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Abstract

To reduce drag on wings, aerodynamicists have long been trying to kedptmdary layer on the
wings laminar and to postpone transition to a turbulent boundary layer. hievacthis, laminar flow
control by means of boundary layer suction can be used. At the Deilfetsity of TechnologykroiL
has been adapted to design airfoils using boundary layer suction. Thisvés calledkrorLsuc. The
use of this design program was restricted because the transition paditdtjzne methods irxroiLsuc
could not predict the damping of disturbances in the boundary layer whetion was used. The
objective of this study was therefore to implement a reliable transition preditibinod intaxrorLsuc
that could predict transition for boundary layers with and without suction.

To achieve this a new databas®method was implemented inkeoiLsuc. This new method, dubbed
the ImprovedeN-method, was developed by Van Ingen with some assistance from thepaeseor.
It uses the solutions of the Orr-Sommerfeld equation as calculated by Araatlescribe the stability
diagrams for fifteen values d?g,,. These fifteen values ®Re,, represent boundary layers with
shapefactors between 2.216 and 35.944. As characteristic parameteoutidary layer shapefactor
is used to correlate arbitrary boundary layers teeq,, value. By scaling and shifting some para-
meters, the data is stored in splines suitable for interpolation and some exi@amldt was found
that when using the Improves!-method inxrorL due to the interaction between the boundary layer
iterations and the transition prediction, most solutions would not convergeethod using forced
transition was developed to remedy this problem. Using this method, coneergétthe boundary
layer solution is achieved withouffacting the accuracy. The Improvel-method was found to be
able to accurately predict transition in boundary layers with and withotiosuc

After the implementation of the Improvef method a study into the quality @forLs laminar bound-

ary layer calculations revealed that the shapefactor can sometimes beffa Gitnapared to a finite

difference method using the pressure distribution as calculateehin This has an impact on the
predicted transition point. Another problem is that for high suction velocitieskttapefactor can go
below the value of 2, which is considered erroneous. Further résgdocthis is recommended.

A case study concerning the DU99 airfoil, originally designed for the stiahclass ASW-28 sailplane,
was done using the Improvelf-method. For this airfoil a suction distribution is designed that results
in a 50 to 75 % reduction in drag in the low drag bucket, excluding the suctamn dhe suction drag

is excluded because it is highly dependant on the suctionsystem. Al€Q thevalue is increased
from 1.4 to 1.7. This airfoil is therefore well suited for further testing in adtimnel.
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Chapter 1

Introduction

1.1 Introduction

For a very long time aerodynamicists are trying to reduce drag on airplanéyibg to achieve
laminar flow over as large an area of the wings as possible. For the lowacsuat a not too high
Reynolds number, natural laminar flow is a good way of achieving almostaotaar boundary layer
flow. For the upper wing surface a combination of natural laminar flow anohétary layer suction
holds most perspective for achieving the same for wings with not too higlepwngles. Research
into boundary layer suction has been ongoing since the late 1930s. Tdystgipes to contribute
to application of boundary layer suction by providing a tool for analyzirgitifluence of boundary
layer suction to the transition point as well as enabling aerodynamicists tandedigjls for use with
boundary layer suction.

1.2 Previous work

1.2.1 Preliminary work on transition

The first person to see that boundary layer suction could have hungditsds Ludwig Prandtl [28]
in 1904. He saw in boundary layer suction a method of delaying separadigmoblem since the
formulation of the boundary layer theory is to predict transition from laminarrtmutant flow in the
boundary layer, a phenomenon first observed in pipe flow by Rey{®1§(d883). Orr [27](1907) and
Sommerfeld [40](1908), derived the equations for the analysis of snsalirdances in viscous par-
allel flows from the Navier-Stokes equations but were unable to find itistedccording to Herbert
[20]. In 1929 Tollmien [49] solved the Orr-Sommerfeld equation for the iBEf#ow, and calculated a
neutral curve, outside of which the laminar flow is stable. Schlichting [36PBBlcalculated growth
rates for the instable laminar fluctuations in the boundary layer flow. Also38 Sgjuire [41] showed
that the 3D problem of disturbances could be rewritten into an equivalemir@lem. This meant

1
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that the transition is governed (in parallel flows) by 2D waves, while theuteri fluctuations are 3D.
Rayleigh, Tollmien, Schlichting, Lin and others ([49], [37], [25]) deyadd the linear stability theory.
Linear stability theory considers a laminar boundary layer on which smallrbestges are super-
imposed. These disturbances can be damped or amplified, dependingflowthenditions. Taylor
[46](1936) objected to linear stability theory being connected to transitgine found that turbulence
in the free stream causes fluctuations inside the boundary layer anddbatdfuse local separation
followed by transition. In 1941 (some sources give 1943) it was fouaitttiis mechanism is not valid
for less than 0.1% turbulence in the free stream and the relevance ofdiabdity theory was shown
by Schubauer & Skramstad [38]. This was not published until 1947 dwartiime restrictions on re-
search publications. They experimentally showed the existence of thaled-€ollmien-Schlichting
waves in the boundary layer.

1.2.2 eN-method

Liepmann [24] found in 1943 (but due to war-time classification publishest #ie war) the idea of
using the criterion oA/Ag as a measure for the amplification, with the unknown but small initial
amplitude, andh the wave amplitude. If one solves the Orr-Sommerfeld equation for repldreies
to obtain the spatial growth ratg from the complex wavenumber = a; + i; then the amplitude
ratio is then given by:

o= In% = —xofa/@, w)dé (1.2)

More detailed information considering the Orr-Sommerfeld equation is givesedtion 2.2. After
this came the creation of tted-method for transition prediction (1956, Smith and Gamberoni [39],
and Van Ingen [50]). This method allows the part of the transition mechanigminear growth of
disturbances dominated by Tollmien-Schlichting waves to be predicted vekyAgethe growth of
the disturbances can be considered linear fidrm 0 up toN = 7, a large part of the entire growth
regime is approximated very well. The success ofdhenethod lies partly in that extrapolation into
the section with non-linear disturbance growth is only necessary in the sistgidet N > 7) of the
entire curve, when assuming a critieédfactor of 9. Initially it was called the®-method, due to the
fact that in many cases, in flight as well as in low-turbulence wind tunnihtgs criticalN-factor of

9 correlated well with the transition region. Later it was found that the cribidaictor was dependent
on (mainly) the free stream turbulence level, and that this factor shoulddmed to the flowcase to
which the method was applied.

The advantage of this method is it's fast calculation and ease of use. Bigades are the fact that
it relies on a good choice of the (empiric&ly,i-factor: the amplification level at which transition to
turbulent boundary layer is assumed to occur. The method is still veryjgndpday. The method was
used for boundary layer suction in [51], and a version capable ofilegilcg very limited amounts of
damping of theN-factor was implemented in an airfoil design progratmofLsuc) in 2002 although

it suffered some drawbacks. Since the discovery otthenethod in 1956 many advances have been
made in transition modelling, mainly in extending the method for 3D flowcases g@edszunic flows.
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1.3 Recent work atrup

The Department of Aerodynamics at the Delft University of Technolagyg more specifically the
Low Speed Aerodynamics section, has taken an interest in boundaryslagton techniques for
Laminar Flow Control for many years now. The main focus is to reduce byagsing boundary
layer suction as a tool to delay boundary layer transition and boundagy $mparation. Current
developments in hole-drilling techniques are taking away some of the mosirggsactical issues
connected with the use of boundary layer suction. Also advances iarckseoncerning boundary
layer suction (e.g. Sffens, [42]) are taking away barriers for the practical use of boynidser
suction. For instance advances have been made in estimating the maximum selctdity without
inducing transition and in hole drilling techniques that allow for many very smati@n holes without
compromising the wing structure. With these advances there comes a desinegicfoil design tool
that can cope with boundary layer suction. Using boundary layer sucticgxisting airfoils may
reduce drag andr increase performance. To study this phenomena and to be able to fadhhiEue
to practical use a software program is needed that is adapted for udeonritkary layer suction. The
effect of the boundary layer suction can be calculated with some of the existisgftware packages.
However theserp programs require the user to have expert knowledge of aerodynamicsiation
phenomena and are usually focussed on extensive analysis of théil@o their long calculation
time and time consuming pre- and postprocessing cycles they are also slosv ithesefore they do
not meet the demands which aerodynamic design programs make, sushiesd#ion cycles to take
into account changes fast and user-friendliness to knowledgeattetguite expert users.

To take full advantage of the benefits of boundary layer suction arilalefgign tool that can cope with
the aspects of boundary layer suction is definitely necessary. At thelwelfersity of Technology a
choice was made to adapt several programs to cope with boundary layiens These programs are:

e XFOIL, the 2D single element airfoil design program by M. Drela ([9D][112], [13]) of mr,
the modified version for boundary layer suction was nagred.suc. This version however was
incomplete as the transition routine could predict only very limited damping oNtfector,
which is the main driver behind the wish for such an adapted program.

e MSES, the 2D multiple element airfoil design program similar to XFOIL also by k&l®([9],
[11])of mrT. This program has the same drawback asthea.suc, only very limited amounts of
damping of theN-factor can be taken into account.

e xSoaring a sailplane performance program developed at the Low $pbedatory (st) at the
pur ([17], [22], [47])

Adaptation of these programs for boundary layer suction has beenngngimce 2002 by several
workers([1], [14], [17], [22], [47], [48]). The focus of tha@sent study is ORForLsuc.

In 2004 two transition methods were presentiniLsuc. One being the original version by M. Drela
[9], which is an envelope&N method, and a fuleN method, originally written by Van Ingen and
implemented by Ferreira [14]. This method is based on Van Ingénsethod as described in [50] and
[51] and was further developed over the years. Presently proflngen is working on an overview
of his 50 years involvement with theé'-method. This overview will end with a new database method.
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The present author assisted prof. Van Ingen in the new developnénbatd consult a draft version
of this new method. More about the new method will be explained in chapterddn Rere theeN
method as implemented by Ferreira in 2002#0rsuc will be called the Van Ingen method. To avoid
confusion the method implementedxiroiLsuc in this study (the new database method) will be named
the ImprovedN method.

In Broers [1] deficiencies were found in both transition methods pregehe time inxroiLsuc.

e The standardroiL transition method by Drela is not able to predict decreasing amplification
factors that may occur when boundary layer suction is used. When sustised the Drela
method can not cope with a growth rate of anything less than (or even &quadro. In the
Drela method always a very small mimimum growth rate of N is used (see figureuhléss
the Re is below theRg,,, then theN-factor is kept constant. Never willld occur at which

the amplification rate%%‘) will be less than zero. Obviously this is not correct as damping will

occur in a stable boundary layer.

e The full N method by Van Ingen as implemented by Ferreira [14] does not have thbaltkh
of not being able to calculate negative or zero values of the amplificationaltteugh these
negative amplification rates can only be quite small in this method. So the methpdechct
a decreasing N-factor, but has another flaw with regard to using it asigrdtool in airfoils
employing boundary layer suction. The curve used in determining whethdiotimdary layer
is stable or not, th&e,,, — H curve, cannot cope with a boundary layer in whichReg-value
is smaller that th&ey,, , if this happens, an amplification rat%'ﬁO of zero is given.

1.4 Objectives of present study

With the problems in transition prediction k¥oi. as mentioned in the previous section (1.1) objec-
tives for the present study can be formulated. The main objective of thly &tu

To implement an improved transition region prediction method in xrorLsuc that achieves
reliable results for boundary layers on airfoils with and without boundary layer suction.

Connected with this 2 sub-objectives can be formulated:

e To make a comparison between the newly implemented transition regioprediction method
and the ones already present irxrorLsuc.

¢ A short practical study to recalculate the airfoil performance of an airfoil using boundary
layer suction and that is designed with the older transition region preliction methods.

Fulfilling the main objective should enable aerodynamicists to take full advarmtfthis study and
of earlier work done omrorLsuc, as up until now the limiting factor in designing for boundary layer
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suction was the transition region prediction method. Fulfilling the sub-objsagives further insight
in the quality and user-friendliness of the newly added functions.

1.5 Approach of present study

This study will use as the new transition region prediction method the improvebaeéy Van Ingen
[53] of the eN-method (Smith and Gamberoni [39] and Van Ingen [50]) This improvedieerof

the eN-method was developed by Van Ingen, usingras [58]. The new method will be a database
method that uses a set of stability diagrams calculated by Arnal [4] foriassef Falkner-Skan
boundary layers. The later phases of the development afithe.s code were performed by prof.
Van Ingen concurrently with the work of the present author on the impleriiemta Fortran 77 for
inclusion inxrorLsuc. Some suggestions for improvement by the present author were implemented in
both themarLas and Fortran version of the method, after preliminary tests revealed sonte flde

in xrorLsuc implemented version of this code (written in Fortran 77) was made by the preasor
based on therarLas version and dters in some respects due to th&elient programming language
used. The function or results of both versions of the method do ffet.di

So first the improve@N transition method was implemented intiLsuc. Then some modifications
were made to theromsuc program to maximize the functionality and ease of use. Then the method
was extensively tested, which revealed some areas in which improvemeneeded, notably in the
convergence of the boundary layer solution. Resolving this, a validatimly svas made, to prove
that the method implemented imorLsuc is the same as thearLae method. As thisuarLas method

is proven to handle the data taken from Arnal ([4]) correctly, the same libéds for thexrorLsuc
implementation. This validation is done using 7 test cases. After this is doneyaistugde of the
possible errors introduced by the boundary layer calculatiorsoiimsuc. The variables used for input

in the improvedeN-method are then also generated using a finifeedince method developed by
Van Ingen [52]. After this the results of the improvedmethod are compared for these two sets of
boundary layer variables. Then a comparative study is made betweearb#itm methods present

in xrorLsuc. This being the Drela method, the Van Ingghmethod and the newly added Improved
eN-method. A study of the first two was already done by Ferreira [14] aneB [1].

As a final exercise a previously designed airfoil using boundary layetion is evaluated. It was
designed using the Drela and Van Ingen transition methods, and now usitighovedeN-method

the performance is re-calculated and a new suction velocity distributionigngels Also the newly
added functions and routines imorLsuc are evaluated in this way to ensure user-friendliness and
functionality of the added features.

1.6 Outline

In chapter 1 an introduction into the subject of this study is given, along wghnamary of the
previous work done on this subject by other workers. Also the objectif¢his study are given in
this chapter. In chapter 2 an introduction into the theory of the subject sepied, including some
elements of the potential flow, boundary layer theory, the linear stabilityyhter classi@N-method
and the finite dference theory. Chapter 3 will explain the Improe¥dmethod. In chapter #ror. and
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the present state aforsuc will be discussed. Chapter 5 gives a description of the modifications made
by the present author tarorLsuc in implementing the improvedN-method. In chapter 6 a validation
study is made to see if the results given by #hemethod inxrorsuc correspond with the values
generated by thearLas version of the method. Also in this chapter a short grid convergence study
is presented. Chapter 7 gives the results of a comparative studymfuc and a finite diference
method by Van Ingen to compare the boundary layer solutions of both meéimoldtheir éect on

the transition point prediction. In chapter 9 the results of a case study)uegigning a suction
distribution for an airfoil is made. This is done on the DU99 airfoil that wasigieed especially for
boundary layer suction but which suction distribution was designed withltlee transition methods

in xrorLsuc. Chapter 10 will give the conclusions and recommendations that followtinanstudy. In
appendix A a user guide for usersxabiLsuc is given, providing future users some explanations and
practical information on the new functions in the program. Appendix B divesused airfoil grids

and appendix C gives additional figures that were made in the validatiop btuchot included in
chapter 6.



Chapter 2

Theory

As in the next chapters some concepts and theories will be used withoilédétdormation to go
with it, some basic theory will be introduced here.

2.1 Boundary layer equations

2.1.1 Navier-Stokes equation

For two dimensional incompressible viscous flows the fluid properties areriged by the Navier-
Stokes (by Navier [26] and Stokes [44], here taken from White [5{)ations, together with the
continuity equation. Omitting the body forces these equations can be writtar2fdimensional flow
as follows:

@+u@+v@ = _}a_erV @+@ (2.1)
ot ax 9y pox X2 Oy? '
oN v v 10p v v
— fU— +V— = - gy — + — 2.2
at TYax Yoy p8y+v(8X2 " 6y2) 2.2)
ou  ov
e = 2.
Ix + Py 0 (2.3)

In this equations 2.1 and 2.2 are the momentum equations in respectively xdiedtion. Equation
2.3 is the continuity equation. The notation is as commonly used, wharelv are the x and y
components of the velocity is the pressurep stands for density, andis the kinematic viscosity
codficient. The Navier-Stokes equations anidilt to solve for any but the most simplest geometries.
For flows with high Reynolds numbers, with the Reynolds number definedtas 2

c

«C

Re= (2.4)
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(with c a characteristic lenght, for instance airfoil chddd, the freestream velocity, ands the kine-
matic viscosity cofficient), a thin layer near the wall exists where the tangential velocity deseas
from the free stream value at a small distance from the wall to zero at thewvtace quite rapidly.
This region is called the boundary layer.

2.1.2 Prandtl's Boundary-layer Equations

In 1904 Prandtl [28] simplified the Navier-Stokes equations to form afdmiundary layer equations.
The boundary layer equations for steady flow along a plane wall are:

ou  du 10p &4
UE( + VE/ = —;& + Va—yz (25)
ou  ov
i = 2.
Ix + ay 0 (2.6)

The continuity equation is untouched by Prandtl’s simplifications, but the y-mameequation has

been reduced to: 5
p
M _ 2.7
3 27)
So that

p=p(X) (2.8)

The observation made by Prandtl was that the pressure is a knownlgami@loundary-layer analysis,
with p = p(x) impressed on the boundary-layer by the inviscid outer flow.

The boundary-layer equations only hold for flows where the bouri@ger can be considered thin
with respect to the reference length scale (such as flat plate lengthati&gtgi2.5 and 2.6 are also
valid for curved surfaces, where the boundary-layer thickness il aiitla respect to the radius of
curvature of the surface and the change in curvaggremains small. Because the assumption of a
thin boundary layer is only valid at high Reynolds numbers the boundagy é&guations are also only
valid at high Reynolds humberR¢, > 1000, according to White [56]).

