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A method of calculating the transition region for two-dimensional boundary

layers with distributed suction,

Summary

The method uses linear stability theory to calculate the "amplification factor"
Ga of unstable disturbances in the laminar boundary layer, It is shown that at
the experimentally determined transition position this factor Ty, has roughly
the same value for different experiments with and without suction. Hence, in
reverse the transition position can be calculated assuming that transition
occurs as soon as o has reached this critical value,

This work is an extension of an earlier method -~ valid for the no-suction case -

which had been developed independently by Smith and the present author,

Sommaire

Une méthode 3 calculer la région de transition dans la couche limite laminaire

avec aspiration poreuse.

La méihode emploie la théorie d'instabilité linéaire pour calculer "le
coefficient d'amplification ca” des perturbations instabiles dans la couche
limite laminaire. On montre que, pour le point de transition déterminé
expérimentalement, ce coefficient atteint environ 1la meme valeur pour des
expériences différentes avec et sans aspiration. En conséquence la position
de transition peut etre calculé en supposant que transition commence dé&s que
le coefficient o a gagné cette valeur critique.

L'oeuvre présentéd ici est une extension d'une méthode précédente - applicable
%2 des cas sans aspiration - qui était développé indépendamment par Smith et

I'auteur de cette note.

Zusammenfassung

Ein Verfahren zur Berechnung der Umschiagstelle der zweidimensionalen laminaren

Grenzschicht mit kontinuierlicher Absaugung.

Das Verfahren benutzt die lineare Stabilit¥tstheorie zur Berechnung eines
"Anfachungs faktors Ua" der instabilen St8rungen in die laminare Grenzschicht,
Es wird gezeipgt dass Ifir die experimentell bestimmte Umschlagstelle, dieser

Faktor o flir verschiedene Fille wmit und ohpe Absaugung etwa derselben Wert
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erreicht.

Darum kann, umgekehrt, die Umschlagstelle errechnet werden wenn man annimmt
dass Umschlag beginnt sobald 9 den Kritischen Wert erreicht.

Die heutige Arbeit ist eine Erweiterung eines friheren Verfahrens - anwendbar
fiir Grenzschichten ohne Absaugung -~ das unabhfngig von einander sowohl von

Smith als von dem Verfasser dieses Berichtes entwickelt worden ist.
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reference length, equal to chord length for airfoil sections,

g Pe By
Cr+ici=:=5}'—+la——

x
suction flow coefficient UQc (—VO/U for flat plate with constant

ey
Vo) Y
number denoting value of reduced frequency —% in table 2
U .

constants in equation (10)

suction flow per unit span

distance along contour of airfoil section, measured from leading-edge
s/c

time

amplification rate of unstable disturbances, defined by eq. ©
constant in equation (10)

velocity component parallel to wall

u/U

velocity component paralilel to wall at edge of boundary layer
u/u.,

reference speed; equal to windspeed for figs 11 and 12

normal velocity at surface; negative for suction

distance along surface, measured from forward stagnation point
x/c

distance normal to wall

angle of attack
Zﬂ/;g

© Hartree parameter

ar * iBi

displacement thickness f (1-w)dy
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£

momentum loss thickness frﬁ(l—ﬁ)dy

8

h )

A wave length of disturbance

JA_ Pohlhausen parameter

Y, coefficient of kinematic viscosity

o, amplification factor defined by equation (8)
o{y) P, * iwi amplitude function

gﬁ yi'+ iyq stream function of disturbance defined by equation (1)
subscripts

i at instability point

o at surface

tr at transition

Introduction.

- Although the phenomenon of transition has been known already since Reynolds'

famous experiments on pipe flow in 1883 iSijthe mechanism of transition is

not yet completely understood. Neither is it possible to predict theoretically
for an arbitrary body the position where transition will occur.

For a long time there have been two conflicting opinions about the mechanism
of transition. One school of thought supposes that disturbances in the flow
outside the boundary layer cause fluctuations inside the boundary layer which
lead to local and instantaneous separation followed by transition {Taylor EQ}).
A different éxplanation is given. by the so called stability theory as

developed by Rayleigh, Tollmien, Schlichting, Lin, etc, (see ?7:!chapter 16),
In this theory it is shown that small harmonic disturbances in the boundary
layer may become unstable and amplify. It is supposed that these disturbances
cause transition as soon as they have gained a sufficient amplification.

