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Approximate boundary layer calculations using moment equations and

compatibility conditions,

General.

For bodies with arbitrary pressure- and suction distributions the
similarity and series solutions as discussed in chapter 3 can not be
used. In this case only the finite~difference methods can be applied
to provide accurate solutions of the boundary layer equations. In the
past however use of these methods on a large scale has been prohibited
by the large amount of work required. Therefore approximate methods
have been used to a great'extent and possibly they will continue to

be used in the future for technical applications. An important class
of these methods is based on the von Kdrmén-Pohlhausen technique, In
these methods the requirement that the boundary layer eguations should
be satisfied for every fluid element within the boundary layer is
abandoned. Instead a plausible form of the velocity profile is assumed.
This expression contains a few parameters to be chosen in such a way
as functions of x that certain moment equations and compatibility
conditions are satisfied, This technique will be illustrated in
section 4.2. for the well known Pohlhausen method. In later sections

of this chapter some other methods will be mentioned.

Pohlhausen's method.

In 1921 Pohlhausen published a method [22] which allowed the approximate
calculation of laminar boundary layers without suction using the momentum
equation (2.16). This method was considerably simplified by Holstein and

Bohlen in 1940 [501; a description of the modified method may be found

in chapter 12 of Schlichting's book [7]. In what follows the main

characteristics of this method will briefly be discussed.
In the Pohlhausen method the boundary layer thickness & is assumed to
be finite. The velocity profile is approximated by the following quartic

polynomial in 1 = y/d.

u

It

u/U,zaq+bn2+cn3+dq4 0gng1l (4.1}

T=1 n 2l (4.2)
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The coefficients &, a, b, ¢ and d are functions of X to be determined

from the fellowing relations:

the momentum equation (2.186) for v, = 0 (4.3)
the first compatibility condition (2.10) for vy =0 (4.4)

the boundary conditions

1=0: =0 (4.5)
_ a_

n=11: E:'l, ?ml«l-:Q:O (4.8)
en o

Using the conditions (4.4), (4.5) and (4.6) the coefficients a, b, ¢

and d can be expressed in terms of a parameter}\ defined by

2
&} al
Y & 4.
The parameter)\ is then found as function of x from the momentum
equation. Equation (4.1) for the velocity profile can be written in the

form
W= E() + A G (4.8)

with (for O0g ng 1)

FOp =1 - (L+ (L - ) (4.9)
and

6 = 3 1 - p° (4.10)

Holstein and Bohlen use the parameter

2
° U
/\_l =5 & (4.11)

instead of )\ . This is attractive since _/\_1 occurs in the momentum
equation;/\_l is directly related to )\ « The shape of the velocity
profile depends only on;\ , and hence On‘/\‘l' Therefore the non-dimensional
T8 : *
‘s o 3} . . - 'y
quantities 4 = S~ and H = 5 cen be considered as given functions of /\., .
Then, using the abbreviations given in the list of symbols, the momentum

equation (2.18) may be written in the form
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dae

dx [

=2 F(J\l)
= —— (4.12)
It follows that the boundary layer calculation is reduced to the scolution
of an ordinary differential equation. The function F(f\l) is universal
for Pohlhausen's method and is given as fig. 4,1; a table of Fcfxl) may
be found in [71.
Normally the calculation is started in a stagnation point where U= 0.
s

To avoid an infinite wvalue for —gj it is assumed that in the stagnation

. _ de .
point also F(f\l) = O, Then —— assumes the undetermined value

dx
can be made determinate using—%’ Hopital's rule (seel:7] , chapter 12).

g; it

An inspection of fig. 4.1 shows that F(J\.l) has a zera forf\l = 0.0770
which can be chosen to represent the stagnation point. Other important
points in fig. 4.1 are.f\ 1= 0 (flat plate) and/\j'= -0,1567
(separation, v = 0}.