In Schlichting [6] the following observation is made: Outside the boundasrldne velocity gradient
‘g—;‘, can be neglected en therefore equation 2.5 reduces to

du 1ldp
u—=_=--F 29
dx p dx (2.9)
using this, 2.5 can be written as:
2
ou ou UdU o°u (2.10)

U&-}-V@: &-I‘Va—y2

Together with the continuity equation 2.3 this equation determines the developftbetboundary
layer flow downstream of an initial station= Xy when the velocity profile at = xg is known. The
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following boundary conditions should be accounted for:

y = 0: u=0,v=vy(x (2.11)
y — oo u—-Uu (2.12)

2.12 implies that the suction or blowing that occurs on the wall is usually asstarbedstrictly normal
to the wall.

2.1.3 Similarity Solutions

Equations 2.3 and 2.10 are partiaffdrential equations (PDE) that in special cases can be reduced to
ordinary diferential equations (ODE) using the idea of similarity of boundary layer fl@irsilarity
means that the velocity profiles at all stations x can be reduced to a singéelpuscaling the y and

u variables with scaling factors depending on x. Similarity can only be adhieva limited number

of (free stream) velocity distributions. There are a number of similar boyrdgers, of which 3 will

be looked at closer here:

e The flat plate flow by Blasius
e The wedge flow by Falkner-Skan

e The asymptotic suction boundary layer

Flat plate flow
Blasius [5] introduced the scaled variable

=Y 92X (2.13)
X v

The stream function can then be written as:
Y = VwUxf(n) (2.14)

where fis a function to be determined. With the stream function definedessipns for u and v are:

5
u = —a”';=Uf'(n) (2.15)
_ w1 U 9 ¢,
= o=\ [ \/vXUaXf(n) (2.16)

Substitution ofu andv into equation 2.10 yields:

i

£+ 5f7 =0 (2.17)
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This is the classic Blasius equation, which has no exact solution in closad ot can numerically
be solved by for example a shooting method such as the Runge-Kutta method.

Wedge flow

For wedge type similar flow the free stream velocity distribution can be written as
U =ux™ (2.18)

The non-dimensionalised scaled variabis:

g U (2.19)
X v

and the stream function becomes:

Wxy) = || 1) (2.20)
u and v can again be denoted as follows:
_ 9
u = ay (2.21)
_ 9
= -5 (2.22)

and by combining 2.19 and 2.20 u and v can be rewritten as:

u Uf'(n) (2.23)
m+1 m-1

m+1

v vup X1 f 4 nf’ (2.24)

where primes denotefiierentiation with respect tg. Now the boundary layer equation reduces to:

f”’+mT+1ff”+m(1— £2) = 0 (2.25)
with 5
m
p= (2.26)

Equation 2.25 is a rewritten form of the Falkner-Skan equation. For alfisg 8 = 0) the equation
reduces to the Blasius equation.

Hartree [18] solved the Falkner-Skan equation numerically for sevahaés ofs. Forg > 0 always
only one solution exists. Fg < 0 an infinite number of solutions exist. Hartree defined a condition
(now called the Hartree condition) that the correct solution of the Fal®kan equation is the one in
which the velocity in the velocity profile goes most quickly to 1 without oversh8tewartson [43]
showed (with complying to the Hartree condition) that there were also solutithdackflow near
the wall forg < 0.
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Asymptotic suction boundary layer

This similarity solution is special because it not only gives a similar velocitylprafidiferent values
of x, these profiles are even identical. This so called asymptotic suctiordbgulayer occurs on a
flat plate with constant suction velocity\p) for x — co. The velocity profile can be found by looking
for a solution of equations 2.5 to 2.8 that is independent of x. For equaahi2 gives

ov
—=0 2.27
% (2:27)
So thatv will be constant and equal to a valug Then with equation 2.5 this gives the following for

the velocity profile:

=1l-ev (2.28)

From 2.28 the following values are found (irrelevant of the actual magaitdigy, as long as/g or x
is suficiently large) :

—Vpo* B —Vob _

=1 and 0.5 (2.29)
so that:
H:%zz (2.30)

Hence a shape factét of 2 can be seen as the asymptotic limit for flows with boundary layer suction.

2.2 Linear Stability Theory

After having looked at the boundary layer equations we now take a Idbk &finear Stability Theory.
The Linear Stability Theory is a way of predicting the growth of disturbamteaslaminar boundary
layer. For a large part (from the first instability to abdut 7) this growth has a linear character. In
flows with transition dominated by Tollmien Schlichting waves ([49], [36]) thisdingrowth plays a
major role in the transition process. By accurately predicting the amplificatidistefrbances a good
estimate for the point where transition occurs, is acquired. The basiswihba Stability Theory is

the Orr-Sommerfeld equation which was derived from the above mentioaeiéiNStokes equations
2.1.1. The derivation goes as follows:v and p are assumed to fluctuate about their respective mean
values (1, v, p) so that they can be represented as:

[am!
Il

u+u(xy,t)
V(X y.t) (2.31)
P(X) + P'(X. Y, 1)

T <
Il



12 Theory

Then 2.31 is introduced into the Navier-Stokes equations at 2.1, 2.2 anch@.Bese equations
are then linearized. If one notices that 2.1, 2.2 and 2.3 hold for both thelmkstand undisturbed
equations and one eliminates the fluctuating presguitee following equations can be written down:

U oV U oV d%u Fu Fu BV Vv
- +u - +V—=v + - - (2.32)
otdy  otox oxgy  0x? 0y? ox20y  0y3 X3 Oxoy?
o ov
— =0 2.33
0X " oy ( )
If then a periodic disturbance is assumed with the following stream function:
WX Y, 1) = p(y)e @A) (2.34)
with: o oy
Y d v=-2 2.35
u ay an X ( )

the continuity equation is satisfied. For some time the temporal stability theo@a(,,_gcomplex)
was used but the spatial versiandomplex,3 real) has proven ([15]) to be more representative of the
transition problem on airfoils. Despite the fact that the origeamethod used a temporal approach
that was transformed into the spatial form, here the newer approachgftbe spatial approach right
away, is introduced. For the spatial versj@iis real anda is complex ¢ = a; + ia;j), so that the
wavelengthl = % (asp = Br = w) and for the frequency = 2. In this «; determines whether the
disturbances are unstable, neutrally stable or stable; this correspepdstively to a positive, zero
of negative-q;. Furthermore use is made of the propagation sgeétsing equations 2.32, 2.34 and
2.35 and nondimensionalising using:

g=4.  y=V —a0: c=2CS. _
u=a: y=7g @, = ab; c=7 ¢ Us (2.36)
The following equation is derived:
— ” 2 =7 —I 277 2 417 4
u-c —asp|-U'¢ = - 205¢" + a; 2.37
-0 [¢” - 2| - oRe) & ¢+ ale] (2.37)

Equation 2.37 is known as the Orr-Sommerfeld equation([27], [40]). Girte reasons for this
equation being diicult to solve stems from the right hand side, as due to the Reynoldsnumber a
large codficient is paired with the highest derivative of the equation. The non tidakitions of the
resulting eigenvalue problem form the basis of the Laminar Stability Theory.

2.3 &N method

From the Orr-Sommerfeld equation the value that determines amplification or damping of dis-
turbances can be calculated. An equation can be derived that gakiergsowth or decay of these
disturbances. It follows from the stream function as displayed in 2.34.ahhplification ratio of%
whereag is the amplification at coordinate can be displayed as:

d(In(a)) = —a; dx (2.38)



2.3eN method 13

a
In (%) - f—ai dx (2.39)

or in integral form:

or in different notation:

%:e(ra where: o-a:f—aqu (2.40)

X0

Whereo, is an older notation for the amplification factor, which is later renaied’hen equation
2.40 can be nondimensionalised to:

X
U —
Ta= C-l(TG-fTde (2.41)
4
%
with: 0

T=—-.10° 2.42
= (2.42)

andx = £ with ¢ a constant reference lenght (in airfoils usually the chord) and T the acayiiifin
rate. T can be calculated as a functionxdbr a given value of the frequency if the velocity profile
and% are known functions ok. To calculate the T using th& method, the stability diagrams for
the specific velocity profile would have to be known.

Many versions of the&N method exist since its discovery by Smith and Gamberoni [39] and inde-
pendently by Van Ingen [50]. Eerent versions exist using sometimefatient stabilitydiagrams to
calculateT (and thus ther or N factor). The first version (1956) by Van Ingen employed the stability
diagrams by Pretsch([29], [30], [33]). The second version (1866d still only the Pretsch diagrams,
but to widen the application of the method to include suction profiles the assumny@somade that all
possible stabilitydiagrams with arbitrary pressure gradient and suctiondayne parameter family
with the critical Reynolds number as a parameter. Later on more stability diagrarasncluded in

the method([23], [45], [54]).

For some time the criticdll-factor was assumed to be constant at values between 7 and 10. (a value
of 9 is still often the default criticaN-factor in many computer applications) The critid&lfactor
however depends on the flow parameters such as turbulence spectharfreestream. A workable
method was derived assuming that the critical valull ¢br o) at which transition starts and ends is
influenced by the freestream turbulence levial {(n %) in the following way (from [19]):

2.13-6.189%0g(T u) (2.43)
5—6.18%0g(Tu) (2.44)

N1
N2

with Nz the value at which the transition region starts &hdvhere the transition region ends and the
boundary layer is fully turbulent. The freestream turbulence level atomet suficient to describe the
variation of theN-factor with all possible disturbances. This is due to the fact that not &llikeince
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will influence the transition region (due toftérences in frequency), and moreover not all disturbing
factors may be included in the freestream turbulence level. Most importanthetietivity of the
boundary layer to disturbances originating from outside the boundagy lbay also the sound level are
not included in the regular turbulence level but both do indeed influercitiation of the transition
region. By using anféective Tu-level a better correlation can be achieved. This can be ddfine
comparing the measured and calculated amplification ratios. The chtitadtor will then become a
parameter that represents the flowquality of a windtunnel.NHfigctor should not be seen as a magic
number but be treated as a factor to bring into agreement experiments and the

2.4 Finite Difference Method

Apart from integral relations (of which some will be discussed in chaptéordthe boundary layer,

a numerical calculation can be made by means of a finfferdnce method. The finite feérence
method discussed here is one made by Van Ingen and an earlier versios rokthod can be found

in [52]. The calculation method remains in principle unchanged, howevamtite recent version
used in this study employs a Richardson extrapolation to reduce the eertw the grid spacing. The
basic idea behind this finite flierence method will be briefly discussed here. It should be noted that
only the laminar form of this method is discussed because in this study it will @yged for laminar
boundary calculations. A turbulent form can be made using the eddysitgomncept. The form of

the boundary layer equations used in this method is developedhiied16] and is the same as used

in the Smith and Clutter method:

M+1

f”’+Tff”+M[l—(f’)z]:x[f (2.45)

OX X

=Y 9% (2.46)
X 14

When the streamwise coordinate x is divided in a 1D non-uniform grid anplcar form discretiza-
tion is used (figure 2.1) for an arbitrary varialyjene can expresg% at pointxmy in the valuegym,
Om-1 andgm-2 as follows:

oA

in which the following scaling is used:

9
(a—g) = CoOm + C10m-1 + C20m-2 (2.47)
X m
with:
_1.1
T dy ds
ds
= - 2.48
C1 didp ( )
d;

The 2-point approximation, shown in figure 2.2, which is used in the staftiine @alculation can also
be expressed in the three point form as shown in equation 2.47 but mogvaggTicients as shown in
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Om
Om
1 9gm
Om-2
Om-1
Xm- Xm- X
Zd2 | 1 dl m - ’
[
da g o
|
Figure 2.1: 3 point approximation Figure 2.2: 2 point approximation
2.49:
_ 1
Co = &
1
T = —— 2.49
L= g (2.49)
C = 0
Then:
of
-_— = Cofm + C1 fm—l + C fm—2 (250)
X/ m
af, ’ ’ ’
X = Cofp+cifr +cofr (2.51)
m

and introducing these equations into equation 2.45 leads to:

M+1

fir +{ =5 fm + CoXfim + C1Xfn-1. + CoX fn-2 o+ [—cax iy = caxfr 5| Tt M=[M+coX](f)? = 0

(2.52)

This equation can be linearized and reduced to a linear, second offéeeidiial equation written as:

U’ + S1ll, + [S2 + 20mS3] Um = =M + (0m)? S3 (2.53)
with:
M+1
S = 2+ fm + CoXfm + C1Xfme1 + CoXfine1
Sz = —C1Xl7m_1 - CzXle_z (2.54)
S3 = —-M—-cpx
and when writing:
P = S1
Q) = Sz+20mS3 (2.55)
R(7) = —M+ (lim)*Ss
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the equations can be putinto a 3-diagonal system of equations, easdd §githe Thomas algorithm.
The Thomas algorithm solves a tri-diagonal system of equations by clupthgilsystem into an upper
bidiagonal system. This is done by changing the main diagonal term and théaigd side of each
equation. Then the last equation of the system will be solvable, as it ha®oralynknown. From

that the other equations can be solved. A good and detailed descriptica Dfidimas algorithm can
be found in [3].

To decrease the error due to the spacing of the points through the plangr at which the solution
is obtained, a Richardson extrapolation is used. This was not used in iteeditterence method
described in [52]. In this method any three grids can be used as long etitht the coarsest grid
are 2 and 4 for respectively the second and third grids. The authdrfaisthe first and coarsest grid
201 evenly spaced points resulting in 200 intervals. The second gridston$ 401 points and the
third of 801 points. By decreasing the cell size by a factor 4 and apply@RBithardson extrapolation
twice, the order of the total method is increased fitgrto hf. The formula foru using the Richardson
extrapolation is as follows:

64us(4n — 3) — 20ux(2n - 1) + uy(n
Uextrap = 4 ) 452( )+ () (2.56)

In this us stands for thes as calculated in grid 4, and so on. Please note that in using splines in this
method these splines are the limiting factor in the numerical accuracy.

2.4.1 Solution procedure

The solution procedure is such that at the start for the first point a &alkkan profile is assumed.
From equation 2.52 it follows that at = 0 the right hand side is taken out of the equation and
the solution starts as a member of the Falkner-Skan family. For the secoridimsame Falkner-
Skan velocity profile is assumed. This can also be explained using 2.5&, xasfsmall, and if the
behaviour of the righthand side term is regular, the solution will be nearlgahe as that fox = 0.
For airfoils this method is accurate enough, for some other cases a sduitssnearx = 0 has been
derived. From here the 2-point form can be used to acquire the thind @od from that onwards
the three point form is used. For every station a first guessifoior the start of the iteration is
made. For the first and second point this is the value supplied by the stamtifilg pnd for the third
point a linear extrapolation from the first two points is used. From the thingt pmwards a linear
extrapolation based on the two previous points is used. This approximaticenisniproved by the
iteration process.

The skin friction is determined by:

0 217(0)

U ux
v

f”(0) is used to characterize the wall shear stress as a functionfd¢f(®) is determined by fitting a
fourth degree polynomial through the 5 points closest to the wall. The otherdary layer variables
(6,0 andH) are determined from the calculated velocity profile. A check is performedsice sure

Ci =

(2.57)
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that in the next step no separation will be encountered, because dueGoltistein singularity no
accurate boundary layer solution can be acquired there. In this methegquheed value ofg is used
to ease the extrapolation tg = 0. The separation point is approached using small stepsind by
making surerg > 0.0001.
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Chapter 3

The improved eN method

3.1 Introduction

In this chapter the newly made improveld method will be discussed. This method has been devel-
oped by prof. Van Ingen with assistance from the author. Like similarldereents the method did
not emerge suddenly in it's present form but has been the result okarthat evolved due to new
insights and elaborate testing and will continue to do so. In this procesefreqommunication and
cooperation between prof. Van Ingen and the author, while simultaneimyslgmenting and testing
the new method in dierent programming languages, has led to the method in it's present form. The
full description of the method can be found in a yet to appear publicatiorrddy pan Ingen. The
following chapter is based on information from a draft version of the patiia [53] by Van Ingen
and from many private conversations between the author and prof.ndgam. References to this
article refer to the draft version where the improv@dmethod is discussed in full. Here the new
method will be discussed in a slightly more condensed form.

3.2 Characteristic parameter

In Van Ingen [51] the working hypothesis was made that all stability diagreansbe assumed to
form a one-parameter family with the critical Reynolds numisa, (., with as reference length the
momentum thicknes) as the parameter. Some supporting arguments were given in [51], tilese w
be reproduced in [53]. ThRe,, value is the lowest value dke for which one or more frequen-
cies become unstable. The critical Reynolds number was related to a suitablpdrameter of the
velocity profile, using Lin’s approximate formula [35]. Now aférent characteristic parameter is
sought to correlate an arbitrary boundary layer to this critical Reynaldsber in order to find the
corresponding stability diagram. Only then can one calculate the amplificatidistafbances and
the transition point for an arbitrary boundary layer. In the first versicthe eN-method only stability
diagrams were available for the Hartree solutions of the Falkner-Skatiequ At that time, a cor-
relation was made betweg@granda (from the Pohlhausen method) to correlate the stability diagrams

19
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made by Pretsch of the Hartree boundary layers to other boundarg.ldyethe improved method
more stability diagrams are available, and becgias the characteristic parameter does not allow
suction profiles it cannot be used here. Many workers have usecbety profile shape parameter
H to correlate with the critical Reynolds number. Some research was dond tlfigiter parameter.

The Orr-Sommerfeld equation found in 2.37 depends highly on both theityefwofile as well as
the curvature profile of the boundary layer as can be seen from déinelu” present in the left hand
side of the Orr-Sommerfeld equation in 2.37. Also it is visible in the stability diagasresvelocity
profile with an inflection point has a finite value for the amplification raté&kes — oo while the
amplification rate goes to zero when such an inflection point is absent.

