (2.7)
d (ln(a)) = −αidx (2.8)

and after integration

n = ln

(
a

a0

)
=

x∫
x0

−αidx (2.9)

where x0 is the station where the disturbance with frequency ω and amplitude a0 first becomes
unstable. The quantity

n = ln

(
a

a0

)
(2.10)

will be denoted by “amplification factor” while −αi is the “amplification rate” Then en gives
the “amplification ratio”. In applications we will write equation (2.10) as follows:

n(x, ω) =

x∫
x0

−αidx (2.11)

n(x, ω) = 10−6 · U∞c
ν

x∫
x̄0

106 · −αiθ

Reθ

U

U∞
d

(x
c

)
(2.12)
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Or denoting by T :

T = 106 · −αiθ

Reθ
(2.13)

and
x =

x

c
; U =

U

U∞
; Rec =

U∞c

ν
; Recreduced

= 10−6 · U∞c
ν

(2.14)

n(x, ω) = Recreduced

x∫
x̄0

TUdx (2.15)

The factors 106 and 10−6 have been introduced for convenience.

If we calculate n as a function of x for a range of frequencies we get a set of n-curves as
illustrated in fig. 2.7; the envelope of these curves gives the maximum amplification factor N
which occurs at any x.

Figure 2.7: N-factor

Figure 2.8 shows as an example the n-factor calculation for the flat plate without suction
using the database developed in later chapters. From the famous Schubauer and Skramstad
experiment (figure 2.9) it follows that at low turbulence levels a transition region is found
that extends from Rex = 2.8 · 106 to Rex = 3.9 · 106. From figure 2.8 it follows that at these
Reynolds numbers N -factors of N1 = 8.22 respectively N2 = 10.30 are calculated. Van Ingen
(van Ingen, 1956a, �) found values for N1 and N2 of 7.8 and 10 respectively using the Pretsch
stability diagrams. For airfoils the N -vs-x curve is rather steep near transition so that in
those cases a transition point can be defined rather than a transition region. In their first
version of the eN -method Smith and Gamberoni (Smith and Gamberoni, 1956) concluded
from a series of experimental results for airfoils that an N -factor of 9 very well correlated the
experiments. It is in fact remarkable that after 50 years the calculated critical N -factor has
remained nearly the same despite the availability of more accurate stability diagrams.

If the value N = 9 is assumed to be universally valid, we can “predict” transition for a new
case by assuming that transition occurs as soon as the calculated N -factor has reached the
value of 9. Later it has been shown by Van Ingen that the method is also valid for boundary
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Figure 2.8: N-factor for flat plate

Figure 2.9: Influence of Tu on Reynolds number for transition on a flat plate according to Schubauer
and Skramstad

layers with suction and for laminar separation bubbles. (See: (van Ingen, 1965, �), (van
Ingen, 1977, �), (van Ingen, 1978, �), and (van Ingen, 1990, �)). Since suction makes the
velocity profile more convex it increases stability and hence decreases the N -factor and thus
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delays transition.

Further research has shown that the critical amplification factor Ncrit depends on the free
stream disturbances (level as well as spectrum) Therefore the method is now known as the
eN method for transition prediction. The critical N -factor has thus become a measure for
the quality of a wind tunnel or for the atmospheric circumstances in free flight. From a series
of measurements on flat plates, known from the literature, the transition position on the flat
plate can be related to the turbulence level in the wind tunnel. Using these results and the
calculated N -factors for the flat plate, the critical N factor for beginning and end of the
transition region was made a function of the “effective turbulence level” Tu in %. (See figure
2.10, and (van Ingen, 1977, �)) For Tu > 0.1% the following relations can be used:

N1 = 2.13− 6.1810log(Tu) (2.16)
N2 = 5.00− 6.1810log(Tu) (2.17)

For values of Tu < 0.1% there is much scatter because in this region sound disturbances may
become the factor controlling transition rather than turbulence. We may also use relations
2.16 and 2.17 for Tu < 0.1%, but then we should define an “effective” value for Tu.

As far as the author can remember the history behind 2.16 and 2.17 is as follows. Eq. 2.16 was
derived by the author around 1975 from a collection of published measurements on transition
on flat plates with different free stream turbulence levels. These data included some tabular
values taken from a paper by Mack (probably Mack (1975)). The N2 curve was just made
parallel to that for N1. Later Mack himself has published the following equation:

N = −8.43− 2.4ln(T ) (2.18)

Note that while our Tu is in % and we use 10log, Mack uses T in absolute value and the
natural logarithm. But in fact 2.16 for N1 and 2.18 are very nearly equal, because they are
based on essentially the same data. See also Mack (1977), Mack (1978) and Mack (1984).

Note that the turbulence level alone is not a sufficient characterization of the disturbance
environment in a wind tunnel or in free flight. From stability theory it is known that the
frequency spectrum of the disturbances should be taken into account. Therefore the critical
N -factor for a certain disturbance environment, such as in a wind tunnel, can be determined
only from an experiment in that facility. Since most modern low speed, low turbulence wind
tunnels have been built after the same recipe they tend to have comparable critical N -factors.

The question should be asked why the eN method has enjoyed so much success in the last 50
years. The theory used is a linear one while it is clear that transition to turbulence itself is a
highly non-linear phenomenon. It should be observed however that the method is only used
to ”predict” the position of transition and not the physical transition process itself. From
experiments it is known that the initial disturbances in low turbulence wind tunnels are so
low that up to an N -factor of 7 the linear theory gives a good description of the disturbance
development (Obremski et al., 1969), see also the paper by Wubben, Passchier and Van Ingen
(1989) (Wubben et al., 1989, �). Hence extrapolation is only needed from N=7 to N=9 to
”predict” the transition position.
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Figure 2.10: N -factor for various flat plate experiments
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Chapter 3

Laminar boundary layers for
two-dimensional incompressible flow

3.1 The laminar boundary layer equations

The laminar boundary layer equations can be derived from the Navier-Stokes equations under
the assumption that the boundary layer thickness δ is small w.r.t. a typical length coordinate
(say the chord of an airfoil). As long as δ is also small w.r.t. the radius of curvature (r)
of the surface and moreover dr

dx remains small, the resulting equations are equally valid for
flat and curved surfaces. We will restrict our discussion to steady, laminar, two-dimensional,
incompressible flows. Then we have the following equation (Schlichting, 1978, chapter VII):

u
∂u

∂x
+ v

∂u

∂y
= −1

ρ

dp

dx
+ ν

∂2u

∂y2
(3.1)

Also the continuity equation should be satisfied:

∂u

∂x
+
∂v

∂y
= 0 (3.2)

The pressure is, in this approximation, constant across the boundary layer and satisfies the
Bernoulli equation outside the boundary layer.

p+
1
2
ρU2 = constant (3.3)

or
− 1
ρ

dp

dx
= U

dU

dx
(3.4)

When calculating the boundary layer, p(x) is assumed to be known from experiment or a
potential flow calculation, sometimes including the influence of the displacement effect of the
boundary layer on the pressure distribution through “weak” or “strong” interaction. The
development of the boundary layer depends to a large extent on the pressure gradient and
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14 Laminar boundary layers for two-dimensional incompressible flow

the amount of suction or blowing. Boundary conditions for (3.1) and (3.2) are (subscript zero
always denotes values at the wall, y = 0):

y = 0 u = 0 v = v0 (v0 < 0 for suction) (3.5)
y → ∞ u→ U(x) (3.6)

Furthermore a velocity profile should be known at some starting position x0. For porous
walls v0 6= 0; v0 > 0 gives blowing, v0 < 0 gives suction. Note that by keeping u(0) = 0 it
is implied that suction is applied normal to the wall. This is strictly speaking not necessary.
One could imagine a suction surface with oblique suction. However, we will conform to the
usual assumption of “normal to the wall suction”. It should be observed that y →∞ in (3.6)
is only related to the thin boundary layer; for the outer flow the “edge of the boundary layer”
is still very near to the wall. Using (3.1) and (3.5) it follows that at the wall the curvature
of the velocity profile is determined by the pressure gradient and v0 via the so called “first
compatibility condition”:

v0

(
∂u

∂y

)
0

= −1
ρ

dp

dx
+ ν

(
∂2u

∂y2

)
0

= U
dU

dx
+ ν

(
∂2u

∂y2

)
0

(3.7)

Hence for the no suction case, when the pressure decreases in stream wise direction (as on
the forward part of an airfoil), the velocity profile is convex near the wall. With increasing
pressure the profile is concave near the wall. At zero pressure gradient the profile is straight
near the wall. Suction (v0 < 0) has the same effect as a “favourable pressure gradient”
( dp

dx < 0). This determines the effect of pressure gradient and suction on stability and hence
on transition. From chapter 2 we know that convex velocity profiles have a much greater
stability than concave profiles and hence tend to delay transition. Similar effects are due to
heating and cooling at the wall. In air, cooling the wall is stabilising while in water it is
destabilising (Wazzan et al., 1981). The effects of heating and cooling will not be discussed
in the present report.

If we first differentiate (3.1) w.r.t. y and use (3.2) and (3.5), we find the “second compatibility
condition”:

v0

(
∂2u

∂y2

)
0

= ν

(
∂3u

∂y3

)
0

(3.8)

Note that for v0 = 0 the third derivative of u w.r.t. y at the wall is zero, independent of the
pressure gradient.

The velocity u(y) tends to the value U only asymptotically; therefore the definition of the
boundary layer thickness δ is rather arbitrary. Two well-defined thickness parameters are the
displacement thickness:

δ∗ =

∞∫
0

(
1− u

U

)
dy (3.9)

and the momentum loss thickness:

θ =

∞∫
0

u

U

(
1− u

U

)
dy (3.10)



3.1 The laminar boundary layer equations 15

It can be shown that δ∗ is related to the outward displacement of the streamlines due to
viscosity. An improved pressure distribution is obtained from an inviscid flow calculation
for a corrected body where a thickness δ∗ is added to the contour (so called “weak interac-
tion”). This method fails at separation; there a more involved procedure is necessary (“strong
interaction”).

Some more parameters, to be used in later sections, will be defined here.

The “shape factor”:

H =
δ∗

θ
(3.11)

For the asymptotic suction profile (see chapter 3.2) the very low value of H = 2 is obtained.
For the stagnation point H = 2.216; for the flat plate H = 2.591; at separation H assumes
a value of about 4 and for velocity profiles downstream of separation H can reach values as
high as 35.

The wall shear stress follows from:

τ0 = µ

(
∂u

∂y

)
0

(3.12)

A very often used non-dimensional form is

` =
τ0θ

µU
=

(
∂u

∂y

)
0

(3.13)

where u = u
U and y = y

θ . The non-dimensional curvature of the velocity profile at the wall
will be denoted by:

mT =
(
∂2u

∂y2

)
0

(3.14)

The subscript T refers to Thwaites who first introduced ` andmT as parameters to characterise
laminar boundary layers. The non-dimensional pressure gradient will be denoted by the
Pohlhausen parameter

K =
θ2

ν

dU

dx
(3.15)

For a non-dimensional suction parameter we will use

w =
v0θ

ν
(3.16)

Using these notations the first compatibility condition (3.7) can be rewritten as:

v0θ

ν

(
∂u

∂y

)
0

=
θ2

ν

dU

dx
+

(
∂2u

∂y2

)
0

(3.17)

or:
mT = w`−K (3.18)

The second compatibility condition (3.8) can now be rewritten as:

w

(
∂2u

∂y2

)
0

=
(
∂3u

∂y3

)
0

(3.19)
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From (3.18) it can be seen that the curvature at the wall (mT ) can be influenced by the
pressure gradient and suction/blowing. In chapter 4 we will introduce the assumption that
pressure gradient and suction/blowing are to a large extent interchangeable so that stability
diagrams calculated for velocity profiles at zero suction but with pressure gradient can be
applied to the case of suction.

For special forms of the function U(x) the set of partial differential equations (3.1) and (3.2)
can be reduced to an ordinary differential equation. The resulting velocity profiles at all
values of x are similar in shape. Some of these similar solutions will be discussed in sections
3.3 and 3.4. For other, more general functions U(x) in the pre-computer era we had to use
approximate “integral relation methods” to be able to design airfoils. (see e.g. (Schlichting,
1978), (Rosenhead, 1961), xfoil (Drela, 1989), and (van Ingen, 1965, �, �, �). We will not
discuss these methods here. For some of the examples to be discussed in chapter 12 we will
use a finite difference method developed by the author. A brief description will be given in
section 3.5, an introduction to this method can be found in (van Ingen, 1998, �).

3.2 The asymptotic suction boundary layer

A simple exact analytical solution of the boundary layer equations (in fact also of the full
Navier-Stokes equations) is given by the “asymptotic suction boundary layer” (Meredith and
Griffith, 1936), (Rosenhead, 1961). This solution is found for x → ∞ on a flat plate with
constant suction velocity v0. The development of this asymptotic solution from x = 0 was
already given by (Iglish, 1944). The Iglisch solution will be discussed in chapter 12; See also
(van Ingen, 1965, �) The asymptotic solution follows easily from (3.1) and (3.2) by stating
that for x → ∞ the boundary layer may be assumed to have a constant thickness and a
constant velocity profile. From equation (3.2) then follows, with ∂u

∂x = 0:

∂v

∂y
= 0 (3.20)

and since v0 (v at the wall) is taken constant for all x it follows that v = constant = v0
throughout the whole boundary layer. Then the boundary layer equation (3.1) simplifies to
the following ordinary linear differential equation

v0
∂u

∂y
= ν

∂2u

∂y2
(3.21)

The exact solution of (3.21) satisfying the boundary conditions (3.5) and (3.6) is easily found
to be

u

U
= 1− e(

v0y
ν ) (3.22)

Note that the boundary condition at y → ∞ can only be satisfied for v0 < 0, that is for
suction. From (3.22) and the definitions (3.9), (3.10) and (3.11) for δ∗, θ and H it follows
that:

− v0δ
∗

ν
= 1 − v0θ

ν
= 0.5 H =

δ∗

θ
= 2 (3.23)
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That H = 2 means that the velocity profile for the asymptotic suction profile is much more
convex and hence much more stable than the stagnation point profile without suction. A
complete stability diagram for the asymptotic suction profile is not known to the author.
Therefore we will, in chapter 9, “compose” such a diagram through extrapolation from the
stagnation point diagram.

3.3 The laminar boundary layer on a flat plate

Another relatively simple solution of the boundary layer equations is provided by the case of
a thin flat plate placed in the direction of a parallel flow with constant velocity U . The first
potential flow approximation for the velocity outside the boundary layer is U = constant and
hence dp

dx = 0. Then (3.1) reduces to:

u
∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
(3.24)

And the continuity equation remains:

∂u

∂x
+
∂v

∂y
= 0 (3.25)

The boundary conditions for zero suction then are:

y = 0 u = 0 v = 0 (3.26)
y → ∞ u→ U (3.27)

The equations (3.24) and (3.25) form a set of partial differential equations. The solution
becomes relatively easy through the principle of “similarity” which means that we look for
a solution where the velocity u(y) can be made independent of x by introducing a properly
scaled new variable η in y-direction. After introducing a stream function, the equations
(3.24) and (3.25) can then be reduced to one ordinary differential equation. (For details see
(Schlichting, 1978, chapter VII); we will here only present the main features of this problem.)
The appropriate new variable η is:

η =
y

x

√
Ux

ν
(3.28)

A suitable expression for a non-dimensional stream function ψ is:

ψ =
√
νxUf(η) (3.29)

With
u =

∂ψ

∂y
v = −∂ψ

∂x
(3.30)

it follows that
u

U
= f ′(η) (3.31)

v =
1
2

√
νU

x
(ηf ′ − f) (3.32)
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where primes denote differentiation w.r.t η. Introducing these new variables leads to the
well-known Blasius equation

f ′′′ +
1
2
ff ′′ = 0 (3.33)

The corresponding boundary conditions are:

η = 0 f(η) = 0 f ′(η) = 0 (3.34)
η → ∞ f ′(η) → 1 (3.35)

For suction or blowing f(0) will be 6= 0. It should be observed that (3.33) is indeed a (non-
linear) ordinary differential equation for f(η). Since the boundary conditions (3.34) and
(3.35) are given at two sides of an infinitely long interval a special procedure is needed to
solve the equation. The boundary condition at infinity may be transferred to a finite but
sufficiently large distance δ from the wall. Using a finite difference method this boundary
condition is satisfied simultaneously with that at η = 0. The so-called ”shooting method”
transforms the problem into an initial value problem by assuming an additional boundary
condition at the wall; for instance guessing a value for f ′′(0) and iterating this value until
the boundary condition at η = δ is also satisfied. Since the Blasius equation (3.33) can
easily be differentiated a number of times it is easy to develop a Taylor series method for
the shooting procedure. The results for the Blasius equation and the Falkner-Skan equation
(to be discussed in section 3.4) were obtained by a Taylor series method of order h8 (with
steplength h). Note that the customary Runge-Kutta method is equivalent to a Taylor series
developement of order h4. The velocity profile follows from equation (3.31) Resulting values
for δ∗, θ and H are:

δ∗

x

√
Ux

ν
= 1.7208

θ

x

√
Ux

ν
= 0.6641 H =

δ∗

θ
= 2.591 (3.36)

3.4 The Hartree and Stewartson similar solutions of the Falkner-
Skan equation

It can be shown that similar solutions are also possible for the more general flow

U = u1x
M (3.37)

where u1 and M are constants. This flow occurs near the apex of a wedge with angle πβ,
where

β =
2M
M + 1

(3.38)

It should be observed that the flat plate flow, discussed in section 3.3, is obtained for β = 0;
M = 0. Introducing η and ψ as for the flat plate by (3.28) and (3.29) (but now for U =
U(x) = not constant) we obtain the Falkner-Skan equation:

f ′′′ +
M + 1

2
ff ′′ +M(1− f ′2) = 0 (3.39)
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With boundary conditions

η = 0 f = f(0) f ′(0) = 0 (3.40)

η → ∞ f ′ =
u

U
(η) → 1 (3.41)

(Note that f(0) > 0 for suction, f(0) < 0 for blowing)

The velocity profile follows from
u

U
= f ′(η) (3.42)

When suction or blowing is involved a requirement for similarity, in addition to (3.37) is:

v0 ∼ x
M−1

2 (3.43)

The relation between v0 and the non-dimensional streamfunction at the wall follows from:

ψwall =

x∫
x=0

−v0dx and ψwall =
√
νxUf(x, 0) (3.44)

For similar flows we have
f(0) = constant (3.45)

Solutions of (3.39) have first been obtained by Hartree for attached flows (Hartree, 1937)
and zero suction. A stagnation point flow is obtained for β = 1; the flat plate for β = 0
and a separation flow for β = −.198838. Hartree found that for β ≥ 0 a unique solution
exists. However, for −.198838 ≤ β < 0 an infinite number of solutions exists that all satisfy
the boundary conditions. He introduced the ”Hartree condition” to single out the relevant
solution, that is the one approaching u = 1 from below as fast as possible without making an
overshoot. (for a detailed discussion of this phenomenon see (van Ingen, 1965, �)).

It was shown by Stewartson (1954) that also solutions with backflow exist for −.198838 ≤
β ≤ 0. Solutions of (3.39) can, as for the Blasius equation, be obtained from a finite differ-
ence method or by shooting. Table 3.1 gives some details of the velocity profiles for which
Arnal obtained the solutions of the Orr-Sommerfeld equation. For later convenience also the
asymptotic suction profile is included.

3.5 A finite difference method to solve the laminar boundary
layer equations

In the beginning of the 20th century it was still too complicated to calculate the boundary layer
for arbitrary pressure distributions. Hence at first only similar flows could be calculated, such
as the flat plate ((Prandtl, 1904), (Blasius, 1908)), the plane stagnation point flow (Hiemenz,
1911) and the wedge-type flows ((Falkner and Skan, 1930), (Hartree, 1937)) and the reversed
flow solutions by (Stewartson, 1954). Some of these have been discussed in previous chapters.
Non-similar solutions could be obtained for special pressure distributions for which the partial
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Table 3.1: Overview of the Hartree-Stewartson profiles analysed by Arnal and re- analysed data for
Reδ∗crit

. The value for Reδ∗crit
for the asymptotic suction profile was derived from (Hughes

and Reid, 1965)

icase β H δ∗

x

√
Ux
ν

θ
x

√
Ux
ν Reδ∗crit

Reδ∗crit

(Arnal, table 1) (re-analysed)
1 1.00 2.216 .6479 .2924 12510 12501
2 .50 2.297 .9854 .4290 7750 7745
3 .20 2.411 1.3204 .5477 2860 2857
4 .10 2.481 1.4981 .6002 1390 1388
5 .05 2.529 1.5943 .6304 872 871
6 .00 2.591 1.7208 .6641 520 520
7 -.05 2.676 1.8789 .7021 315 315
8 -.10 2.802 2.0905 .7461 198 198
9 -.15 3.023 2.4146 .7987 126 126

10 -.185 3.378 2.8536 .8448 89 88.4
11 -.1988 4.029 3.4978 .8682 67 66.5
12 -.16 6.752 5.185 .7679 46.3 46.2
13 -.12 10.056 6.405 .6369 40.5 40.2
14 -.08 16.467 7.902 .4799 36.5 36.5
15 -.04 35.944 10.385 .2889 33.0 32.9

Asymptotic
suction profile 2.000 46270



3.5 A finite difference method to solve the laminar boundary layer equations 21

differential equations could be reduced to a series of ordinary differential equations ((Blasius,
1908); (Howarth, 1938); (Görtler, 1957)). All of these series solutions failed to converge
sufficiently near separation and hence some kind of continuation procedure had to be devised
which was either based on the momentum integral equation of von Kármàn ((Howarth, 1938);
(Tani, 1949)) or on a direct numerical solution (Leigh, 1955). This work, especially that of
Hartree, led to the notion of a singularity at separation. Later on this singularity was clarified
by (Goldstein, 1948) and (Stewartson, 1954); a further numerical evaluation was given by
(Terrill, 1960) 1

At first these discussions of the singularity gave rise to the idea that the boundary layer
equations ceased to be valid at separation. Later on it has become clear that the equations
can be used through separation for a suitable pressure distribution (for instance a measured
one), but that the result is extremely sensitive to small changes in this pressure distribution.
Instead of prescribing the pressure distribution one should prescribe a regular behaviour
through separation of a quantity such as the skin friction or the displacement thickness from
which the pressure distribution follows. At present it is customary to use the concept of
strong interaction where the boundary layer is calculated simultaneously with the pressure
distribution. Both are coupled through the distribution of the displacement thickness.

