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SUMMARY.

A semi—empirical method is presented for the prediction of tramsition
in two—dimensional incompressible flows with pressure gradient and
suction. Included is the case of the laminar separation bubble, where
transition is preceded by laminar separation.

The method employs linear stability theory to calculate the amplification
factor ¢ for unstable disturbances in the laminar boundary layer.

(G is defined as the natural logarithm of the ratio between the
amplitude of a disturbance at a given instant or position to the
amplitude at neutral stability). It is found that at the experimentally
determined transition position the calculated amplification factor

for the critical disturbances attains nearly the same value {about

10} in many different cases for flows with low free stream turbulence
levels. An attempt is made to include the effects of higher free

stream turbulence levels By allowing the critical amplification factor

to decrease with increasing free stream turbulence,

NOTATION.

The symbols used are the conventional ones for boundary layer and
stability theory. To avoid confusion a few of them are menticned
specifically below.

¢ reference iength

__ 9w
=Ty dx
Uwc
R = —
o] Y
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Ry = 73

U velocity at edge of boundary layer
U_ reference velocity

U= U/UOo



x or ¢ distance along contour of body

%, distance along chord
- X
x £
c
s s/c

subscript sep refers to conditioms at separatiom.

LINEAR STABILITY THEORY.

Tn linear stability theory a given two-dimensional laminar main
flow is subjected to sinusoidal disturbances with a disturbance

stream function:
i (ax—wt
y = ply) e (OXUE) M

For the spatial mode w is real and o is complex 0 = 0 * i a .
: —0.X , .
This leads to a factor e %i¥ in the disturbance amplitude and o

follows from: -
i U c

X oo
g = éo "O‘.id?( =5 1c ;f'_( T.U dx (2)

where X is the streamwise position where the disturbance with
frequency w is neutrally stable.

T is defined as:
-0, O 6
T = = 10 (3)
]

In the temporalmode the same expression (2) for ¢ is found with

a different definition for T.

It is clear that ¢ is a function of x and w for a given boundary
layer; ¢ can be calculated as soon as stability diagrams are
available for the velocity profiles for successive streamwise
positions x, .

For a long time Pretsch'stability diagrams for the temporal stability
of the Hartree similar velocity profiles, have been the only source
of detailed stability data for flows with non-zero pressure gradient[6].
Results for the spatial stability of the Hartree flows have been
given by Wazzan, Okamura and Smith [7] and Kummerer [8] , stability
diagrams for the reversed flow solutions of the Falkner-Skan equation

have been obtained by Taghavi and Wazzanlllj.



STABILITY AND TRANSITION OF THE FLAT PLATE BOUNDARY LAYER.

~ Fig. la shows o for the flat plate according to Pretsch for

different non—dimensional frequencies . The envelope of these

Wy

. Uz
curves gives the maximum value of o for each streamwise position.
In what follows we will in general mean this maximum value when
we mention g. The curve labelled 3 in fig.1b is the envelope
according to [Z] and [8]; the curve labelled 2 will be discussed
later. A well known result for the experimentally determined
transition region is due to Schubauer and Skramstad [12]. They
find for low free stream turbulence levels Reyncldsnumbers at
beginning and end of transition equal to Z.8 x 106 and 3.9 x 106
respectively., To these Reynolds numbers correspond certain
values 9y and o, for o which are indicated in table 1.

FIRST VERSION OF THE PREDICTION METHOD (1956).

The present author used Pretsch charts in [1] to calculate
amplification factors for an airfoil section (EC 1440) at different
values of angle of attack and Reynolds number,

It was shown that 0]=7.6 and 02=9.7 gave a reasonably accurate
prediction of the transition region. Smith and Gamberoni [3],
defining a transition point rather than a tramsition region found
that 0=9 would correlate different transition experiments reasonably
well,

Although it is clear that a transition criterion should be based on
the actual amplitude of the disturbance, rather than on an amplification
ratio, the method has been used extensively. Its succes may have been
due to the fact that the initial disturbances - due to free stream
turbulence for imstance — have been about the same for the cases
investigated.

Another way to explain the success of the method may be that o is

a suitable factor in which different factors, known to influence

transition, may be correlated.

SECOND VERSION, ALSO APPLICABLE TO FLOWS WITH SUCTION.
In 1965 the present author extended the method to the case of two-

dimensional incompressible boundary layers with suction f2].
Since at that time the Pretsch charts were still the only source

of detailed information on amplification rates, some drastic



simplifying assumptions had to be made. First it was assumed that

all possible stability diagrams, including those for suction
boundary layers, formed a cne-parameter family with the ecritical
Reynolds number as parameter. Furthermore, it was assumed that the
critical Reynolds number could be determined from an approximation
formula due to Lin. The suction boundary layer was calculated using
a two-parameter method of integral relations. This necessitated a
new "calibration" of the tramsition prediction method against the
flat plate without suction, leading to curve 2 in fig. lbwith

Gl=9'2 and_o‘2=ll.2°

To facilitate the amplification calculations using a computer
Pretsch' charts have been brought in a tabular form. Fig. 2 shows

an application to the EC 1440 airfoil; some results for an airfoil
with suction through a porous surface are shown in figs 3 and 4.