The shape factor is known to correlate well for the velocity profile, buttieesome uncertainty about
it when the curvature profile is considered. Could perhaps a paranwteected to the curvature
function as the correlation parameter? Starting with the curvature it will bershere that using the
curvature profile is inadequate for this use. The nondimensional cuevand slope at the wall are

denoted by
azﬂ (aﬂ
mr =|— ; l={—= (3.1)

In figure 3.1 a graph (taken from [52]) shows the Hartree paramketerdmy. In the graph it can be
seen that the Hartree curve for has a range smaller than necessary to account for other boundary
layers such as occur fo&f = 1 — X". Therefore usingn as the characteristic parameter is not possible,
as it simply cannot account for all occurring boundary layers.

-.15K~ Lot '
10 \\E \

05 F=1-§” na N2 87
| =1

-100 =075 -050-025 0 .025 QS0 .075 .100 .125

Figure 3.1: m vs | for Hartree andi = 1 - X"

As an alternative for the curvature then the shape parameieconsidered. It has been used already
in this fashion and there is some support for using the shape parameterchsithcteristic parameter.
This gives good correlation for the velocity, but the quality of correlatiamisnown for the curvature
profile. When using the boundary layer equation in the form of 2.10 aingd tise continuity equation
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2.6:
ou  ou du ¢4
Ua—x +Va—y = Ua +Va—y2 (32)
ou  ov
—+— =0 3.3
X " ay (3.3)
and one wants to focus on the wall curvature, using
y=0 u=0 V=V (3.4)
then equation 3.2 becomes:
au du d°u
ol =V (57, .
if this is non dimensionalised with:
_ u _ .y _(ou _(d%u _ 62dU Vb
=0 y=% I_((?);)o m_(ﬁ)_/;)O K= v dx W=7 (3.6)
This leads to:
w-l=K+my (3.7
which means that without suctiow & 0):
6% dU
mr = -K = —73 (38)
and if one diferentiates 3.2 with respectyand uses 3.3, one finds fpr= O:
62u) (83u)
vol— | =v|l— (3.9)
(5)’2 0 Y3 o
so that: ,
d°u
()
This means that:
a%u .
— | =0 , forzero suction (3.11)
Yo

This means that the third derivative ofto y is always zero for boundary layers without suction,
irrespective of the pressure gradient. Then the curvatuwdl have a vertical tangent when plotted in
am,y diagram. With this in mind, some suction boundary layers are observed. &sample a series
of solutions of the Falkner-Skan equation is created for the boundagy lefocity and curvature
profiles using a flat plate boundary layer with suction and blowing. 22 sktkelutions were created
in the range oH-values from 2.2 to 4, thus comparable to the full range Hartree profitesrdsults
compare very well, when the value is made to be (nearly) equal. The exact valugd &r both
the Hartree solution with suctigmlowing and with the pressure gradient for 4 representative cases
are shown in table 3.1 The velocity profile looks very similar, and maybe evea important the
curvature profile is very similar in a large region as well. The only appréxidiference is in the
curvature profile near the wall, and thigfdrence gets increasingly larger for larger valueslofAs
was shown, the third derivative afwith respect toy is zero for non-suction boundary layers and can
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be non-zero for suction boundary layers. How thigatence in curvature close to the wall influences
the solutions of the Orr-Sommerfeld equation and therefore the compafisba stability diagram
is as yet unknown. Specific calculations solving the Orr-Sommerfeld equitioboth curvature
profiles (for a number of cases) can provide an answer to this, but floisrid to be beyond the scope
of this study. 4 representative cases from the 22 studied can be seguorgsfB.3 through 3.9 of
which the first four figures show velocity plots of cases 6, 17, 20 ana22 the latter four show the
curvature plot of these cases. As case 17 represents the flat platection or blowing is applied.
The great similarities in both the velocity and curvature profiles strengtheraseefor usindd as the
characteristic parameter, which will be used as such in the Impre¥edethod. Figure 3.10 shows
the correlation betweetlog(Re,,) — H. The curve is made up from*qlog(Re,,, ) of 4.3642 for

H = 2, as calculated by Hughes [21] and 15 values'fog(Re,,) for 15 different shapefactors as
calculated by Arnal ([4]).
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Table 3.1: H for Hartree solutions

case #| H pressurel H for suctionfblowing employed on a flat plat
6 2.2696 2.2696
17 2.5911 2.5911
20 3.0909 3.0909
22 4.0995 4.1010
25 T T T T
flat plate with suctioriblowing
—+— Hartree with pressure gradient
201 .
I>
10
5 -
0 | | | |

0 0.1 0.2 0.3 0.4 0 0.6 0.7 0.8 0.9 1

5
u

Figure 3.2: Hartree case 6, velocity
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25 T T T T
flat plate with suctioriblowing
—+— Hartree with pressure gradient| |
20 =l
151 I
> 1
101 T
5 L
0 | | | | | | | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
u
Figure 3.3: Hartree case 17, velocity
25 T T T T
flat plate with suctioriblowing
—+— Hartree with pressure gradient
20 b
181 1
>
10 1
5
O | | | |

.5 0.6 0.7 0.8 0.9 1
u

Figure 3.4: Hartree case 20, velocity
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Figure 3.5: Hartree case 22, velocity

25
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flat plate with suctioriblowing
—+— Hartree with pressure gradient
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Figure 3.6: Hartree case 6, curvature
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25 T T T T
flat plate with suctioriblowing
—+— Hartree with pressure gradient
201 T i
151 1 i
N T

10 B

5F i

0 Il
-0.12 -0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08
m

Figure 3.7: Hartree case 17, curvature
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flat plate with suctioriblowing
—+— Hartree with pressure gradient
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Figure 3.8: Hartree case 20, curvature
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25 T T T T
flat plate with suctioriblowing
—+— Hartree with pressure gradient
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Figure 3.9: Hartree case 22, curvature
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Figure 3.10: correlation betweetflog(Re,_. ) and'®log(H)
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3.3 Basic concept

The improvedeN method is based on the well knovell method in the spatial form. In section 2.3
the originaleN-method was already discussed but using some slighfigrdint (older) notations. The
most important equations are therefore repeated here with the newer matétiche spatial form the

amplification of disturbances grows as**. For the ratio of amplitudes between statinand x,

one can write: N
2

a
In (%) = f—a/i dx (3.12)

X1

from this equation th&l-factor (the formewr-) can be written:

X
N = |n(3) - f —ai dx (3.13)
ao
Xinstab
with Xinstap IS the value ofx for a specific frequency at which this frequency becomes unstabén Th
X U U
—Q; 0 X
N = _—— - 14
f 0 UUmCd(c) (3.14)
Xinstab
so that: <
U.C —aib U X
N=—<C.106 [ Z%% 10— d(—) 3.15
% f Re Uo \C ( )
Xinstab
Which can be written as: .
N = R&,. e f T-Udx (3.16)
Xinstab
with:
U _
RQ:'reduced = v ¢ ' 10 6 (317)
—ajb
T = —/.1 A
RS (0% (3.18)
- U
u = — 3.19
0 (3.19)
_ X
dx = d(E) (3.20)

This improvedeN method is a database method. The data used for this method come from stability
calculations performed by Arnal [4]. These calculations give valuagsoffor 15 values oH (ranging

from H = 2.216 toH = 35.944) with cross-cuts for 13 to 19ff#irent values oRs-, and all of this

for up to 33 diferent frequencies denoted % and as{jz. These variables are converted so that for
the amplification rate we usk instead of-«;6, for the boundary layer Reynolds number we Reg

and for the frequencies we u4g and{z. For the latter frequency sometimes the logarithmic value
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10Iog(%) is used. Please note that no suction boundary layers are included iatshigam Arnal. A
summary of the dferent boundary layer calculated by Arnal is shown in table 3.2. Addeds®th5
cases is the asymptotic suction profile. Although no stability diagram is availateis profile, the
scaling parameters for this are available and will be used later on.

Table 3.2: summary for data from Arnal

case # H | Plog(Re,,) | description inflection point present?
0| 2.000 4.3643| asymptotic suction no
1| 2.216 3.7514 | stagnation point no
2| 2.297 3.5279 no
3| 2411 3.0738 no
4| 2481 2.7479 no
5| 2529 2.5371 no
6| 2591 2.3024 | flat plate no
7| 2.676 2.0711 yes
8| 2.802 1.8487 yes
9| 3.023 1.6198 yes
10| 3.378 1.4179 yes
11| 4.029 1.2174| separated flow yes
12| 6.752 0.8352 yes
13| 10.056 0.6019 yes
14 | 16.467 0.3455 yes
15| 35.944 -0.0378 yes

The converted data from Arnal can be scaled and represented in thatayiakes it possible to store
the data in splines which can be easily interpolated and extrapolated. Inlitheirig this will be
explained using some schematic diagrams. In figure 3.11 one can seed s&ltility curves in a
“’U" — Re plane showing schematic representation of a stability diagram of boundgeng kith and
without an inflexion point. Also some typical graphs will be shown, thes¢aden from the flat plate
stability diagram.
A typical stability diagram for an arbitrarfige,,, is shown in figure 3.12 with several cross-cuts at the
dotted lines, representing the data by Arnal and the crigalnumber of this particular curve. The
values ofRe,,, will later be correlated with the shape factor in accordance with section 3.2.
Then this curve is scaled by using #dient coordinate at the horizontal axis. The coordinate used is:
r =1%log(Re) -*°log(Rey,,) (3.21)

This means that for negative valuesrahe T will be negative as well. The stability diagram will look
as shown in figure 3.13.

In figure 3.14 a typical shape of the amplification data inThe<? plane is shown. For all cross-cuts
at differentReg, then the maximum value dof, calledTinay IS determined. The lines on which the
points of Tmaxlie for each case will be called tlexisand is shown in figure 3.15.
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with inflexion point

without inflexion point

Re

Figure 3.11: Stability diagrams with and without inflexion point

RQ7crit

Figure 3.12: Basic data
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Figure 3.13: Shifted stability diagram
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Figure 3.14: Crossection of stability diagram
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r

Figure 3.15: locations ofT 5« Values on axis

The values off 31 0n thisaxisin theT —r diagram are plotted in figure 3.16. Bynaxmaxcan be found
that is the global maximum oF for that case (i.e. that specific value®&_,). So there will be 15

crit

values ofTmaxmaxfor the 15 cases present in the data plus a value for the asymptotic suctfide. pr

Tmax

Tmaxmax

ltop

Figure 3.16: diagram of allT 5« for 1 case

Now one can scale the curve of figure 3.16 in vertical dlrectloa—aé‘— and in horizontal direction
with —p so that figure 3.17 appears. Although the 13)cases look very much alike when scaled,
the Trhaxmaxvalues difer greatly in reality. The range fAhnaxmaxfuns from around .1 to over 5000.

A curve for Tmaxmaxand a curve foryp with respect tdRe,,, are stored in splines. When putting the
axes of the cases together in a logarithmic plot inlﬂmg(%) — r plane these axes will be straight
lines. Now yet again a scaling is used to account féiedénces in frequency where the maximum
value forq;6 (and thus fofT) occurs. The scaling used is the distance from the "top” of the stability
diagram (with the value Of naxmay to the frequency where for the samé& becomes zero (so on the

neutral curve). Figure 3.18 shows this scaling parameter now c(éfﬁ?éscale
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=

1 r
Figure 3.17: scaled diagram of all ,,,«for 1 case

For the frequencyF.. is used that is defined as 601 logarithmically spaced values betweéarid
1071 with: o

The frequencyﬁ—e is determined by multiplyindr., by the present values f&te and(‘t—“)z. By using

so many frequencies almost in every case there are enough frequibebigeen-2 < (%9) <3
which is the range of interest for our calculations. Almost always thisfiicgnt to give an accurate
description of the amplification rate but for some very small valugd cbmbined with high values
for Re too few frequencies are available for this range so that the range hastgphanded.

top

rtop r

Figure 3.18: location of top anc(%")s ein stability diagram

cal

Then the crosscut curves are plotted versus the new parameter thatalkss it against each points
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local value of(%‘g)axis, defined as equation 3.23.

-5

The dfect of this can be seen in the typical figures 3.19 and 3.20. These tilavesome resemblance
to parabolic functions, but are in fact not exactly so. Therefore splireze favoured over an analytical
representation to store these curves.

(3.23)
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Figure 3.19: cross-cut curves i) andT
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Figure 3.20: cross-cut curves '(‘er) andT

After this all the curves are shifted down a distafggx(each over it's owT max) SO that all maximum
values end up at the horizontal axis. This makes the final scaling on thi®dsdss shown in equation
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3.24.
T — Trmax

Tmaxmax
The graphical representation can be seen in figure 3.21.

T= (3.24)
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Figure 3.21: cross-cut curves if%f ) andT



36 The improvedN method

All shifting and converting of the data provided by Arnal is essentially dpnenly a few parameters.
These scaled and converted variables are stored in splines. Theaapgvahstoring these parameters
in splines is that it is then easy to interpolate and to extrapolate. For extrapdiatioe frequency,

as in some applications the values(%) fall outside the-2 < (%9 < 3 interval, the splines are
forced to be linear functions near the endpoints as extrapolation of a splilggve faulty results due
to the fact that the™® and 3% order terms are only meaningful on the interval in which the spline is

generated. These stored variables can be subdivided in three groups

e VariableT is the main variable in this method, it stands for the amplification rate. It is defined
in almost the whole of the data area and hasftednt value for each fierentr andRe,,
and is stored in splines. In figure 3.22 each circle represents an Aatgbaint. Then the
splines are interpolated and redistributed inrtlarection, to ease the use of the splines and to
make sure an accurate description of the stability diagram for each casdes izerefore a
1-D Lagrangian interpolation is used to find 59 distributed splines from thalAtata and the

extrapolated Arnal data. The 1-D Lagrange interpolation is shown intiequé 25.

Y(I) = C1X1 + CoXo + C3X3
o = (X = X2)(Xi — X3)
(X1 = X2) (X1 — X3)
(X = X1)(Xi — X3)
C2

(X2 = X1) (X2 = X3)
(X = x) (X — X2)
© T e-x)(e-x) (3.25)

with x; the value to be interpolated amd < X < x3. It can be seen (figure 3.22) that not the
whole range of is filled with data points, especially for the cases with a higher vallregf, .

To remedy this, an extrapolation is made into the highalues. Thelax curve can be easily
extrapolated (USindmax = rel™"), and the shape of tHE curve is taken to be similar to that of
the last knowril' splines. The extrapolation aixisis a bit more dificult. This is becausexis

is a straight line when plotted in a logarithmic scale, with a kink in it for velocity psfivith

an inflexion point. Before the kink the slope is abeut’2, after is the slope is1. Figure 3.23
shows these kinks for the cases with an inflexion point, that is cases gthidu These cases
are the ones for which the will not go to zero forRe — oo, but asT = —%’, T will go to
zero forRe — oo. The location of these kinks have been made into a function, as the data from
Arnal does not specifically locate these kinks.

In figure 3.24 the result is shown. With this the dataseffam r direction is now defined from
0 <r < 2.5. Frequency wise the curves in the- “’U" plane faintly resemble parabolic functions,
and these are all defined in the range-2f< “’U(’ < 3. But because of the scaling of the frequency

at large values oRg and corresponding low values @f}’)s

the (%2) values can grow to

up to 16.000. To account for such large value€9§f) the stability curve in th@ — (%9) plane

caled

needs to be extrapolated. Due to the approximately linear behavim(r%iéar 3 of this curve
a linear extrapolation is used. Please note that this area of the stability diesginandly used.
Most boundary layer flows have transitioned to turbulent boundary féye long before they
reach the values dteg necessary for these high (scaled) frequencies. However as tive cfio
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frequency in which to evaluate the data is not case specific a large nuifrfbequencies will
be calculated every time to accommodate almost all possible cases.