Until 1921 boundary layer theory was not of much use to practical aerodynamicists. The
practical application of boundary layer theory became possible through the use of the von
Kármàn momentum integral equation and the Pohlhausen method, based on it. Hence, for
a long time the practical application of boundary layer theory was through approximate
methods such as Pohlhausens (Pohlhausen, 1921). It was only in the nineteen-sixties that
direct numerical calculations became feasible, see for instance (Smith and Clutter, 1963). In
his lectures at Delft University the author introduced a numerical solution procedure using a
finite difference method based on the following simple second-order linear ordinary differential
equation with non-constant coefficients as a standard form:

u′′ + P (η)u′ +Q(η)u = R(η) (3.46)

With boundary conditions:

u = 0 at y = 0; u = umax → 1 at ηmax →∞ (3.47)

Where u represents the non-dimensional velocity in the boundary layer. η is a non-dimensional
distance to the wall, to be specified later. For certain applications where the exact solution is
known, the exact value for umax at a finite ηmax can be used in order to be able to evaluate
the quality of the numerical procedure. Equation (3.46) can be solved by shooting, but we
use a 3-point finite difference method with application of the Thomas algorithm to solve the
resulting linear algebraic equations. Using the simple Thomas algorithm the accuracy is of
order h2 where h is the (constant) step length. By using n, 2 n and 4 n intervals with step
length h, 1

2h and 1
4h a Richardson type extrapolation can be used, increasing the accuracy

to h4 and h6 respectively. For practical applications order h4 is in general sufficient, which is
equivalent to the customary Runge-Kutta result.

1To avoid a too lengthy list, well known references that can be found in the 7th edition of (Schlichting,

1978), (Rosenhead, 1961) or the reference list of the author’s PhD thesis, also found on the cd-rom, �, will
not be listed in the present report.
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As a first example we use the asymptotic suction boundary layer that was already discussed
in section 3.2. Equation (3.21) can be brought in the form of our standard equation (3.46)
by writing

P (η) = 1, Q(η) = 0, R(η) = 0, η = −v0y
ν

(3.48)

The exact solution is:
u = 1− e−η = 1− e

v0y
ν (3.49)

A second example is Stokes first problem (accelerating infinite flat plate in a fluid at rest,
(Schlichting, 1978, chapter V). Writing this problem in a frame of reference fixed to the plate,
where the wall is stationary and the outer flow is moving, the boundary layer equation reduces
to:

u′′ + 2ηu′ = 0 (3.50)

Where η is y

2
√

νt
. The exact solution is:

u = erf(η) (3.51)

Where erf(η) is the well known error function:

erf(η) =
2√
π

η∫
0

e−η2
dη (3.52)

Because of the known exact solutions for the two preceding cases they can be used to get
some feeling for the influence of varying ηmax and the number of steps through the boundary
layer.

The boundary layer for the flat plate was shown in section 3.3 to lead to the following Blasius
equation for the non-dimensional stream function f :

f ′′′ +
1
2
ff ′′ = 0 (3.53)

with

f = 0 f ′ = 0 at η = 0 (3.54)
f ′ → 1 for η →∞ (3.55)

The Blasius equation can be brought in the form of our standard equation (3.46) by substi-
tuting f(η) = u which leads to:

u′′ +
1
2
fu′ = 0 (3.56)

Apparently we have to take R = 0 and Q = 0 while P (η) = 1
2f . This is a complicating factor

because now P (η) is not known and the equation is not linear anymore. This problem is
solved by using an iterative procedure where f is obtained from a previous iterate ũ using:

f =

η∫
0

ũdη (3.57)
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(f is zero at the wall for the no-suction case) and taking u = 1 − e−η as a first estimate for
ũ. A few iterations using the Thomas algorithm and (half of) the Richardson extrapolation
scheme are found to be sufficient.

The Falkner-Skan equation was introduced in section 3.4. Equation (3.39) can also be brought
in the form of our standard equation (3.46) but has some complicating non-linear terms,
namely ff ′′ and (f ′)2 .The first one is treated as in the Blasius equation while the second
one is linearised using:

f ′ = u, u− ũ = δu, (δu2) ∼= 0 (3.58)

Where ũ is the value of u from a previous iteration. An iterative solution is easily obtained
from a first guess such as u = 1 − e−η. This procedure will not be discussed in further
detail here. Non-similar boundary layers can be calculated from a form of the boundary
layer equations which to a large extent resembles the Falkner-Skan equation. This form was
first introduced by (Görtler, 1957); see also (Schlichting, 1978, chapter IX) and (Smith and
Clutter, 1963). Introducing

η =
y

x

√
Ux

ν
(3.59)

and the non-dimensional streamfunction f(x, η) by

ψ(x, η) =
√
νxUf(x, η) (3.60)

we can transform equation (3.1) and (3.2) into

f ′′′ +
M + 1

2
ff ′′ +M

(
1− (f ′)2

)
= x

[
f ′
∂f ′

∂x
− f ′′

∂f

∂x

]
(3.61)

Where
M =

x

U

dU

dx
(3.62)

See also (Schlichting, 1978, chapter IX) and (Smith and Clutter, 1963). Equation (3.61)
is now a partial differential equation because of the derivatives w.r.t. x in the right hand
side which complicates its solution. The equation has the advantage that for x → 0 the
Falkner-Skan equation is obtained, hence the starting solution at x = 0 is known already. A
marching procedure in x-direction can be obtained by replacing the derivatives with respect
to x by finite differences based on a few points in x-direction (Hartree-Womersley method).
The resulting ordinary differential equation in η can be solved by the shooting method or
can be brought in the standard form (3.46), using the same procedures as for the Falkner-
Skan equation. As in all direct numerical calculations singular behaviour near separation is
observed. A good estimate for the position of separation is obtained by assuming that the
singularity is of the simple Goldstein type where the wall shear stress approaches zero as the
square root of the distance to separation. Hence a linear extrapolation of the square of the
wall shear stress to zero provides an estimate of the separation position that is sufficiently
accurate for practical purposes. The effects of suction can be taken into account by specifying
the stream function f(x, 0) at the wall. With normal velocity at the wall v0 we can write the
stream function at the wall as:

ψ =

x∫
0

−v0dx (3.63)
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Which leads to the following expression for f at the wall:

f(x, 0) =
1√
νxU

x∫
x=0

−v0dx (3.64)

Some applications of the finite difference method will be used in chapter 12.



Chapter 4

Choice of a parameter to
characterise stability diagrams

4.1 Some early stability data

Stability diagrams are determined by the Eigensolutions of the Orr-Sommerfeld equation 2.1.
The solutions depend on the shape of the velocity profile through u(y) and u′′(y) in the left
hand side of the equation. Especially u′′ is known to have an important effect on the stability
diagram. The occurrence of an inflexion point leads to a low critical Reynolds number and
a high amplification rate. It was already mentioned in chapter 2 that curvature and hence
the stability is dependent on pressure gradient, suction/blowing, heating or cooling, etc.
Note that the reciprocal value of the Reynolds number occurs in the right hand side of the
Orr-Sommerfeld equation as the coefficient of the highest (4th) derivative of the amplitude
function φ. This makes numerical solutions of the equation, even in the present computer
era, rather cumbersome and computer intensive. For infinite Reynolds number the right hand
side disappears, lowering the order of the equation to 2. Solutions of this so called ”Rayleigh
equation” are only interesting for velocity profiles with an inflexion point. The −αiθ vs ωθ

U
cross section is then independent of the Reynolds number which has certain consequences for
the shape of the stability diagram, to be discussed later.

Because of the relatively large computational effort it is not practical to solve the equation “on
the fly” for all velocity profile at a large series of x-stations on an airfoil at a range of angles
of attack and chord Reynolds numbers as would be needed for an airfoil design computer
program. Therefore it is still customary to use pre-computed solutions for a standard series
of velocity profiles at a number of Reθ values in a data base method. In general, the Hartree
and Stewartson solutions of the Falkner-Skan equation without suction/blowing are used for
this purpose. The shape factor H is generally used to characterise the shape of the velocity
profiles and hence the stability diagrams.

In the early days of the eN method there was not much choice for the stability diagrams.

25
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Although a number of neutral curves were available for flows with pressure gradient and
suction, the only diagrams including amplification rates were those calculated by Pretsch,
(see (Pretsch, 1941, 1942, 1945)) for six Hartree profiles from stagnation point to separation
(see figure 4.1). In his first version of the method (van Ingen, 1956a, �) used the Pohlhausen
method to calculate the boundary layer on an airfoil. The Pohlhausen pressure gradient
parameter θ2

ν
dU
dx was related to the Hartree β by calculating the Hartree boundary layers with

the Pohlhausen method. Because Pretsch could not yet use numerical solution procedures
for the Orr-Sommerfeld equation he had to rely on a (semi) analytical method that was not
applicable at the low Reynolds number for the separation profile. Therefore he was unable to
calculate the critical Reynolds number for this profile. Therefore, and also due to the limited
accuracy of the Pohlhausen method near separation, no conclusion as to the validity of the
eN method near separation could be drawn. Figure 4.2 shows the critical Reynolds number
for a series of boundary layer flows with and without suction. These data are rather well
correlated by the following approximation due to (Wieghardt, 1954).

Reθcrit
= e26.3−8H (4.1)

From figure 4.3, to be discussed later, it follows that this good correlation is only true for
a restricted range of H, namely 2.2 ≤ H ≤ 2.7 In 1965 (van Ingen, 1965, �) used Lin’s
approximate formula for the critical Reynolds number of the velocity profiles that were used
in his 2-parameter integral relation method for boundary layers with suction. The Pretsch
diagram for which the critical Reynolds number was equal to Lin’s value then was applied to
the local boundary layer profile. Lin’s equation is derived as a first crude approximation to
the critical Reynolds number. In fact there are two formula’s, namely:

− π u′(0)
(
u u′′

u′3

)
c

= 0.58 (4.2)

Recrit = 25
u′(0)
c4

(4.3)

c is the value of u for which equation 4.2 is satisfied. We apply these formulae for u = u
U

where the primes denote differentation w.r.t. y = y
θ , hence u′(0) = `.

The first equation determines a characteristic velocity c in the boundary layer. Once this
value of c is known the second equation gives the critical Reynolds number. From this second
equation it follows that the critical Reynolds number becomes zero at separation and would
be negative for separated flows. This is certainly not in agreement with the presently known
numerical solutions of the Orr-Sommerfeld equation. Figure 4.3 gives a comparison between
the critical Reynolds numbers for the Hartree flows as calculated by Arnal and according to
our database, and for the asymptotic suction profile according to (Hughes and Reid, 1965)
(Reδ∗crit

= 46270; Reθcrit
= 23135; 10log(Reθcrit

) = 4.3643), Lin’s approximation for these
cases and also the curve fit of equation (4.1).

It can be seen that Lin’s approximation and Wieghardts curve fit give reasonable results
between H = 2.2 and H = 2.7 but are far off for flows approaching separation.

It has to be concluded that it is not simple to define a suitable parameter to characterize
stability diagrams and moreover it is not clear whether it is permissible to use a single para-
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Figure 4.1: Pretsch diagrams
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Figure 4.2: Reθcrit vs H for several velocity profiles and the Wieghardt correlation
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Figure 4.3: Lin’s approximation for Falkner-Skan profiles without suction compared to Wieghardt’s
correlation and our database. Arnal’s values are denoted by ◦

meter to describe all possible stability diagrams with pressure gradient and suction. In his
PhD thesis (van Ingen, 1965, �) made the following observations:

1. The results of different authors for the flat plate neutral curve showed appreciable
differences (see figure 4.6) due to:

a. using different analytical approximations to the Blasius profile. Although the pro-
files looked reasonable, the curvature was sometimes quite different.

b. Using different (analytical) methods to solve the Orr-Sommerfeld equation.

2. In addition to the Pretschs complete diagrams for the Hartree profiles a number of neu-
tral curves were available for boundary layers with pressure gradient/suction/blowing
(Ulrich, 1944) (see figures 4.4, 4.5 and 4.6)

From these figures, taken from (van Ingen, 1965, �), it followed that if such an amount of
suction is applied to a flat plate boundary layer that the critical Reynolds number becomes
equal to that for the stagnation point flow, then also the remaining parts of the neutral
curves look rather similar. A similar conclusion was valid for such an amount of blowing at
the stagnation point that the critical Reynolds number for the flat plate was obtained. In
order to be able to proceed at that time (1965) it was assumed (maybe rather boldly) that:
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Figure 4.4: Plane stagnation point, Ulrich & Pretsch

Figure 4.5: Some neutral curves for suc-
tion/blowing and pressure gradient

Figure 4.6: Neutral curves for the flat plate
boundary layer
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All possible stability diagrams for arbitrary pressure gradients and suction/blowing
form a one-parameter family with the critical Reynolds number as parameter. This
implies that it is assumed that the effects of pressure gradient and suction/blowing

are interchangeable.

Extensive use of this assumption has shown that application of the resulting eN method
gave good results for pressure gradient, suction blowing and even for separation bubbles. In
later years very often the shape factor H has been used as the parameter characterising the
critical Reynolds number (Rosenhead, 1961; van Ingen, 1965). Also the approximation due
to Wieghart often has been used. In the present work we also will use H; in the next section
we will give some more background to this choice. Similar work on the interchangeability of
pressure gradient and suction has been done by (Stock, 1980; Stock and Degenhart, 1989).
Because it is known that the curvature of the velocity profile has a strong effect on the stability
diagram one might argue that the relevant parameter should be based on curvature rather
than on the velocity profile shape parameter H. In chapter 3 we defined the parameter mT as
the non-dimensional curvature at the wall. Therefore mT would present itself as a suitable
parameter. However, the Hartree profiles cover only a limited range of mT values with a
maximum at separation as shown in figure 4.7. Here the ` − mT relation for the Hartree
profiles is compared with a number of non-similar boundary layers. Since non-dimensional
wall shear stress (f”(0)) as a function of mT is double valued for the Hartree-Stewartson
profiles between β = 0 and β = −0.1988 (see figure 4.8) there seems not much choice to be
left except using H.

Figure 4.7: ` vs mT Figure 4.8: f ′′(0) vs mT for Hartree & Stewart-
son boundary layers
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4.2 Comparison of solutions of the Falkner-Skan equation with
and without suction

To see whether H might be used to characterise the distributions of u(y) and u′′(y) and hence
the stability diagram we calculated a series of 23 solutions of the Falkner-Skan equation for
the flat plate with varying amounts of suction and blowing, shown in table 4.1. Note that
case nr. 18 represents the flat plate without suction or blowing.

Table 4.1: Falkner-Skan solutions for flat plat with suction/blowing
f(0) f ′′(0) ηmax ` mT H

Asymptotic 0.5000 -0.2500 2.0000
suction

Falkner-Skan
1 10 5.0485 5.0000 0.4894 -0.2372 2.0153
2 1.6000 0.9897 8.0000 0.3755 -0.1140 2.2024
3 1.5000 0.9454 8.0000 0.3695 -0.1083 2.2138
4 1.4000 0.9014 8.0000 0.3632 -0.1024 2.2261
5 1.3000 0.8578 8.0000 0.3564 -0.0963 2.2394
6 1.2000 0.8144 8.0000 0.3493 -0.0899 2.2539
7 1.1000 0.7715 8.0000 0.3417 -0.0832 2.2696
8 1.0000 0.7289 8.0000 0.3336 -0.0764 2.2866
9 0.9000 0.6867 8.0000 0.3251 -0.0692 2.3053
10 0.8000 0.6450 8.0000 0.3160 -0.0619 2.3257
11 0.7000 0.6037 8.0000 0.3064 -0.0544 2.3481
12 0.6000 0.5630 8.0000 0.2961 -0.0467 2.3727
13 0.5000 0.5228 8.0000 0.2853 -0.0389 2.3999
14 0.4000 0.4833 10.0000 0.2738 -0.0310 2.4300
15 0.3000 0.4443 10.0000 0.2616 -0.0231 2.4636
16 0.2000 0.4061 12.0000 0.2486 -0.0152 2.5011
17 0.1000 0.3687 12.0000 0.2350 -0.0075 2.5433
18 0 0.3321 12.0000 0.2205 0 2.5911
19 -0.2000 0.2616 12.0000 0.1892 0.0137 2.7080
20 -0.4000 0.1956 12.0000 0.1547 0.0245 2.8658
21 -0.6000 0.1349 12.0000 0.1173 0.0306 3.0909
22 -0.8000 0.0808 14.0000 0.0777 0.0299 3.4419
23 -1.0000 0.0355 16.0000 0.0380 0.0204 4.0995

The amounts of suction/blowing were chosen in such a way that for most cases H for these
flat plate flows was in the range from 2.2162 to 4.0292 ; that is the same range as for the
no-suction case from stagnation point to separation. To show that for very strong suction
the asymptotic suction profile is approached, we added case number 1 with f(0) = 10. The
resulting value for H (= 2.0153) shows that this boundary layer is already very near to the
asymptotic suction state. For comparison also some data for the asymptotic suction profile are
added to the table. Values in the table that are outside the range of the regular no-suction
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Hartree boundary layers between stagnation point and separation are printed underlined.
Figure 4.9 shows the 23 Falkner-Skan velocity profiles and the asymptotic suciton profile.
Indeed profile number 1 is very close to the asymptotic suction profile. Figures 4.10 and 4.11
respectively show the shear stress and curvature profiles.
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Figure 4.9: Falkner-Skan velocity profiles with blowing and suction for the flat plate and the asymp-
totic suction profile

For each of the not underlines cases in table 4.1 the corresponding Hartree profile with pres-
sure gradient and no-suction can be calculated with the same value of `, mT or H as for
the profiles in the table.(See the matlab program comp_Hartree_suc_nosuc.m; option 1 in
N_factor_show.m. Using this program, the values for `, mT and H underlined in the table
should be avoided, because here no comparable Hartree profile without suction can be found.
Some cases for comparisons at equal H are shown in the figures 4.12 through 4.23. Note that
u and y have been made non-dimensional with U and θ respectively.
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Figure 4.10: Falkner-Skan shear stress profiles with blowing and suction for the flat plate and the
asymptotic suction profile
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Figure 4.11: Falkner-Skan curvature profiles with blowing and suction for the flat plate and the
asymptotic suction profile
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From results not presented here, but easily checked with the computer program, we concluded
that making mT equal should not be recommended because of the restricted range of mT for
the Hartree profiles. Also making ` equal does not bring an advantage. It can be seen that at
the same H the effects of suction/blowing and pressure gradient are indeed reasonably well
interchangeable. What is remarkable, is that also the curvature profile at the same H is rather
similar. Differences should be expected because of the consequences of the “compatibility
conditions” for the 3rd derivative of u w.r.t. y as discussed in section 3.1. It is interesting to
see however that these differences mainly show up near the wall. To show the consequences
of this interesting result we calculated, for all regular cases in the table, the critical Reynolds
number with Lin’s approximate method that was discussed in chapter 4.1. Figure 4.24 shows
the results in comparison with the data for the regular Hartree profiles. It follows that the
results at equal H are rather close despite the differences in curvature. Why this is so follows
from figures 4.12 through 4.23 where with a 5 or a 4 the position is indicated where the first
of Lin’s equations (4.2) and (4.3) is satisfied. In most cases this occurs at a height above the
region where most of the differences in curvature occur. In the first place it should be noted
that u(y) and u′(y) are in most cases very nearly equal for the two profiles. Moreover, from
Lin’s equations (4.2) and (4.3) it follows that the curvature only influences the determination
of the y value for which equation (4.2) is satisfied. It is seen that in general these y values are
nearly equal for the original and comparison profiles. The u value c at this y value enters to
the 4th power in equation (4.3) and hence, even if the y values are rather close, there still may
be differences in the resulting critical Reynolds number as is visible in figure 4.24. This may
also be caused by the differences in the wall shear stress (ū′(0)) for both profiles. Although
it was shown in section 4.1 that Lin’s method is not always accurate, it gives some support
for choosing H as the characterising parameter.

Another factor that may contribute to the lesser importance of the curvature term than
expected is the following. In the Orr-Sommerfeld equation 2.1 the curvature term (u′′) is
multiplied by the amplitude function φ. At the wall both φ and φ′ are zero because they
represent the v and u component of the disturbance velocity. Therefore φ and hence the
curvature term remains small over some distance near the wall. Some further remarks on this
may be found in Obremski et al. (1969) and van Ingen (2008).

The matlab program Hartree_zpg_pg.m (N factor show.m, option 15) gives some more sup-
port to the conclusion that H is a more suitable parameter than l or mT .

It should also be kept in mind that at not extremely high Reynolds numbers the required
amount of suction to maintain laminar flow is relatively modest so that the resulting values
of H may remain > 2.4.