In view of the many simplifying assumptions which had to be made Che
correspondence between theory and experiment may be comsidered to be
good.

Since 1965 this version of the method has been included in a computer
program for the analysis and design of airfoil sections [13]. The
streamwise position for the end of the transition region (determined
by 0,) has been used as the starting point for the turbulent boundary
layer calculation.

It has been found that an improved transition prediction could be
made by allowing the value for a, to vary from 11.2 for favourable
and zero pressure gradient to about 20 for boundary layers near
separation. (In the last version T, is again more nearly constant).
In general the position of transition was predicted within a few
percent of the chord. An example of application of this airfoil
analysis program taken from [14] is shown in fig. 3 . The airfoil
investigated is that of the horizontal tailplane of the Italian sail-
plane M300 "Aliante". The airfoil was designed by cambering the

NACA 633—018 section. The tailplane is prqduced through an extrusion
proces which caused appreciable surface waviness. An actual specimen
of this tailplane was tested as a two-dimensional model in the low
speed wind tunnel of the Department of Aercospace Engineering at Delft.
It was found that the surface waves caused early transition in a

certain angle of attack range; this could be remedied by smoothing



the forward part of the surface. The caleulation, starting from

the airfoil coordinates for both conditions, predicted this change
quite well.

It should be stressed again that the present method may be considered
as a method to correlate different transition experiments. The
calculated amplification factors need not have a precise physical
meaning. It is however a definite advantage of the method that linear
stability theory is used which has proved to be & valuable tool to
describe the early phases of the transition proces. It should also

be observed that inaccuracies in one of the elements of the method
(viz. boundary layer calculation; calculation of the critical
Reynolds number using Lin's formula; the stability diagrams used)

may have been neuttralized by inaccuracies in another element. Hence
if any element is changed, a new calibration is necessary.

An important imperfection in the second version of the method was
that the stability characteristics in laminar separation bubbies

were obtained by extrapolation from the attached flow. This may

have been the cause of the high values of oy required to predict
accurately the end of the transition region in boundary layers near

to or after separation.

A SHORT CUT METHOD TO PREDICT TRANSITION IN SEPARATION BUBBLES.

In [5] the present author published a short-cut method to predict
transition in separated flow. The method is based on the stability
diagrams for reversed flows due to Taghavi and Wazzan [Il] and
some additional calculations by the present author for the limiting
stability characteristics when Re+w, using the inviscid stability
equation (Rayleigh equation). The following assumptions are made

1} U, 8 and Re

equal to their values at separation. Then a constant value of

in the separation bubble are independent of x and

w also means a constant value of 9%.
2) The separation streamline is straight, and leaves the wall at

an angle Yy determined by:

t8(Y) = (4)
_G-Sep

where B is a constant equal to 17.5.



3) The Reynolds number is so high with respect to the {(very low)
critical Reynolds number that the stability characteristics
are given with sufficient accuracy by the limiting values

determined from the inviscid stability equation.
Then —uiG only depends on the value of Eg and the velocity

profile shape parameter.

Finally we introduce the shape parameter z=g = D ep? where g is the

height of the separation streamline above the wall devided by 0 and
= - 62 a at separation. Then the integration w.r.t. x in (2)

LI 5 A D . g L.t

can be replaced by an integration w.r.t. to z leading to:

(R,)
= 0lsep ¢ (-a,0)dz (5)

o B.m
sep

{a similar result may be obtained for a small region upstream of

T
separation when integration w.r.t, £ = ﬁgﬁ is used).

The inviscid instability for different values of the Hartree parameter

B is shown in figs 6 and 7. Values of 104 J (~0.8)dz are shown in
0o i

C

the maximum value I of the integral as a function of Z. {See also

fig. 8 for different wvalues of together with the envelope giving

table 2). Hence in the separation bubble we have:
—4

10 (Re)sep I

B.m
sep

(6)

o =

Using this short-cut method it was found in [5] that o, for
separation bubbles on an airfoil in a small "noisy" tumnel was
about 12,5 (fig, 9). For sepafation bubbles on a circular cylinder
with a tapered tail in the large low turbulence wind tunmnel, wvalues
of 0, between 13.2 and 15.7 were found, depending on the wind speed,
Using the same short-cut method Van der Meulen [}5] obtained 0,=7

for a body of revolution in a small high speed water tunnel.