A combination of allT values for oneRe,, value make up the stability diagram and can be
represented as spanning a (3D) surface irt$he r — T space. A visualization df for the flat

plate case can be seen in figure 3.25.
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Figure 3.22: Display of datapoints from Arnal
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Figure 3.25: 3d representation df surface for the flat plate case

e Two of the scaling variables are stored in splines for each of the 15 sapasately. These
are Tmaxandaxis Tmaxis a line in theT —r plane andaxisa line in thelolog(% —r plane.
Plots of both are shown in figures 3.23 and 3.26, where in figure 3.26 athdés from Arnal
are plotted. For extrapolation purposBsax can be approximated bymax = re*". This
approximation is shown in figure 3.27, where again all 15 cases froml Areglotted, now
together with the approximating function. For extrapolatiomwis linear extrapolation from
the endpoints diices when this extrapolation is needed idirection. Shifting of theaxisis
necessary when extrapolationlﬁbog(%) direction is wanted. For the shifting akistheaxis
point of the Tmaxmax op POINt is used as an anchorpoint. The distance over which is shifted
can be determined usifflog(F):p, of which the graph is shown in figure 3.31.

e The variable§ maxmax ltops (%B)Scale, 0g(F)top aNdRiheta,; Can each be represented by a sin-

gle curve. These variables are stored as splines agréngtand are defined froflog(Re) =
-0.5 to %og(Re) = 4.5, which spans all necessary values %6g(Re), so no extrapolations
will be needed. The curves tmaxmax Mops (“’Ug)scaledandlolog(%@)mp can be seen in figures

3.28, 3.29, 3.30 and 3.31. Figure 3.32 shows the grajtegf versust®og(H) and is the same
as 3.10 but included here for completeness.
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Figure 3.27: Approximation ofTmax by Tmax = ret™" for all 15 cases



42 The improvedN method
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Figure 3.28: %og(Tmaxma) Versus'®log(Re,,), all 15 cases
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Figure 3.29: 1y versus'®og(Re,,,)
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Figure 3.31: P%og(F)op versus'%og(Re,,)
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Figure 3.32: correlation betweetflog(Re, . ) versust®og(H)
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The basic data is now with some extrapolations defined in the area fremrO< 2.5 and from

-2 < (%) < 3, as well as from-0.038 <'° log(Rej,) < 3.75. Now a view is taken from a broader
perspective to look at the range of variables where this data is to be kiggae 3.33 (in which the
Ylog(Re,,) is replaced by the shapefactdrusing figure 3.32, though all inter -and extrapolation is
still done using'®og(Rey,,)) gives an overview of the areas where the basic data is to be used and
where it is known. Using this data and the scaling parameters within the aera Wie basic data is
defined as well as outside it using some extrapolations, the amplification abdisties is calculated.
Each area in figure 3.33 will be discussed on how valueg afe calculated. Please note that the
stability diagrams that are mentioned are in reality a collection of 59 splin&scohnected with a
singleReg,

crit *

1 2 3
H=2216
/Aéy
Z
/
/
. 6
.
/
.
/
H = 35944 /AZ
s B
— r=25 r
7 ° 9
Ay

Figure 3.33: Schematic roadmap

e Area lis the area withl < 2.216 andr < 0. A special form of extrapolation is used here. As
the stability diagrams of the six cases without inflection point are very much simigare and
form itis assumed that in shifting the stability diagram of the stagnation poini{Ebse?2.216)

a good approximation is achieved for the stability diagrams ug te 2. The curve fofT max
is taken to beTmay = rel " and needs to be extrapolated towards 0. Theaxisis devised
by shifting theaxis curve of the stagnation point down accordingwg(F)ip. Then a linear
extrapolation foraxis is also needed for < 0. The correlation betweet’log(Re,,) and
1910g(H) is known from figure 3.32. The parametegs, and(%")scalecan be interpolated from

their splined functions shown in figures 3.29 and 3.‘BanmaXand1°Iog(F)t0pjust have to be
interpolated as they contain values for the asymptotic suction profile.
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Area 2 uses the samie and (shifted)axis as area 1, but without the extrapolation fxis
or Tmax The correlation betweelflog(Re,,,) and®log(H) is known from figure 3.32. The
parameters,p and (“’U@)Scale can be interpolated from their splined function$yaxmaxand

10Iog(F)mpjust have to be interpolated as they contain values for the asymptotic suatfda.pr

Area 3 is also much the same as area 1, the orfifgréince being thallmax andaxisneed to be
extrapolated in the > 2.5 direction. To approximat&max againre’™" is used to extrapolate.
The parametensgp and(%")scalecan be interpolated from their splined functiol$,axmaxand

Yog(F)iop just have to be interpolated as they contain values for the asymptotic suatfde.pr

In area 4 the splines foF of the stability diagrams are interpolated using the one dimensional
Lagrangian method that uses K&, -direction) the closest stability diagram of the three near-
est cases and in this way a new interpolated stability diagram is madeT Jh@gain ap-
proximated byrel ") andaxisneed to be linearly extrapolated into the directiorr ef 0. No
shifting of theaxisis required, s8%log(F)top is Not used Tmaxmax Mop and(‘*’U")S  can just be

) |
interpolated. e

Area 5 is the area where no extrapolations are needed except foraébealveady performed
to extend the range of usable frequencies and the highalues. Here a two dimensional La-
grangian interpolation using the nine closest stability diagrams it%bg(Re,,) - r plane is
made to find the current stability diagram. Then the scaling parameters (@&smdy interpo-
lating) are used to rescale the splined and scaled stability diagram. This #neamest used
area of all.

In area 6 the splines of the stability diagrams of the Arnal cases are integelsing the one
dimensional Lagrangian method that uses the closeRdjp orH -direction) stability diagram
of the three nearest cases and in this way a new interpolated stability diesgyraade. The
scaling parametefBnax (again approximated ™) andaxisneed to be linearly extrapolated

into the direction of > 2.5. Trmaxmax Mop and(%a)Scale can be just be interpolated.

Area 7 occurs for very high values éf, but in the unlikely event of this occurring a simple
linear extrapolation for the splines far of the stability diagrams is made from the two cases
with the lowestRe,,, values and a linear extrapolation is done Tafaxmax rtop and(%g)scale.

crit
axisis not shifted. The scaling paramet@gay (again approximated bge™) andaxis need
to be linearly extrapolated into the directionro% O.

Area 8 occurs for very high values B, but in the unlikely event of this occurring a simple lin-

ear extrapolation for the splines forof the stability diagrams is made from the two cases with
the lowesRe, , values.Tmaxis linearly extrapolated from thEyaxdefined by the two (iRe,,,
direction) cases analxisis not shifted.Tmaxmax I'top and(“lj—")Scale dneed to be extrapolated.

Area 9 occurs for very high values éf, but in the unlikely event of this occurring a simple
linear extrapolation for the splines far of the stability diagrams is made from the two cases
with the lowestRe,;, values and a linear extrapolation is done T@faxmax top and(“’Ue)Scaled

Theaxisis not shifted. The parameteFgay (again approximated ye™) andaxisneed to be
linearly extrapolated into the direction pf> 2.5.

crit



Chapter 4

XFOIL

4.1 Introduction

As explained orxrorL’s website [59]" xrorL is an interactive program for the design and analysis of
subsonic isolated airfoils.The program has been around since 1986 and consists of a highzitje
panel method combined with a strong coupled viscid-inviscid interaction mefiade 1986 many
changes were made to the program, usually improving the program andjadginfeatures. Since
2001 thexromn. code was frozen, and significant changes were no longer implementedchgdters,

M. Drela and H. Youngren. The version xdoiL as discussed here is 6.93.

4.2 Inviscid formulation in xroiL

The inviscid formulation as used iroiL is discussed in detail in [12]. Here a short overview of the
inviscid formulation is given to give the reader a basic understanding oftiking of the inviscid
part ofxrorL. The inviscid flowfield is constructed by the superposition of a freestfé&ama vortex
sheet of on the airfoil surface and a source sheet on the airfodcigs well as on the wake panels.
In figure 4.1 an overview is seen from the panellingiom.. The graph is taken from [12]. In this
configuration the streamfunction is given by equation 4.1

Y(X,Y) = Uy — Vo X + % fy(s)ln r(s x y)ds+ % fo-(s)e(s; X, Y) 4.1)

with s the coordinate along the vortex and source shedtse magnitude of the vector between the
point ats and the field poink,y. @ is the vector’s angle anal, = g..co0g«@) andv., = g SinN(a) the
freestream velocity components. Each airfoil panel has a linear vortiisitsitdition and a constant
source strength. The wake panels only have a source strength. Fregtrghmfunction finally a linear
system can be created that requires the streamfunction to be equal tomwstantvaluély at each

47
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© recling edge ponel

Figure 4.1: panelling inxror

node of the airfoil. The linear system is given in equation 4.2.

N N-+Nw-1

Za;m— — W0 = —UxYi + Voo Xi — Z bijO'j (4.2)
j=1 j=1

with N the number of panels on the airfol,, the number of panels in the waka; andbjj the
codficient matrices. By setting; = 0 one gets the inviscid solution, for a specified angle of attack.
Since the flow inside the airfoil is stagnant, tlyen the airfoil is simply equal to the local vorticity

on the suction side, andy on the pressure side as seen in equation 4.3.

Ug = %Y, 1<i<N 4.3)

The influence of the viscous layer on the potential flow is properly modelteddowall transpiration
concept if the local source strength is equal to the local gradient of the dedecn = u6*
_dm_ mi-m
oi=—-==%

+ 4.4
dé S+t1— S (44)

For the trailing edge two approaches exist, one for blunt trailing edge®ma@&dor sharp trailing

edges. For the blunt trailing edges a panel of uniform source strengtlis placed across the gap.

For smooth flow € the trailing edge the trailing edge panel strengthig, yte must be related to the
local airfoil surface velocity by:

1 A 1 .
OTE = 5(71 - yN)IS- YTE = 5(71 - yN)ISx (4.5)

Wheres'is the unit vector bisecting the trailing edge angle, &isdthe unit vector along the trailing
edge panel as shown in figure 4.1. For the sharp trailing edge the nhadd® coincide, and their
corresponding equations are identical. This results in a singular systdrhaarno be circumvented.
This is done by discarding the= N equation in 4.2 and replacing it by an extrapolation of the mean
v (between top and bottom) to the trailing edge as given in 4.6.

(y3—2y2+7y1) — (yn-2— 2yn-1+YN) =0 (4.6)

For both the sharp and blunt trailing edge the following Kutta condition is usegbinas in equation
4.7.
yi+yn=0 4.7)
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with sub 1 and sulN as in figure 4.1. After the combination of the linear system from 4.2 with the
Kutta condition al+1)x (N +1) system folN node values; (when considering the inviscid solution

oj = 0) and airfoil surface streamfunctidify is acquired. This system can be solved using a Gaussian
elimination and gives as inviscid solution for the surface vorticity valuestaqud. 8.

N-+Ny—-1
Yi = ¥0,COSa + yoq Sina + Z bjoj 1<i<N (4.8)
=1
with yg andygp the inviscid vorticity distribution corresponding to a freestreawf 0° and 90, and
with bf; = —a.i_jlbij is the source-influence matrix. Tk can finally be calculated to be:

2
Co=1- (l) (4.9)
For the viscous solution the boundary layer equations have to come intonptaywvhich we shall
deal in the next section.

4.3 Viscous formulation in xroiL

The most recent viscous formulation xafor. can be found in [12] appended by [13]. Here a short
overview is given of the laminar boundary layer formulation foundroi.. The viscous formulation
in xroIL exists of a 2 integral equation model consisting of equations 4.10 and 4.11.

deo 20 de _Crf Vo

@ +(2+H-M )u %2 (+u—e) (4.10)
dH* *ok * 4 due _ *C
dg +(2H* + H (1_H)_ed_§ 2Cp - H ( (1-H"= ) (4.11)

With ¢ the streamwise arc lenght coordinate and the righthand side parts in tsrédokeadditional
parts added by Ferreira [14] in tleoiLsuc version. This is to incorporate boundary layer suction into
the boundary layer equations. One extra equation is added to the existingamtarbulent boundary
layers a lag equation for the maximum shear stresfficantC, is included. In the laminar region a
rate equation (see 4.12) for the growth of the amplitndé the most amplified Tollmien Schlichting
wave is included. g dh dRe
Hy, 0 4.12

4% " dRe M=z ( k- ) (4.12)

The empirical relatio@(Hk) is a correlation of spatlal growth rates computed from solutions of the

Orr-Sommerfeld equation, arf’@—(Hk, 0) is obtained from the properties of the Falkner-Skan profile
family. The transition point is deflned by the location whanedches some user defined vahyg.”
In section 4.5 the transition routines are discussed in more detail. To closelibesdary layer
equations the following dependencies are used:

H* = H*(Hk, Me, Re)

H™ = H"(Hk, Me)

Ct = Ct(Hk, Me,Re)

CD = CD(Hk’ Mev RQ)) (413)
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HereH* is defined in equation 4.14 ardj, is the kinematic shape parameter correlated by Whitfield
[55] for adiabatic flows in air as in equation 4.15.

o b8 (8))ay

Ho =2 = = (4.14)
O s(-(8)dy
_ H-0290M2
“T 1+ 0113m2 (4.15)

Note that forM = 0, Hx = H. The laminar closure relations are written in equations 4.16 to 4.19 and
can be found in [13]. Graphical representations are shown in figu2e® 4.4.

o | 1528+ 0.0111M 4357 _ 027357 _ 0,0002(H, — 4.35PH2, Hy < 435 4.16)
1528+ 0,015 435 , He>435
0.064
= 251) M2 4.17
(Hk—0.8+0 5) e (4.17)
Ct ~007+ 00727550’ <55
Rg— = I (4.18)
2 ~0.07+0.015(1 - 5275)", Hc > 55
Re, 2Cp _ | 0.207+0.00205(4- Hk)25~5 , He< 4 (4.19)
~ 1 0207-00016— A H, > 4 '

(1+0.02(H,—4)2)’

»-asymptoticsuction

stagnation

Figure 4.2: Closure relation foH* xroiL & xroiLsuc
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The closure relations will normally be used only frdih= 2.216 (stagnation point) up to around
H = 10. In cases of high Mach numbers the kinetic shape factor can be lamdyp toH = 2, but
with suction this can also be achieved. Thesetbwumbers will be reached in aftérent manner so it
needs to be checked if the closure relations agree with the asymptotic sumtioddry layer solution
for H = 2. To do this the value of the closure relations are calculated assuming thptaig suction
boundary layer. FoH* as in equation 4.14 can be written as:

I O w20)

o ke (g)ay

Cle

For the asymptotic suction profile this is written as:

r y Yoy \2
o = f(l—e%y)(l—(ue%y))dy
0
_ 5y
B 6Vo
0 = f(l—ev%y)(l—(uev%y))dy
0
_ Y
=
This gives forH™:
_5»
0% - 10 1667 (4.21)
T2V 6
0

which agrees with the value of equation 4.16 and figure 4.2.

Then forCys:
Ct = W (4.22)
and for the asymptotic suction profile:
u=U (1—ev%y) (4.23)
then: 5
u Vo Yoy
A (—— g ) 4.24
Hay “HU(-Te (4.24)
then fory = 0 this can be written:
Tw = uU (—%) (4.25)
so that:
-V
Cp= W —Z”U(TO)—z_—VO (4.26)
=1 uz uz v '
2P p
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and as for the asymptotic suction profile the following holds:

-Vl _ 1
v 2
—\Vo _ 1v
U - 380 (4.27)
gives the same solution as given by equation 4.18 and figure 4.3:
Ct
ForCp:
X 2
u ou
Cp = —| d 4.29
0= [(5) o (4.29)
0
with: 5
u Vo Yoy
_ N u(—— ) 4.30
TEHGy TH € (4.30)
gives:
co - £ [up(f e
D = pug el y
0
S
226U,
_ 11
"~ 4Re

which gives with the previous acquired value 0687 for H* for CDZE—?’ the value of @0, which
agrees with equation 4.19 and figure 4.4 Thus it can be concluded thdb#lueecrelations fokror.
andxrorLsuc can account for shapefactors upHo= 2, and will be valid for the asymptotic suction
boundary layer.

This being established, next the governing equations are discretizeg4pimint central dferences

(the trapezoidal rule) . The boundary layer varialfleg*, C. or fi andu, are defined to be located

at the panel nodes (althoughis originally calculated on the panels itself and then an average value
is taken for the node). Each airfoil and wake panel therefore has tmepled nonlinear equations
associated with it. The focus of the next section will be on the solution pureexf these equations.

4.4 Solution procedure

The solution procedure is described in detail in [12] and will be summarieeslwith a focus on the
airfoil panels. The panels in the wake are treated slightle#nt, but as this has littlefect on the
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general course of the calculation it is left out of this summary. If the soldtiothe airfoil vorticity
values of equation 4.8 is substituted into equation 4.3 this gives equation 4.31.

N+Ny+1
=1

This very general expression gives the potential flow about the afdfoiny distribution of mass
defect on the airfoil and wake. Thg in this formulation is essentially split in an inviscid part and
a viscous part. The inviscid pat;f,) is determined completely independent from the viscous part,
and only influenced by airfoil and wake geometry and the freestreata ahgttack. The same holds
for the mass-influence matrtkj. The viscous part ofi, is determined first by an iterative method
marching through the boundary layer, shown in equation 4.32. In thigiegudS; andVS; are

the equation matrices for nodes #1 and #2 of the current panel, madeegpatfons 4.10, 4.11 and
4.12. ThesA stands for the amplification of the T-S waves andW& stands for the righthand side
(residue) of the equations.

0A| oA
591 592
[ VS, ‘ 007 ¢+ VS, ‘ 00, ={ VS } (4.32)
OUg, OUe,
661 062

After iterating and solving this system, thg, sm(= é(ug - 6*)) andri are inserted into the (global)
Newton method to couple the viscous parugfwith the inviscid solution. The coupling consists in
the form the mass-influence matdy. It is important to note thad;; embodies theféect of the local
m; near the trailing edge on the glohg| distribution via its &ect on the Kutta condition.

4.4.1 Newton solution

Equation 4.31 closed the discrete boundary layer equations. This norgiyetam of equations is
now rendered elliptic by the global mass influenceugand is solved using a so-called full Newton-
method. In the Newton method a system of nonlinear equations can be written as

F(Q =0 (4.33)

where Q is the vector of variables and F the vector of equations. At sora@idtetevelk the solution
procedure can be written as follows:

k
F+ (%) Q=0 (4.34)

Q! = QK+ 5Q (4.35)

The unknown vectosQ contains the iterates of the variable®, sm; and for the laminar part of
the boundary layesii. Variablesm; is chosen over thés* as the former will generate a matrix with
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only significant values at some diagonals to solve, which can be solveddfficiently than a regular

matrix.
59j
sm; ={ -R }; 1<i<N+Ny (4.36)
on, 0Cyj

In equation 4.36 matrixX;; is quite large, and almost sparse. By neglecting the snfialiagonal
values a sparse matrix is generated. The elements in the vector cont#iygng andsi are grouped
together corresponding to each streamwise station. The equatidnsie grouped in a similar fash-
ion to create the tri-diagonal form of the matrix. This is then solved usingtamwusolver completing
one iteration of the global Newton procedure.

Jij

4.5 Transition routines

45.1 Drela Transition method

The transition routines irror. have been point of discussion for some time by sevefémint au-
thors. First the working of the transition prediction is explained here. Aswllediscuss 2 other
transition prediction methods we will name this method the Drela transition method afheit!iisr.
The Drela method uses a linear approximation of the envelopes of the spapidi@ation curves of
the Orr-Sommerfeld solutions for the Falkner-Skan profile family. This@ppration of the curves
by straight lines is shown in figure 4.5. Any influence by behaviour oas®p frequencies is elim-
inated by only approximating the envelopes. Dini [8] showed that the Drethadés not strictly
correct, and only applicable in case of similar boundary layers. Drelsearthat the error is small
and overruled by other uncertainties in the code and the choice dthe However in chapter 8
it can be seen that thesefférences are substantial when compared to the Van Ingen, or Improved
eN-method. In the code the Drela method is implemented as follows. The slope ohfiiiation
curve is given by:

6N _ AF-DADR

= RFAC (4.37)
o€ 9
with:
AF = —005+27(-22 |_55(_10 2+30 10 |’ (4.38)
B ' T \Hg-1 “\He-1 “\He-1 '
H

DADR = 0.028(Hy — 1.0)— 0.0345 387m:1-252F (4.39)

0.0 'RNORM< 0
RFAC = { 3.0-RNORM —2.0- RNORM;0 < RNORM< 1 (4.40)

1.0 'RNORM> 1

Yog(Re) - (*log(Re,,)) — 0.08
RNORM = 57008 (4.41)
043 1
Yog(Rey,) = 2492 +0.7(tanh|14.0 ~-924|+1 (4.42)
| He— 1 He— 1

This gives for the correlation betweéfog(Re,,) andH for the Drela method figure 4.6. From
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Figure 4.5: Envelope approximation Drela method



4.5 Transition routines 57
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Figure 4.6: %og(Re, ) and'®log(H) for the Drela method

crit

equations 4.37 to 4.42 also a curve depictﬂ%l is made and shown in figure 4.7. In this figure

RFACis made to be 1, which is true unleRg, = Re,,. It can be seen that close kb= 2 thee%
does not go into the stable (negative) area, it does not even becomé& herefore the Drela method
cannot cope with damping of the T-S waves as would possibly occur in sugtiondary layers.
Instead when using suction with the Drela method for transitiorRiyenill become less thaRe,

at which point the amplification will be set to be zero. This is also not coaethe amplification
should also be allowed to decrease. It must be remarked that the Dreladmegbmever intended
to cope with damping of T-S waves by using boundary layer suction, amdftine should not be
expected to do so.