It would be interesting to accurately calculate stability diagrams for a set of corresponding
cases to see to what extent the differences in curvature near the wall have an influence on
the stability diagram and compare these results to Lin’s. Not being able to perform these
calculations at present we decided to stick to the custom of using H as the parameter to
correlate the critical Reynolds number. The correspondence in u(y) and u′′(y) as discussed
above gives some confidence. But maybe we should say that we accept this choice for lack of
something better, just as in the past.
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Figure 4.12: Velocity profile, equal H comparison of flat plate with suction/blowing to Hartree v0 =
0, for H = 2.2261
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Figure 4.13: Shear stress profile, equal H comparison of flat plate with suction/blowing to Hartree
v0 = 0, for H = 2.2261
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Figure 4.14: Curvature profile, equal H comparison of flat plate with suction/blowing to Hartree
v0 = 0, for H = 2.2261
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Figure 4.15: Velocity profile, equal H comparison of flat plate with suction/blowing to Hartree v0 =
0, for H = 2.3053
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Figure 4.16: Shear stress profile, equal H comparison of flat plate with suction/blowing to Hartree
v0 = 0, for H = 2.3053
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Figure 4.17: Curvature profile, equal H comparison of flat plate with suction/blowing to Hartree
v0 = 0, for H = 2.3053
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Figure 4.18: Velocity profile, equal H comparison of flat plate with suction/blowing to Hartree v0 =
0, for H = 2.3999
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Figure 4.19: Shear stress profile, equal H comparison of flat plate with suction/blowing to Hartree
v0 = 0, for H = 2.3999



40 Choice of a parameter to characterise stability diagrams

−0.05 −0.04 −0.03 −0.02 −0.01 0
0

1

2

3

4

5

6

7

8

9

10

curvature

y θ

suction

actual profile
actual profile

comparison profile
comparison profile

Figure 4.20: Curvature profile, equal H comparison of flat plate with suction/blowing to Hartree
v0 = 0, for H = 2.3999
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Figure 4.21: Velocity profile, equal H comparison of flat plate with suction/blowing to Hartree v0 =
0, for H = 2.5011
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Figure 4.22: Shear stress profile, equal H comparison of flat plate with suction/blowing to Hartree
v0 = 0, for H = 2.5011
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Figure 4.23: Curvature profile, equal H comparison of flat plate with suction/blowing to Hartree
v0 = 0, for H = 2.5011
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Figure 4.24: 10log(Reθcrit) for flat plate with suction/blowing compared to Hartree profile with equal
H

A possibility to compare arbitrary velocity profiles with the corresponding regular Hartree
profile at the same value of H has also been introduced into the finite difference program that
was discussed in chapter 3.5. At selected x-stations a subroutine is called to find the Hartree
profile without suction with the same H as the local profile. It is found that also here H
presents itself as a suitable parameter. As an example the potential flow pressure distribution
around a circular cilinder U(x) = sin(x) without and with suction was used. (Terrill, 1960)
has presented an accurate numerical solution for both cases and moreover gave a detailed
analytical discussion of the solution near separation. The suction distribution in the second
case was given by:

vs =
−v0

U∞
√
Rc

(4.4)

with vs = constant = .5 For the position of separation with and without suction (Terrill,
1960) found x = 1.822983 and 2.00164 respectively while our finite difference calculation gave
1.8226 and 2.0028. The result of our calculation is presented as H(x) in figure 4.25. At
x = 1.92 for the suction case H = 2.6282 as indicated in figure 4.25 with o. For this station
we also calculated the comparison profile with equal H. Results are shown in figures 4.26, 4.27
and 4.28 for u, u′ and u′′. Again the uc and yc values are rather close so that the difference
in Reθcrit

is mainly caused by the difference in shear stress at the wall (see equation (4.3) and
figure 4.27) The critical Reynolds number Reθcrit

according to Lin for the actual profile and
the comparison profile is 117.3 and 139.2 respectively; again rather close.
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Figure 4.25: H for Ū = sin(x̄) with and without suction
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Figure 4.26: Velocity profile for Ū = sin(x̄) at x̄ = 1.92 with suction and comparison Hartree profile
without suction at equal H = 2.6282
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Figure 4.27: Shear stress profile for Ū = sin(x̄) with suction and comparison Hartree profile without
suction at equal H = 2.6282
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Figure 4.28: Curvature profile for Ū = sin(x̄) with suction and comparison Hartree profile without
suction at equal H = 2.6282



Chapter 5

Comparing the asymptotic suction
profile to the Hartree profiles
without suction

We now want to investigate whether it can be expected that the stability diagram for the
asymptotic suction profile can be derived from an extrapolation of the Arnal tables for the
Hartree profiles. Figure 5.1 shows the 6 Hartree profiles for β = 1 to β = 0, from Arnal’s
series and the asymptotic suction profile. All profiles have been made non-dimensional by
U and θ. In addition the figure shows the asymptotic suction profile in comparison with a
quadratic extrapolation in 10log(H) from the first 3 Hartree profiles nearest to the stagnation
point. Figures 5.2 and 5.3 show similar results for the shear stress and curvature profiles.
Hence it is concluded that the asymptotic suction profile can, with some confidence, be added
to the series of Hartree profiles without an inflexion point.
Figures 5.4 and 5.5 show some results for similar boundary layers with suction/blowing and
heating taken from (Wazzan et al., 1981). Also here H presents itself as a suitable parameter
to characterise Reδ∗crit

, Rexcrit and Rex for N = 9.
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Figure 5.1: Velocity profiles for Hartree, asymptotic suction and extrapolation in 10log(H) from
icase=1:3 to 10log(2)
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Figure 5.2: Shear profiles for Hartree, asymptotic suction and extrapolation in 10log(H) from
icase=1:3 to 10log(2)



47

−0.25 −0.2 −0.15 −0.1 −0.05 0
0

1

2

3

4

5

6

7

8

9

10

curvature =
∂2u
∂y2

y
=

y θ

→
icase 1 to 6

Hartree

Extrapolated Hartree

Asymptotic suction profile

layer

Figure 5.3: Curvature profiles for Hartree, asymptotic suction and extrapolation in 10log(H) from
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Figure 5.4: Reδ∗crit
for flows with suction, blowing, cooling and heating plotted against H, from

(Wazzan et al., 1981)
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Figure 5.5: Rexcrit and Rex for N = e9 for heated (=stabilised) wedge flows in water, from (Wazzan
et al., 1981)



50 Comparing the asymptotic suction profile to the Hartree profiles without suction



Chapter 6

Overview of the Arnal data and
development of the database
method

Arnal (1986) presents solutions of the Orr-Sommerfeld equation for 15 Hartree velocity profiles
without suction. An overview was given in table 3.1 where for convenience also the asymptotic
suction profile is added. The critical Reynolds number for this additional case is taken
from Hughes and Reid (1965). Table 6.1 (page 56) presents additional stability data for
the Arnal profiles that are included in our database. The various Arnal cases are indicated
in the following text and in the matlab programs with “icase=1:15”. From the renewed
analysis of the Arnal data in some cases a slightly different value for the critical Reynolds
number was found; this is indicated in table 3.1. The tables that were derived from scanning
the original Arnal tables can be found in the matlab m-files Arnal_table_01.m through
Arnal_table_15.m. Note that Arnal used δ∗ to make the data non-dimensional. We will use
θ but left the data unchanged in the files mentioned above. For each velocity profile Arnal
presents cross sections through the stability diagram for 13 to 19 values of the Reynolds
number. This results in a total of 242 cross sections. In our description of the Arnal tables
we have used for unification a format assuming a maximum number of 19 cross-sections per
case; non-relevant entries in tables are filled in with easily recognised numbers such as 999.
The number of frequencies per cross section may vary.

As an example figure 6.1 gives the Arnal table for the flat plate boundary layer at Reδ∗ = 600.
For the derivation of our data base we only need the 2nd and 3rd column, containing αiδ

∗

and ωδ∗

U respectively. Furthermore observe that the 5th column contains F = ων
U2 and hence

should be equal to the 3rd column divided by Reδ∗ . To check for possible errors resulting from
the scanning process our first job was to run all Arnal tables through a program that plots
for each cross section the values of −αiδ

∗ versus ωδ∗

U ; any gross errors immediately showed
up in this way and could easily be corrected after a comparison with the original tables. It
should be noted that the other columns are not used in the present data base
and hence have not been checked in this way. Future users of additional columns
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Figure 6.1: Note: alphar = αrδ
∗; alphai = αiδ

∗ ; omega = ωδ∗

U ; cr = cr

U ; F= ων
U2

of the scanned tables should make their own checks.

To extract the data for our database we have run the Arnal tables through various programs;
each time calling a different routine from the positions marked in Arnal_table_01.m through
Arnal_table_15.m. These m-files were only used to derive our database and will not be
reproduced here. In the following sections the process of defining the data base will be
discussed in some detail. Only a limited number of figures will be included. The reader
can easily follow the process by loading the database and running the various options of
the matlab program N_factor_show.m concurrent with reading the text and following the
explanations given below.
First the amplification rate −αiθ is converted into the quantity T :

T =
−αiθ

Reθ
· 106 (6.1)

as introduced in chapter 2. The disturbance frequency will be non-dimensionalised in two
ways; each of which has its own merits as will be shown later. We will be using:

ωθ

U
and F =

ων

U2
=

ωθ
U

Reθ
(6.2)

Neutral curves for β = 1 (icase=1; stagnation point); β = 0 (icase=6; flat plate) and
β = −.198838 (icase=11; separation profile) were shown in figs. 2.3 through 2.5. The
complete diagrams for these values of β and in addition for the separated profile with
H=35.944 are shown in figs. 6.2 through 6.5. All 15 diagrams can be viewed by running
N_factor_show.m and selecting option 7.

Note the characteristic difference for profiles without (icase=1:6) and with inflexion point
(icase=7:15). In order to bring the Arnal data into a form which allows easy and accurate
interpolation between the various icase and Reθ we try to scale and shift the diagrams in such



53

0 0.5 1 1.5 2 2.5
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

r =10 log(Reθ) −
10 log(Reθcrit

)

ω
·

θ U

T values=0 .2 .4 .6 .8 .95

Arnal
Arnal

Database

layer

top

Figure 6.2: Classic stability diagram; icase = 1 (β = 1, stagnation point); T = T
Tmaxmax

0 0.5 1 1.5 2 2.5
0

0.01

0.02

0.03

0.04

0.05

0.06

r =10 log(Reθ) −
10 log(Reθcrit

)

ω
·

θ U

T values=0 .2 .4 .6 .8 .95

Arnal
Arnal

Database

layer

top

Figure 6.3: Classic stability diagram; icase = 6 (β = 0, flat plate); T = T
Tmaxmax



54 Overview of the Arnal data and development of the database method

0 0.5 1 1.5 2 2.5
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

r =10 log(Reθ) −
10 log(Reθcrit

)

ω
·

θ U

T values=0 .2 .4 .6 .8 .95

Arnal

Arnal

Database

layer

top

Figure 6.4: Classic stability diagram; icase = 11 (β = −0.198838, separation); T = T
Tmaxmax

0 0.5 1 1.5 2 2.5
−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

r =10 log(Reθ) −
10 log(Reθcrit

)

ω
·

θ U

T values=0 .2 .4 .6 .8 .95

Arnal

Arnal

Database

layer

top

Figure 6.5: Classic stability diagram; icase = 15 (β = −0.04, H = 35.944); T = T
Tmaxmax



55

a way that as much as possible from the variation is removed. A first shifting of the diagrams
by introducing:

r =10 log(Reθ)−10 log(Reθcrit
) (6.3)

was already done in figs. 6.2 through 6.5. Points for which T reaches its maximum value
Tmax in a certain cross section form the “axis”. The absolute maximum of T for the whole
diagram is denoted by Tmaxmax and is given in table 6.1(next page) for all icase. From the
table it follows that Tmaxmax varies with several orders of magnitude from icase=1 to 15; in
our plots we will use 10log(Tmaxmax).
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Figure 6.6: Tmax vs r for icase 1-15

T will be non-dimensionalized with Tmaxmax reducing the maximum value for each diagram
to 1. Non-dimensional values of T = Tmax on the axis will be denoted by Tmax. From fig. 6.6
and program review_Tbar.m (option 5 in the ”N_factor_show)” it follows that Tmax vs r is a
nearly universal curve for all 15 cases. If we introduce rtop as the value for r at which Tmax

reaches Tmaxmax, and plot Tmax as a function of r = r
rtop

all curves very nearly collapse. See
fig. 6.7 and review_scaling.m (N_factor_show.m option 6) Moreover this universal curve is
very well approximated by

Tmax = re1−r (6.4)

The “axis”, as locus of Tmax, is found to be better plotted as 10log(Faxis), where

F =
ων

U2
=
ωθ

U

1
Reθ

(6.5)

Results are shown in fig. 6.8. The axes in this format turn out to be nearly straight and
rather evenly distributed and hence well suited for later extrapolation and interpolation. The
kinks in the axes for icase > 6 at higher values of r are due to the appearance of Rayleigh
instability for velocity profiles with an inflexion point. Because for Rayleigh instability ωθ

U
for the upper branch of the neutral curve and for the axis become constant the slope of these
curves in the 10log(F ) format vs r becomes -1. The slope for cases without inflexion point
appears to be near to -

√
2; whether this is exact and could be proved is unknown to the

author. The coordinates of the “top of the amplification mountain” are denoted by rtop and
10log(Ffor top). As an average value for rtop we will sometimes use rtop = 1

3 . The values for
10log(Faxis) at r = 1

3 for icase = 1:15 are shown in figure 6.9 as function of 10log(Reθcrit
). It

is easy to extrapolate the 15 values to the value of 10log(Reθcrit
) for the asymptotic suction

profile. (indicated by + in the figure).
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The coordinates of the 242 cross sections given by Arnal are plotted in fig. 6.10 as values
of 10log(Reθcrit

) vs. r. This plot will later be used as a “road map” to trace a developing
boundary layer from the stable region (r < 0), possibly into the unstable region (r > 0) and
sometimes due to sufficient suction back into the stable region (r < 0).

In order to further reduce the variation we will scale ωθ
U with the scale as defined in figures

2.3 through 2.5. Using this scale the frequencies in each crosssection are finally scaled as :

ω =
ωθ
U − ωθ

U axis

scale
(6.6)

All interesting Arnall values are now found in the region −2 ≤ ω ≤ 3. Fig 6.11 shows, as an
example, all T for all cross sections for the flat plate diagram vs ωθ

U . Figure 6.12 shows the
same results but now in the form T

Tmaxmax
vs ω so that all maxima are found at ω = 0. See

also N_factor_show.m, option 6.

A final shifting is performed by moving the curves in fig. 6.12 in vertical direction so that the
local maximum value of the shifted T becomes zero. (fig. 6.13) The values of T thus obtained
will be denoted by Tss (ss stands for shifted and scaled). To show to what extent the Arnal
data have been prepared for interpolation all 242 Tss plotted versus ω can be viewed using
review_scaling.m . (option 6 in the N_factor_show.m)

A number of results obtained thus far have been curve-fitted by splines and plotted in figures
6.9 and 6.14 through 6.18. In these figures the 15 Arnal cases (indicated by a 0) are supple-
mented by known or extrapolated values for the asymptotic suction profile (indicated by +).
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All splines can be inspected by running review_splines.m. (option 4 in the N_factor_show.m)
All splines are in the format used in the Student version of matlab 5. Appendix A gives an
explanation of this format and contains a function to translate these matlab 5 splines into
other spline formats.

Inspecting the “road map” in figure 6.10 shows that the Arnal data points are distributed
rather irregular and moreover have an upper limit at a variable value of r. This makes
interpolation in this area rather cumbersome. To ease interpolation and possibly extrapolation
we introduced a 59 point non-equidistant “rgrid” in the region 0 ≤ r ≤ 2.5. Because variations
are fast near r = 0 and slow near r = 2.5 , the density of the r-grid has been chosen
accordingly. In all 15 x 59 =885 points a Tss spline has been defined; either by quadratic
Lagrange interpolation within the Arnal region for constant icase or by extrapolation to the
right from the last Arnal point until r = 2.5. The extrapolation will not be described in
detail because this region is less important. In practice it will seldom be used because it
can be expected that transition will occur within the Arnal covered range. To illustrate this,
figure 6.19 shows the roadmap with curves for constant N -factors of 1 through 15 that were
calculated for the Hartree and Stewartson similar flows. Of course the vertical axis r = 0
corresponds to N = 0. In applications of the database method we will use the roadmap shown
in figure 6.20 where only the curve for N = 9 is shown. Note that for similar boundary layers
the interpolation of Tss is done along horizontal lines for constant H and hence constant
10log(Reθcrit

). For non-similar flows the curves for N are not valid. Imagine a trace in the
roadmap approaching the N = 9 curve from the left after which such a distribution of suction
with x is applied that the N = 9 curve is not crossed. Because still being in the unstable
region for r > 0 it should be expected that transition may occur to the left of the N = 9
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curve.

The Tss splines have been defined in 34 points in the interval −2 ≤ ω ≤ 3. It may occur in
certain extreme cases that the splines are extrapolated beyond the boundaries −2 and +3.
Cubic spline polynomials may behave badly when used too far outside their definition region.
Therefore care was taken to ensure that the first and last spline polynomials reduced exactly
to a linear function avoiding bad behaviour. Because the student version of matlab 5 limits
arrays to a maximum of 16384 elements the Tss splines were put into cell-arrays. A function
cross_cut.m was written that uses a two-dimensional quadratic Lagrange interpolation in the

nearest 9 points in the 15 x 59 grid to find the Tss spline at arbitrary values of 10log(Reθcrit
)

and r. Because the spline format in matlab allows linear operations (like the Lagrange
interpolation) on the whole spline at once, cross_cut.m works very fast. Furthermore it
should be mentioned that the matlab 5 spline format contains some integer “identification
numbers”. After the interpolation these may have become classified as “reals” and may have
to be restored. The function rectify_Tss.m does this and also restores the linear ends of the
spline after interpolation. Figure 6.21 shows a schematic of the road map area divided in
certain regions. Note that region 5 is covered by the (extrapolated) Arnal data as described
earlier. In coming applications we also want to be able to enter the regions for r < 0 to
calculate the stabilising effects of strong suction. This will be explained in chapter 10 when
the working of cross_cut.m is explained in some detail. The comment lines in the m-file itself
can also be consulted for further explanations. With strong suction we may also enter the
region for H < 2.2, approaching H = 2 for the asymptotic suction profile. Chapter 10 will
also go into this extrapolation in some more detail.

Late in the present study it has become clear that the variation of the Tss splines with varying
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icase but at constant r, is rather small. Based on this observation a function cross cut fast.m
has been developed that is much faster than cross cut.m but also somewhat less accurate.
This faster version will be discussed in chapter 11.
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Chapter 7

Comparison of stability diagrams
according to Arnal and the
database

Once the database has become available it is rather easy to generate the stability diagram for
an arbitrary value of the shape factor H in the range 2.216 ≤ H ≤ 35.944 as covered by the
Arnal data and its extrapolation to r = 2.5. We will first as a check demonstrate how well the
database reproduces the Arnal data. The program comp_data_base_to_Arnal.m (option 2 in
the N_factor_show.m) shows, for values of icase that can be selected, all Arnal cross sections
and its approximation by the Tss spline. Fig 7.1 through 7.4 give some typical examples
namely for icase=1 (stagnation point, H = 2.216), icase=6 (flat plate, H = 2.591), icase=11
(separation profile, H = 4.029) and icase=15 (H = 35.944). The correspondence is seen to
be excellent. In all cases the crosssection nearest the top has been selected. Complete
stability diagrams for values of icase that can be selected can be calculated in various forms
by the following programs that are part of the N_factor_show.m

1. plot_stability_diagrams.m (option 7 in N_factor_show.m) gives the diagrams in the
classical form and also the scaled and shifted version. This last form gives contour plots
for T = T

Tmaxmax
in the variables r along the horizontal axis and ω as defined by equation

(6.6) along the vertical axis. In all cases full curves denote the database result; symbols
are for the Arnal data. In the program the choice can be made to superimpose various
shifted and scaled diagrams. It follows that the scaled and shifted diagrams for icase=1
to 6, that is from stagnation point to flat plate, are very similar if not identical. Figure
7.5 through 7.10 show some examples. It should be observed that the extrapolated
righthand ”tails” of the scaled and shifted diagrams do not collapse as well as the left
hand parts. However these extrapolations were made before the similarity was realised.
Had this been known earlier the extrapolations would have been made in the scaled
and shifted form imposing the similarity. In chapter 8 we will show that this similarity
will allow us to generate a very good approximation for the diagrams for icase=2 to
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6 starting from the diagram for icase=1. In chapter 9 we will use this similarity to
generate an approximation for the stability diagram of the asymptotic suction profile
from that for the stagnation point flow.
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Figure 7.5: Scaled and shifted diagram; icase = 1 (β = 1, stagnation point)

2. Stability diagrams in the classical form also follow from option 7 and are given as
contour plots for T in a plane with 10log(Reθ) or r (to be selected) along the horizontal
axis and ωθ

U along the vertical axis. A few examples are given in figures 7.11 through
7.14. Note that especially for icase=1 (stagnation point) the data base curves have been
extrapolated over a rather large r-region. This was already apparent from the road-map
shown in figure 6.10.

3. Stability diagrams in the form where the frequencies are given as 10log(F ) =
10log(ων

U2 ) are produced by the program logF_stability_diagrams.m (option 8 in
N_factor_show.m). This log form is only possible for positive values of ω. Hence certain
parts of the diagram have to be excluded from these plots because the Arnal data
show negative values for the lower branch of the neutral curve at higher values of the
Reynolds number for icase > 11. Note that because of the use of the log-value of F
small irregularities that are not visible in the other forms are exaggerated. Since these
are in a region that can be expected not to be used in applications, we refrained from a
cosmetic operation by applying further smoothing. Examples are given in figures 7.15
through 7.18.