Walz[_51] has been the first to notice that eguation (4.12) can be
integrated directly when the relation between FCf\l) and./\.1 is of the

form

F(Al) =a - bl./\l (4.13)

Using (4.13) the result of the integration is

a b, -1
78 = & fﬁl ax (4.14)

where x = O corresponds to the stagnation point. A reasonable approximation
of F(f\l) is obtained for a = 0.470 and b = 6 (see fig. 4.1). Fron
applications of Pohlhausens method it is known that the results are
reasonably sceurate for favourable pressure gradients (ﬁLl:> Q) . However,
for adverse pressure gradients CPL1<( 0) the accuracy is rather poor;

in general the method predicts separation too late (see [28], chapter 5).

Other methods using the momentum equation and compatibility conditions.

Following Pohlhausen many authors developed similar methods using other

compatibility conditions or different expressions for the velocity
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profile. In this section some of these methods will be briefly described.
The treatment cannot possibly be exhaustive due to the large number of
methods available. Only the methods, to be referred to later, will be
mentioned; extensive reviews may be found in [7, 28, 29]:

The characteristic features of the methods to be described are collected
in tabhle 4,1; in what follows some additional remarks on these methods

will be made.

Timman's method, [52] In this method the velocity profile is chosen in

such a way that the right asymptotic behaviour for large values of y is
obtained, Slight modifications have been introduced by Zaat [53] and
- 1
Nunnink [ 54 ].
Schlichting's method. £551 Here the velocity profile is chosen in such

a way that two important cases with and without suction are represented
with good accuracy. For these cases the flat plate without suction and

the asymptoiic suction boundary layer were selected., The expression for
the velocity profile, given in table 4.1, reduces to the asymptotic
suction profile for K =0 and to 4 = sin (% n) for K = -1; the sine
function is used as approximation to Blasius' velocity profile. A
disadvantage of the method is that no unique solution is obtained near
geparation; to overcome this difficulty Schlichting had to introduce a
rather arbitrary separation criterion, A critical review of Schlichting's
method has been given by Truckenbrodt [56] who at the same time developed
a different method.

A new method. The present author designed a method which may be considered
ag a further development of Schlichting's method, Here a third velocity
profile - namely the separation profile of Timman's method - is introduced
into the general expression of the velocity profile. A detailed discussion
of the new method will be given in chapter 5. The method will be referred
to as the "momentum method".

Thwaites' methed. [57]_ An interesting type of method, valid for the

no-suction case, has been given by Thwaites. The momentum equation is
used - in a form similar to (4.12) - to find the non-dimensional momentum

loss thickness @. It was observed by Thwaites that for this czlculation
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no necessity exists to specify the velocity profile in advance; all

that is needed is a function similar to F(f\l) of the Pohlhausen method.
To obtain this function Thwaites plotted FCf\l) versus_ﬁLl for available
exact solutions of the boundary layer eguations and selected a 1linear
relationship of the type (4.13) to represent mean values. The values
a; = 0.45 and bl = 6 give a reasonably good average of the exact
solutions. By plotting £ and ® versus_/&l for exact solutions and
deducing average curves Thwaites was able also to specify-% and H as
functions of./\l. From the first compatibility condition at the wall
(2.10) it follows that for the no-suction caseJA&l = -m. Hence, once ®
and[\_l are known from the momentum equation as functions of x also—ﬁ,
m and H are known. Then, if needed, a velocity profile can be composed
which has the right values for £, H and m.

A slight modification of the method has been introduced by Curle and

Skan [58]. Due to lack of exact solutions for cases with suction the

method cannot be generalised easily to suction problems.

Methods using the kinetic energy equation in addifion to the momentum

equation.

The approximate methods, using only the momentum equation, described

in section 4.3, do not always give an accurate description of the
boundary layer especially near the separation point. To imprové upon
this, methods have been devised which use the kinetic energy equation
(2.21) in addition to the momentum equation. Such methods have bheen given
ftor instance by Walz [59], Tani[ 60], Wieghardt { 327, Truckenbrodt [617]
and most recently by Head [62, 63, 64]. Reviews of these methods may be
found in.[ZS] and [ 297.