4.5.2 Van Ingen method

In the adapted version offor. namedxrorLsuc which is made suitable for handling boundary layer
suction with the boundary layer equations another transition method is présé&method is called
the (full) Van Ingen method, after its author and was implemented by Ferfeifand later modified
by Broers [1]. This method was implemented to overcome tfieedities encountered with the Drela
method when employing boundary layer suction. This method uses no straggapproximation of
the envelope of the Orr-Sommerfeld solutions. It calculates the contributib®Odfrequencies to the
amplification and can predict damping of the T-S waves. Unfortunately isgtapcalculation when
the %og(Re) value is lower that®og(Re,, ), and will keep the amplification factor constant. This
way the only damping that occurs is when still féog(Re) value is higher thaft®log(Rey,,) (so



58 XFOIL

0.05

0.045F b

0.04 b

0.035

0.03

3

0.025

goN

0.02

0.015

0.01

0.005

Figure 4.7: 9% andH for the Drela method

at least one frequency is still unstable) but that the dominant frequeatyvas responsible for the
maximum amplification has a much lower amplification ratio now, and the -now laayastification
ratio is lower than the former maximum value. It will be clear that this allows oniywésy small
amount of damping of the amplification. This method usedfamint'°log(Re,,) — H correlation as
can be seenin figure 4.8. This method also has small discontinuitieshifdnetor curve. These occur
when a switch is made to an amplification curve of fiedent frequency in the calculation. In figure
4.9 these discontinuities can be seen in a calculation for an airfoil with a lawkace resembling a
flat plate pressure distribution.

In xroiL the boundary layer iteration converges badly when this method is useds interaction
between the boundary layer iteration and transition calculation are to blarttedoihis is resolved

by letting the user define ldjmi; value, at which the Van Ingen method switches to the Drela method
that does converge. A drawback is that the transition prediction is theeiaéa by Drela’s method,
but the diference can be small, depending on thEedénce betweeNi; (at which transition occurs)
andNiimit (at which the methods are switched). Typical value forNqg;; at aNgi; of 9 is 7-8. Later

in this report an alternative to this fixeiiy;i; value is given to gelNiimic closer toNgri;.
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Chapter 5

Modifications t0o XFoILSUC

In the previous chapter the existing form xabisuc was discussed. In the present chapter the im-
plementation of the improveel-method and the necessary modifications that were mac®iauc
will be discussed.

5.1 General principles of adapting code

As mentioned in section 1.5 the approach of adaptingxtlva.suc code is such as to ensure user
friendliness and functionality. In addition there is the desire to create awutbrstandable by future
programmers who will adapt and use this code. To ensure these olgeatésenet, one has to take
certain measures and adopt some programming habits.

make as little changes as possible in the original program
¢ not impede the working of already present functionalities of the program

e keep the general structure and style of programming already presectt ihia will help to
keep a good overview

e include comments, this makes the intendéea of the code clear, and as a bonus makes the
programmer him- or herself conscious of the need and function of theifisgeart of the code.

e the code added «&rorLsuc is -contrary to customary practice- not condensed. With the condens-
ing of code it is meant that the programmer will minimize the amount of code usedd¢alue
a program. This deteriorates the readability of the code to others, andmofiairamatic way.
As it can be expected that other users will use or at least read thisicad®( implementation
in MSES ) no such condensatiofiat is made.

e make the user interface easy and transparent

61
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e have the program produce warnings when special algorithms are lusedt the same time
prevent the user from being flooded with warnings and remarks.

These principles were observed throughout the process, but démpitéention to keep the changes
as small as possible, quite some changes had to be made. As all programmsidgn&anForTrRAN
77 some language specific principles apart from the general princighelsecformulated:

e use variable and subroutine names no more than 6 characters long. Thisisa 77 stan-
dard to ensure portability. Mamprtran 77 compilers can also handle longer variable names
nowadays, but it is nonetheless needed to ensum@malkan compilers can compile the pro-
gramme

e use variable declarationsortran can handle implicit variable declarations but this is prone to
error and deteriorates readability

In total over 2000 lines of new code were added to an estimated existing03(in@8 of code of
xroiLsuc. Each addition into the existing code is marked by a statement like:

C-—---- Modified by Jeroen Bongers(7-Nov-2005): start

to mark the start of the modified code and ended by:

C----- Modified by Jeroen Bongers(7-Nov-2005): end

to mark the end of the modified code and to give the date of the last (major) natidific This way

the code will be more easily readable. Becaxser was published under the GNU General Public
License [57], when or ikrorLsuc is to be published or publicly released, the source code of the adapted
program needs to be made public. It should be noted that under the GR&ra&b@ublic License it

is not obligatory to publicly release modified versions of a program. In ayahblic release, in the
program and its source code it needs to be made clear what changesade by which developers.

To this requirementroiLsuc now complies by having every change marked in this manner.

5.2 Flowchart

In figure 5.1 a flowcharkrorsuc with the called subroutines is shown. It is divided into 3 zones: a
blue zone, a red zone and the rest. The red zone represents susdhénwere made from scratch,
the blue zone represents subroutines that were extensively modifeetheanther subroutines were
only very slightly modified or not modified at all. The figure that is shown staitts the subroutine
viscaL Which stands for the viscous calculation routine. Starting from this the atibes will be
briefly described and briefly the most important modifications made to it are medtio
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e viscAL is the subroutine that is responsible for all viscous calculations. It gitbelfinal conver-
gence of the global Newton iterations. This is also the reason for it beteggxely modified,
as some work was done to improve convergence. This will be describegtail th section
5.3.3. Also some warning messages for the user were added.

¢ seTBL IS the subroutine that fills the global Newton method with the boundary lay#iceats.
It is also responsible for calling the marching boundary layer iteration resitifiogether with
the two boundary layer marching routines¢uue andmrcupu) it calls theTrcuek routine to
check for transition.

e MRCHUE IS the subroutine that initializes the boundary layer. This routine will use scpbed
value forug to march through the boundary layer while iterating at each station for aogpew
solution. This subroutine checks for transition at each interval, at eaclide.

e MrcHDU IS the subroutine that does the actual marching through the boundaryhiferiter-
ating at each station and continuously checking for transition. It also ntlakdsundary layer
codficients for the global Newton iteration. The iteration limit for every boundaygranter-
val was changed from 25 to 26 for convergence reasons. For rataiscabout this see section
5.3.3

e TRCHEK iS the subroutine that checks every boundary layer interval for trandifiacalling the
amplification rate of changéé@) routineaxser. If transition is found in the current interval it
will iterate in this interval to find the exact location of the transition point. In thistien again
AxseT is called. Added are the fiierent mechanisms to improve on convergence. For more
details about this see section 5.3.3

¢ BLDIF iS included here as it calls txser. It is meant to set up global Newton dieients for the
boundary layer. In the laminar part also some amplification rate of ch%%ge(llculations are
necessary, and therefore it call oxser.

e AxsEeT iS the subroutine that calculates the amplification rate fsaxrL (Drela method)amprr
(Van Ingen method) osmpLir (improvedeN-method). Changes made here are to accommodate
the ImprovedeN-method. Also some calculations for the convergence improvement functions
are added, as are functions to be used in plotting some variables conteethedtransition
prediction.

e pamPL IS the subroutine that is responsible for the Drela method of transition predicTioe
flowchart does not go into details of this routine any further.

e aMmpLI iS the subroutine responsible for the Van Ingen transition prediction. divelilart does
not go into details of this routine further either.

e aMmPLIF is the subroutine that was created newly for the improsiéanethod. It calculates the
N-factor and derivativ% (needed for use irroiL) at the current boundary layer interval.

e rrCRIT IS the subroutine that finds tHee,,, value for the current value dfi from a splined
function. Together withsscome, FLMmT, FRTOP, FFAXSL and FYCENT it iS given in grey to show
these routines belong to a group that all call the subroutimesandrervaLu. Plots of these

splined function can all be found in chapter 3.
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Figure 5.1: Flowchart of transition related subroutinesiomsuc
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e CRsEc iS the most important subroutine, it interpolates the data storegrin~c and creates an
interpolated (sometimes extrapolated) stability diagram which is used to calcidaaenthifi-
cation rate for 601 frequencies at the current valud_ier

e FSCOME IS the subroutine that finds the value (é@f)scaledfor the current value oRe,.

e rLMMT iS the subroutine that finds the valueTofaxmaxfor the current value dRe,

crit *

e NEAR iS the subroutine that does a nearest neighbour interpolation to find thetahikty di-
agram crossections from the database that are nearest to the ®gyemdRe,,. Between
these nine crossections is interpolated using a 2D Lagrange method.

e rrTOP iS the subroutine that finds the valuergf, for the current value oRe,.

e LAGR is the subroutine that performs a standasd_agrange interpolation.

e LAGR2ZD is the subroutine that performs the Ragrange interpolation to interpolate the nine
splines that describe the crossections through the relevant stability miggra

e rraxsL is the subroutine that finds the value of the slopaxiEfor extrapolation uses.
e FYCENT is the subroutine that finds the value'8fog(Fop) for the current value oRey, .

e xroIL iS the main routine that starts the program.

e it is the subroutine that initializes all global parameters needed in xfoil. Sonaenpéers
needed for the improveelN-method were included as well as a call to therix subroutine.

e MATRIX iS the subroutine that does nothing more than include that large datarfilexc.

e DATA.INC IS not a subroutine but included here for completeness. It holds all datected to
the stability diagrams, such as axisandTmax

e Fxx x x x IS the collection OFRCRIT, FSCOME, FLMMT, FRTOP, FFAXSL aNCFYCENT.

e spLN IS the subroutine that gets the correct spline for the subroutine that calfsidl its needed
variable.

e ppvALU iS the subroutine that evaluates splines. It is a slightly modified version obtlime
given in [7]. The diference lies in that spline definitions are not uniform. The original ppvalu
was made to also calculate derivatives of splines. Théicants of these splines are thereto
multiplied by an extra constant. As splines were used that lacked these emftamts, this
subroutine was changed accordingly.

e INTERV IS @ Subroutine needed byvaLu and taken from [7].

5.3 Implementation of improved e

The two main subroutines in the implementation of the Van Ingen Improved methodmatr and
crsec. These are supported, as can be seen in figure 5.1, by a multitude of ssubHeuntines. In the
following these two main subroutines and their functions will be explained.



66 Modlifications toxroIiLsuc

5.3.1 AMPLIF

AMPLIF iS @ subroutine that is called many times, as a call occurs at each boungarynierval at
each iteration by some two to four subroutines. These intervals are dividedtations, station #1
and station #2, where the first is upstream of the last. The routines furisttorcalculate thé’%
value in each interval for use iroiL routineaxser. This ‘é—’)\(‘ is the rate of change of the totdifactor,
and necessary for use imor.. To do thisameLir calculates thdRe,,, from H using the correlation
seen in figure 3.10. It will then check whetiiee, > Re,, to see if any amplification is present. If
this is not the case and tifactor is equal to zero, further calculation is skipped. Ntactor that
was zero will remain zero. If either there is amplification or khéactor has a non-zero value already
it calls subroutinersec. This is to receive a vector 601 entries long which contains the valugs of
for that specificRe — Re,,, combination for 601 dferent frequencies. Each frequency has its own
amplification rate, be it negative (stable), zero (neutral), or positivetébte) and is multiplied by the
local nondimensional speédl, and by 16 to makeT U. The specific level oN for each frequency is
calculated for this interval in 3 fierent ways.

¢ If the frequency was stable at station #1, and remains so, the amplificatton ¥ell be set at
zero.

¢ If the frequency was unstable at station #1 the following formula is usezhperctive of the
value of T at station #2, as it is applicable to unstable and stable values for station #2.

dN = dxRe - 10°8(T Uy + TU,) (5.1)
Notice that damping is also permitted if either (or bothy values are negative.

¢ If the frequency was stable at station #1 and will become unstable at st&iandiferent
formula is used to let thBl-factor grow from the (irfil) linearly interpolated root.

2

dN—}(d —dx)R 1o—<SL (5.2)
B Sl (VP [V '

Then the dominant frequency is selected. The selection is based on wdtgckeficy has the largest
cumulative amplification factor at that interval. This means thatNkector for each specific fre-
quency at the previous interval is included. A frequency that is beingpédd in the current interval
can still have an overall higher level of amplification due to high levels of aroatitin in previous
intervals, and be the dominant frequency. Fin%%/is calculated according to:

AN Np—N;
dx  Xo—Xp

(5.3)

To increase the calculation speed the variables from station #1 and #ava fer future use. If
iteration is going on in the same interval, the #1 values can be re-used witdoutation éfort. If
the iteration is continued into the next interval, the #2 values will be the new lg&s/aln all other
cases both the #1 and #2 values will be calculated anew.
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5.3.2 CRrSEC

crsic is intended to supplympLir with the vector ofT for the currenRe, — Re,,, for 601 frequencies.
This is done using the approach described in section 3.3. To this er(q;ﬁt)gg | OIandTmaxm;,\xare
determined firstRe,, is already known fronH). Then using the nearest nelgﬁ)our interpolation the
9 closest stability diagrams inandRe,;, direction will be determined. After that the»2agrange
interpolation cofficients are derived from two times applying the llagrange method. (Thenl
Lagrange interpolation is given in equation 3.25.) First thd.dgrange interpolation is used along
Re,, = constant and then along = constant Now it is possible to apply these 9 interpolation
codficients to the spline cdicients of the stored stability data to create interpolated splines. This can
be applied to splines describifig axisandTnhax However, not always there are 9 close datapoints
but in that case some ciieient will be set to zero. On points outside<Or < 2.5 (see figure 3.24)
only one stability diagram dataset is used from each case (as the otleentexpolation coicient
zero). See figures 5.2 and 5.3 for the situations with 9 available stability diagaad with only 3
available stability diagrams. For more information on when which inter- or esta#ipns are used
the reader is referred to section 3.3.

There are warnings issued whenever some extrapolation is used ehémecurrent value drey,,
andRe fall outside of the region given by 8 r < 2.5 and 2216 < H < 35944. Also because of
the working of the thexrorLsuc program, a limit is put on the value &e,,, so it will not go higher
than 43643 (the value corresponding with= 2). The situation can occur that due to boundary layer
suction the laminar value fdid comes below 2. This is considered an unphysical situation and should
therefore be regarded as erroneous. However this situation can sosetioug when high boundary
layer suction velocities are used, and to avoid crashing the progiRe),avalue is used of 8643
letting the user decide whether or not to use the results.

@ data used in interpolation @ data used in interpolation
data not used in interpolation ¢ data not used in interpolation

% location of interpolation % location of interpolation

@ E @ )
¢ ¢

1O|Og(R®crit )
Yog(Rey,)

O

G O

Figure 5.2: interpolation in 9 points Figure 5.3: interpolation in 3 points



68 Modlifications toxroIiLsuc

5.3.3 Convergence

The convergence of the boundary layer solutiorrsiL is quite important and also strictly defined. If
an airfoil does not meet the convergence standards, it will be notds#ghe to use the results in a drag
polar orC; — Cq graph for instance. Therefore a solution that is nearly convergetinismore use to
the user than a solution quite some way from convergence. As was meniiefted, the Van Ingen
method implemented by Ferreira [14] and adapted by Broers [1] is troulledrivergence problems.
These are not caused by the method itself, but caused by interaction witbuthdary layer iterations
in xrorL. The problems were at the time solved by skipping to the Drela method whethetor
nearsNi;. This is a reliable method that unfortunately results in a kink inNkRactor graph due to
the diference in both methods. The error due to this is smaller as the value at whiswitbl in
methods is made is nearer\gi;. After the implementation of the improve}‘}' method it is found
that similar convergence problems occur with this method. During the iterati¢ims boundary layer,
often theH value oscillates heavily, especially at the start of iterations. As the impe\eaethod is
sensitive to théd factor and allows for both damping and amplification of khéactor this oscillating
behaviour has a large impact on the predicted transition location. Due todhg séaction of thé\-
factor to the changingfl it can often be dficult to reach a converged solution as the transition point
keeps changing position with every iteration as the boundary layer vagiabbnge. The problem
occurs close to and in the transition interval as the changes in boundannayables are largest
there due to switching between laminar and turbulent flow. One change wiesimghe boundary
layer iteration routine that was helpful in lessening the oscillation of the slaaper H. This was to
change the iteration limit for each interval from 25 to 26. It was found th&eztreme” H values
occurred on odd-numbered iterations. This phenomenon is quite odd ealtiation is expected
to converge on a solution, but apparently the solution is allowed to jump, bubarodd numbered
iterations. TheH values are still used if all iterations have finished and no convergeddaoytayer
solution is found in that interval. Unless they seem absurd:éa., as then a extrapolation from the
former interval is used, the non converged variables are used. Vhkses seem agreeable for the
Drela transition routine but it does not mean they do not hamper the cemeagising the improved
eN-method. To counter this, the iteration limit was set to 26 which helps achievimgeagence, but
still more needed to be done. Several options were considered:

Using the switching method as it exists

Try to improve on the switching method by letting tNgyitch get closer tdNyit.