Stability diagrams for arbitrary values of 2 ≤ H ≤ 35.944 can be calculated using the program
make_diagram_for_H (option 11 in the N_factor_show). Examples for H = 2 and 2.591 are
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Figure 7.6: Scaled and shifted stability diagram; icase = 6 (β = 0, flat plate)
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Figure 7.7: Scaled and shifted stability diagram; icase = 11 (β = −0.198838, separation)
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Figure 7.8: Scaled and shifted stability diagram; icase = 15 (β = −0.04, H = 35.944)
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Figure 7.9: Scaled and shifted stability diagram; icase = 1:6, superimposed
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Figure 7.10: Scaled and shifted stability diagram; icase = 1-2, superimposed
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Figure 7.11: Classic stability diagram; icase = 1 (β = 1, stagnation point)
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Figure 7.12: Classic stability diagram; icase = 6 (β = 0, flat plate)
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Figure 7.13: Classic stability diagram; icase = 11 (β = −0.198838, separation)



77

0 0.5 1 1.5 2 2.5
−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

r =10 log(Reθ) −
10 log(Reθcrit

)

ω
·

θ U

T values=0 .2 .4 .6 .8 .95

Arnal

Arnal

Database

layer

top

Figure 7.14: Classic stability diagram; icase = 15 (β = −0.04, H = 35.944)

shown in figure 7.19 and 7.20 respectively. The first one should represent the asymptotic
suction diagram, the second one represents the flat plate.
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Figure 7.15: 10log(F ) stability diagram; icase = 1 (β = 1, stagnation point)
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Figure 7.16: 10log(F ) stability diagram; icase = 6 (β = 0, flat plate)
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Figure 7.18: 10log(F ) stability diagram; icase = 15 (β = −0.04, H = 35.944)
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Figure 7.20: Composed stability diagram for H=2.591 (β = 0, flat plate)



Chapter 8

Deriving stability diagrams for icase
= 2 to 6 from that for the
stagnation point (icase=1)

To further exploit the similarity of the diagrams that was observed in chapter 7 we will now
demonstrate that it is easy to estimate the diagram for icase=2:6 from that for icase=1. We
only have to assume that the scaled and shifted diagrams, as described in chapter 7, are
identical for 1 ≤ icase ≤ 6 (that is for all Hartree velocity profiles without an inflexion point).
In addition it is only necessary to know for values of icase from 2 to 6 :

• The value of H

• 10log(Reθcrit
) from the logcrit_vs_logH_spline.

• The scale for omega from the scale_domega_vs_logcrit_spline

• The position of the top from the log_Ftop_spline

Fig. 8.1 through 8.7 show the results for icase=1:7; these figures can be generated by the
program make_icase_from_1.m (option 9 in N_factor_show.m). The diagram for icase=1 is
included to check the program because this case should be reproduced exactly; icase=7 is
included to show that for this velocity profile with an inflexion point the good comparison
is only maintained near the critical Reynolds number. The full curves follow from the ex-
trapolation from icase=1; the symbols denote the Arnal data for the case being estimated.
From the figures it can be seen that especially for icase=2 and 3 the estimated diagram com-
pares very well with the Arnal values. In the next chapter we will derive the diagram for the
asymptotic suction profile, assuming that the same similarity will hold at “the other side of
the stagnation point”
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Figure 8.1: Stability diagram for icase = 1 derived from icase = 1
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Chapter 9

Composing the diagram for the
asymptotic suction profile from that
for the stagnation point

The results of the preceding chapter suggest that a good estimate for the stability diagram
of the asymptotic suction profile can be obtained from that for the stagnation point flow by
assuming that the non-dimensional scaled and shifted diagrams for both cases are identical.
In the present chapter we will discuss the “composing” of a complete stability diagram for
the asymptotic suction profile. First we summarise what we already know about this case.

• H = 2

• The critical Reynolds number Reδ∗ follows from Hughes and Reid (1965) as 46270 that
means Reθcrit

= 23135 and 10log(Reθcrit
) = 4.3643.

• Tmaxmax follows from an extrapolation of the Arnal data versus 10log(Reθcrit
) through

the spline logMaxMaxT_vs_logcrit_spline as shown in figure 6.18. Judging from the
shape of this curve it is assumed that the extrapolation can not be far off. We find
10log(Tmaxmax) = −1.3871 and hence Tmaxmax = 0.041

• From figure 6.8 it can be seen that the “axes” in 10log(F ) form are rather straight and
regularly spaced. The value of 10log(Faxis) at rgrid(27) = 0.3333 is approximated by
log_Ftop_spline as shown in figure 6.9 with o for the Arnal data. Again extrapolation
to 10log(Reθcrit

) for the asymptotic suction profile is straightforward (+ in figure 6.9).

• The scale for omega was already defined in figures 2.3 through 2.5 and splined in
scale_domega_vs_logcrit_spline, again extrapolation is straight-forward.

• When we look at the non-dimensional scaled and shifted stability diagrams for the
first 6 Arnal cases; that means velocity profiles without inflexion point; we see a great
similarity. (See chapter 8 and the N_factor_show (option 7) and especially by choosing
the option to superimpose the diagrams.)
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• In chapter 5 it was shown that the asymptotic suction profile fits nicely into the Hartree
series.

Based on these observations we dare to assume that the scaled and shifted diagram for the
asymptotic suction profile is identical to that for the stagnation point profile (icase = 1,
β = 1, see figure 9.1). The program make_asuc_diagram.m (see N_factor_show (option 10))
gives the resulting diagram in the classical form. (figure 9.2). Tables 9.1 through 9.5 present
ωθ
U , −αiθ and T for a few cross-sections through the diagram. Tables are given for r = 0,
(0.25),1 that means for 10log(Reθ) = r +10 log(Reθcrit

) = r + 4.3643. The matlab program
”make table for H.m” generates stability data in tables for arbitrary values ofH and Reynolds
number. Results may be presented in terms of δ∗ or θ.When using δ∗ a comparison with the
Arnal tables is easy.The program uses the function cross cut.m

The tables for the asymptotic suction profile, as presented in the present chapter, were made
with this program for H=2 and the values for r listed above.

Of course the diagram in fig. 9.2 may also be generated by using make_diagram_for_H.m for
H = 2. In this program we use the function cross_cut.m to be described in chapter 10.
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Figure 9.1: The shifted and scaled diagram for the stagnation point profile; assumed to be valid for
the asymptotic suction profile.
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Table 9.1: Cross cut of the stability diagram for the asmptotic suction profile at r = 0
ω ωθ

U T −αiθ F

-2.0000 4.5730·10−3 -1.4226 -1.3484·10−3 1.9766·10−7

-1.8000 5.3170·10−3 -1.2671 -1.2010·10−3 2.2983·10−7

-1.6000 6.0611·10−3 -1.1116 -1.0536·10−3 2.6199·10−7

-1.4000 6.8052·10−3 -9.5612·10−1 -9.0625·10−4 2.9415·10−7

-1.2000 7.5492·10−3 -8.0062·10−1 -7.5886·10−4 3.2631·10−7

-1.0000 8.2933·10−3 -6.4509·10−1 -6.1145·10−4 3.5847·10−7

-8.0000·10−1 9.0374·10−3 -4.8966·10−1 -4.6412·10−4 3.9064·10−7

-6.0000·10−1 9.7814·10−3 -3.3403·10−1 -3.1660·10−4 4.2280·10−7

-4.0000·10−1 1.0525·10−2 -1.7808·10−1 -1.6879·10−4 4.5496·10−7

-2.0000·10−1 1.1270·10−2 -4.4464·10−2 -4.2145·10−5 4.8712·10−7

-1.6000·10−1 1.1418·10−2 -2.8671·10−2 -2.7175·10−5 4.9355·10−7

-1.2000·10−1 1.1567·10−2 -1.6216·10−2 -1.5370·10−5 4.9999·10−7

-8.0000·10−2 1.1716·10−2 -7.2122·10−3 -6.8360·10−6 5.0642·10−7

-4.0000·10−2 1.1865·10−2 -1.7906·10−3 -1.6972·10−6 5.1285·10−7

0.0000 1.2014·10−2 1.7204·10−6 1.6307·10−9 5.1928·10−7

4.0000·10−2 1.2162·10−2 -1.8032·10−3 -1.7092·10−6 5.2572·10−7

8.0000·10−2 1.2311·10−2 -7.3176·10−3 -6.9359·10−6 5.3215·10−7

1.2000·10−1 1.2460·10−2 -1.6562·10−2 -1.5698·10−5 5.3858·10−7

1.6000·10−1 1.2609·10−2 -2.9382·10−2 -2.7849·10−5 5.4501·10−7

2.0000·10−1 1.2758·10−2 -4.5620·10−2 -4.3241·10−5 5.5145·10−7

4.0000·10−1 1.3502·10−2 -1.8516·10−1 -1.7550·10−4 5.8361·10−7

6.0000·10−1 1.4246·10−2 -3.5865·10−1 -3.3994·10−4 6.1577·10−7

8.0000·10−1 1.4990·10−2 -5.2771·10−1 -5.0018·10−4 6.4793·10−7

1.0000 1.5734·10−2 -6.9932·10−1 -6.6285·10−4 6.8009·10−7

1.2000 1.6478·10−2 -8.7055·10−1 -8.2514·10−4 7.1225·10−7

1.4000 1.7222·10−2 -1.0415 -9.8722·10−4 7.4442·10−7

1.6000 1.7966·10−2 -1.2127 -1.1495·10−3 7.7658·10−7

1.8000 1.8710·10−2 -1.3838 -1.3117·10−3 8.0874·10−7

2.0000 1.9454·10−2 -1.5550 -1.4739·10−3 8.4090·10−7

2.2000 2.0198·10−2 -1.7261 -1.6361·10−3 8.7306·10−7

2.4000 2.0942·10−2 -1.8972 -1.7983·10−3 9.0523·10−7

2.6000 2.1686·10−2 -2.0684 -1.9605·10−3 9.3739·10−7

2.8000 2.2431·10−2 -2.2395 -2.1227·10−3 9.6955·10−7

3.0000 2.3175·10−2 -2.4106 -2.2849·10−3 1.0017·10−6
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Table 9.2: Cross cut of the stability diagram for the asmptotic suction profile at r = 0.25
ω ωθ

U T −αiθ F

-2.0000 2.1111 ·10−3 -1.9138 -3.2257 ·10−3 5.1315 ·10−8

-1.8000 2.8552 ·10−3 -1.5224 -2.5660 ·10−3 6.9401 ·10−8

-1.6000 3.5992 ·10−3 -1.1314 -1.9070 ·10−3 8.7487 ·10−8

-1.4000 4.3433 ·10−3 -7.4025 ·10−1 -1.2477 ·10−3 1.0557 ·10−7

-1.2000 5.0874 ·10−3 -3.4913 ·10−1 -5.8846 ·10−4 1.2366 ·10−7

-1.0000 5.8314 ·10−3 3.4695 ·10−2 5.8479 ·10−5 1.4174 ·10−7

-8.0000 ·10−1 6.5755 ·10−3 3.5945 ·10−1 6.0586 ·10−4 1.5983 ·10−7

-6.0000 ·10−1 7.3196 ·10−3 6.1889 ·10−1 1.0431 ·10−3 1.7792 ·10−7

-4.0000 ·10−1 8.0636 ·10−3 8.0762 ·10−1 1.3613 ·10−3 1.9600 ·10−7

-2.0000 ·10−1 8.8077 ·10−3 9.2544 ·10−1 1.5599 ·10−3 2.1409 ·10−7

-1.6000 ·10−1 8.9565 ·10−3 9.4011 ·10−1 1.5846 ·10−3 2.1771 ·10−7

-1.2000 ·10−1 9.1053 ·10−3 9.5182 ·10−1 1.6043 ·10−3 2.2132 ·10−7

-8.0000 ·10−2 9.2541 ·10−3 9.6046 ·10−1 1.6189 ·10−3 2.2494 ·10−7

-4.0000 ·10−2 9.4029 ·10−3 9.6572 ·10−1 1.6277 ·10−3 2.2856 ·10−7

0.0000 9.5518 ·10−3 9.6746 ·10−1 1.6307 ·10−3 2.3217 ·10−7

4.0000 ·10−2 9.7006 ·10−3 9.6580 ·10−1 1.6279 ·10−3 2.3579 ·10−7

8.0000 ·10−2 9.8494 ·10−3 9.6115 ·10−1 1.6200 ·10−3 2.3941 ·10−7

1.2000 ·10−1 9.9982 ·10−3 9.5373 ·10−1 1.6075 ·10−3 2.4303 ·10−7

1.6000 ·10−1 1.0147 ·10−2 9.4347 ·10−1 1.5902 ·10−3 2.4664 ·10−7

2.0000 ·10−1 1.0296 ·10−2 9.2998 ·10−1 1.5675 ·10−3 2.5026 ·10−7

4.0000 ·10−1 1.1040 ·10−2 8.0980 ·10−1 1.3649 ·10−3 2.6835 ·10−7

6.0000 ·10−1 1.1784 ·10−2 6.0874 ·10−1 1.0260 ·10−3 2.8643 ·10−7

8.0000 ·10−1 1.2528 ·10−2 3.1832 ·10−1 5.3653 ·10−4 3.0452 ·10−7

1.0000 1.3272 ·10−2 -6.0750 ·10−2 -1.0240 ·10−4 3.2260 ·10−7

1.2000 1.4016 ·10−2 -5.3536 ·10−1 -9.0236 ·10−4 3.4069 ·10−7

1.4000 1.4760 ·10−2 -1.0115 -1.7049 ·10−3 3.5878 ·10−7

1.6000 1.5504 ·10−2 -1.4897 -2.5109 ·10−3 3.7686 ·10−7

1.8000 1.6248 ·10−2 -1.9674 -3.3161 ·10−3 3.9495 ·10−7

2.0000 1.6992 ·10−2 -2.4452 -4.1215 ·10−3 4.1303 ·10−7

2.2000 1.7736 ·10−2 -2.9230 -4.9268 ·10−3 4.3112 ·10−7

2.4000 1.8481 ·10−2 -3.4008 -5.7321 ·10−3 4.4921 ·10−7

2.6000 1.9225 ·10−2 -3.8786 -6.5374 ·10−3 4.6729 ·10−7

2.8000 1.9969 ·10−2 -4.3564 -7.3428 ·10−3 4.8538 ·10−7

3.0000 2.0713 ·10−2 -4.8342 -8.1481 ·10−3 5.0346 ·10−7
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Table 9.3: Cross cut of the stability diagram for the asmptotic suction profile at r = 0.5
ω ωθ

U T −αiθ F

-2.0000 9.2128 ·10−5 -1.5904 -4.7670 ·10−3 1.2593 ·10−9

-1.8000 8.3619 ·10−4 -1.2470 -3.7377 ·10−3 1.1430 ·10−8

-1.6000 1.5803 ·10−3 -9.0259 ·10−1 -2.7054 ·10−3 2.1600 ·10−8

-1.4000 2.3243 ·10−3 -5.5866 ·10−1 -1.6745 ·10−3 3.1771 ·10−8

-1.2000 3.0684 ·10−3 -2.1391 ·10−1 -6.4116 ·10−4 4.1941 ·10−8

-1.0000 3.8125 ·10−3 1.0994 ·10−1 3.2954 ·10−4 5.2112 ·10−8

-8.0000 ·10−1 4.5565 ·10−3 3.8430 ·10−1 1.1519 ·10−3 6.2282 ·10−8

-6.0000 ·10−1 5.3006 ·10−3 6.0474 ·10−1 1.8126 ·10−3 7.2453 ·10−8

-4.0000 ·10−1 6.0446 ·10−3 7.6615 ·10−1 2.2964 ·10−3 8.2623 ·10−8

-2.0000 ·10−1 6.7887 ·10−3 8.6538 ·10−1 2.5938 ·10−3 9.2794 ·10−8

-1.6000 ·10−1 6.9375 ·10−3 8.7754 ·10−1 2.6303 ·10−3 9.4828 ·10−8

-1.2000 ·10−1 7.0863 ·10−3 8.8671 ·10−1 2.6578 ·10−3 9.6862 ·10−8

-8.0000 ·10−2 7.2352 ·10−3 8.9308 ·10−1 2.6769 ·10−3 9.8896 ·10−8

-4.0000 ·10−2 7.3840 ·10−3 8.9683 ·10−1 2.6881 ·10−3 1.0093 ·10−7

0.0000 7.5328 ·10−3 8.9807 ·10−1 2.6918 ·10−3 1.0296 ·10−7

4.0000 ·10−2 7.6816 ·10−3 8.9684 ·10−1 2.6881 ·10−3 1.0500 ·10−7

8.0000 ·10−2 7.8304 ·10−3 8.9315 ·10−1 2.6771 ·10−3 1.0703 ·10−7

1.2000 ·10−1 7.9792 ·10−3 8.8687 ·10−1 2.6582 ·10−3 1.0907 ·10−7

1.6000 ·10−1 8.1280 ·10−3 8.7771 ·10−1 2.6308 ·10−3 1.1110 ·10−7

2.0000 ·10−1 8.2768 ·10−3 8.6537 ·10−1 2.5938 ·10−3 1.1313 ·10−7

4.0000 ·10−1 9.0209 ·10−3 7.5932 ·10−1 2.2759 ·10−3 1.2331 ·10−7

6.0000 ·10−1 9.7650 ·10−3 5.7854 ·10−1 1.7341 ·10−3 1.3348 ·10−7

8.0000 ·10−1 1.0509 ·10−2 3.1816 ·10−1 9.5364 ·10−4 1.4365 ·10−7

1.0000 1.1253 ·10−2 -2.8457 ·10−2 -8.5295 ·10−5 1.5382 ·10−7

1.2000 1.1997 ·10−2 -4.6472 ·10−1 -1.3929 ·10−3 1.6399 ·10−7

1.4000 1.2741 ·10−2 -9.5014 ·10−1 -2.8479 ·10−3 1.7416 ·10−7

1.6000 1.3485 ·10−2 -1.4316 -4.2911 ·10−3 1.8433 ·10−7

1.8000 1.4229 ·10−2 -1.9142 -5.7374 ·10−3 1.9450 ·10−7

2.0000 1.4973 ·10−2 -2.3965 -7.1831 ·10−3 2.0467 ·10−7

2.2000 1.5717 ·10−2 -2.8788 -8.6289 ·10−3 2.1484 ·10−7

2.4000 1.6462 ·10−2 -3.3612 -1.0075 ·10−2 2.2501 ·10−7

2.6000 1.7206 ·10−2 -3.8436 -1.1520 ·10−2 2.3518 ·10−7

2.8000 1.7950 ·10−2 -4.3259 -1.2966 ·10−2 2.4535 ·10−7

3.0000 1.8694 ·10−2 -4.8083 -1.4412 ·10−2 2.5552 ·10−7



93

Table 9.4: Cross cut of the stability diagram for the asmptotic suction profile at r = 0.75
ω ωθ

U T −αiθ F

-2.0000 -1.5174 ·10−3 -1.2280 -6.5454 ·10−3 -1.1663 ·10−8

-1.8000 -7.7333 ·10−4 -9.8401 ·10−1 -5.2448 ·10−3 -5.9442 ·10−9

-1.6000 -2.9262 ·10−5 -7.4033 ·10−1 -3.9460 ·10−3 -2.2492 ·10−10

-1.4000 7.1480 ·10−4 -4.9641 ·10−1 -2.6459 ·10−3 5.4944 ·10−9

-1.2000 1.4589 ·10−3 -2.5330 ·10−1 -1.3501 ·10−3 1.1214 ·10−8

-1.0000 2.2029 ·10−3 -8.1500 ·10−3 -4.3440 ·10−5 1.6933 ·10−8

-8.0000 ·10−1 2.9470 ·10−3 2.1009 ·10−1 1.1198 ·10−3 2.2652 ·10−8

-6.0000 ·10−1 3.6911 ·10−3 3.8801 ·10−1 2.0681 ·10−3 2.8371 ·10−8

-4.0000 ·10−1 4.4351 ·10−3 5.1816 ·10−1 2.7619 ·10−3 3.4091 ·10−8

-2.0000 ·10−1 5.1792 ·10−3 5.9794 ·10−1 3.1871 ·10−3 3.9810 ·10−8

-1.6000 ·10−1 5.3280 ·10−3 6.0751 ·10−1 3.2381 ·10−3 4.0954 ·10−8

-1.2000 ·10−1 5.4768 ·10−3 6.1494 ·10−1 3.2777 ·10−3 4.2098 ·10−8

-8.0000 ·10−2 5.6256 ·10−3 6.2027 ·10−1 3.3061 ·10−3 4.3242 ·10−8

-4.0000 ·10−2 5.7744 ·10−3 6.2350 ·10−1 3.3233 ·10−3 4.4385 ·10−8

0.0000 5.9233 ·10−3 6.2460 ·10−1 3.3292 ·10−3 4.5529 ·10−8

4.0000 ·10−2 6.0721 ·10−3 6.2344 ·10−1 3.3230 ·10−3 4.6673 ·10−8

8.0000 ·10−2 6.2209 ·10−3 6.1992 ·10−1 3.3042 ·10−3 4.7817 ·10−8

1.2000 ·10−1 6.3697 ·10−3 6.1396 ·10−1 3.2725 ·10−3 4.8961 ·10−8

1.6000 ·10−1 6.5185 ·10−3 6.0548 ·10−1 3.2273 ·10−3 5.0105 ·10−8

2.0000 ·10−1 6.6673 ·10−3 5.9442 ·10−1 3.1683 ·10−3 5.1249 ·10−8

4.0000 ·10−1 7.4114 ·10−3 5.0080 ·10−1 2.6693 ·10−3 5.6968 ·10−8

6.0000 ·10−1 8.1555 ·10−3 3.4212 ·10−1 1.8235 ·10−3 6.2687 ·10−8

8.0000 ·10−1 8.8995 ·10−3 1.1254 ·10−1 5.9985 ·10−4 6.8406 ·10−8

1.0000 9.6436 ·10−3 -1.9675 ·10−1 -1.0487 ·10−3 7.4126 ·10−8

1.2000 1.0388 ·10−2 -5.7937 ·10−1 -3.0881 ·10−3 7.9845 ·10−8

1.4000 1.1132 ·10−2 -9.8000 ·10−1 -5.2235 ·10−3 8.5564 ·10−8

1.6000 1.1876 ·10−2 -1.3766 -7.3377 ·10−3 9.1284 ·10−8

1.8000 1.2620 ·10−2 -1.7746 -9.4587 ·10−3 9.7003 ·10−8

2.0000 1.3364 ·10−2 -2.1721 -1.1578 ·10−2 1.0272 ·10−7

2.2000 1.4108 ·10−2 -2.5698 -1.3697 ·10−2 1.0844 ·10−7

2.4000 1.4852 ·10−2 -2.9674 -1.5817 ·10−2 1.1416 ·10−7

2.6000 1.5596 ·10−2 -3.3651 -1.7936 ·10−2 1.1988 ·10−7

2.8000 1.6340 ·10−2 -3.7627 -2.0056 ·10−2 1.2560 ·10−7

3.0000 1.7084 ·10−2 -4.1604 -2.2175 ·10−2 1.3132 ·10−7
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Table 9.5: Cross cut of the stability diagram for the asmptotic suction profile at r = 1
ω ωθ