The unstable oscillations, predicted by the stability theory were discovered

in wind tunnel experiments on the boundary layer of a flat plate by Schubauer
and Skramstad in 1940 EIO}. It was found that the stability theory is valid
only if the degree of turbulence in the airstream is less than 0.1°/0. For
high turpulence levels Taylor's theory is more appropriate, In 1951 the

existence of unstable oscillations was also shown in free flight by Malotaux et al

Lllj. In the free atmosphere and in modern low speed wind tunnels the degree

of turbulence is considerably less than 0.1%0 and it is commonly accepted
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now that under these circumstances transition on smooth bodies - at least.
initially ~ is governed by the stability theory. An exceptibn should be made
for cases where the laminar boundary layer separates from the surface due to
an adverse pressure gradient. It may be possible that a short distance
upstream of the imminent separation Taylor'’s transition mechanism is the
relevant one. Also transition in the separated layer may be governed by a
different mechanism,

Stability theory shows under which circumstances the laminar boundary layer
may become unstable and predicts the initial growth of the disturbances.

Since most of the existing theories are linearised by assuming small
disturbances they cannot describe the complete transition to the irregular
turbulent flow with relatively large disturbances.

Our knowledge of transition has been steadily enlarged however through
experiments, starting with the well known investigations by Schubauer and
Skramstad. A review of this work may be found in £71. Some recent results have
been described by Hinze et al. glzj.

From the experiments it is knowgrthat in the transition region'suddenly
"turbulent spots" are generated, These spots grow and merge as they move
downstream until finally at a certain position the flow is fully turbﬁlent
E13,141, According to Klebanoff and Tidstrom flﬁj_the spots seem to develop
from threedimensional concentrations of distu;bance energy in the originally
two-dimensional disturbance waves.

For the prediction of the aerodynamic characteristics of airfoil sections

it is necessary to possess a method to calculate the transition position of
the boundary layer, Since the transition process is not yet sufficiently
understood theoretically such 2 method will necessarily be a semi-empirical
one.

A method of this type has been developed for boundary layers without suction
by Smith and Gamberoni {1,2} and independently by the present author {3,4,5}.
The method is based on fhe linear stability theory; in the first few sections
of this paper the principal results of this theory will be collected for later
use, In the final sections the method for the calculation of the transition
position will be described. It will be shown that the method is also applicable
in the case of suction through a porous surface,

Tﬁroughout the present work it will be assumed that the boundary layer fiow is
two~dimensional and incompressible; the influence of surface roughness on

transition will not be considered.
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For all boundary layer calculations in the present work a Pohlhausen-type method

has been used which was developed by the author. A description of this method

and also 2 more detailed review of the present work may be found in{:ﬁj.

Principles of linear stability theory,

General,

The stability theory considers a given laminar main flow upon which small
disturbances are superimposed., It is assumed that both the undisfurbed and
the disturbed flow satisfy the Navier-Stokes equations. After linearisation
the well known Orr-Sommerfeld equation is obtained which under certain
circumstances may possess unstable solutions. It is found that important
factors determining the stability or instability are

the shape of the boundary layer velocity profile

the Reynoldsnumber %?f r %? '

and the frequency or wavelength of the disturbances.,
In the theory a two-dimensional periodic disturbance is assumed with a stream
function %’defined by

@ @yt = plyy ot D

(1)

In (1) it is assumed that O is a real quantity; it determines the wave length
} of the disturbance by P 2n/0; B is complex with B = Br + iﬁi where ﬁr/Zﬁ
is the frequency of the disturbance. The sign of Bi determines whether the
disturbance is stable or unstable, For stable or unstable disturbances ﬁi is
negative or positive respectively; neutrally stable disturbances correspond to
61 = 0. The amplitude function ©(y) is complex and is assumed to depend on y
only.

Furthermore use will be made of

cC=c + ic, =
r 1

(2)

the sign of éi again determines the stability of the disturbance; cr is the
wave speed,

Possible non-zero solutions of the Orr-Sommerfeld disturbance equation are
found by scolving an eigen-value problem. This will not be pursued further in

the present paper; extensive reviews may be found in§—7,16j.
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In the following sections only those results of stability theory will be

presented which are used in the remainder of the present paper.