Fix the transition point put at the closest node

Lower convergence demands by accepting larger errors in boutsjemyvariables.

Use the forcing routine existing iroiL to influence the movement of the transition point during
iterations.

The first method was rejected as the Drela method to which is switched, gaeditt damping and
because of the kink in thN-factor curve the result is ambiguous. The second method was tried to
see whether getting the switching point close enough to the transition poiid yield better results.
Some success was obtained by implementing a predictor that calculates wiaathition is likely to
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occur in the next interval. If that is the case, a switch in methods is made. y@owemany cases
the predictor needs to predict transition several intervals ahead fowitehed method to work. A
"safety factor” can be changed by the user to have this switch occlierearhe predictor is very
basic, it predicts the expected level of tNefactor in the next interval assuming the next interval
has the same value féé% as well as the same length as the current intervak)inlf for the next
interval the predictedN-factor is higher than thBlj; value the switch is made. The user can specify
this so-called safety factor with which the predicted ris&lifiactor is multiplied. For instance: if a
value of 2 is used, the prediction will be usually 2 intervals early with predictaugsition (provided
the both‘é—ﬁ anddx do not change) and a switch is made 2 intervals in advance of the reatitnans
interval. An example can be seen in figure 5.4. In this figure one can spesttiietedN-factor. N3 is

N N actual N- factor
Ns e 3 predicted N- factor

NN

.
N

X1 dX]_ X2 dX]_ X3 dX]_

dx

Figure 5.4: Safety factor prediction method

the actuaN-factor that occurs atz and theN; value is the predicted value for a safetyfactor of one.
If however the safety factor is taken to be 2, the predicted ridé-factor is multiplied by two and

N2 will be the predicted value foxs. (here the safety factor of two is represented by adding another
intervaldx;) This method works and is implementedxirorLsuc but as it cannot predict damping in

or past the area where the switch is made this was not found tofheemnt. However for the (older)
Van Ingen method it is beneficial and is kept for use with this method.

Putting the transition point into the nearest node would probably not rebey@oblem. The problem
lies not so much in finding the transition point with every iteration but in fixation @ria location, so

it becomes independent of the iterations when found. Together with logviiénconvergence criteria
putting the transition in a node was thought to have negaffeets on the accuracy and both methods
were therefore discarded.

The last method of using the forcing routine to influence convergenceavessdered promising. The
forcing method irkror is a way to manually force transition at a point. If upstream of that point free
transition is found, this is the transition location found. With this method, the mémneahg can still

be used as was the case before. The forcing is used ifie2atit ways to improve convergence:

e if the transition point in iteratiom, calledx; is within 0.01% of the chord (110?4@ of the last
transition point,_1 and no convergence is achieved, the method forces the transition to be on
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this point. Then this transition point is fixed and within a few iterations usually@gence is
achieved.

e if the transition pointx; is no more than 10% of the chord apart frogn,, and no more apart
than 2% of the chord fronx;,_, (essentially when the; is "jumping” with every iteration be-
tween two stations maximum 10% apart and movement from these two locatioasisitiom
limited to 2%) a special treatment is used. (The maximum distance of 10% of theéishec-
essary for separation bubbles, where convergence is a problemldthitfze three transition
methods.) When the points andx; , are more than 2% of the chord apart the most down-
stream location will be forced forward at 0.5% of the chord every iteratitii the diference
between them is no smaller than 2% of the chord. This is shown in figure %eby(g&ration
this special treatment is used counts as a step in figure 5.5). Usually thiédrapsint will
be found in front of the forcing point and convergence will be redcifenot and the transition
points are no more than 2% apart a slower rate of moving the downstreatclosier is used.

It can only then move at a rate éfof the distance between the two points until they are within
a distance of @1% of the chord at which the first forcing mechanism forces the two oint
one point. The latter situation is not expected to occur in practice.

location of transition forcing

dx dx = 10%;
u Ll e = 29
= = stepl
X1 X2
— [lr step2
X1 X2
— # step3
X1 X2
= Jﬁ step4 etc
X1 LI—‘XZ

Figure 5.5: Forcing method

In the vast majority of cases in which this forcing method is used, the distuddiag infinite loop

in which the iteration can get caught, is usually enough to ensure comeergm the basis of a free
transition point. In allowing the forcing of the transition point to move only 0.5%hefchord, it

is guaranteed that the error in transition point due to this forcing is no morettiie0.5% of the
chord. This is within the accuracy of the choice fyi: and other errors due to (empirical) relations

in the program. Some example calculations are given in table 5.1. Note thatdinds were

run with 360 panels ixrorsuc for accuracy reasons (see also 6.3). In this table one can see the
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range of non-converged solutions transition points of the method witho@ivttieg method and the
converged solution transition points of the forcing method. In all casesdhsition as calculated
using the forcing method was of the free type, which means the conveagesititon point was found

to be in front of the forcing point. The fierences in most cases are small, perhaps except in the
case of NACA0018, where a large separation bubble was presergitieata longer range for the
non-converged transition points. In the cases where the non forcingpdhetimverges (NACA0012
and the lower surface of NACA1912) there is ndfelience between the methods. This reinforces
the thought that the forcing method has no significdféat on the transition location, only on the
convergence.

Table 5.1: Transition points for dferent convergence improvements

airfoll transition &) forcing method| transition &) without forcing method
NACA0012 top: 0.4913 0.4890 - 0.4937
a=1Rg=1-10° bottom: | 0.6749 0.6738 - 0.6754
Flat plate airfoll top: 0.4271 0.4271*

@ =133 Rg =5-1C° | bottom: | 0.8819 0.8817 - 0.8825
NACA4415 top: 0.7016 0.6998 - 0.7045
a=1Re=1-10° bottom: | 1.000 1.000*
NACAG64,-A-215 top: 0.5567 0.5567 - 0.5568
a=0,Re =275-10° | bottom:| 0.5469 0.5469*
NACA1912 top: 0.0572 0.0571"
a=5Reg=1-10° bottom: | 0.7762 0.7757 - 0.7768
NACA0018 top: 0.6393 0.6389 - 0.6406
a=2,Re=1-10° bottom: | 0.8761 0.8696 - 0.8872

* = non-converged solution (2 values denote the maximum range of nonrgedv&lutions obtained)
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Chapter 6

Validation

6.1 Test Airfoils

Before the validation phase can be started some test airfoils need to leacfibe test airfoils need to
represent all flow phenomena that can occur on airfoils in which the inepi@+method is expected
to be used. In this light 7 cases are tested, usingfrdint airfoils. These are mentioned in table
6.1. Some other cases were considered in addition to the ones mentioned B.1abldese cases
were mainly theoretical cases such as the Rheinboldt strip suction anglaféetvith boundary layer
suction. These cases are shown in this section, but further analysabaadoned as their results are
considered unphysical due to a wrong handling of the boundary lgyerdusuc’'s boundary layer
equations. This conclusion is however of such importance that these wase included in section
6.2. Some applications of the Improvedmethod to more "theoretical flows” can be found in [53].

Table 6.1: Studied Airfoils

name airfoil Re. a suction used
NACAO0012 1-10° 3 no
NACA0012 1-10° 0° no
NACA0012 1-1° 0° yes, between 25% and 55 %7 ,base 1
NACA0012 1-10° 0° yes, between 25% and 55 %7, base 2
1
5
2

NACA0018 S10° 2° no
"Flat Plate Airfoil” 108 133 | no
NACAG64,-A-215 airfoil | 2.75- 10° | 0° no

Of the testcases NACAQ012 is used because it is so well studied andhgiessic pressure distribu-
tion of an adverse pressure gradient on the suction side of the airébd partly favourable pressure
gradient on the pressure side. This airfoil is first studied with an angitaék of 3 and then with
a zero angle of attack. At zero angle of attack also suction on the uppat side is used, in be-
tween 25%; and 55 %7 with a strength as calculated by the first iteration ofitke: routine present

73
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in xrorLsuc in the vbes menu. The base suction distribution is given in equation 6.1 and taken from
Broers [1].
vo 1 1d@E)Re
Uo O.2205&J_m d(¥) Re

(6.1)

In this equation as a first iteration tiR®, is assumed constant over the area to which the suction is
applied. It is a first attempt to achieve laminar flow in the area it is used in. itfeobjective was
solely to test a realistic suction distribution so no more iteration cycles are nddtlia basic suction
distribution is used right away. The case in which it is doubled represetésein which heavy
suction is used, where theoretically thefactor will become zero again. The NACA0012 airfoil
was also calculated with the single and the double amount of suction prowdeds Both suction
distributions are shown in figures 6.5 and 6.6. The pressure distribufiafigloree of the NACA0012
cases are shown in figures 6.1 to 6.4. In@he- x figures 6.1 to 6.14 the dotted lines represents the
inviscid solution byxrorLsuc, the red line represents the upper surface viscous solution and the blue
line represents the lower surface viscous solution.

-2.0 wo1L NACA 0012
' Re = 1.000~x10°
a = 3.0000°
-1.5 C, = 0.3258
C Cy = 0.0027
p . Cy = 0.00686
-1.0 \ L/D= 47.46
.5 s N.. = 9.00
-0.5 TN

e

Figure 6.1: C, NACA0012 fora = 3°, Rg = 1- 1P, no suction



6.1 Test Airfoils

75

XFOIL
V 6.93

NACA 0012
Re = 1.000x10°
a = 0.0000°
C, = 0.0000

Cy = -0.0000
Cp = 0.00617
L/b= 0.00
Ner = 9.00

Figure 6.2: C, for NACA0O12 ata = 0°, Re. = 1- 1P, no suction

XFOIL
vV 6.93

NACA 0012
Re = 1.000~x10°
a = 0.0000°
C, = 0.0091

Cy = -0.0018
Cp = 0.00536
/D= 1.71
Ner = 9.00

Figure 6.3: Cp, for NACA0012 ata = 0°, Re, = 1- 10°, base suction
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=20 peon NACA 0012
Re = 1.000x10°
a = 0.0000°
-L.S C, - 0.01u9
C Ly = -0.0032
P Cp, = 0.00502
-1.0 L/D = 2.97
N, = 9.00
-0.5 o
0.0 o e
f h RNV
| v
0.5 |
1.0 !
Figure 6.4: C, for NACA0012 ata = 0°, Re, = 1- 1P, 2 base suction
X107 x107
0 T T T T T T 0
-0.1 -0.1
-0.2 -0.2
-0.3 -0.3
_04f -0.4
>O:§_05 §:§—05
~0.6 -06
-0.7 -0.7
-0.8 -0.8
-0.9 -0.9
2o 01 o0z 03 04 05 06 07 08 08 1 2o 01 o0z 03 04 05 06 07 08 08 1
X X

Figure 6.5: suction distributionbasefor NACA0012 Figure 6.6: suction distribution 2 - base for
a=0,Re=1-10° NACAQ012a =0°,Re, =1- 1P
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NACAO0018 was used to check the handling of large separated flow. dtegsessure distribution is
shown in figure 6.7. At the low Reynolds number large areas of sepdtateavill occur. This can
be seen in figure 6.8 where the skin friction is shown.

20 peror NACA 0018
' Re = 0.100x10°
a = 2.0000°
-5 C, = 0.2u35
Co Cy = 0.0027
L, - 0.01879
-1.0 P L/D= 12.96
ST N.. = 9.00

Figure 6.7: Cp, for NACA0018 ata = 2°, R, = 1- 10°P

The "flat plate airfoil” is an airfoil which has an almost flat plate pressus&itiution on the lower
surface at an angle of attack af38° and is taken from [14]. The airfoil’s resemblance to a flat plate
flow is checked in a few ways. The pressure distribution can be foundurefi6.9. This shows apart
from the very start at the leading edge and the area close to the trailingagalgssure cdgcient

of zero (although any constant pressure woulffice), as it would need to be to resemble a flat plat
boundary layer. Also the development of the momentum thickness repedd®rRe, is compared in
figure 6.10 and 6.11 to thee according to Blasius:

# 0.664
Z 77 6.2
X  +Re (6.2)

Apart from the very start as already mentioned the agreement is goodn Wfte studies the shape
factor in figure 6.12 at first it seems to be quite close to 2.591, the value doBlt#sius solution.
However on close inspection the shape factor seems to be 2.56, thus a littlefsh®91. Later on
the consequences of this are shown. As to the reason this value is rexttcldke flat plate value,
one must look at equations 4.10 to 4.19. In these laminar boundary layati@tgnor in the closure
relations a pressure cfieient of 0 is guaranteed to yield a shape factor of 2.591. As alreadyirseen
figure 6.10, the momentum thicknesss in good agreement with the flat plate value, soféedeénce

in shape factor must originate in the displacement thickbiess

As the last airfoil NACA64-A-215 was used, as it is an airfoil studied in Van Ingens dissertation and
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ACA 0018
- 0.0000 @ = 2.0000° C_ = 0.2435  T:x./c = 0.6393
Re = 0.100x10° N_. = 9.00 Cp, = 0.01879
0020 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Cr

0.010

0.005

0.000 i i i
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Figure 6.8: C for NACA0018 ate = 2°, Re. = 1- 1(°, upper surface (red), lower surface (cyan)

-2.0 Kol flat plate airfoil
Re = 5.000x10°
a = 1.3300°
1.5 C, = 0.3899
C Cy - -0.0245
P Cp = 0.00401
-1.0 L/D= 97.23
,,/y"‘&”””’\\\ N = 9.00
-0.5 / x\
/ I
/ ~~
/ ~
0.0 o =
. \‘(‘// ~
|
|
I
0.5 ‘(
/
1.0

Figure 6.9: Cj, for "flat plate airfoil” ata = 1.33, Re, = 5- 10°
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3500 T T T 500 T T T T T
—lower surface | — lower surface —
w000 —— blasius theory ; | " ___blasius theory e
| 4001 //// 1
2500 ‘w“ 1 350 = 1
/ i ' |
@ 2000+ / — & 300
x /” O 250} 4
1500 / 1
200+ 1
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100+ 1
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Figure 6.10: Comparison oRg for the "flat plate air- Figure 6.11: Zoomed in comparison oRe, for the

foil” and the Blasius solution "flat plate airfoil” and the Blasius solu-
tion
4
35F : » 1
3 - -
I

Figure 6.12: H for flat plate airfoil atr = 1.33°,Rg = 5- 1¢°
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for which some data are available. Unfortunately the data gathered in theuwad is influenced by
the large size of the model. Therefore no good comparison could be madeeipecalculated data and
measured data and from here onwards only calculated data is usedirfdligessure distribution
according to the data in [51] is shown in figure 6.13. This pressure digtibis only the calculated
inviscid distribution that clearly shows bumps on the upper surface neapte and at around 60%
of the chord on the lower surface. The reason for this behaviour itthabse is not well defined and
has a dimple. In Van Ingens research [51] the same phenomenon vnakifoiine windtunnel model
made up from these coordinates, and it was resolved by smoothing outrthees The same is done
on the numerical model ikroiLsuc. The oscillatory behaviour on the lower surface however was not
found on the windtunnelmodel. This because it stems from a numerical deafttihe airfoil. The
NACAB64,-A-215 has a straight line on the lower surface from 59% of the chordetdrétiling edge
which produces a small kink in the curvature of the airfoil profile. Due toktik, the 29 derivative

is no longer continuous. Due to thiffect the vorticity is forced to a higher value. This bump in the
pressure distribution was also removed by making the airfoil smoother adgbat The corrections
made on the NACAG4A-215 result in the new pressure distribution seen in figure 6.14.

B b NACRABU (2) -A-215
a = 0.0000°
C, = 0.1812
he Cy = -0.0405
Co Cpp = -0.00019
1.0
0.5

N TN
<

Figure 6.13: C, for uncorrected NACA64A-215 ate = 0°, Rg, = 2.75- 100
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e O NACRABU (2) -A-215
Re = 2.750%10°
a = 0.0000°
he C, = 0.1719
C Cy = -0.0368
F C, - 0.00512
by L/D = 33.58
Ng. = 9.00
0.5
0.0
0.5

- I

Figure 6.14: C,, for corrected NACAG64-A-215 ata = 0°, Re; = 2.75- 100

6.2 Abandoned Test Cases

The dropped test cases are the Rheinboldt strip suction and high suelomityy employed on a flat
plate. AsxroiLsuc can only handle airfoils and can handle no single flat plate, the "flat pldtelais
used in both cases. Other approaches in getting a flat plate boundaridageproven unsuccessful,
because either no constady distribution could be achieved or because a very thin plate results in
poor numerical accuracy iroiL. The Rheinboldt strip suction proved to be unpracticalfaiLsuc
as the very high suction velocity employed over a small strip prevented igmamee of the boundary
layer solution. This leaves only the flat plate with high suction velocity, with tké@unot as high so
as to prevent convergence. The suction is only applied to the lowecswfahe "flat plate airfoil”.In
figure 6.15 the pressure distribution is shown, in figure 6.16 and in figut&so 6.20 the shape factor
and theN factor are given. It must be stressed that the solution with a laminar shefue bf less
than 2 is considered unphysical, and that therefore this solution caamoiisidered to be correct. It
is instructive nonetheless in showing the faulty behaviour of the bouridgey routines inrorLsuc.
This test case is abandoned for the rest of the calculations as the bplayda variables seem to be
erroneous
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-2.0 ol flat plate airfoil
Re = 5.000x10°
a = 1.3300°
-1.5 C, = 0.3839
C Cy - -0.0230
P Cp = 0.00378
-1.0 L/D= 101.55
e — Ne. = 9.00
e e
0.5 / “
/ N
/ .
/ T
| i/ \\\ t
0.0 i .
I
I
0.5 '
1.0

Figure 6.15: C,, for flat plate suction airfoil atr = 1.33°, Re, = 5- 1(°

x10°
T

—0.2}+

14 . . . . . . . . L
0 0.1 0.2 0.3 0.4 0.)5( 0.6 0.7 0.8 0.9 1

Figure 6.16: vy for flat plate suction airfoil atr = 1.33°, R, = 5- 10°



6.2 Abandoned Test Cases

83

i i i i i i i i i i i i i i i i i
0 0.1 0.2 0.3 0.4 0>5( 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 05§ 0.6 0.7 0.8 0.9 1

Figure 6.17:H for flat plate suction airfoil atv = Figure 6.18: H for flat plate suction airfoil atr

1.33,Re = 5- 10, lower surf. 1.33°, Re. = 5- 10P, upper surf.
10 T 10
9 9
8 8
7+ 7
6 6
Z s Z s
4 4
3 3
2 2
1 1
00 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1 00 0.1 0.6 0.7 018 0.9 1

Figure 6.19: N for flat plate suction airfoil av = Figure 6.20: N for flat plate suction airfoil atr
1.33,Re = 5- 10°, lower surf. 1.33, Re = 5. 10°, upper surf.
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6.3 Grid convergence

Before any airfoils were calculated usirgpiLsuc, a grid convergence study was made. The default
number of panels foxror. nowadays is 160 panels (originally it was 120, later changed into 140 and
then to 160), which is supposed to give a high resolution solution. As a atsupawill be made

of different transition methods the objective is to isolate as much as possible otioes that can
influence the transition calculation. The panel density is one of the facttrsdh have an influence

on transition. To reduce the contribution of the error in transition location ahras possible a grid
convergence study is made of the airfoils that are used. The results o&thize seen in figures 6.21

to 6.34. As the scale of the figurediers a lot arrows are added that give approximately 1% of chord
length. Notice that for the suction surfaces (figures 6.26 and 6.28) tiveigence is especially bad.