U T −αiθ F

-2.0000 -2.7785 ·10−3 -9.3963 ·10−1 -8.9062 ·10−3 -1.2010 ·10−8

-1.8000 -2.0344 ·10−3 -7.6996 ·10−1 -7.2980 ·10−3 -8.7938 ·10−9

-1.6000 -1.2904 ·10−3 -6.0117 ·10−1 -5.6982 ·10−3 -5.5776 ·10−9

-1.4000 -5.4631 ·10−4 -4.3260 ·10−1 -4.1004 ·10−3 -2.3614 ·10−9

-1.2000 1.9775 ·10−4 -2.6396 ·10−1 -2.5019 ·10−3 8.5478 ·10−10

-1.0000 9.4182 ·10−4 -9.5178 ·10−2 -9.0213 ·10−4 4.0710 ·10−9

-8.0000 ·10−1 1.6859 ·10−3 6.8804 ·10−2 6.5216 ·10−4 7.2872 ·10−9

-6.0000 ·10−1 2.4299 ·10−3 2.0351 ·10−1 1.9289 ·10−3 1.0503 ·10−8

-4.0000 ·10−1 3.1740 ·10−3 3.0392 ·10−1 2.8807 ·10−3 1.3720 ·10−8

-2.0000 ·10−1 3.9181 ·10−3 3.6540 ·10−1 3.4634 ·10−3 1.6936 ·10−8

-1.6000 ·10−1 4.0669 ·10−3 3.7283 ·10−1 3.5338 ·10−3 1.7579 ·10−8

-1.2000 ·10−1 4.2157 ·10−3 3.7858 ·10−1 3.5883 ·10−3 1.8222 ·10−8

-8.0000 ·10−2 4.3645 ·10−3 3.8270 ·10−1 3.6274 ·10−3 1.8865 ·10−8

-4.0000 ·10−2 4.5133 ·10−3 3.8519 ·10−1 3.6510 ·10−3 1.9509 ·10−8

0.0000 4.6621 ·10−3 3.8604 ·10−1 3.6590 ·10−3 2.0152 ·10−8

4.0000 ·10−2 4.8110 ·10−3 3.8513 ·10−1 3.6504 ·10−3 2.0795 ·10−8

8.0000 ·10−2 4.9598 ·10−3 3.8235 ·10−1 3.6241 ·10−3 2.1438 ·10−8

1.2000 ·10−1 5.1086 ·10−3 3.7763 ·10−1 3.5793 ·10−3 2.2082 ·10−8

1.6000 ·10−1 5.2574 ·10−3 3.7090 ·10−1 3.5156 ·10−3 2.2725 ·10−8

2.0000 ·10−1 5.4062 ·10−3 3.6214 ·10−1 3.4325 ·10−3 2.3368 ·10−8

4.0000 ·10−1 6.1503 ·10−3 2.8829 ·10−1 2.7325 ·10−3 2.6584 ·10−8

6.0000 ·10−1 6.8943 ·10−3 1.6184 ·10−1 1.5339 ·10−3 2.9800 ·10−8

8.0000 ·10−1 7.6384 ·10−3 -2.1907 ·10−2 -2.0764 ·10−4 3.3017 ·10−8

1.0000 8.3825 ·10−3 -2.7081 ·10−1 -2.5668 ·10−3 3.6233 ·10−8

1.2000 9.1265 ·10−3 -5.4998 ·10−1 -5.2129 ·10−3 3.9449 ·10−8

1.4000 9.8706 ·10−3 -8.2668 ·10−1 -7.8356 ·10−3 4.2665 ·10−8

1.6000 1.0615 ·10−2 -1.1043 -1.0467 ·10−2 4.5881 ·10−8

1.8000 1.1359 ·10−2 -1.3817 -1.3096 ·10−2 4.9098 ·10−8

2.0000 1.2103 ·10−2 -1.6591 -1.5726 ·10−2 5.2314 ·10−8

2.2000 1.2847 ·10−2 -1.9366 -1.8356 ·10−2 5.5530 ·10−8

2.4000 1.3591 ·10−2 -2.2140 -2.0985 ·10−2 5.8746 ·10−8

2.6000 1.4335 ·10−2 -2.4914 -2.3615 ·10−2 6.1962 ·10−8

2.8000 1.5079 ·10−2 -2.7689 -2.6245 ·10−2 6.5179 ·10−8

3.0000 1.5823 ·10−2 -3.0463 -2.8874 ·10−2 6.8395 ·10−8



Chapter 10

The m-file function cross cut.m

The cd-rom that is presented with this report contains a number of matlab m-files and
datafiles. The most important programs are discussed in some detail in chapter 10, 11, 12
and 13. All relevant programs and datafiles will be presented in appendix B and C respectively.

An important role in the new data base method is played by the matlab function cross_cut.m

The present chapter first introduces the main aspects of this function. After that the function
listing itself is reprinted, containing an ample number of comment lines.

The function cross_cut determines the “scaled and shifted” spline Tss for arbitrary values
of H and Reθ within the limits of the road-map area covered by the Arnal data and the
extrapolations we performed. As already discussed in chapter 6 we defined splines for the
cross section through the stability diagram for the 15 values of icase (and hence of H and
10log(Reθcrit

)) and 59 values of r defined by the “r-grid”. Using suitable extrapolations we
dare also to venture outside the road-map area defined in the rectangle 0 ≤ r ≤ 2.5 and
−.0378 ≤ 10log(Reθcrit

) ≤ 3.7514(equivalent to the range from H = 35.944 to 2.216). The
extended road-map area is divided in 9 regions as shown in figure 6.21. In the cross_cut func-
tion first the value of H is used to find 10log(Reθcrit) from the spline logcrit_vs_logH_spline

and then r is determined by

r =10 log(Reθ)−10 log(Reθcrit
) (10.1)

These two values determine the coordinates in the road-map; for brevity we will denote
10log(Reθcrit

) by logcriti. We will discuss the 9 regions in turn, starting with region 5 because
this is the basic region that is used in most cases. The other regions are discussed in turn in
the listing.

Region 5
This region is fully covered by the 15x59 (not equally spaced) points in which the Tss splines
have been defined. We use a two-dimensional Lagrange quadratic interpolation in the 9 grid
points that are nearest to the selected point. All points are within or at most at the bound-
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aries of region 5. On the boundaries we could have used a one-dimensional interpolation in
three points, but because of a better clarity of the program we allowed occasionally that the
interpolating factors for 6 of the 9 points become zero. Because interpolation in the 9 splines
in the matlab “pp-form” (piecewise polynomial) is a linear process it can be done fast using
matlab array arithmatic. In the student version of matlab 5 that was used, the pp-form
contains some integers that are used to identify an array as a matlab spline. These numbers
retain their values after the interpolation but can have become classified as reals instead of
integers. Therefore these numbers are restored to integers after the interpolation by using
the function rectify_Tss.m. When defining the Tss splines as a function of ω in the range
−2 ≤ ω ≤ 3 we have made sure that in both end intervals the cubic spline reduced to an exact
linear function. This was done to ensure that any unexpected extrapolation outside the defi-
nition interval of the spline could not lead to a “wild explosion”. The function rectify_Tss.m

also restores the linearity after the interpolation. Further explanations on region 5 can be
found in the comment lines of the program. In most cases for points in the other regions
first the Tss spline is found in the nearest point on the boundaries of region 5. After that an
extrapolation is used that is specific for the region. The function listing below is thought to
give a sufficient explanation.

Since all Tss splines use the same breakpoints ω the first 35 elements of these splines are
always the same (see appendix A). These elements could have been stored only once and
added to the spline after the interpolation. For simplicity of the program we refrained from
this.

function Tss_local=cross_cut(Rt,H) % (CD-ROM version)

% Function to find the cross section in Tss form of the stability diagram for

% arbitrary values of H (and hence of R-theta-crit) and Reynolds-theta.

% The m-file interpolates in a dataset that was derived from Arnal’s tables

% by scaling and shifting in such a way that interpolation becomes easy and

% accurate. See chapters 6 and 10 of the report.

% The value of 10Log(Rtheta-crit) is found from a spline in log10(H).

% In this way T can be determined for a series of frequencies at a certain x-station.

% Repeating this procedure at a number of x-stations allows to compute the n-factor

% for each frequency.At each x-station the maximum n-factor gives N.

% A trace of the stability characteristics of the boundary layer can be plotted in a

% "road map" by the calling program. Sometimes the trace leaves the region covered by

% the Arnal data.It is advised to check this roadmap to keep an eye on the

% credibility of the extrapolated stability data.

% The roadmap shows a curve for N-factor=9 for the Hartree-Stewartson similar flows.

% These flows trace horizontal lines in the road map. Observe that the curve

% for N=9 is not necessarily valid for non-similar flows.

% Make sure that in the main program the necessary stability data were loaded

% by executing "load datafile_for_n_factor"

% Reynolds-theta should be given as a value for "Rt" in the calling program

% Also the value of the shape factor H should be provided.

% The following global statement may contain more variables then are really needed for

% the present function because we kept the globals the same for most m-files.

% ------------------------------------------------------------------------------------

global ...

ArMaxMaxT ArlogRtcrit r_grid Tbar Tss domega_saved dome ...

logFax logMaxMaxT_vs_logcrit_spline logcrit_vs_logH_spline rtop_vs_logcrit_spline ...
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scale_domega_vs_logcrit_spline ycentre_spline slope_left_vs_logcrit_spline ...

ArNumberofReynolds ArH Arscomega Arr omega_Arnal T_Arnal ome_ax fnr ri logcriti ...

omega_at_axis log_Ftop_spline scomega TMax TMaxMax omegatop ...

% ------------------------------------------------------------------end global-------

logRt=log10(Rt);

logH=log10(H);

logcrit_stag=ArlogRtcrit(1);

logcrit15=ArlogRtcrit(15);

log_Ftop_stag=ppval(log_Ftop_spline,logcrit_stag);

logcriti=ppval(logcrit_vs_logH_spline,logH);

log_Ftop_i=ppval(log_Ftop_spline,logcriti);

% -----------------------------------------------------------------------------------

if logcriti>=ArlogRtcrit(6) % This statement determines the slope of Log10(Faxis)

slope_right=-sqrt(2); % at the right-hand side of the roadmap.Different for

else % velocity profiles with (icase>6) or without (icase <=6)

slope_right=-1; % an inflexion point.

end

% ----------------------------------------------------------------------------------

logMaxMaxT=ppval(logMaxMaxT_vs_logcrit_spline,logcriti);

TMaxMax=10^logMaxMaxT;

scomega=ppval(scale_domega_vs_logcrit_spline,logcriti);

ri=logRt-logcriti;

% -----------------------------------------------------------------------------------

% Interpolation will be done with 3 values for r and 3 values for 10LogRtheta_crit

% First we locate 3 points in the r_grid

% Only points within or at the boundary of region 5 are used. See figure below.

% Outside region 5 extrapolations are used.

% -----------------------------------------------------------------------------------

if ri<=0

nr2=2;

else

nr2=max(find(r_grid <= ri));

end

if nr2>58

nr2=58;

end

if (ri-r_grid(nr2)) > .5*(r_grid(nr2+1)-r_grid(nr2)) % to find the nearest point

nr2=nr2+1;

end

if nr2<=2

nr2=2;

elseif nr2>=58 % All 3 points should be in the interval r_grid(1)=0

nr2=58; % and r_grid(59)=2.5

end

% -------------------------The same values for r are used at the 3 values for logcrit

nr3=nr2+1;

nr1=nr2-1;

nr4=nr1;

nr5=nr2;

nr6=nr3;

nr7=nr1;

nr8=nr2;

nr9=nr3;

% now determine the icase values for interpolation and the corresponding logcrit values

icase_series=[1:15];

if logcriti>=ArlogRtcrit(2)

icase2=2;



98 The m-file function cross cut.m

elseif logcriti<=ArlogRtcrit(14)

icase2=14;

else

icase2=interp1(ArlogRtcrit,icase_series,logcriti,’nearest’);

end

% --------------------All icase values should remain in the interval 1:15 -----------

if icase2<=2

icase2=2;

elseif icase2>=14

icase2=14;

end

icase1=icase2-1;icase3=icase2+1;

icase123=[icase1 icase2 icase3];

logcrit123=ArlogRtcrit(icase1:icase3);

logcrit1=logcrit123(1);

logcrit2=logcrit123(2);

logcrit3=logcrit123(3);

logcrit_array=[logcrit123 logcriti];

rtop=ppval(rtop_vs_logcrit_spline,logcrit_array);

rtop1=rtop(1);rtop2=rtop(2);rtop3=rtop(3);rtopi=rtop(4);

rbi=ri/rtopi;

% -------------------------------------------------------------------------------------

r1=r_grid(nr1);r2=r_grid(nr2);r3=r_grid(nr3);

r4=r1;

r5=r2;

r6=r3;

r7=r1;

r8=r2;

r9=r3;

r1_9=[r1 r2 r3 r4 r5 r6 r7 r8 r9];

% We now have defined 9 points and are ready to interpolate using Lagrange_2d

% The points are not equally spaced, however the 3 r_values are the same in the

% three rows

%

% icase1 ----------- P1 ------- P2 ------ P3 ----------

%

% icase2 ----------- P4 ------- P5 ------ P6 ----------

%

% icase3 ----------- P7 ------- P8 ------ P9 ----------

%

% | | |

% r1=r4=r7 r2=r5=r8 r3=r6=r9

%

% We treat different regions separately (see figure below); region 5 is the

% standard.

% At the boundaries of region 5 interpolation could have been done simpler by

% 1-D Lagrange,but for clarity of the program it has been accepted that in some

% (not so often occurring) cases a number of zeros appear in the array of

% interpolating coefficients.

% The 9 points are always inside or (at most 3 or 6 of them) on the boundary

% of region 5

% For points outside region 5 special extrapolations are used, to be discussed later.

%

% | |

% 1 | 2 | 3

% | |

% H1=2.2160 -------A----------------------------B----------------------
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% | |

% 4 | region 5 | 6

% | |

% H15=35.9440 ------C----------------------------D----------------------

% | |

% 7 | 8 | 9

% E F

% r=0 r=2.5

%

H1=ArH(1); %= 2.2160

H15=ArH(15); %=35.9440

% We first determine the region in which the point for later interpolation

% is located within or at the boundary of region 5.

% Region 5 is the normal situation.If we look for a point outside region 5 we

% arrive there later by extrapolation.

if ri>=0 & ri<=2.5 & H>=H1 & H<=H15

region=5;

r_array=[r1_9 ri];

logcrit_array=[logcrit123 logcriti];

facs=lagrange_2d(r_array,logcrit_array);

elseif H<H1 & ri<0

region=1;

r_array=[r1_9 0];% we first find Tss at point A and later shift to the left and up

logcrit_array=[logcrit123 logcrit_stag];

facs=lagrange_2d(r_array,logcrit_array);

elseif H<H1 & ri>=0 & ri<=2.5

region=2;

r_array=[r1_9 ri];

logcrit_array=[logcrit123 logcrit_stag];%we first find Tss at H1 (=along AB)and later

% extrapolate upwards as described for the

% asymptotic suction profile

facs=lagrange_2d(r_array,logcrit_array);

elseif H<H1 & ri>2.5

region=3; %We first find Tss at B and later shift to the right and up

r_array=[r1_9 2.5];

logcrit_array=[logcrit123 logcrit_stag];

facs=lagrange_2d(r_array,logcrit_array);

elseif ri<0 & H>=H1 & H<=H15

region=4; %We first find Tss at AC and later shift left

r_array=[r1_9 0];

logcrit_array=[logcrit123 logcriti];

facs=lagrange_2d(r_array,logcrit_array);

elseif H>=H1 & H<=H15 & ri>2.5

region=6;

r_array=[r1_9 2.5]; % we first find Tss at BD and later shift right

logcrit_array=[logcrit123 logcriti];

facs=lagrange_2d(r_array,logcrit_array);

elseif H>H15 & ri<0

region=7; % We extrapolate linearly from icase=14 and 15 down at r=0

rrr=[r1 r2 r3 0]; % and shift later to the left

facr=lagrange(rrr);

fact=(crit2-logcriti)/(logcrit2-logcrit3);

facs(1)=0;

facs(2)=0;

facs(3)=0;

facs(4)=(1-fact)*facr(1);

facs(5)=(1-fact)*facr(2);
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facs(6)=(1-fact)*facr(3);

facs(7)=fact*facr(1);

facs(8)=fact*facr(2);

facs(9)=fact*facr(3);

elseif H>H15 & ri>=0 & ri<=2.5

region=8 ; % We find Tss at H15 (=along CD) by interpolation

rrr=[r1 r2 r3 ri]; % in the r_grid and extrapolate linearly from

facr=lagrange(rrr); % icase=14 and 15 down

fact=(logcrit2-logcriti)/(logcrit2-logcrit3);

facs(1)=0;

facs(2)=0;

facs(3)=0;

facs(4)=(1-fact)*facr(1);

facs(5)=(1-fact)*facr(2);

facs(6)=(1-fact)*facr(3);

facs(7)=fact*facr(1);

facs(8)=fact*facr(2);

facs(9)=fact*facr(3);

else

region=9; % We extrapolate linearly from icase=14 and 15 down at r=2.5

rrr=[r1 r2 r3 2.5]; % and shift later to the right

facr=lagrange(rrr);

fact=(logcrit2-logcriti)/(logcrit2-logcrit3);

facs(1)=0;

facs(2)=0;

facs(3)=0;

facs(4)=(1-fact)*facr(1);

facs(5)=(1-fact)*facr(2);

facs(6)=(1-fact)*facr(3);

facs(7)=fact*facr(1);

facs(8)=fact*facr(2);

facs(9)=fact*facr(3);

end

% -----------------------------------------------------------------------------------

% We now have the Lagrange interpolation factors to find Tss as follows.

% For region 1 at A

% For region 2 at AB and r

% For region 3 at B

% For region 4 at AC and logcriti

% For region 5 within ABDC and at ri and logcriti

% For region 6 at BD and logcriti

% For region 7 at CE and logcriti

% For region 8 at r and logcriti

% For region 9 at DF and logcriti

% ----------------------------------------------------------------------------------

% Now follows the 2d Lagrange interpolation

Tss_local=facs(1)*Tss{icase1,nr1}+facs(2)*Tss{icase1,nr2}+ ...

facs(3)*Tss{icase1,nr3}+facs(4)*Tss{icase2,nr4}+ ...

facs(5)*Tss{icase2,nr5}+facs(6)*Tss{icase2,nr6}+ ...

facs(7)*Tss{icase3,nr7}+ facs(8)*Tss{icase3,nr8}+ ...

facs(9)*Tss{icase3,nr9};

Tss_local=rectify_Tss(Tss_local);

log10Fax=facs(1)*logFax(icase1,nr1)+ ...

facs(2)*logFax(icase1,nr2)+ ...

facs(3)*logFax(icase1,nr3)+ ...
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facs(4)*logFax(icase2,nr4)+ ...

facs(5)*logFax(icase2,nr5)+ ...

facs(6)*logFax(icase2,nr6)+ ...

facs(7)*logFax(icase3,nr7)+ ...

facs(8)*logFax(icase3,nr8)+ ...

facs(9)*logFax(icase3,nr9);

TMax=facs(1)*Tbar(icase1,nr1)+ ... % Note that Tbar and hence TMax is T at the

facs(2)*Tbar(icase1,nr2)+ ... % axis divided by TMaxMax

facs(3)*Tbar(icase1,nr3)+ ...

facs(4)*Tbar(icase2,nr4)+ ...

facs(5)*Tbar(icase2,nr5)+ ...

facs(6)*Tbar(icase2,nr6)+ ...

facs(7)*Tbar(icase3,nr7)+ ...

facs(8)*Tbar(icase3,nr8)+ ...

facs(9)*Tbar(icase3,nr9);

% We now make the final adjustments per region -----------------------------------

switch region % -----------------------------------------------------------------

case 1 % Is for region 1 etc.----------------------------------------------------

TMax=rbi*exp(1-rbi); % We use the analytical approximation for r<0

sl=ppval(slope_left_vs_logcrit_spline,logcrit_stag);% The axis in log form is

% extrapolated linear to the

% left with the appropriate slope

log10Fax=log10Fax+ri*sl;

log_Ftop_i=ppval(log_Ftop_spline,logcriti);

log10Fax=log10Fax-log_Ftop_stag+log_Ftop_i;

case 2 % ------------------------------------------

log_Ftop_i=ppval(log_Ftop_spline,logcriti);

log10Fax=log10Fax-log_Ftop_stag+log_Ftop_i;

case 3 % ---------------------------------------------

a=2.5/rtopi;

aa=a*exp(1-a) % to keep T-bar continuous across r=2.5

TMax=TMax*rbi*exp(1-rbi)/aa;

log10Fax=log10Fax+(ri-2.5)*slope_right;% extrapolate axis with slope -1 or -sqrt(2)

log_Ftop_i=ppval(log_Ftop_spline,logcriti);

log10Fax=log10Fax-log_Ftop_stag+log_Ftop_i; % extrapolate upwards

case 4 % -----------------------------------------------

TMax=rbi*exp(1-rbi);

sl=ppval(slope_left_vs_logcrit_spline,logcriti);

log10Fax=log10Fax+ri*sl;

case 5 % -------------------------------------------------

% no further action needed

case 6 % -------------------------------------------------

a=2.5/rtopi;

aa=a*exp(1-a)

TMax=TMax*rbi*exp(1-rbi)/aa; % As in region 3,but only extrapolation to the right.

log10Fax=log10Fax+(ri-2.5)*slope_right;

case 7 % -----------------------------------------------------

TMax=rbi*exp(1-rbi);

sl=ppval(slope_left_vs_logcrit_spline,logcrit15);

log10Fax=log10Fax+ri*sl;

case 8 % ----------------------------------------------------

% no further action needed

case 9 % ----------------------------------------------------

TMax=96.4274*TMax*rbi*exp(1-rbi);

log10Fax=log10Fax+(ri-2.5)*slope_right;
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end %for switch region ------------------------

Fax=10^log10Fax;

omega_at_axis=Fax*Rt;

% Note that Tss_local after the above interpolation should remain the

% MATLAB representation (for the version used)of a spline. Certain elements

% that should be integers, although having retained their values,may have

% become classified as floating point numbers after the interpolation.