The stability diagram,

For a given laminar boundary layer E;E}«,m-‘and the shape of the velocity profile
V

— %
are known. Then in the stability problem 8, ¢ /U and ¢, /U remain as parameters,

By v fpiow 1 ,

Usually cr/U and ci/U are replaced by — and using the following
expressions: u v

SE _ Sry 1 us"™

U e Y

*

€y PyB 1

and ™
[$7e)

—_ &
Now, when a value for one of these parameters is assumed (for instance & )
the values of the other ones may be determined for which the Orr-Sommerfeld

equation allows non-zero solutions., Results of these calculations are usually

- S
presented in an s . Eg— plane: the "stability diagram", The curve for
p,o*
é;i lU = 0 denotes
the neutrally stable
disturbances,

Inside the loop ﬁi

is positive and
outside negative.
This means that
unstable disturbances
will be found only

for combinations of

— %
5" and gg_ inside
the loop, Below a
certain value of
Us*

-~ there are no

values of O05° for

#*
R ud
which unstable disturbances are possible; this value of f;-‘is called the

critical Reynoldsaumber.

The stability diagram, as discussed here, is only valid for parallel flows
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where the velocity profile and - do not change with x. It is general practice
to apply results of stability calculations also to flows where u(y) changes
slowly with x. This implies that at each station x the actual flow is replaced
by a parallel flow with the same non-dimensional velocity profile E(y/aﬁ) and
Reynoldsaumber ggf. For a similar boundary layer the shape of the non-dimensional
velocity profile is independent of x and hence the same stability diaﬁram applies

pL
at all values of x. If now a2 disturbance with & constant value of _55 is
U

congidered which is convected downstream with the flow, it follows -~ because
Ug*®

—;w-increases with X ~ that the disturbance may at first be stable, then become
unstable and finally become stable again. The same happens for non-similar
boundary layers where however the stability diagram changes with x.

The stability diagram is found to depend on the shape of the velocity profile,
It turns out that the curvature of the profile is very important: profiles
with a point of inflexion have a much lower critical Reynoldsnumber and hence
are much less stable than velocity profiles without inflexion point. Hence it
follows that factors determining the occurrence of an inflexion point have

mach influence on stability and hence on transition.,

w2 _
An inflexion point occurs if E’——-;—‘-at the wall is positive., From the boundary
e
ay ~2
layer equations it follows easily that (iL%J depends on the pressure gradient
au Yy.oo qu
term U = and the suction velocity Ve An "adverse" pressure gradient (a§-<< Q)
w2 .
or blowing (v_ > O)tend to make éihg) > 0 and hence are destabilising
: ¢
¥
factors. A "favourable" pressure gradient (%g > 0) or suction (vo (f Q)
N 2 ‘ .
tend to make (§L% . £ O and hence are stabilising factors.
dy o Y

The amplification factor,

It was mentioned in section 3.1 that the amplification or damping of disturbances
in the boundary layer is determined by the magnitude of Si. In what follows an
equation will be derived which governs the growth of the amplitude of the
disturbances,., This equation follows from the expression (1) for the stream
function. Of course, only the real part of the stream function y?r is

puysically significant,

From equation (1) togetheyr with @ = P+ i$i it follows that

y;r = e ?,, cos(@x - Bt - ¢, sin (Ox - 5rt)j

] i
i -

Bit i~ :
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@

or denoting 55 by tg v
i
. Pyt 9y =
?§-= —e T oroein @x - Bt - 1) (3)

For the velocity components u' and v' of the disturbance similar expressions
are found. Because ¢ and hence 7y depend only on y the amplitudes a and a + da

for a fixed value of y at times t and t + dt are related by
d¢ln a) = B, dt (4)

Hence if the amplitude for the neutral oscillation at time to is denoted by

aé, the amplitude at a later time t follows Ffrom

t-
a f‘ .
’P/Il g"(;":‘ ! Bl dt . (5)
t
(&)
t
a % i
or —_—= e where o = 4§ B, dt (8)
a a ! i
o ¥
t
(o]

In what follows 0, Will be called the "amplification factor®,

For parallel flows the parameter Bi in (6) is constant but it may vary with x
for non-parallel flow,

Since the integration variable t in (6) is somewhat obscure Ffor stability
calculations in boﬁndary layers a change will be made to the variable x by

using

& &
it

(7)

This means that a disturbance is followed on its way downstream, Using (7)

equation (6) for ¢_ may be written as

O e M B

T.U dx (8)
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in equation (8) T denotes

. BF .
Bé . @™ 168
= - (9)
ﬁr}} US"h 2
= e (—:';_)
U T

- %
and x = E-where ¢ is a constant reference length. The quantity T may be

LY

calculated as a function of x for a given value of _%j if the shape of the
* i)
velocity profile and v are known as functions of X, Moreover stability

diagrams have to be known for the velocity profiles encountered.
The lower integration limit E; in (8) denotes the value of x at which for
B, o*

the frequency considered lU

= O for the first time,

Available stability diagrams,

Since the stability calculations are rather laborious not many stability
diagrams have been calculated. A review of these resuits may be found in [71,
chapter 16 and [lﬁl, a selection of these resulis has been given in EG].