The panelling of the airfoils is given in appendix B.
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Figure 6.21: Xgansition lower surface for NACA0012 Figure 6.22: Xyansition Upper surface for NACA0012
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Figure 6.23: Xgansition lower surface for NACA0012 Figure 6.24: Xyansition Upper surface for NACA0012
@ =0°,Re = 1-10° no suction @ =0°,Re =1-10°, no suction

As can be seen in figures 6.21 to 6.34 the transition location sometimes variea hyitite the region
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Figure 6.25: Xgansition lower surface for NACA0012 Figure 6.26: Xyansition Upper surface for NACA0012
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Figure 6.27: Xgansition lower surface for NACA0012 Figure 6.28: Xyansition Upper surface for NACA0012
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Figure 6.29: Xgansition lower surface for NACA0018 Figure 6.30: Xgansition Upper surface for NACA0018
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Figure 6.33: Xansition lower surface for NACAG64-A- Figure 6.34: Xy ansition UpPer surface for NACAGAA-
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with less than 200 panels. The oscillations vary in size from airfoil to airfaiit fBr all airfoils the
oscillations are small at around 360 panels, and therefore this is the nuimbaneals used for all
airfoils. The error in transition location due to the panelling of the airfoil is noentiban 00025 (or
0.25% of the chord) in any of the evaluated cases (having 360 panel$3$ andsidered small with
regard to the other errors present in the total handling of the airfoil anttdhsition method and will
from here on be neglected.

6.4 Validation of transition method

In the case of the improveelN-method the validation is done by a select group of airfoils given in
table 6.1. These airfoils are selected in such a way that most flow phenasesaiéyy encountered in
airfoils are represented, such as favourable and adverse grggadients, large separated flow areas
and boundary layer suction. These airfoils (upper and lower syrfeee calculated using a total of
360 panels. Then thi-factor as calculated byrorsuc with the implemented improvee\-method

is compared to thearLas routine of the improve@N-method as made by Van Ingen. As input for
themarLas routine the boundary layer variablds,(Re), u) as they were calculated byoisuc were
used. In figures 6.1 to 6.40 the results for the NACA0012 at 3° andRe. = 1- 10° are shown.
Figure 6.1 gives the pressure distribution, figures 6.35 and 6.36 givehte factor for the lower
and upper surface, figures 6.37 and 6.38 give'thag(Re)) and'®log(Re,,) for the lower and upper
surfaces, and figures 6.39 and 6.39 giveNhfactor for the upper and lower surfaces as calculated by
the routine implemented intxroiLsuc (in red) and thesarLas routine (in blue). For the other airfoils
only the figure of the pressure distribution and tidactor are shown, but in appendix C all figures
are shown for all test case airfolils.

35 y 35F

I I I I I I I I I I I I I I I I I I
0 0.1 0.2 0.3 0.4 0.)5( 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.)5( 0.6 0.7 0.8 0.9 1

Figure 6.35: H for NACA0O12a = 3°, Re = 1- 1(P, Figure 6.36: H for NACAOO12«a = 3°, Re. = 1- 1CF,
lower surf. upper surf.
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Figure 6.37: Rg andRe,

. 10r NACAOO12 ¢ = 3°, Figure 6.38:Rg andRe,, for NACA0012 @ = 3°,

crit

Re = 1-1C®, lower surf. Re = 1- 1P, upper surf.
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Figure 6.39: N for NACA0012« = 3°, Re = 1-10°, Figure 6.40: N for NACA0O12a = 3°,Reg = 1- 10°,

lower surf. upper surf.
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Figure 6.50: N for flat plate airfoil atx = 1.33°, Re, =

5. 1CP, upper surf.

- rtneitlab‘im plFméntation ‘

ortran implementation
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As can be seen in all cases bathfactor calculations give excellent agreement. Mostly only the
red lines are visible in the diagrams as they lie on top of the blue ones. With theragnt for

all upper and lower boundary layers of the testcases it is assumed thanbthods will yield the
same results as long as the same input variables are used. Thus in pratihg tthatabase method as
implemented imatLas correctly depicts the data as calculated by Arnal in [4], also proves:thesuc
implementation to depict this data correctly. Proof of this can be found in {@3izh was not yet
published at the time this thesis was written, but a draft version was madebévadahe author in
which this proof could be found. Assuming the Arnal data is correct, theadedb implemented in
MATLAB andxroILsuc USes correct solutions of the Orr-Sommerfeld equation for use &itaethod.
The only question mark left is whether the one parameter approach faathilitg diagrams is valid.
Some supporting arguments have been given in section 3.2, but no dexigiument has been found
yet. If the working hypothesis of a single parameter approach shouldtheldalidity of this method

is achieved as the validation of tl¥-method has been done already by many authors (i.e. [39],
[50]) in the past. However the validation is then only valid for the area in wHath from Arnal is
available. The zones of extrapolation cannot so easily be proven toidetwat in chapter 3 some
sound arguments are given to assume their validity.
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Chapter 7

Results of the finite dfference boundary
layer calculation

As a separate check the finitdigrence method boundary layer calculation was done on the pressure
distribution output okrorLsuc. This means only tha, on every panel is used for the finitefdirence
boundary layer calculation. The reader has to keep in mind that thereustherfinteraction between
the boundary layer variables as calculated by the finiterdince method and the pressure distribution
coming fromxrorLsuc. The pressure distribution frorrorLsuc is however the final converged solution
where the boundary layer interaction is taken into account. Thierdnce due to leaving out the
interaction with the boundary layer in the finitefférence method can be considered small, as the
only possible influence would be théfect of the diference between the boundary layer solution
from xrorL and the finite diference method. The working of the finitéfdrence method is described
in section 2.4. The results of these calculations done with the firffierelnce method can be seen in
figures 7.1 to 7.28. In these figures only the shape factor and-flaetor is shown, as thRg, values

are in very good agreement and for these cases can be found indap@enAlso a comparison is
made with theN-factor calculation using therosuc and the finite diference calculated boundary
layers.

Figures 7.19 and 7.20 do not go uplb= 9 because there is separation occurring which causes
the finite diferences method to stop the calculation. As can be seen in the figures tleefatiap

as calculated using the finiteffirences method is fiiérent in many cases. The finiteffédirence
method is believed to be more accurate and therefore the laminar boundarjolagulation as used

in xrorLsuc andxrorL is often underestimating or overestimating the shape factor. This is a serious
observation, as this implies that the transition position as calculateddmsuc and xror. can be
quite a bit from the actual location. This has not such a big impact if thereteea sise inN-factor

but can be quite dramatic when thifactor does not rise so steep. This is very clear in figure 7.23
where the transition point fiers more than 20% of the chord. The sensitivity of Mactor to the
shape factor can now also be clearly seen. Observing figures 7.2 4tth@&.2onclusion is drawn that
when the shape factor and tRe are the same also thé-factor will be the same. This implies that
the only disturbing factor in the flerence seen in these figures is due to tifiedince irH.
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Results of the finite dierence boundary layer calculation

T ‘itF dif ferences '
—_ xfoilsuc

35K

Figure 7.1: H at lower surface for NACA0012 = 3°,
Re =1-1C°

10

T fi ‘itF dif ferences '
—__xtoilsuc

i
0.9 1
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Figure 7.9: H at lower surface for NACA0012 = 0°,
Re = 1. 1CP, suctionbase

10

T fi

|tF dif ferences /
of ——X uc /
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Figure 7.12: N at upper surface for NACA0012 =
0°,Re. = 1- 1P, suctionbase
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Figure 7.15: N at lower surface for NACA0012 =
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Figure 7.14: H at upper surface for NACA0012 =
0°,Re. = 1- 1P, suction 2 base
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Figure 7.16: N at upper surface for NACA0012 =
0°,Re. = 1- 1P, suction 2 base
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Chapter 8

Transition method comparison

After the evaluations of the panelling and the laminar boundary layer eqaatiow the diferent tran-
sition methods present krorsuc will be evaluated. First the fferent curves for th&”log(Re,,, ) —1°
log(H) are compared in figure 8.1.

The Drela method, the Van Ingen method and the impralethethod are compared with the seven
test cases used earlier (mentioned in table 6.1). The results for the ssiveases are presented in
figures 8.2 t0 8.8.

Figure 8.2 shows\ for NACA0012 withe = 3°, Re. = 1-10°. The Van Ingen and the Improved
eN-method show very similar behaviour, except the part upwahd f8 where the Van Ingen method
switches to the Drela method. The Drela method displays a similar trend but wiffsatto the other
two methods. The same holds for figure 8.3 whidrier NACA0012 withe = 0°, Re. = 1- 1P and
without suction is displayed. Figure 8.4 is interesting as it employs suction(thaskdistribution)
on a NACA0012 withe = 0°, Re. = 1- 10°. All three transition methods predict a similar trend for
the N-factor.

When the suction velocity is doubled dfegrent graph can be seen, shown in figure 8.5. Very clearly
the advantage of improves!-method can be seen. Both the Van Ingen and the Drela method fail in
predicting damping of thé-factor whereas this is predicted by the improw®dmethod. The fact
that the Improve@N-method has a somewhat steeper curve in the second unstablépeis partly

the diferences in the flierent methods predicted point of transition. Figure 8.6 gives again a similar
trend predicted by all three methods, albeit that the Drela method hasat @s usual to the other
two methods. The flat plate airfdN-factor displayed in figure 8.7 shown again a similar trend but an
offset for the Drela method and the kink in the Van Ingen method which makes tts#titva point
nearly the same to that of the Improveymethod. The same pattern is seen in figure 8.8.
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Transition method comparison
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Figure 8.2: N for NACA0012a = 3°, Rg. = 1- 1(F
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Figure 8.3: N for NACA0012« = 0°, Re, = 1- 10, no suction



103

10

. ——upper surf Drela method
- - ~lower surf Drela method
——upper surfVan Ingen method
- - - lower surf Van Ingen method
——upper surf Improved & method
- - —lower surf Improved & method

0.2 0.3 0.4 0.)52 0.6 0.7 0.8 0.9

Figure 8.4: N for NACA0012« = 0°, Re. = 1- 1(P, suctionbase
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Figure 8.5: N for NACA0012« = 0°, Re, = 1- 10P, suction 2 base
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Figure 8.7: N for flat plate airfoile = 1.33°, Re = 5- 10°
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Chapter 9

Case study DU99 airfoll

The DU99 airfoil is a 14.7% thick airfoil designed for the standard claislaae ASW-28. It is quite
well suited for use with boundary layer suction to extend the laminar boyrdger on the upper
surface as the upper surface already has a long laminar boundary Téy® airfoil is planned to be
provided with boundary layer suction to serve as demonstration wing.sifianis forced on both
the upper (at 95% c) and lower (at 85% c) surface to avoid laminar atmar Up to these locations
strong suction can prevent laminar separation, but at the upper trailgegredsuction can be used
downstream of 95% c and at the lower surface a flap will be presemt &% onwards. A case
study is performed on the DU99 airfoil to study théeet of the Improve@N-method transition point
prediction on the performance of the airfoil. Also a suction distribution is aesidor this airfoil to
achieve better performance. The DU99 airfoil with the panel distributied issshown in figure 9.1.
For this airfoil 360 panels were used on the surface for all calculationsrimize diferences in the
comparisons due to the panelling.

]
LARARALLERIL

Figure 9.1: DU99 airfoil with the 360 panel grid

9.1 Performance without suction

First the performance polars are calculated using all three transitioicfioedmethods present in
XFoILsuC, being the Drela method, the Van Ingen method and the newly implemented Ird@tve
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method. These polars can be seen in figure 9.2.

It can be seen that both the Van Ingen method and the Impe\«adethod behave very similar. This
was to be expected as the methodEedinot greatly except for the ability of the Improve'+method

to calculated damping of tHe-factor and the ability to calculate more frequencies than the Van Ingen
method so théN-factor curve is smoother. Both the Van Ingen and the Impradechethod predict
transition earlier (up to 10 % c) than the Drela method at adverse presadiierg situations.

9.2 Suction distribution

For the DU99 a suction distribution is designed. A Reynolds number0&-110° andM = 0 was
used. The variation of Reynolds with is such thatRe+/C is constant. This corresponds with a
stationary flight situation, where the flight speed varies but that the totedfifains equal. In Broers
[1] it is shown as a practical result that fBe+/C, constant, they distribution for this situation is
practically constant fo€, > 0. This way the suction velocity can be scaled&% so that:

Vo(X)
Us VCi

Because they distribution is not exactly constant a suction distribution needs to be calcitated
several values df,, after which the most demandii@j value determines the suction distribution. For
this airfoil two suction distributions for the upper surface were calculakbd.first by using the built

in command inkroiLsuc for a first suggestion for a suction distribution to keep a flow laminar (com-
mandbasg. The suction distribution was then modified by hand to avoid boundary ssparation.
This resulted in a suction distribution as shown in figure 9.3. As can be seaudttion distribution
runs from 50% to 95% of the chord. This resulted in the polars calculatedalithree transition
methods shown in figure 9.4.

~ constant (9.2)

The suction distribution shown in figure 9.3 is somewhat irregular. As theilairill be built at some
later stage and provided with boundary layer suction a more smooth ardrregation distribution
is preferred to ease the construction and suction control mechanism. Algmghs it is possible
to extend the start of the suction distribution forward. This makes it possibetsign the suction
distribution and to make it a simpler one. The new suction distribution is shownuirefiy5. In figure
9.6 both suction distributions are plotted in one figure. A new performanee was calculated using
the second suction distribution, again using all three transition methods arsth@vis in figure 9.7.

A comparison is made of the polar without suction (cyan curve), and wittiosudistributions no.1
(blue curve) and suction distribution no.2 (magenta curve) in figure 9.8 a@lllantages of boundary
layer suction are very clear in this figure. In the low drag bucket regieptbfile drag of the airfoil is
reduced by about 50% to 75%. This excludes suction drag, becaugedhgendant on thefeciency

of the suction system, and possible ejection of the air taken in by the suctitamsy&ven when
transition point occurs just in front of the start of the suction distributiarafaundC, = 0.9 for the
second suction distribution) and the turbulent boundary layer is presémt suction part, the drag

is still a lot less than the non suction case through fifiece of suction on the turbulent boundary
layer. Also theC,, is with suction around 1.7 instead of 1.4 without suction. So for the DU99 airfoil
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9.2 Suction distribution
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Figure 9.2: DU99 polar without suction
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x 10"

Figure 9.3: DU99 suction distribution no. 1

a carefully designed suction distribution can dramatically reduce drag anebse lift by delaying
both transition and laminar and turbulent separation. Therefore this a@sfeéry well suited for
windtunnel testing and verifying the calculations.
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Figure 9.5: DU99 suction distribution no. 2
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Figure 9.6: DU99 suction distribution no. 1 & 2
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9.2 Suction distribution

O\Lux 0 DU ijﬁ

7
pancJduwTt mmjm |||||
usBu] uep M — — —

/

/4

1§04y

=

<

/

Noon fooD = 10rew  00OOSGR==33i8y  poyjaw N.8 fenosdul g6N(Q
= NN \@8,@ = 700eW  0000SOT = 10A38 ==L _ poyraw/usBul uep 6600
\ N
W h g

Sl

Figure 9.7: DU99 polar with suction distribution no. 2



Case study DU99 airfoil

116

0

[

o/ 4%
S0

00 81 9T Rl I 01 8 8 h ¢ 0OOh 00E 00¢ 001

g 0y <01

0°0

/0 D@e%m% ..... ke

e e panoudut eeflo

S \ ““““““““““““““““““““““““““ C\m.or:a

o ”,i\\sf:ﬁi”ukal/// abiha. <1
= AW gg0°0 = 19feW 0000507 =" 33KeE ~ __poylau z<m\mm>ogaeﬂ 66N

- AN A00°0 - JafeW 0000501 = TIpSY ToRRYRdw Q«\m\ paaoJdwt g6Nd

Figure 9.8: DU99 polar, without suction, and both suction distribution



Chapter 10

Conclusions and Recommendations

10.1 Conclusions

From this study some conclusions can be drawn with regard to the objeldidesut in section

1.4: To implement an improved transition region prediction methogkinLsuc that achieves reliable
results for boundary layers on airfoils with and without boundary layetisuac A reliable transition
prediction method was implementedsxroisuc in the form of the improve@N-method, and it can
calculate both amplification and damping of thdactor. Some measures to ensure converging of the
boundary layer calculation xroiLsuc were necessary. These measures use the forcing routine already
present irkrorLsuc to interrupt infinite loopsrorsuc can otherwise be caught in. These measures do
not significantly influence the location of transition.