% Furthermore we defined the splines such that the ends left and right should

% be linear to avoid problems if occasionally extrapolation far outside the

% definition range of the splines should occur.This linearity should also remain

% after extrapolation.

% Both aspects are taken care off bij the function "rectify"



Chapter 11

The m-file function cross cut fast.m

11.1 Introduction

In chapters 7 and 8 it was shown that the ”scaled and shifted” stability diagrams for 1 ≤
icase ≤ 6 show a great deal of similarity. These diagrams correspond to velocity profiles
without an inflexion point for 2.2160 ≤ H ≤ 2.5910. Even for icase > 6 (H > 2.5910) the
low Reynolds number part of the diagram, where the Rayleigh instability is not yet manifest,
shows this similarity. Because the similarity was only discovered in the later stages of the
development of the new method it was also realised rather late that a drastic simplification
of the function cross_cut.m might be possible, be it with a possible reduced accuracy. Such a
faster routine could be very useful for the design of suction airfoils where it can be expected
that the amount of suction that is necessary to prevent transition will result in velocity profiles
without an inflexion point. For design purposes a reduced accuracy combined with a higher
computational speed might be useful and acceptable. The present chapter describes such a
simplified function cross_cut_fast.m. Chapter 12 will describe some applications of the new
method. There the two versions of the function cross_cut will be compared with regard to
speed and accuracy.

Another possibility to speed-up the cross_cut routine is to use a special function to evaluate a
given spline at only one point. The matlab function ppval.m is designed to evaluate a spline
in a whole array of points. If one needs only the evaluation at one point it pays to use equally
spaced break points so that it is easy to find the interval in which the evaluation will take
place and store the cubic polynomial coefficients (”coefs” in matlab language) separately for
direct use. This procedure will be discussed in some more detail in section 11.4.
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11.2 Approximation of the Tss-splines by parabolic curves.

First of all the Tss splines at given values of r for all icase were compared. It was found
that the cross-sections in Tss form were nearly identical for icase ≤ 6 at the same value of
r and also forsome icase values > 6 at the smaller values of the Reynoldsnumber, where
the Rayleigh instability does not yet show up. Moreover it was observed that the curves are
nearly parabolic (but not completely symmetrical). Then for all values of icase 1 through 6
and the rgrid points number 10 to 59 the Tss curves were approximated by:

Tss = aaleft · ω2 for ω ≤ 0 (11.1)
Tss = aaright · ω2 for ω ≥ 0 (11.2)

ω =
ωθ
U −

(
ωθ
U

)
axis

scale
(11.3)

The coefficients aaleft and aaright were determined by satisfying 11.1 and 11.2 for points near
to the lower and upper branch of the neutral curve respectively. The first 9 points in the
rgrid were not used because here the upper and lower branches are rather close and hence the
aa− coefficients showed more scatter. It was found that the coefficients aaleft and aaright

do depend on r but only to a small extent on icase. Therefore the (maybe bold) step was
taken to fit a second degree polynomial in r to aaleft and aaright separately but combined for
all values of icase ≤ 6. This resulted in the polynomials pp overall left and pp overall right
that are contained in the database and used in cross_cut_fast.

These formulae are also applicable to the values of 0 ≤ r ≤ rgrid(10). For r < 0 the values at
r = 0 are used. How well these approximations fit the Tss splines and the original Arnal data
follows from the program comp_data_base_to_Arnal.m (option 2 in the N_factor_show.m). It
should be observed that the parabolic fit to Tss was made for the region inside the neutral
curve. Not much attention was paid to the tails of the Tss curves because these had earlier been
obtained by extrapolation of the Arnal data. The approximation is found to be surprisingly
good. It is instructive to run the program also for icase > 6. It follows that also here a
reasonable approximation is obtained as long as no Rayleigh instability is present. In general
this means that for icase > 6 the region for r grid point > 35 should be avoided (that is
r > 1.25). From the roadmap, for example in figure 6.20, it follows that this region is well to
the right of the N = 9 curve for similar flows. In practice this region will therefore not often
be used when designing suction distributions to prevent transition.

11.3 Some further simplifications

When developing the fast version of cross_cut.m some additional (maybe bold) steps were
taken. The value of log Ftop=10 log(Faxis at r = 1

3) is found from the current version of the
critical Reynolds number and the

log F top spline (11.4)
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The value of log F axis at an arbitrary value of r then follows from:

10log(Faxis at r) = log F top−
√

2 ·
(
r − 1

3

)
(11.5)

Tmaxmax and rtop are determined from the relevant splines:

log MaxMaxT vs logcrit spline (11.6)

rtop vs logcrit spline (11.7)

Then with r = r
rtop

; Tmax follows from the approximation that was discussed in chapter 6:

Tmax = r · e(1−r) (11.8)

The various splines are evaluated using the simplified form to be discussed in section 11.4.

11.4 A method for the fast evaluation of a spline if the result
is only needed in one point.

It was noticed that evaluating an x-y spline at only one value of x using the matlab function
y=ppval(spline,x) is rather time consuming. A method that is about 15 times faster if only
a one point evaluation is needed can be obtained if one uses equally spaced break points and
stores the matlab ”coefs” separately instead of the complete matlab pp array. The new
method can directly locate the interval in which x is contained and the corresponding cubic
polynomial to be used. Therefore various existing splines were recast in a new form with new
equally spaced breakpoints. The number of breakpoints was taken rather large suggesting a
high accuracy. This, of course, is not true; the only justification is that we wanted to maintain
consistency with the results of the original splines For the new splines it is only necessary
to store the matlab ”coefs” and to remember the x-range and the number of breakpoints.
Details will become clear from the listing of the new function ”cross cut fast” that will be
discussed in section 11.5.

11.5 The new function cross cut fast(Rt,H)

The simplifications that were discussed in the preceding sections have been used to develop
a new function to find the cross section through a stability diagram for arbitrary values of
Reθ and the shape factor H. The new version is about 8 times faster than the earlier one.A
listing is given below; the comment lines give an adequate description. Note the much shorter
program listing as compared to the one given in chapter 10.

function [aa_left,aa_right]=cross_cut_fast(Rt,H)% (CD-ROM version)

% Function to find the cross section in parabolic form of the stability diagram
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% for arbitrary values of H (and hence of R-theta-crit) and Reynolds-theta.

% See chapter 11 of the report.

% The value of 10Log(Rtheta-crit) is found from coefs for a spline in log10(H).

% In this way T can be determined for a series of frequencies at a certain x-station

% in the calling program. Repeating this procedure at a number of x-stations allows

% to compute the n-factor for each frequency.

% At each x-station the maximum n-factor gives N.

% A trace of the stability characteristics of the boundary layer can be plotted in a

% "road map" by the calling program. Sometimes the trace leaves the region covered by

% the Arnal data.It is advised to check this roadmap to keep an eye on the credibility

% of the extrapolated stability data.

% The roadmap shows a curve for N-factor=9 for the Hartree-Stewartson similar flows.

% These flows trace horizontal lines in the road map. Observe that the curve

% for N=9 is not necessarily valid for non-similar flows.

% Make sure that in the main program the necessary stability data were loaded

% by executing "load datafile_for_n_factor".

% Reynolds-theta should be given as a value for "Rt" in the main program.

% Also the value of the shape factor H should be provided.

% The following global statement may contain more variables then are really needed for

% the present function because we kept the global statement the same for a number

% of m-files.

% ----------------------------------------------------------------------------------

global ...

ArMaxMaxT ArlogRtcrit r_grid Tbar Tss domega_saved dome ...

logFax logMaxMaxT_vs_logcrit_spline logcrit_vs_logH_spline rtop_vs_logcrit_spline ...

scale_domega_vs_logcrit_spline ycentre_spline slope_left_vs_logcrit_spline ...

ArNumberofReynolds ArH Arscomega Arr omega_Arnal T_Arnal ome_ax fnr ri logcriti ...

omega_at_axis log_Ftop_spline scomega TMax TMaxMax omegatop ...

pp_overall_left pp_overall_right ...

coefs_log_Ftop coefs_log_MaxMaxT coefs_scale ...

coefs_rtop coefs_slope_left coefs_logcrit_vs_logH ...

breaks_log_Ftop breaks_logMaxMaxT breaks_scale ...

breaks_rtop breaks_slope_left breaks_logcrit_vs_logH

% --------------------------------------------------------------------- end global

logRt=log10(Rt);

logH=log10(H);

% -----------first find logcriti; result should be the same as in cross_cut ------

xx=logH;

h=.005; % =interval for logH; 1/h=200

n=floor(200*(xx-.25)); % n is the number of complete intervals to the left of xx

if n<0

n=0;

end

if n>300

n=300;

end

t=xx-n*h-.25;

t2=t*t;

t3=t2*t;

coefspol=coefs_logcrit_vs_logH(n+1,:);

logcriti=coefspol(1)*t3+coefspol(2)*t2+coefspol(3)*t+coefspol(4);

% ---------------now find other parameters from the splines in logcriti -------------

xx=logcriti;

h=.02; % =interval length in logcriti 1/h=50 Is the same for all following splines

n=floor(50*(xx+1)); % n is the number of complete intervals to the left of xx

if n<0
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n=0;

end

if n>300

n=300;

end

t=xx-n*h+1;

t2=t*t;

t3=t2*t;

coefspol=coefs_log_Ftop(n+1,:);

log_Ftop_i=coefspol(1)*t3+coefspol(2)*t2+coefspol(3)*t+coefspol(4);

coefspol=coefs_log_MaxMaxT(n+1,:);

logMaxMaxT=coefspol(1)*t3+coefspol(2)*t2+coefspol(3)*t+coefspol(4);

coefspol=coefs_scale(n+1,:);

scomega=coefspol(1)*t3+coefspol(2)*t2+coefspol(3)*t+coefspol(4);

coefspol=coefs_rtop(n+1,:);

rtop=coefspol(1)*t3+coefspol(2)*t2+coefspol(3)*t+coefspol(4);

slope=-sqrt(2); % This is a rather bold approximation. Should be OK for all

% icase <=6 and for the other ones for r< r_top (=1/3). For the intended applications

% this is assumed to be sufficiently accurate.

% Future versions may be changed. Please check the web site mentioned on the CD-ROM.

TMaxMax=10^logMaxMaxT;

ri=logRt-logcriti;

rib=ri/rtop;

TMax=rib*exp(1-rib);

log10Fax=log_Ftop_i+slope*(ri-1/3);

Fax=10^log10Fax;

omega_at_axis=Fax*Rt;

if ri<0

aa_left=-1.0482;

aa_right=-1.1518;

else

aa_left =polyval(pp_overall_left ,ri);

aa_right=polyval(pp_overall_right,ri);

end

11.6 Concluding remarks on cross cut fast.m

In chapter 12 a set of example calculations will be made to see whether a useful acceleration
of the computations has been realised by the new version of cross_cut without too much
sacrifice in quality.
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Chapter 12

Some applications of the new
database method

12.1 Introduction

In the present chapter we will review some applications of the new database method for
some typical boundary layers. Applications in the context of the design of airfoils with
suction can be found in (Bongers, 2006, �). The applications to be discussed here can be
reviewed by running the matlab program amplification.m (option 13 in N_factor_show.m).
The reader can familiarise himself with the method by running some applications with varying
parameters. The program allows a comparison between the original and the later developed
fast version of the function cross cut as described in chapters 10 and 11 respectively. Another
version (ampli.m) gives a choice for either version. As an introduction we reproduce below
some initial parts of the m-file amplification.m. The first comment lines would also appear
in a matlab session following the command ”help amplification”

% Amplification.m (CD-ROM version)

% To calculate the N_factor for a given distribution of x,U,H and R-theta.

% In this program we just calculate the N-factor. You may later introduce an "effective

% turbulence level" Tu to define the critical N-factor (Ncrit) to stop the calculation and

% switch to turbulent flow.

% In that case you may want to do the N-factor calculation step by step together with the

% laminar boundary layer calculation; it should not be difficult to adjust the program to

% your needs.

% We have predefined some typical cases; you can easily add your own case.

% Here we assume the laminar boundary layer to be known from a preceding calculation.

% After having built up experience with this program you may want to reduce the

% range of frequencies, and/or the number of frequencies within that range, to be used.

% At present this range is rather wide to accommodate applications in the upper right-hand

% corner of the roadmap area. Please observe the used frequencies in the detailed plots

% (figures 2 and 3).

% As soon as edge maxima for the n-factor as function of frequency occur you need to
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% adjust the frequency range.

% We will denote the amplification factor as function of the frequency by n.

% We will denote the maximum amplification factor as function of x by N.

% For further explanations see chapter 12 of the report.

% Practical applications inserted into XFOIL can be found in the Masters thesis of

% J. Bongers (see report on the CD-ROM)

% No attempt has been made to optimise the MATLAB program. For routine (design)

% applications you may use an optimising (e.g. C-) compiler to speed up the computation.

% Also the "accelerator" for loops in later versions of MATLAB may be useful.

% The present version of the program allows you to use either:

% 1) cross_cut

% 2) cross_cut_fast

% 3) both versions in parallel

% At each x-station detailed plots of T*U vs frequency and n-factor vs frequency are

% provided on request.Also the trace of the boundary layer in a "roadmap" and the growth

% of N with x may be followed.

% A companion program "ampli" lets you run either cross_cut or cross_cut_fast without

% the detailed plots.

% --------------------------------------------------------------------------------------

clear

close all

global ...

ArMaxMaxT ArlogRtcrit r_grid Tbar Tss domega_saved logFax ...

logMaxMaxT_vs_logcrit_spline logcrit_vs_logH_spline rtop_vs_logcrit_spline ...

scale_domega_vs_logcrit_spline slope_left_vs_logcrit_spline ...

ArNumberofReynolds ArH Arscomega Arr omega_Arnal T_Arnal ome_ax fnr ri ...

logcriti log_Ftop_spline TMax TMaxMax omega_at_axis scomega coefs_log_Ftop ...

coefs_log_MaxMaxT coefs_scale coefs_rtop coefs_slope_left ...

coefs_logcrit_vs_logH pp_overall_left pp_overall_right

% The global statement above may contain more variables than really needed because

% we kept the global statement the same for a number of m-files.

% ---------------------------------- end global ------------------------------------

load datafile_for_n_factor

% ------------------------------------------------------------------------------------

disp (’You may use various versions of "cross_cut" ’)

disp (’1=The extensive one (cross_cut) ’)

disp (’2=The fast approximate one (cross_cut_fast) ’)

disp (’3=Both at the same time to be able to compare the results ’)

version_cross=input(’give your choice: 1, 2 or 3 ’)

close all

freqs=[-7 -1 601];% This is a rather wide range of frequencies. For practical

% applications you may want to reduce this range and/or the number of frequencies

% within that range after having built up experience with the method.

% Just keep an eye on the detailed plots.

f1=freqs(1);

f2=freqs(2);

fnr=freqs(3);

Finf=logspace(f1,f2,fnr);

xfr=[1:fnr];

% The N-factor calculations should be done for constant values of omega,

% that is constant Finf=omega*nu/Uinf^2. Other researchers have used for convenience

% constant F=omega*nu/U^2

% Our experience has shown that the final results show negligible differences

% because we use the envelope for a large number of frequencies.

% We will always use the first option.

% -------------------------------------------------------------------------------------

disp(’------------------------------------------------ ----’)
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disp(’ You have a choice from various cases ’)

disp(’ 1=PhD case van Ingen ’)

disp(’ 2=flat plate ’)

disp(’ 3=flat plate with oscillating H superimposed ’)

disp(’ 4=flat plate with reduced H-region ’)

disp(’ 5=Rheinboldt 1.0 ’)

disp(’ 6=Iglisch ’)

disp(’ 7=simulated rooftop airfoil ’)

disp(’ 8=you may add your own cases here ’)

disp(’-----------------------------------------------------’)

my_choice=input(’give the number of your choice; 1<= number <=7 ’);

The predefined examples are listed below as presented in the program. For the more compli-
cated cases the laminar boundary layer has been calculated separately with the finite difference
method that was briefly discussed in section 3.5. The results were saved and loaded into the
present program. These data files are available on the cd-rom. For some simpler cases the
boundary layer data are calculated within the present program. In some cases (3, 4 and 7
from the list below, a perturbation of the flat plate boundary layer was studied. Because
changes in the stability characteristics are for the greater part due to changes in the critical
Reynolds number (that is in H) and not in Reθ, for simplicity Reθ was taken equal to that
for the basic flat plate. For the sake of the demonstration this was thought to be permissable.
You have a choice from various cases:

1. PhD case van Ingen

2. flat plate

3. flat plate with oscillating H superimposed

4. flat plate with reduced H-region

5. Rheinboldt 1.0

6. Iglisch

7. simulated rooftop airfoil

8. you may add your own case here. Give the results of the boundary layer calculation as
arrays for x, U , H and Reθ as xarr, Uarr, Harr and Rtarr respectively. Also give the
chord Reynolds number as Rcred, that is leave out a factor 106.

All examples calculated with amplification.m have a standardised output where the user can
choose to follow the calculation step by step in the following 4 separate figures on the screen.

1. Figure 1, upper left, shows the progression of the calculation in the “roadmap” .

2. Figure 2, upper right, gives at each x-station the quantity T · U plotted versus a “fre-
quency number”; remember that T · U has to be integrated to find the n-factor (see
equation (2.15)).
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3. Figure 3, lower left, shows at each x-station the n-factor as a function of the frequency
number.

4. Figure 4, lower right, shows the chord wise distributions of 10log(Reθ) and 10log(Reθcrit
)

and the developing N -factor, clearly showing the stable and unstable regions. Of course
these are also defined in the roadmap by the crossings with the r = 0 axis.

At the end of the calculation the final versions of figures 1 and 4 may be viewed and printed
separately on a larger scale. We will now discuss examples in succession using the extensive
version of cross_cut.m , referring to the format presented under 1-4 above. In section 12.9
we add the same examples run with both versions of cross_cut.

In the sections 12.2 through 12.7 the examples 1 through 6, run with the extensive version
cross cut, will be discussed. Section 12.9 presents for all examples the comparison between
both versions.

12.2 Example 1: “PhD case van Ingen”

In his PhD thesis (van Ingen, 1965, �) the author presented an extensive theoretical and
experimental research program on laminarisation by suction through a porous surface. For
one of the experimental cases detailed data on the pressure- and suction distribution and
various boundary layer parameters are available in the thesis (van Ingen, 1965, chapter 11 �).
It appeared in hindsight that in this case the suction distribution had been adjusted in such
a way that a nearly fully stable boundary layer was achieved until laminar separation and
subsequent transition occurred at the end of the porous region at the 90% chord position. The
maximum N -factor near the beginning of the porous region is only about 0.2 . Many other
suction distributions have been tested that would be interesting candidates for an N -factor
calculation. This will have to wait however for a search in the 40 year old archives to find the
data. Figure 12.1 shows the 4 sub plots that were generated during the calculation. On the
upper left the roadmap can be seen as it was at the last calculated point (stopped because
of nearing laminar separation). Figure 12.2 is an enlarged version that is plotted at the end
of the calculation. Note that the trace first is in the stable region (r < 0), then enters very
briefly into the unstable region (r > 0); then stays in the stable region for a long distance
and near the end progresses with large steps into the unstable region again. The trace even
crosses the N -factor = 9 line without transition illustrating that the N = 9 line is not valid
for non-similar flows as we have here. Note that similar flows should produce a horizontal
trace in the roadmap. In fact the maximum N -factor reached is just above .5 as follows from
the lower right hand plot in figure 12.1 ( shown enlarged in figure 12.3). The upper right hand
plot of figure 12.1 shows T ·U at the last station that was calculated. The reader is advised to
choose the option “to view the results at each x-station” (certainly when an extreme situation
is expected).
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Figure 12.1: PhD case, 1) trace in roadmap, 2) TU w.r.t. frequency number for last x-station, 3) n
w.r.t. frequency number for last x-station, 4) N , 10log(Reθ) and 10log(Reθcrit

) vs x
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12.3 Example 2: The flat plate

The results of this calculation were already presented in chapter 2. This case is shown here in
the figures 12.4, 12.5 and 12.6. Since the chord Reynolds number was taken equal to 10 · 106,
the critical N -factors N1 and N2 should be reached at x = 0.28 and 0.39 respectively. Note
that the trace in the roadmap follows the horizontal line labelled “flat plate” Here the crossing
of the N = 9 line will indicate transition.
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Figure 12.4: Flat plate, 1) trace in roadmap, 2) TU w.r.t. frequency number for last x-station, 3)
n w.r.t. frequency number for last x-station, 4) N , 10log(Reθ) and 10log(Reθcrit
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Figure 12.5: Flat plate, trace in roadmap
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12.4 Example 3: The flat plate with oscillating H superim-
posed.