PRESENT STATUS OF THE TRANSITION PREDICTION METHOD.
All stability data obtained from l?,S,ll] and the inviscid stability

calculations mentioned in the preceding section, have been reduced
to a table containing about 300 numbers.
Using this table, the amplification rate T can easily be obtained for

any velocity profile, as soon as the critical Reynolds number is known,



The present author employs a boundary layer calculation method [5 ]
which for attached flow is similar to Thwaites' method. It contains
an extra parameter however, which makes the prediction of the
separation position as accurate as for Stratford's two-layer method.
In separated flows an integral method is used in which the shape of
the separation streamline is prescribed. Both for attached and
separated flow the primary profile shape parameter is m/msep' The
critical Reynolds number is a function of m/msep;,this function is
assumed to be equal to that obtained for the Falkner-Skan solutions.
Prom calculations with the full method it has been found that the
short-cut method, described in the preceding section, gives a very
godd approximation in separation bubbles. Furthermore it has been
found that the values of I, and Gys when transition oceurs near
separation are much nearer to the flat plate values than for the
second version., It can now be expected that ¢, and S, will be more
or less constant for flows with the same initial disturbances.
However, o, and g, may have to vary with the level of initial
disturbances due to free stream turbulence and noise.

From curve 3 in fig. 1 and table 1 it follows that ¢, = 8.3 and

1
. = 0.4 1if Schubauer and Skramstad's transition results for the

fiat plate are used. From Spangler and Wells' experiment on a flat
plate in a tunnel with reduced background noise [}6,1i] and from
the authors own experiments somewhat larger values for g, {12 )
and g, {(14.5 ) would be obtained. Jaffe, Okamura and Smith [9]
applied their solution technique for the Orr-Sommerfeld equation
to velocity profiles that had been obtained numerically for two—
dimensional and axi-symmetriec flows. They find 0]=8.3 for the
Schubauer and Skramstad results and d]=11.8 for Well's results;
for a large number of flows with pressure gradient 0y values ranging
from 6.8 to 12,1 were obtained. A good overal correlation of
transition position was obtained using 01=10'

RELATION BETWEEN Ul,_pz AND FREE STREAM TURBULENCE.

Although it is clear that the initial disturbances cannot be sufficiently

characterised by the r.m.s. value of free stream turbulence alone, it
will be attempted in the present section to find a relation between
and the r,m,s. free stream turbulence Tu (in %).

Iys Oy



In many different papers relations between Tu, R{3 or Rx at transition
have been givem for the flat plate. The measured transition positions
may be converted to o-values using curve 3 from fig. 1b. Then o will
decrease when Tu increases; fig. 10 shows a collection of these dataj
for Tu > 0.1% the relation used by Mack in fig., 3 of [18J can be

approximated by:

g, =2.13 -6.18'0 log Tu (7)

1

while for o, 8 reasonable approximation is:

o, = 5 -6.181° 105 Tu (8)

For values of Tu < 0.1% there is much more scatter because in this
region sound disturbances may become the factor controlling transition
rather than turbulence. We may also use the relations (7) and (8)

for Tu < 0.1%; but then we should define an "effective" value for Tu.
Of course this does not solve the problem because we can only define
an "effective Tu" for a wind tumnel after tramsition experiments

have been made in that same tunnel.

At the time of writing this abstract some additional measurements in
the low speed low turbulence wind tunnel of the Department of Aerospace
Engineering are being evaluated. Some preliminary results show that

the "effective Tu" even may increase at the lower windspeeds Weré Tu
decreases. It is thought that this is due to the fact that the critical
frequencies in the boundary layer may better be matched to the wind
tunnel noise spectrum at lower speeds.

For the time being it is suggested to use (7) and (8), assuming an
effective Tu equal to 0.1% for modern wind tunnels, resulting in

Gi = 8.3 and g, = 11.2,
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curve no Lo .
in fig.1b 9, Ty stability diagram used
1 7.6 9.7} Pretsch, flat plate (R=0); version I.
‘o : 10 LA[3]
2 9.2 11.2{ Pretsch, stability diagram for 1og(—5§ rit=2.345
which according to Lin's formula would ¢
apply to the flat plate velocity profile in
version 2.
3 8.3 | 10:4] from[7] and [8]

Table 1: Critical values for ¢ at beginning (01) and end of the

transition region (02) on a flat plate according to different

6

stability calculations., Transition Reynolds numbers 2.8 and 3.9 x 10

according to [1%].

B anxmsep I
-.198838 0 127
-,198 .042 145
-.197 .061 154
-.195 .088 167
~.190 .134 190
-.180 .199 225
-.160 . 307 285
-.150 .360 315
-, 140 .420 - 348
-.120 .556 422
-.100 .682 483
-.075 1.107 659
—.050 1.864 883
-.025 4,249 1331

Table 2: z and I as a function of the Hartree

for reversed flows.

shape parameter B
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Fig. la: Amplification factor for the flat plate according
to Pretsch{ 6}.
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‘Fig., 1b: Maximum amplification factor for the flat plate
according to different stability calculations
(see also table 1).
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e e lall and Gibbings, [:19_]
oy for Spangler and Wells, [16,17]
o, = 2,13 - 6.18101_og Tu; coincides with
© Mack's curve [18_] for Tu > .1
o, =5 - 6.18'%0g Tu.
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Fig. 10: Relation between 0,» 0, and Tu for the flat plate.
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