Without boundary layer suction the results of this method are very similar toahdngen method
implemented earlier inrorsuc, as long as thd-factor is strictly increasing. Compared with the
Drela method for non-suction boundary layers, the impragiéanethod shows a steeper curve for
the N-factor all cases except the flat plate airfoil, where the gradient is sifilaen boundary layer
suction is applied, only the improvesl-method can predict damping of tid-factor. This is of
great value when designing airfoils specifically meant for use with bayrdger suction to delay
transition and boundary layer separation to reduce drag.

In analyzing the grid convergence it was found that the default valdé@fpanels is for many cases
not a dense enough distribution and 360 panels were used to ensurudede of the panelling on
the transition locations could be neglected.

The laminar boundary equations xfor. and xroiLsuc were found to dier significantly from the
results made with a finite flerences method. It is believed the laminar boundary equations or its
closure relations imroiL andxroiLsuc are somewhat inaccurate with regard to the shapefactor. As this
influences the transition location calculation highly this is a serious observ&ammected with this

is the fact that for high suction velocities a laminar shapefactor of less tlggi2en byxroiLsuc.
Finding the cause of this was thought to be outside the scope if this studlgelmliservation deserved
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to be mentioned here.

The DU99 airfoil is suited well for use with boundary layer suction. Draductions (excluding
suction drag) are between 50% and 75% in the low drag bucket. Outsidevitardg bucket the
drag reductions are also significant. Also using boundary layer suct@pp,af 1.7 can be achieved,
compared with & _ of about 1.4 for the case without suction.

10.2 Recommendations

A few recommendations for future study can formulated after this study.

¢ It would be interesting to verify the working hypothesis about the asymptatittas boundary
layer having a stability diagram very similar to that of the stagnation point withulzlons.
This could be done by making or using an Orr-Sommerfeld equations saldecadculating
the stability diagram of the asymptotic suction boundary layer and comparinthi¢ &tability
diagram of the stagnation point.

e A study in determining the actual frequencies responsible for the dominapiifization of
disturbances beforehand would increase thiriency of the method, because a large range
of frequencies(601) is used to try all possible dominant frequenceemeluded in the calcu-
lations, but in some cases the number of frequencies in the unstable aressigdth for an
accurate description of the amplification rate curve.

e Adetailed study should be made into the laminar boundary layer calculaticoiofandxror-
suc as they were found to fier from results using a finite flierences method and in suction
cases allow a shapefactor of less than 2 to appear.

e Connected with the previous suggestion is the recommendation to study thef laokver-
gence inxrorL due toxroiLs handling of the interaction of the boundary layer iterations and the
transition calculation.

e A grid convergence study should be done for each profile that is to temsxely analyzed
usingxroiL or xroiLsuc. Especially when using suction, results can vary much with the number
of panels used.



Appendix A

User Guide Transition

This user guide is a short guide for users working witbiLsuc and who want to use the (full) Van In-
gen or the improved Van Ingen transition method. This last transition predisti@iid for boundary

layers with and without suction. This short guide is split in two sections: oneearning the choice
of transition methodikme) and another with the convergence improvemeaoti) usually needed in
xroiLsuc for the two above mentioned methods.

*Warning* A warning beforehand is needed here, as this user guidebmaeparately used from
the thesis it is appended to. In testixgisuc it was found out that the boundary layer formulations

in xroiLsuc allow for a shape factor of less than 2 when suction is used. It is beliewtdHis is
*NOT* correct, and that only values above=H2 should be trusted.

A.1l TRME

ThetrMe command stands for TRansition MEthod and can be found srglemenu. When entering
the command a short menu will appear giving the user 3 choices:

1. 2nd order Drela method
2. Van IngengN method

3. Improved Van Ingeng" method

A.1.1 2nd order Drela method

This method is an improved version pfoiL’s first transition method, the 1st order Drela method.
This 2nd order method is more accurate than the 1st order method butngizbséhe same. It is
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an envelope method that is based on self-similar Falkner-Skan velocitieprdfrom H= 5 onwards
non-similar profiles are used for better accuracy in separated flow siigafidis transition method
cannot cope with damping of TS instability (as can occur with boundary Eyetion) and has the
implicit disadvantages of envelope methods (although alleviated by the usmnedimilar profiles
for H > 5) but is the best converging method of all three and therefore neelislpan finding a
converged solution that both other methods need.

A.1.2 Van Ingense" method

The (full) Van Ingen method implemented in 2002xirviLsuc was meant to be able to account for
damping TS instabilities, as can occur when using boundary layer suctiog.itTs able to do, but
to a very limited amount only. This is because the calculation is stopped whemBeglower than
Re,,, is found. TheN-factor is kept constant when this happens. The only damping can cométfe
dominant frequency that, even though it is being damped, stays domindeasf\bne other frequency
needs to be unstable, to keep the calculation going. The method ised fsdimi-empirical method
which usefRRg and the H factor to calculate the present N factoxdsiL the boundary layer iteration
converges badly when this method is useéoiLs interaction between the boundary layer iteration
and transition calculation are to blame for this. There are 2 solutions to thiergmmce problem,
both boiling down to the same: namely to switch slightly before transition to DrelaBode This
can be done by using the Nlimit or the safety factor method. See A.2.2 and A NIlimit method

is the default method for this transition method.

A.1.3 Improved Van Ingense" method

The improved Van Ingea™ method is invented by Van Ingen in 2005. This improved method is able
to cope with amplifying and damping TS instabilities, which makes it possible to usedaoy layer
suction. This is of great importance &eoiLsuc, in which already the boundary layer formulation
was adapted to handle normal velocities on the wall. Using this routine will etfableser to design
airfoils using boundary layer suction with accurate transition predictiorsveader also when this
method is used irroiL the boundary layer iteration converges badly. AgainLs interaction between
the boundary layer iteration and transition calculation is to blame. The befargomed solutions of
switching to the Drela method can be used, however in cases of boungargletion a third method

is preferred which is known as the forcing method. See A.2.3. The defaitiod is the forcing
method for this transition method.

A.2 conm

This is the convergence method selection. This command opens a small memindeé options:

1. Safety factor method, uses predicted N to switch
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2. Nlimit, fixed N limit method
3. Forcing xt at calculated xt coordinate

4. No convergence improvement

A.2.1 Safety factor method

The safety factor uses tI@ value multiplied by the (currentix value. This is then multiplied by
the ’'safety factor’ and added to the curréWfactor. If this value is larger than the specified N at
which transition is assumed the method switches to the Drela method. This way thasireeitches
at the latest possible interval, so that the deviation due to tfieréince in method is small. The
safety factor can be changed from its default value of 1. separatebafth side, or for both sides
at once. The higher the safety factor, the earlier switching occurs.elitdtation output the values
for the switching interval on each side are displayed to be compared to tis#titva interval. Some
caution is advised when using this method in a situation where the n factor wititdep only to go
down further on. During a steep rise the predicted value can be quite émpecially when boundary
layer suction is used, and too early switching occurs. (especially the sweigs®s are dangerous as
the Drela method to which is switched cannot cope with damping of TS instabilities)}uc will
give the interval in which is switched during iterations, so the user kant sldefsafety factor’ value
accordingly.

A.2.2 Nlimit method

The Nlimit has a similar working as the safety factor but is more direct. The Nlirhueva the value
above which the transition method is switched to the Drela method. This valuéscaesseparately
set for each side, or both sides at once. The default settingi®®suc will give the interval in which
is switched during iterations, so the user kan adapt the Nlimit value acctrding

A.2.3 Forcing method

The forcing method can only be used with the improved Van Ingen method arkd wuite diferently
from the methods mentioned above. If the transition point is fixed and ddesiax®e more than
0.0001Z the transitionpoint is forced to that spot. In forcing the transition thereyergence will be
easier achieved. To combat the infinite loops in whishiLsuc can get stuck, this method also checks
whether two consecutive values for the transition point are closer thahandl also checks whether
these points are not too volatile. The maximum distance they are allowed to movet@nadion is
0.02 %. If this is established the downstream transition point (as long as the didtetween the
points is at least 0.02) is forced 0.005% forward. Transition can still occur freely in front of this
downstream point, but not after. This process goes on untill both tramgitimts (the upstream and
downstream one on one side) are closer than @.@2 the values 'merge’ to 1 transition point at
which convergence occurs (due to the first forcing case or naturdtythe case of the two points
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being close, the downstream one is forced forw};;\m the distance between them every time untill
the two points match at a free or forced transition point. This way the accigaever more fi than
0.5% of the chord and convergence is good, even in separated flows.

A.2.4 No convergence improvement

This option is to disable all the convergence improving options.



Appendix B

Airfoil Grids

Figure B.1: NACA0012 with 160 panels

Figure B.2: NACA0012 with 360 panels
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Figure B.3: NACA0018 with 160 panels

Figure B.4: NACA0018 with 360 panels
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Figure B.5: Flat plate airfoil with 160 panels
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Figure B.6: Flat plate airfoil with 360 panels
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Figure B.7: NACA 64,-A-215 with 160 panels

Figure B.8: NACA 64,-A-215 with 360 panels
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Appendix C

Validation figures

20 peror NACA 0012
Re = 1.000x10°
a = 0.0000°
-L.o C, = 0.0000
C Cy = -0.0000
P Cp = 0.00617
-1.0 L/D = 0.00
N., = 9.00
-0.5¢y
0.0 //
\\r/
0.5
1.0

Figure C.1: C, NACA0012 fora = 0°
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35 y 35

i i i i i i i i i i i i i i i i i i
0 0.1 0.2 0.3 0.4 0.)5( 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.)5( 0.6 0.7 0.8 0.9 1

Figure C.2: H for NACA0O12« = 0°,Re = 1-10°, Figure C.3: H for NACA0012« = 0°,Rg = 1- 10F,
no suction, lower surf. no suction upper surf.

ey, =N

i i i
0.7 0.8 0.9 1

Figure C.4: Rg and Reg_, for NACA0012 « = Figure C.5: Rg and Re_, for NACA0012 o =

crit crit

0°,Re = 1-10%, no suction, lower surf. 0°,Re = 1-10°, no suction, upper surf.
m r]p atlab |mplFmentat|on S ° rtn atlab |mplfamentat|on ‘
sl — fortran Implementation ] sl —— fortran Implementation

I I I I I I
0.7 0.8 0.9 1 0 0.7 0.8 0.9 1

Figure C.6: N for NACA0012 ata = 0°,Re = 1-10°, Figure C.7: N for NACA0012 ate = 0°,Re. = 1-10F,
no suction, lower surf. no suction, upper surf.
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72.0 é?éé NACA 0012
Re = 1.000x10°
a = 0.0000°
- C - 0.0091
-0
C Cy = -0.0018
p C, = 0.00536
: L= 1.71
Ner = 9.00
-0.5 o
e
/ —
| T~ ——
0.5 |
1.0 |

Figure C.8: C,, for NACA0012 ate = 0°,Re = 1- 10°, base suction
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35 o 3.5

i i i i i i i i i i i i i i i i i
0 0.1 0.2 0.3 0.4 0>5( 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 05§ 0.6 0.7 0.8 0.9 1

Figure C.9: H for NACA0012 ate = 0°,Re = 1-10°, Figure C.10: H for NACA0012 ate = 0°,Rg = 1-
base suction, lower surf. 10°, base suction, upper surf.

SEe, | e

i
0.9 1

Figure C.11: Rg, and Rg,, for NACA0012 ata = Figure C.12: Rg, andRe,_, for NACA0012 ata =

crit crit

0°,Re. = 1-1(P, base suction, lower surf. 0°,Re = 1.10°, base suction, upper surf.
10 T T T T T T 10 T T T T T T
) — Pstiab mplementation | ) — Pstiab mplementation
8 8
7r 7
6 6
Z s Z s
4 4
3 3
2 2
1 1
O0 0.1 0.2 0.3 0.4 0‘.5 0‘.6 0.7 0.8 0.9 1 O0 0‘.9 1
X

Figure C.13: N for NACAOO12 ata = 0°,Re = 1- Figure C.14: N for NACA0012 ata = 0°,Re = 1-
108, base suction, lower surf. 10P, base suction, upper surf.
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. mg NACA 0012
Re = 1.000x10°
a = 0.0000°
e L, = 0.01u8
Cp Cy = -0.0032
C, = 0.00502
e L/D= 2.97
N.. = 9.00
-0.5 o
T —
/' V/ ‘/‘\‘( e
0.0 o =
| g
| )
0.5 |
1.0 3

Figure C.15: C, for NACAO012 ate = 0°,Re = 1- 1P, 2-base suction
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I I I I I I I I I I I I I I I I I I
0 0.1 0.2 0.3 0.4 0.)5( 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.)5( 0.6 0.7 0.8 0.9 1

Figure C.16: H for NACA0O12 ate = 0°,Re = 1- Figure C.17: H for NACA0012 ata = 0°,Re = 1-
10°, 2-base suction, lower surf. 108, 2-base suction, upper surf.

—%YRY) ) —03YRY,)

Figure C.18: Re, Re, ffor NACAOO12 ata =

for NACA0O012 at @ = Figure C.19:Re, Re,
0°,Re = 1- 1P, 2-base suction, lower 0°,Re = 1-10% 2-base suction, upper
surf. surf.

crit crit
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A‘rtnétlab‘implfeméntation ‘
— fortranimp

ementation 1 of rtran imp

Figure C.20:

—_matlabi mentation
— atebimplementation

I I I I I I I
0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4

N for NACA0012 ate = 0°,Re = 1- Figure C.21: N for NACAOO12 ate = 0°,Re = 1-

10°, 2-base suction, lower surf.

10°, 2-base suction, upper surf.

ol NACA 0018
Re = 0.100x10°
a - 2.0000°
C, = 0.2435
Cy = 0.0027
Cp, = 0.01879
o L/D= 12.96
7T N.. = 9.00

Figure C.22: C, for NACA0018 ate = 2°,Re = 1- 10°
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10 T T T T T T T T T 10
9 9
8 8

Figure C.23: H for NACAO018 ate = 2°,Re = 1- Figure C.24: H for NACA0O18 ata = 2°,Re = 1-
10°, lower surf. 10°, upper surf.

SEe, ||

i i
0.8 0.9 1

Figure C.25: Rg, and Rg,, for NACA0018 ata = Figure C.26: Rg, and Re,_, for NACA0018 ata =

crit crit

2° Re. = 1- 10, lower surf. 2°,Re = 1-10°, upper surf.
10 T T T T T T 10 T T T T T T
| —faabimplementation | | —faabimplementation
8 8
7+ 7
6 6
z. z.
4 4
3 3
2 2
1 1
O0 0.1 0.2 0.3 0.4 05 0‘.6 0.7 0.8 0.9 1 O0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1

Figure C.27: N for NACAOO18 ata = 2°,Re = 1- Figure C.28: N for NACA0018 ata = 2°,Re = 1-
10°, lower surf. 10°, upper surf.
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-2.

0

XFOIL
vV 6.93

flat plate airfoil
Re = 5.000x10°

a = 1.3300°
C, = 0.3899
Cy = -0.0245
Cp = 0.00401
L/D= 97.23

SO Ner = 9.00

cr

Figure C.29: C, for flat plate airfoil ate = 1.33,Re. = 5- 1P
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35

i i i i
0.6 0.7 0.8 0.9

1
Figure C.31: H for flat plate airfoil aiv = 1.33°,Re. =
5.10°, upper surf.

i
0.4

i
0.3

i
0.2

i
0.1

Figure C.30: H for flat plate airfoil aiv = 1.33°,Re. =

5. 108, lower surf.
| —3488),

=2

3.5
S’ 3
S
25
2
1'50 O.‘l 012 0‘,3 0.‘4 O;E:( 0‘,6 017 0j8 0‘,9 1 OSE:( 0‘.6 0.‘7 018 0‘.9 1
Figure C.32: Rg andRe,, for flat plate airfoil atw = Figure C.33: Rg andRe,, for flat plate airfoil atw =
1.33,Re = 5- 1(°, lower surf. 1.33,Re = 5- 1P, upper surf.
10 T T T T T 10 T T T T T T
. Pglebimplementation ) Pslab mplementation
8f 8 8
7+ 4 7L
6 6
Z .l Z
4 4
3r 3
2F 1 2F
1 8 1
0 O.‘l 012 0‘.3 O.‘4 0;5( 0‘.6 O.‘7 0.‘8 0‘.9 1 O0 0.‘1 0.2 0‘.3 0.‘4 0‘.5 0‘.6 0.‘7 018 0‘.9
Figure C.35: N for flat plate airfoil atv = 1.33°,Re. =
5.10°, upper surf.

Figure C.34: N for flat plate airfoil atx = 1.33°,Re. =
5. 1CP, lower surf.
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e Oyt NACABY (2) -A-215
Re = 2.750%10°
a = 0.0000°
e C, = 0.1719
C Cy = -0.0368
i C, - 0.00512
b L/D = 33.58
Ng. = 9.00
0.5
0.0
0.5
1.0

Figure C.36: C, for NACAB4,-A-215 ate = 0°,Re = 2.75- 10°



138 Validation figures

35 o 3.5

i i i i i i i i i i i i i i i i i
0 0.1 0.2 0.3 0.4 0>5( 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 05§ 0.6 0.7 0.8 0.9 1

Figure C.37: H for NACA64,-A-215 ata = 0°,Re = Figure C.38: H for NACA64,-A-215 ata = 0°,Re. =
2.75- 10°, lower surf. 2.75- 1P, upper surf.
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Figure C.39: Rg and Re,

crit

for NACA64,-A-215 at Figure C.40: Rg and Re,

crit

for NACA64,-A-215 at

a=0°Re =275 10°, lower surf. @ =0°,Re = 2.75- 10°, upper surf.
10 T T T T T T 10 T T T T T T
| — atiabimplementation | || — atiabimplementation
8 8
7r 7
6 6
Z 5 Z
4 4
3 3
2 2
1 1
O0 0.1 0.2 0.3 0.4 05 0‘.6 0.7 0.8 0.9 1 O0 0.1 0.‘7 018 0‘.9 1

Figure C.41: N for NACA64,-A-215 ata = 0°,Re. = Figure C.42: N for NACA64,-A-215 ata = 0°,Re. =
2.75- 10, lower surf. 2.75- 10°, upper surf.
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