Here we take the flat plate with a sinusoidal variation of H between x
c = .50 and 1.0 su-

perimposed on the constant value 2.591 to simulate the effect of suction and blowing. The
amplitude (dH) may be chosen (positive or negative). Because experience has shown that
with moderate suction the change in stability is nearly completely due to the change in H
(and hence in critical Reynolds number) and not to the minor change in Reθ, we took for
convenience in this simple illustration the Reθ distribution equal to the unsucked Blasius case
for Rcred = 10. In the present example we took the amplitude of the H-variation equal to
−.2 which means that H is first decreased (10log(Reθcrit

) increased, stabilisation) and then
H is increased (de-stabilisation).The results are shown in figures 12.7 and 12.8.
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Figure 12.7: Flat plate with oscillating H with dH = −.2, trace in roadmap

12.5 Example 4: The flat plate with a reduced H region: a
quadratic dip from x

c = .20 to .50.

We choose for a dip with maximum depth of .3; this first stabilises the flow until it is nearly
stable again and then it becomes unstable again. For this case we only present the two large
scale pictures as figure 12.9 and 12.10 respectively. Again Reθ is kept equal to the Blasius
value for Rcred = 10.
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Figure 12.9: Flat plate with reduced H-region with dH = .3, trace in roadmap
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Figure 12.10: Flat plate with reduced H-region with dH = .3, N , 10log(Reθ) and 10log(Reθcrit) vs
x

12.6 Example 5: Rheinboldt’s flat plate with discontinuous
suction.

(Rheinboldt, 1956) designed a special procedure for the calculation of boundary layers with
discontinuous suction. The method was illustrated with several examples. One of these
examples is the boundary layer on a flat plate with non-porous entry length c followed by
a porous region with constant suction velocity for x > c. See fig. 12.11. Of course it can
be expected that for x → ∞ the asymptotic suction boundary layer is obtained. Here we

will discuss this case for a suction velocity given by −v0
U

√
Uc
ν = 1.0. In order to handle

the discontinuity at x = c, we took a number of extremely small steps around x = c and
rounded the discontinuities. Further downstream the calculation reproduces Rheinboldt’s
results. The Reynolds number based on U and c was taken equal to 106 so that at x = c (at
the start of suction) the N -factor should remain well below 9. The results of our calculation
are shown in figures 12.12 and 12.13. Note that in the roadmap the trace starts along the
flat plate (zero suction) and then returns to the stable region (r < 0) along a path that is
very nearly parallel to the constant Reθ lines. The maximum N -factor is 3.5 at suction begin
(figure 12.13).Stabilisation sets in a small distance before x

c = 1 due to the rounding of the
discontinuity.
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Figure 12.11: Rheinboldt’s flat plate with discontinuous suction
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Figure 12.12: Rheinboldt’s flat plate with discontinuous suction, trace in roadmap
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Figure 12.13: Rheinboldt’s flat plate with discontinuous suction, N , 10log(Reθ) and 10log(Reθcrit)
vs x

12.7 Example 6: Iglisch boundary layer on a flat plate with
constant suction.

For the flat plate with constant suction velocity an exact solution has been given by (Iglish,
1944). (see also (van Ingen, 1965, �)) In this solution a new independent variable x is
introduced by

x =
(
−v0
U

)2 Ux

ν
(12.1)

which implies that the ”reference length” c is defined by

c = U

(
ν

−v2
o

)
(12.2)

If for the reference speed U∞ the constant mainstream velocity U is used it follows that

U = U
U∞

= 1 and that “Rc”=
(

U
−v0

)2

From Iglisch’s solution it is known that at x = 0 the boundary layer starts as the Blasius flat
plate without suction and that for x→∞ the asymptotic suction boundary layer is obtained.
It also is known that near x = 0 more regular plots are obtained if

√
x is used.

We used a power series solution for f(x, y) in
√
x near x = 0 to start the finite difference

calculation and saved the results as input to the present program. We will see that interesting
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Figure 12.14: Iglisch flat plate with constant suction(cqred
= .5), trace in roadmap
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values of cq = −v0
U are of the order 10−4 and hence that the Reynolds number based on c is

of the order 108. This may bring us in the upper right hand part of the roadmap where very
high values of Reθ occur. Figures 12.14 and 12.15 present results for cq = .5 · 10−4. It follows
that in this case the maximum N -factor is nearly 13 at

√
x = .35 Note that the variable along

the horizontal axis in figure 12.15 is
√
x which gives a better behaviour near x = 0. We have

run the Iglisch case for 12 cq values ranging from .4 ·10−4 to 1.5 ·10−4 For the lowest value the
maximum N -factor exceeds 9 so that transition will occur. For the highest value complete
stabilisation is reached. This shows that extremely small suction velocities are sufficient for
complete stabilisation. For just keeping the boundary layer laminar the maximum N -factor is
allowed to grow until about 9. This has been found to reduce the required suction velocity to
less than 50% of that for complete stabilization. Since the maximum N -factor is only reached
locally a further reduction in suction quantity would follow from taking a non-constant suction
velocity, adjusted to the stability characteristics of the boundary layer. (see (van Ingen, 1965,
chapter 9, �)).

The following figures in this chapter will present some detailed results for the Iglisch flow,
that have been calculated with a separate program, not included on the cd-rom. They are
nearly self explanatory so that only a very brief discussion will be presented. Figures 12.16
and 12.17 show H vs x and

√
x respectively. It is clear that using

√
x is to be preferred for

plotting. Note that the calculations with the finite difference method have been made with x
as independent variable but that the calculation was started some distance away from x = 0.
The first part was done with a power series solution in

√
x for the streamfunction f . There

is a good correspondence with the classical results by Iglisch. It is clear that the boundary
layer starts as that for the Blasius case and asymptotically approaches the asymptotic suction
boundary layer. Figure 12.18 shows the value of −v0θ

ν . Figure 12.19 gives 10log(Reθcrit
) and

the 12 curves for 10log(Reθ) at cqred
from .4 to 1.5. It can be seen that complete stability

is obtained for cqred
is 1.5. This is confirmed by figure 12.20 which is in fact the set of road

map traces turned over 90 degrees. Figure 12.21 shows the N -factor vs
√
x confirming the

earlier results; transition will occur at
√
x about .3 for cqred

between .5 and .6. Figure 12.22
shows the maximum N -factor as function of cqred

. Figure 12.23 shows the same results as fig.
12.21 but now with the x-Reynolds number along the horizontal axis. Note the extremely
high values of Ux

ν ; due to the relation between Rc and cq; that is Rc = (cq)−2. Finally figure
12.24 shows the traces in the roadmap for all 12 cqred

values. Note that for the lowest value
(.4) the trace just crosses the N = 9 curve. It should be remembered however that the Iglisch
boundary layer is not a similar flow. Hence the N = 9 curve cannot be expected to indicate
transition for this case. In the older literature it was mentioned that for the Iglisch flow a
reduced suction coefficient of 1.18 was sufficient to obtain complete stability. We find the
higher value 1.5. This appears to be due to the fact that the critical Reynolds numbers as
used by Ulrich are higher than in our data base. This is illustrated by figure 12.25 were a
comparison is made for different sets of data. It can be seen that also for some no-suction
cases the Ulrich values are on the high side. Figure 12.26 shows the same results as figure
12.19 but now with Ulrich’s values for the critical Reynolds number for the Iglisch flow. Now
we also find a critical cqred

value just below 1.2.
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12.8 Example 7: The simulated rooftop airfoil

This example will be discussd in section 12.9.

12.9 Comparison of the two versions of cross cut

The examples that were discussed in the preceding sections of the present chapter have been
repeated with a version of ”amplification.m” in which the results of the two versions of
”cross cut”could be compared. The various flow parameters have been kept equal. In addition
to the earlier figures we also show plots of H vs x.

Finally we have added case 7: ”the simulated rooftop airfoil”. In this example H is taken
equal to the flat plate value for 0 ≤ x

c ≤ 0.5 and is allowed to increase linearly to a higher
value Hend at x

c = 1. In the example Hend = 3.9 and hence near to the separation value. As in
earlier examples we have, for simplicity, Reθ kept equal to the basic flat plate. Again for this
demonstration this is thought to be acceptable. In most cases the results from both versions
appear to be rather close and sufficiently so for design calculations. Especially the result for
the simulated rooftop airfoil was at first sight surprisingly close and unexpected because for
x
c > .5 we have velocity profiles with an inflexion point and hence stability diagrams with
Rayleigh instability at higher Reynolds numbers. On further thought this may be explained
as follows. In order to prevent transition in the present no suction case the Reynolds number
has to be kept low. Hence the Rayleigh instability will not show up, even for H > 2.591. In
general we can say that in order to prevent transition we have to keep the N -factor below
9 by a proper combination of pressure gradient, suction and Reynolds number. This will
automatically keep us away from the region in the roadmap where Rayleigh instability can
be expected. It may therefore be concluded that the fast version of cross section is a useful
tool for design calculations.

The results of the examples are shown in the figures 12.27 through 12.39. Because the flow
parameters were kept equal to those for the examples in sections 12.2 through 12.7 no further
explanation of the figures is needed. Note that the traces in the roadmap do not change.
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Figure 12.27: PhD case, N , N − fast, 10log(Reθ) and 10log(Reθcrit) vs x
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Figure 12.29: Flat plate, Rcred
= 10, N , N − fast, 10log(Reθ) and 10log(Reθcrit) vs x
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Figure 12.30: Flat plate with oscillating H superimposed with dH = −.2, Rcred
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) vs x
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Figure 12.31: Flat plate with oscillating H superimposed with dH = −.2, Rcred
= 10, H vs x
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Figure 12.33: Flat plate with reduced H-region with dH = .3, Rcred
= 10, H vs x
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Figure 12.34: Rheinboldt’s flat plate with discontinuous suction, N , N − fast, 10log(Reθ) and
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Figure 12.35: Rheinboldt’s flat plate with discontinuous suction, H vs x
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Figure 12.38: Simulated rooftop airfoil, Hend = 3.9, Rcred
= .5, N , N − fast, 10log(Reθ) and
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) vs x
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Chapter 13

Reviewing the database method
using the matlab program
“N factor show”

In preceding chapters we already referred several times to the matlab program N_factor_show.m

In the present chapter we present the listing of this program to illustrate its options. In ad-
dition the matlab “help” information is listed for all programs (see also appendix B). For
further information the reader is referred to the comment lines in the programs. No attempt
has been made to optimise the matlab programs. For routine (design) applications you may
use an optimising (e.g. C-) compiler to speed up the computation. Here we assume the
laminar boundary layer to be known from a separate calculation. We have predefined some
typical cases; you can easily add your own case. Practical applications inserted into xfoil
can be found in the Masters thesis by J. Bongers (Bongers, 2006, �).

% N_factor_show.m (CD-ROM version)

% This m-file calls on a number of other m-files as an additional illustration

% of the text and figures in the report:"A new e^N database method for transition

% prediction"

% Programs and report are on the CD-ROM

% "N-factor show" is discussed in more detail in chapter 13 of the report.

clear

close all

% --------------------------------------------------------

want_to_go_on=input(’if you want to go on give 1 else 0’)

% --------------------------------------------------------

while want_to_go_on==1

disp (’---------------------------------------------------------------------- ’)

disp (’ You can review a number of MATLAB programs as described in the text. ’)

disp (’ The at present available options are: ’)

disp (’ 1 =Compare Hartree profiles with and without suction/blowing ’)

disp (’ 2 =Compare the data base results to the original Arnal data ’)

disp (’ 3 =Principles of stability diagrams ’)
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disp (’ 4 =Review various splines ’)

disp (’ 5 =Review Tbar (=T/TMaxMax along axis) ’)

disp (’ 6 =Review scaling ’)

disp (’ 7 =Plot and compare stability diagrams in various formats ’)

disp (’ (classical and scaled/shifted) ’)

disp (’ 8 =Plot stability diagrams in the log(F) format ’)

disp (’ 9 =Make stability diagram for arbitrary icase (especially 2:6) from ’)

disp (’ icase=1 (stagnation point)using the similarity of the ’)

disp (’ shifted and scaled diagrams; especially relevant for profiles ’)

disp (’ without inflexion point (icase<=6) ’)

disp (’10 =Compose the stability diagram for the asymptotic suction profile ’)

disp (’ using the similarity shown in case 9 ’)

disp (’11 =Make a stability diagram for an arbitrary value of H ’)

disp (’12 =Make a plot of the roadmap ’)

disp (’13 =Calculate N using "amplification.m" for a number of cases ’)

disp (’14 =You can do the same with the reduced version of nr 13 "ampli" ’)

disp (’15 =See support for the choice of H as representative parameter ’)

disp (’-----------------------------------------------------------------------’)

% ------------------------------------------------------------------------------

case_number=input(’give the number of your choice ’)

% ------------------------------------------------------------------------------

switch case_number

case 1

comp_Hartree_suc_nosuc

case 2

comp_data_base_to_Arnal

case 3

principles_of_stab_diagr

case 4

review_splines

case 5

review_Tbar

case 6

review_scaling

case 7

plot_stability_diagrams

case 8

logF_stability_diagrams

case 9

make_icase_from_1

case 10

make_asuc_diagram

case 11

make_diagram_for_H

case 12

load datafile_for_n_factor

plot_roadmap

case 13

amplification

case 14

ampli

case 15

Hartree_zpg_pg

otherwise

disp(’no valid case entered’)

end % switch_case

% ----------------------------------------------------------------
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want_to_go_on=input(’if you want to go on give 1 else 0 ’)

% ----------------------------------------------------------------

end % while

keyboard

close all

1. comp Hartree suc nosuc.m We have earlier calculated 23 Hartree velocity profiles
for a flat plate with various amounts of suction and blowing.(See table 4.1 in the report).
The data in the table are stored in the data file “Hartreetablezpg” Note that number
1 is for very strong suction; this boundary layer approaches the asymptotic suction
profile (H=2) We now find a corresponding Hartree velocity profile with pressure gra-
dient and no suction or blowing. This comparison profile is generated by the function
“find Hartree”. The comparison can be made for equal `, mT or H. We exclude certain
numbers from the table because these are outside the interesting range of H-values for
attached Hartree flows. Results for Hartree velocity profiles without suction or blowing
follow from the data file “Hartree splines” Lin’s approximate method is used to calculate
the critical Reynolds number for the given and comparison profiles.

2. comp data base to Arnal.m This m-file asks to input a series of icase values and for
each of the icase values a series of cross sections. At each cross section the Arnal values
are compared with the data base. The user can just view the result or may choose to
stop and print the figure

3. principles of stab diagr.m This m-file generates stability diagrams in the classical
form for selected cases. namely: icase=1 (β = 1); icase=6 (β = 0) and icase=11
(β = −.198838 that is separation) For the profile with an inflexion point(icase=11) the
influence of Rayleigh instability shows up at the higher Reynolds numbers.

4. review splines.m This m-file lets you review the various splines. You may choose to
pause to view the figures or to stop and return to keyboard to print a figure.

5. review Tbar.m This m-file asks for a series of icase values. First for each icase a plot
is made of Tmax

Tmaxmax
along the axis according to Arnal. The result is compared to the

analytical expression T = re(1−r) where r = r
rtop

. Note that the plot is still vs r Then
the results are plotted versus r. On request the program will stop to allow printing a
figure.

6. review scaling.m This m-file shows the scalings and shiftings applied to the Arnal
data to make the Tss splines for the data base

7. plot stability diagrams.m This m-file generates stability diagrams to compare the
database results to the Arnal data. Note the great similarity for the scaled and shifted
diagrams when icase=1:6 For these cases the velocity profiles do not have an inflexion
point. For profiles with an inflexion point, that is icase > 6 the influence of Rayleigh
instability starts to show up; first at the higher Reynolds numbers. We will later use
the observed similarity to extrapolate to H = 2 (asymptotic suction profile)

8. logF stability diagrams.m This m-file generates stability diagrams in the form where
frequencies are plotted as 10log(F ) where F = ων

U2 This form is better suited for extrap-
olations to higher Reynolds numbers For profiles with an inflexion point (icase > 6) the
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influence of Rayleigh instability starts to show up; first at the higher Reynolds num-
bers. When Rayleigh instability occurs the slope=−1 for the upper branch and for the
axis. Note that this form can not be used for the lower branch at the higher Reynolds
numbers for icase > 6 because here ω < 0 and 10log(F ) becomes complex. Also small
irregularities near ω = 0 tend to be exagerated when using the log scale; we accept
these irregularities; they seem to be harmless. You can specify a series of values for
icase to be viewed. An option is to superimpose the various scaled diagrams to better
show their similarity.

9. make icase from 1.m This m-file composes the stability diagram for an arbitrary icase
(2 ≤ icase ≤ 6) from the diagram for icase=1 (stagnation point). It is assumed that
the scaled and shifted diagrams are equal for both cases.This only applies to icase=1:6
because these are all without inflexion point. For icase= 7:15 there is an inflexion
point and the result is not useful. By de-scaling and de-shifting with the scales for the
chosen icase,we find the diagram The results of this program suggested the making of
the asymptotic suction diagram.

10. make asuc diagram.m This m-file is based on the results of make_icase_from_1.m It
is now assumed that the scaled and shifted diagram for the asymptotic suction profile is
also equal to that for the Hartree stagnation point profile. By de-scaling and de-shifting
with the extrapolated values (using the appropriate splines)we find the diagram.

11. make diagram for H.m plots a stability diagram for arbitrary H using the database

12. plot roadmap.m is used to trace the path of a boundary layer in the 10log(Reθcrit
) vs

r path where r =10 log(Reθ)−10 log(Reθcrit
) For each Arnal case the points representing

the cross sections through the stability diagram are shown by “o” on a horizontal straight
line The program Amplification plots the boundary layer trace in this road map The
various regions used in the function cross_cut are indicated in the road map Also values
for 10log(Reθ) are shown as straight lines

13. Amplification.m To calculate the N -factor for a given distribution of x, U , H and Reθ.
In this program we just calculate the N -factor. You may later introduce an “effective”
turbulence level Tu to define the critical N -factor Ncrit to stop the calculation and
switch to turbulent flow. In that case you may want to do the N -factor calculation step
by step together with the laminar boundary layer calculation; it should not be difficult
to adjust the program to your needs. The present version of the program allows you to
use either:

(a) cross cut

(b) cross cut fast

(c) both versions in parallel

14. Ampli.m This is a companion program to amplification.m. The present version of the
program allows you to use either:

(a) cross cut

(b) cross cut fast
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Also the detailed plots at each x-station that were provided in amplification have been
removed in the present version. Therefore it is advised that, when you experience
problems with ampli.m you rerun the case with amplification.m.

15. Hartree zpg pg.m M-file to find the values of ”el”, mT and H for a Hartree profile
with pressure gradient (but without suction/blowing) with the same vale of ”el”, mT or
H as for the flat plate with suction/blowing. The results of this program give support
to some conclusions made in chapter 4 of the report.
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Appendix A

The matlab 5 spline format and its
transformation to other systems

Note that all 885 Tss splines in the matlab 5 format have a constant part that contains the
identification numbers, the number of polynomials, the standard series of breakpoints in ω,
etc. (for details see below). This constant part could have been stored only once and after the
interpolation been added again. We refrained from this and did not try to save some storage
space in order to keep the programming simple. It has to be observed that due to using the
matlab 5 student version the maximum allowable array size is 16384 elements while all Tss
splines together contain 150450 elements.. Therefore we have used cell arrays to store the Tss

splines. Another subject of attention is that later versions of matlab than the one we used or
other programming languages may use different spline formats. Therefore we describe below
a procedure to extract from our splines the original data so that users can redefine the splines
in their own preferred format.

In matlab 5 a so-called pp-form of the spline is used which contains all data in a single
vector. Although also a matlab procedure is available to de-compose this vector in its
various elements we will make our further description independent of matlab. For a cubic
spline over N intervals we have N third degree polynomials and N +1 breakpoints. The first
two numbers in the pp-vector are ”1” and ”10” which are used by matlab 5 to recognise the
vector as a spline representation. Each polynomial is of the form

y = ax3 + bx2 + cx+ d (A.1)

where x is taken zero at the start of the interval. The pp-vector then is composed as follows:

• 10 (constant integer(!) identification number).

• 1 (constant integer(!) identification number).

• N = number of polynomials.
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• All x-values of the(N + 1) breakpoints.

• 4 = number of coefficients for a third degree polynomial.