The method of Head seems to be the most accurate., In this method the
momentum equation (2.15), the kinetic energy equation (2.21) and the
first compatibility condition (2,10) are used, A wide range of velocity
profiles is defined graphically from which relations between the
characteristic boundary layer parameters H, ﬁ} ZDX,'ﬁ and m are derived.
These relations are ploitted in charts to be used for the boundary layer

calculations. Available results of the method show a good agreement with
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exact solutions. A disadvantage is the use of charts which makes it

somewhat difficult to program the method for automatic computation.

Possible methods using moment equations of higher order.

It is a disadvantage of all the approximate methods mentioned so far that
the accuracy can only be assessed by comparison with exact solutions. In
the no-suction case a sufficient number of exact solutions is available
for this purpose but the situation is different for suction boundary
layers. In the latier case the number of available exact solutions is
too small to provide a good check. Such a check is hecessary however
since a method which works well in the no-suction case will not
necessarily be satisfactory in the case of suction, This is caused by
the fact that for suction boundary layers a far larger variety of
velocity profiles has to be included than in the case of no-guction.
A striking example is given by the Pohlhausen method. If in this method
the momentum edquation and compatibility condition are modified to include
the effect of suction it is found that a complex boundary layer thickness
is predicted for the asymptotic suction profile.
In order to acquire confidence in the approximate methods it should be
possible to estimate their accuracy without making reference to exact
solutions.
The improvement obtained by the use of the kinetic energy equation in
addition to the momentum equation suggests that such 2z method might be
constructed by using a whole series of moment eguations as defined by
equation (2.25) for k = 0,1,2,..,K, Then it can be expected that the
results obtained converge to the exact solution for K—=¢». As far as
the author is aware no succesful method has been developed along these
lines. The practical application of such a method will be cumbersome for
large values of K., To see this let the velocity profile be defined by

N

=u= a F_(y) (4.15)

u
u
n=0

The 5k+2 cccurring in the moment equations (2,25) then are algebraic

expressions of degree k+2 in the coefficients an defined by equation
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{2.26). The step by step solution of the moment equations requires the
determination of the an once the 6k+2 are known for all values of k to
be used. This leads to the solution of a set of non-linear algebraic
equations in an. For E=0 essentially the Pohlhausen method appears which
in its simplest form requires the solution of one quadratic equation.

Tor K=1 a method like Head's is obtained, which requires the simultaneous
solution of a quadratic and a cubic edquation. In a method for which K=2

a guartic equation would be added, etc. This situation makes the
application of this method difficult for large values of K.

To obtain a workable method the moments should be defined in such a way

that the moment equations can be written in the form

ad Jk
= = % (4.16)

where the Jk are linear functions of the parameters specifying the velocity
profile. In this case the step by step calculation requires only the
solution of a set of linear algebraic equations.

In chapter 7 a method will be described which is designed along these
lines. From applications of this method, fo be given in chapter 8, it
appears that the results converge to the exact solution when the number

of moment equations is increased.



Table 4.l: Characteristic features of some approximazte methods.

Auther and ref.

Expression for the velocity profile

Definition of y

Compatibility

conditions used

e

- 2 2
- 2 — 2
Timman, L52] % = 181 (B +dn” + .00 -v[’e i {aten +...0dy n = Uy : first {eq. 2.10),
b G_l is related to| second {(eq. 2.11),
the boundaxy and to some extent
iayer thickness the third (eq. 2,12}
- : ] u ¥ .
Schlichting, [55_ 7= Fl(q) + K Fz(q) H n= E_TQT; first (eq. 2.10)
1
Fiin) = 17" 5,(x) is related
F () = T (1) - sin (£ ) for 0% 4 €3 to the boundary

Fz{n) = Fl(n) -1 for ne 3

layer thickness
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FIG.41; F(A,) FOR POHLHAUSEN'S METHOD.
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