• All (N) coefficients a

• All (N) coefficients b

• All (N) coefficients c

• All (N) coefficients d

In total then we have 5N+5 elements in the vector. The values for y at the firstN breakpoints
follow from the d coefficients; the value for y at the last breakpoint follows from the last values
for a, b, c and d and equation (A.1). For all Tss points we used the same series of 34 breakpoints
in ω (see equation (6.6)) given below:

ω = -2.0000 -1.8000 -1.6000 -1.4000 -1.2000 -1.0000 -0.8000 -0.6000 -0.4000 -0.2000 -0.1600
-0.1200 -0.0800 -0.0400 0 0.0400 0.0800 0.1200 0.1600 0.2000 0.4000 0.6000 0.8000 1.0000
1.2000 1.4000 1.6000 1.8000 2.0000 2.2000 2.4000 2.6000 2.8000 3.0000

For the Tss splines we have N=33 and hence the length of the vector is 170. The spline format
is illustrated in table A.1 for Tss(6, 8), that is the spline for icase=6 and the rgrid point 8.

matlab users who have advanced to version 7 already should note that this version does still
recognise and accept the matlab 5 spline format, hence a translation is not yet necessary.
The author will try to follow future developments of matlab and will report possible changes
on the website that was mentioned at the end of the Preface.
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Table A.1: Example of a Tss spline, namely Tss(6,8)=spline for icase = 6 at rgrid point number 8
Element number content
1 10 = identification
2 1 = identification
3 33 = number of polynomials
4-37 34 breakpoints, namely

-2.0000 -1.8000 -1.6000 -1.4000 -1.2000 -1.0000 -0.8000 -0.6000
-0.4000 -0.2000 -0.1600 -0.1200 -0.0800 -0.0400 0.0000 0.0400
0.0800 0.1200 0.1600 0.2000 0.4000 0.6000 0.8000 1.0000
1.2000 1.4000 1.6000 1.8000 2.0000 2.2000 2.4000 2.6000
2.8000 3.0000

38 4 = 4 coefficients per polynomial
39-71 The 33 coefficients (a); note that the first and the last one are

and should be zero to make the tail of the spline straight
0.0000 -0.0025 0.0125 -0.0498 0.2313 -1.8893 -0.0182 0.0707
-0.0462 -0.6001 -0.1527 0.1090 0.2125 0.3099 -0.2139 -0.3895
-0.2914 -0.0376 1.2279 -0.7687 -0.0677 2.6784 -0.8262 0.8618
-0.2869 0.0828 -0.0211 0.0055 -0.0019 0.0008 -0.0003 0.0001
0.0000

72-104 33 coefficients (b) ; again the first and last one=0
0.0000 0.0000 -0.0015 0.0060 -0.0239 0.1149 -1.0186 -1.0295
-0.9871 -1.0148 -1.0868 -1.1052 -1.0921 -1.0666 -1.0294 -1.0551
-1.1018 -1.1368 -1.1413 -0.9940 -1.4552 -1.4958 0.1112 -0.3845
0.1326 -0.0396 0.0101 -0.0025 0.0008 -0.0003 0.0001 -0.0001
0.0000

105-137 33 coefficients (c)
1.8088 1.8089 1.8086 1.8095 1.8059 1.8241 1.6434 1.2338
0.8304 0.4301 0.3460 0.2583 0.1704 0.0841 0.0002 -0.0831
-0.1694 -0.2590 -0.3501 -0.4355 -0.9253 -1.5155 -1.7924 -1.8471
-1.8975 -1.8789 -1.8847 -1.8832 -1.8836 -1.8835 -1.8835 -1.8835
-1.8835

138-170 33 coefficients (d)
-2.8266 -2.4648 -2.1030 -1.7413 -1.3795 -1.0174 -0.6631 -0.3753
-0.1692 -0.0430 -0.0274 -0.0153 -0.0068 -0.0017 0.0000 -0.0017
-0.0067 -0.0152 -0.0274 -0.0432 -0.1762 -0.4200 -0.7615 -1.1222
-1.5001 -1.8765 -2.2532 -2.6299 -3.0066 -3.3833 -3.7600 -4.1367
-4.5134

Note that the numbers above are given in the “short” format but that in storage the full
matlab number of digits is available of course. In the function cross_cut the interpolation is
performed on the complete pp-vectors . After that it has to be made sure that the integers have
retained the classification “integers” and that the straight tails of the spline are maintained.
For that we use the function rectify_Tss.m that is reprinted below. The comment lines
explain its working.
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function pp out=rectify Tss(pp in)

function pp_out=rectify_Tss(pp_in)

% function to rectify the Tss spline after interpolation.

% It is called with pp_in=the Tss spline obtained from the interpolation

% in cross_cut.m.

% Note that the function can only be applied to the spline format of Tss

% ------------------------------------------------------------------------

h=.2; h2=h*h; % the first and last interval have length .2

% ------------------------------------------------------------------------

% The coefficients for the first interval are:

a=pp_in(39);

b=pp_in(72);

c=pp_in(105);

% d=pp_in(138)does not change; c is corrected to make sure that

% after putting a=0 and b=0 the y-value at the end of the interval is kept equal

c=a*h2+b*h+c; % This is the corrected c

% now input the corrected a, b and c into pp

pp_out=pp_in;

pp_out(39)=0;

pp_out(72)=0;

pp_out(105)=c;

% Now we do the same for the last interval

a=pp_in(71);

b=pp_in(104);

c=pp_in(137);

% d=pp_in(170)does not change;

c=a*h2+b*h+c;

pp_out( 71)=0;

pp_out(104)=0;

pp_out(137)=c;

% Now we restore the integers

pp_out(1)=10;

pp_out(2)=1;

pp_out(3)=33;

pp_out(38)=4;

% end of function rectify_Tss

Arbitrary matlab 5 splines can easily be tranferred into other formats by extracting the
original x and y values using the function [x_out, y_out]=extract_from_spline(pp_in)
as listed below:

function [x_out,y_out]=extract_from_spline(pp_in)

% This function extracts the original x and y data from an

% arbitrary cubic spline in MATLAB 5 format

% The function does not use specific MATLAB spline commands

% Therefore it is easy to derive a new spline in any other format

N=round(length(pp_in)/5-1);

x_out=pp_in(4:N+4);

% find length and polynomial coefficients for last interval

h=pp_in(N+4)-pp_in(N+3);

a=pp_in(2*N+5);
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b=pp_in(3*N+5);

c=pp_in(4*N+5);

d=pp_in(5*N+5);

last_y=a*h^3+b*h^2+c*h+d;

y_out=[pp_in(4*N+6:5*N+5) last_y];
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Appendix B

Overview of matlab m-files

This appendix gives an overview of the various Matlab m-files discussed in the report. All
programs are available on the cd-rom. Below we print the first lines of each file; the text
is in general equal to what you get when typing ”help filename” in the matlab Command
Window.

These programs have been developed during various sessions over a prolonged period. In
hindsight the author noted that some of them could have been more efficient and clear. If
need arises improved versions may be made available on the website that is mentioned on the
CD-ROM. Questions and reports on errors from users will be highly appreciated.

Amplification

To calculate the N -factor for a given distribution of x, U , H and Rθ. In this program we
just calculate the N -factor. You may later introduce an ”effective turbulence level” Tu to
define the critical N -factor (Ncrit) to stop the calculation and switch to turbulent flow. In
that case you may want to do the N -factor calculation step by step together with the laminar
boundary layer calculation; it should not be difficult to adjust the program to your needs.
We have predefined some typical cases; you can easily add your own case. Here we assume
the laminar boundary layer to be known from a preceding calculation. After having built up
experience with this program you may want to reduce the range of frequencies, and/or the
number of frequencies within that range, to be used. At present this range is rather wide
to accommodate applications in the upper right-hand corner of the roadmap area. Please
observe the used frequencies in the detailed plots (figures 2 and 3). As soon as edge maxima
for the n-factor as function of frequency occur you need to adjust the frequency range. We
will denote the amplification factor as function of the frequency by n and the maximum
amplification factor as function of x by N . For further explanations see chapter 12 of the
report. Practical applications inserted into xfoil can be found in the Masters thesis of J.
Bongers (see report on the cd-rom). No attempt has been made to optimise the matlab
program. For routine (design) applications you may use an optimising (e.g. C-) compiler to
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speed up the computation. The present version of the program allows you to use either:

1. cross cut

2. cross cut fast

3. both versions in parallel

At each x-station detailed plots of T ·U vs frequency and n-factor vs frequency are provided
on request. Also the trace of the boundary layer in a ”roadmap” and the growth of N with x
may be followed. A companion program ”ampli” lets you run either cross cut or cross cut fast
without the detailed plots.

Ampli

Companion program to amplification.m (see that m-file for explanation). The present version
of the program allows you to use either:

1. cross cut

2. cross cut fast

Also the detailed plots at each x-station that were provided in amplification have been re-
moved in the present version. Therefore it is advised that when you experience problems with
ampli you rerun the case with the extensive version.

Arnal table 01 through Arnal table 15

The lay-out of all these files is the same as for Arnal table 01

Arnal table 01

Arnal table for icase = 1 (H = 2.216) The tables were scanned from Arnal’s publication as
described in the report. Note that from the array t3 we only used the data in columns 2 and
3. Therefore only these data were checked for scanning errors! Column 5 is equal to column3

Reδ∗
.

While reducing the tables to the final Tss splines the Arnal tables were run through several
programs. Each time with a different program for the actual step in the reduction process.
For our analysis we inserted m-files at various places to perform the calculations that were
needed in that step of our analysis



153

comp data base to Arnal

This m-file asks to input a series of icase values. At each cross section the Arnal values are
compared with the Tss data base using ”cross cut”. Also a comparison is made with the
parabolic fast approximation. by using ”cross cut fast” The user can just view the result or
may choose to stop and print the plot.

comp Hartree suc nosuc

We have earlier calculated 23 Hartree velocity profiles for a flat plate with various amounts
of suction and blowing. Results are in ”results” in ”Hartreetablezpg” See also table 4.1 in
the report. Note that number 1 is for very strong suction; this boundary layer approaches
the asymptotic suction profile (H = 2). We now find a corresponding Hartree velocity profile
with pressure gradient and no suction or blowing. The comparison can be made for equal l,
mT or H; the restrictions mentioned in the m-file should be observed. Otherwise an error
message may result. See chapter 4 of the report for details. Results for Hartree velocity
profiles without suction or blowing follow from the function ”find Hartree”

cross cut

Function to find the cross section in Tss form of the stability diagram for arbitrary values
of H (and hence of Rθcrit

) and Reθ. The m-file interpolates in a dataset that was derived
from Arnal’s tables by scaling and shifting in such a way that interpolation becomes easy and
accurate. See chapters 6 and 10 of the report. The value of 10log(Reθcrit

) is found from a
spline in 10log(H). In this way T can be determined for a series of frequencies at a certain
x-station. Repeating this procedure at a number of x-stations allows to compute the n-factor
for each frequency. At each x-station the maximum n-factor gives N . A trace of the stability
characteristics of the boundary layer can be plotted in a ”road map” by the calling program.
Sometimes the trace leaves the region covered by the Arnal data. It is advised to check this
roadmap to keep an eye on the credibility of the extrapolated stability data. The roadmap
shows a curve for N -factor=9 for the Hartree-Stewartson similar flows. These flows trace
horizontal lines in the road map. Observe that the curve for N = 9 is not necessarily valid
for non-similar flows. Make sure that in the main program the necessary stability data were
loaded by executing ”load datafile for n factor” Reθ should be given as a value for ”Rt” in
the calling program. Also the value of the shape factor H should be provided. The global
statement may contain more variables then are really needed for the present function because
we kept the globals the same for most m-files.
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cross cut fast

Function to find the cross section in parabolic form of the stability diagram for arbitrary values
of H (and hence of Rθcrit

) and Reθ. See chapter 11 of the report. The value of 10log(Reθcrit
)

is found from coefs for a spline in 10log(H). In this way T can be determined for a series
of frequencies at a certain x-station in the calling program. Repeating this procedure at a
number of x-stations allows to compute the n-factor for each frequency. At each x-station
the maximum n-factor gives N . A trace of the stability characteristics of the boundary
layer can be plotted in a ”road map” by the calling program. Sometimes the trace leaves
the region covered by the Arnal data. It is advised to check this roadmap to keep an eye
on the credibility of the extrapolated stability data. The roadmap shows a curve for N -
factor=9 for the Hartree-Stewartson similar flows. These flows trace horizontal lines in the
road map. Observe that the curve for N = 9 is not necessarily valid for non-similar flows.
Make sure that in the main program the necessary stability data were loaded by executing
”load datafile for n factor”. Reθ should be given as a value for ”Rt” in the main program.
Also the value of the shape factor H should be provided. The global statement may contain
more variables then are really needed for the present function because we kept the global
statement the same for a number of m-files.

extract from spline

This function extracts the original x and y data from an arbitrary cubic spline in matlab 5
format. The function does not use specific matlab spline commands. Therefore it is easy to
derive a new spline in any other format.

find Hartree

Find Hartree determines the (attached) Hartree velocity profile for given values of beta, eta-
max, bign and f”(0). These values should be taken from pre-calculated splines or tables so
that no shooting process is required.

Hartree zpg pg

The Hartree zpg pg.m M-file finds ‘the values of ”el”, mT and H for a Hartree profile with
pressure gradient (but without suction/blowing) with the same vale of ”el”, mT orH as for the
flat plate with suction/ blowing. The results of this program give support to some conclusions
made in chapter 4 of the report. We will be using two datafiles namely Hartreetablezpg and
Hartree pg. Hartreetablezpg contains the results for the flat plate with suction/blowing. See
chapter 4 of the report. Hartree pg contains the values of beta and f ′′(0) for the comparison
profiles for equal ”el”, mT or H.
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lagrange

function p=lagrange(x)

x=[x1 x2 x3 xi]

The function lagrange determines the quadratic interpolation coefficients p for 3 points

(x1,y1), (x2,y2) and (x3,y3); the points need not be equally spaced

The result y4 at xi is y4=p1*y1+p2*y2+p3*y3

lagrange 2d

lagrange 2d calculates the factors for quadratic interpolation in a set of 3 x-values for 3
different y-values. x and y come from a call in cross cut where x stands for r and y for
10log(Reθcrit

).

logF stability diagrams

This m-file generates stability diagrams in the form where frequencies are plotted as 10log(F ),
where F = ω·ν

U2 This form is better suited for extrapolations to higher Reynolds numbers. For
profiles with an inflexion point (icase > 6) the influence of Rayleigh instability starts to show
up; first at the higher Reynolds numbers. Rayleigh instability shows a slope=-1 for the upper
branch and for the axis. Note that this form can not be used for the lower branch at the higher
Reynolds numbers for icase > 6 because here omega < 0 and log(F ) becomes complex. Also
small irregularities near ω = 0 tend to be exaggerated when using the log scale; we accept
these irregularities; because they seem to be harmless. You can specify a series of values for
icase to be viewed. For the horizontal axis we use r =10 log(Reθ)−10 log(Reθcrit

).

make asuc diagram

This m-file is based on the results of ”make icase from 1.m” It is now assumed that the
scaled and shifted diagram for the asymptotic suction profile is equal to that for the Hartree
stagnation point profile. By de-scaling and de-shifting with the extrapolated values (using
the appropriate splines)we find the diagram.

make diagram for H

make diagram for H.m plots a stability diagram in classical form for an arbitrary value of H
using the database.
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make icase from 1

This m-file composes the stability diagram for an arbitrary icase from the diagram for icase =
1 (stagnation point). It is assumed that the scaled and shifted diagrams are equal for both
cases. This is a very good approximation for icase=1:6, because these are all profiles without
inflexion points. For icase = 7 : 15 there is an inflexion point and the approximation is
less good. By de-scaling and de-shifting with the scales for the chosen icase, we find the
diagram The results of this program suggested the making of the asymptotic suction diagram
by ”make asuc diagram.m”. There you may also find some additional information.

make table for H

This program generates stability data in tables for arbitrary values ofH and Reynolds number.
Results may be presented in terms of δ∗ or θ. When using δ∗ a comparison with the Arnal
tables is easy. The program uses the m-file function cross cut.m H = 2 generates results for
the asymptotic suction profile as presented in chapter 9 of the report.

N factor show

This m-file calls on a number of other m-files as an additional illustration of the text and
figures in the report:” A new eN database method for transition prediction” Programs and
report are on the cd-rom ”N-factor show” is discussed in more detail in chapter 13 of the
report.

plot roadmap

plot roadmap.m is used to trace the path of a boundary layer in the 10log(Reθcrit
) vs r

plane, where r =10 log(Reθ) −10 log(Reθcrit
). For each Arnal case the points representing

the cross sections through the stability diagram are shown by ”o” on a horizontal line. The
programs ”Amplification” and ”ampli” plot the boundary layer trace in this road map Values
for 10log(Reθ) are shown as straight dotted lines. Also the rgrid is shown along top and
bottom by +++++++. Note: in an external program ”datafile for n factor” should have
been loaded In a separate program we calculated the values of r (rN9) at which the N -factor
reaches the value 9 for the Hartree similar flows for which icase=constant and hence also
H and 10log(Reθcrit

) are constant This N = 9 curve is not necessarily valid for non-similar
boundary layers.
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plot stability diagrams

This m-file generates stability diagrams to compare the database results to the Arnal data.
Note the great similarity for the scaled and shifted diagrams when icase = 1 : 6. For these
cases the velocity profiles do not have an inflexion point. For profiles with an inflexion point,
that is icase > 6. the influence of Rayleigh instability starts to show up; first at the higher
Reynolds numbers. At the lower Reynolds numbers there is still a reasonable similarity. We
have used the observed similarity to extrapolate to H = 2 (asymptotic suction profile) and
to make a fast version of cross cut.

principles of stab diagr

This m-file generates stability diagrams in the classical form for 3 selected cases namely:
icase = 1 (β = 1); icase = 6 (β = 0) and icase = 11 (β = −.198838; that is separation) For
the profile with an inflexion point (icase = 11) the influence of Rayleigh instability shows
up at the higher Reynolds numbers. Although the program text is largely the same for the
three cases, we just repeated these parts for ease of programming, because the location for
the texts in the figures, titles, etc. are different.

rectify Tss

function pp out=rectify Tss(pp in)

Function to rectify the Tss spline after interpolation. It is called with pp in=the Tss spline
obtained from the interpolation in cross cut.m.

review scaling

This m-file shows the scalings and shiftings applied to the Arnal data to make the Tss splines
for the data base

review splines

Shows the various splines for the Arnal data and in addition the data for the asymptotic
suction profile that are known or extrapolated.

H = 2 (B.1)

Reδ∗crit
= 46270 (B.2)
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(from Hughes and Reid (1965))

Reθcrit
= 23135 (B.3)

MaxMaxT = .041(extrapolated) (B.4)
10log(MaxMaxT ) = −1.3872 (B.5)

10log(Ftop) = −6.7507(extrapolated) (B.6)

Note that Ftop is F at axis for the average top taken at rgrid(27) = 1
3 With ”log” we always

mean 10log.

review Tbar

First for all 15 icase values a plot is made of T
TMaxMax along the axis according to Arnal.

The result is compared to the analytical expression T = r · e(1−r) where r = r
rtop

. Note that
all T vs r are very similar and very well represented by the simple analytical expression.The
similarity is nearly perfect if we plot vs r = r

rtop
.



Appendix C

Overview of matlab data files

This appendix gives an overview of the various matlab data files used in the m-files that
are listed in appendix B. All files are available on the cd-rom. Some files may contain more
data than used in the present report. These have been used by the author in other programs.
When in the future a more detailed explanation of the files would be requested this may be
provided on the web site that is mentioned on the cd-rom.
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Table C.1: datafile for n factor
Name Size Bytes Class
ArH 1x15 120 double array
ArMaxMaxT 1x15 120 double array
ArNumberofReynolds 1x15 120 double array
ArRdstarcrit 1x15 120 double array
ArRtcrit 1x15 120 double array
ArTbar 15x19 2280 double array
Arbeta 1x15 120 double array
Ardomega 1x17 136 double array
ArlogFax 15x19 2280 double array
ArlogH 1x15 120 double array
ArlogRtcrit 1x15 120 double array
Arr 15x19 2280 double array
Arrtop 1x15 120 double array
Arscomega 1x15 120 double array
T Arnal 15x19 69524 cell array
Tbar 15x59 7080 double array
Tss 15x59 1285020 cell array
coefs log Ftop 300x4 9600 double array
coefs log MaxMaxT 300x4 9600 double array
coefs logcrit vs logH 300x4 9600 double array
coefs rtop 300x4 9600 double array
coefs scale 300x4 9600 double array
coefs slope left 300x4 9600 double array
domega saved 1x34 272 double array
logF neutral high 15x19 2280 double array
logF neutral low 15x19 2280 double array
logFax 15x59 7080 double array
logH vs logcrit spline 1x500 4000 double array
logMaxMaxT vs logcrit spline 1x100 800 double array
log Ftop spline 1x135 1080 double array
logcrit vs logH spline 1x85 680 double array
neutr Tss high 15x59 7080 double array
neutr Tss low 15x59 7080 double array
ome ax 15x19 2280 double array
ome neutral high 15x19 2280 double array

Table C.2: Hartree pg
Name Size Bytes Class
fsk beta 23x3 552 double array
fsk fpp0 23x3 552 double array
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Table C.3: Hartreetablezpg
Name Size Bytes Class
arbighzpg 1x23 184 double array
ardstarzpg 1x23 184 double array
arelzpg 1x23 184 double array
aretamaxzpg 1x23 184 double array
arf0zpg 1x23 184 double array
arfpp0zpg 1x23 184 double array
armTzpg 1x23 184 double array
arthetazpg 1x23 184 double array
results 23x6 1104 double array

Table C.4: results Iglisch 501 10
Name Size Bytes Class
H plot 1x127 1016 double array
Iglischtable 18x5 720 double array
N factor array Iglisch 15x127 15240 double array
bigh 1x144 1152 double array
rootx 1x144 1152 double array
rootx plot 1x127 1016 double array
tau 1x144 1152 double array
theta 1x144 1152 double array
theta plot 1x127 1016 double array

Table C.5: results PhD case
Name Size Bytes Class
Rc 1x1 8 double array
Rtetatemp 105x1 840 double array
Utemp 105x1 840 double array
bightemp 1x105 840 double array
stop station 1x1 8 double array
xtemp 105x1 840 double array

Table C.6: results Rheinb
Name Size Bytes Class
N Rc 1x1 8 double array
Rcred 1x1 8 double array
Rteta 1x202 1616 double array
U 1x202 1616 double array
bigh 1x202 1616 double array
x 1x202 1616 double array
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