For the flat plate boundary layer without suction critical Reynoldsnumbers from
different sources have been collected in table 1. It may be seen that the
results of various calculations show considerable differences. This is caused
on the one hand by the different procedure followed for the stability
calculations. On the other hand the Blasgius profile has been approximated

by different analytical expressions; in many cases the velocity profile for
the fiat plate boundary layer from some Pohlhausen type method has been used.
Since these velocity profiles and especially their curvature may be different,
the stability diagrams are not necessarily identical.

Calculations for a series of Hartree velocity profiles have been made by
Pretsch%jl7~19}; these results will be discussed in more detail in section 3.5.
A comparison of resulis obtained from different sources (see EG}) shows that
the stability diagrams calculated by the same author for different boundary
layers, at equal values of the critical Reynecldsnumber, do not differ more
than those obtained by different authors for the same flow,

In the remainder of the presemnt work the amplification factor for boundary
layers with arbitrary pressure- and suction distributions will be calculated.
For this calculation stability diagrams including information about the

amplification rate at Si ;» O have to be known. To the best of the author's
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knowledge these results are only provided by Pretsch's stability diagrams

and it will be attempted to apply these diagrams tc arbitrary boundary layers.
In view of the comparisons of different stability diagrams mentioned above,

the following procedure seems to be justified for assigning a stability diagram
to a certain velocity profile. From an approximate formula due to Lin glﬁ?

the critical Reynoldsnumber is found. Then the stability diagram from Pretsch's
series with the same critical Reynolds number is assumed to be valid for the
velocity profile under investigation. This implies that all stability diagrams
are considered to form a one-parameter family with the critical Reynoldsnumber
as parameter. Since in boundary layer calculations using the von KArman
momentum eguation the momentum loss thickness © is the proper thickness parameter
it is advantageous to use a Reynoldsnumber based on 6. This will be done in what

follows.

Some results of Pretsch' stability calculations for the Hartree velocity profiles.

Detailed stability calculations for some of the Hartree profiles have been

made by Pretsch. Some additional stability diagrams have been obtained by Smith

and Gamberoni {ltéfrom interpolation in Pretsch vesults. In what follows these

diagrams will be used to calculate the amplification factor g It may be seen
from equation (8) that the only information needed f£rom the diagrams

is the quantity T as defined by equation (9). Values of T for a range of

values of E£§ and ES—-have been obtained from Pretsch' work for B = I, 0.6, O,

-0,.10, -0.188 and for P = 0.2, 0.1, -0.05 from £1§5 (f denotes the well known

shape parameter of the Hartree profiles).

In fig. 1 for example the results are shown for the flat plate (B=0) plotted as

10
function of log Hg. It is seen from the figure that the curves for constant

Ry
values of —£§ may be approximated by parabola's of the form
4]
10 ue 2
T = T0 - K1 ( iog 5 - K2) {10)
B_Y
where the coefficients To, Kl and K2 depend on £ and —5 Values for these
U

coefficients have been obtained for all values of P and a range of values for
5 Y

2. The approximation given by (10) to the actual values is shown in fig. 1.
U

Finally cross plots have been made to find T » K. and K, as functions of £ for

B 1 2
constant values of “E‘ Since a unigque relatlon exists between B and (37)
U crit
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it is possible to consider To, Kl and K_ as functions of lolog (Hg) .

2 s
crit
Since it may be expected that Pretsch’s results will not be very accurate,
1
linear interpolation in Olog (g?) seems to be justified to find the
Y erit
10log (%?) . Table 2
ﬁry crit

gives To, Kl and Kz for diffevent values of -5 at equidistant values of

10 ve v

log (=) » The numbers quoted in the table have been chosen in such

crit 10 ue

8 way thst by lipnear interpolationin’ log (zf) the values obtained from
Pretsch's diagrams will be regained., B erit

For comnvenience the reduced frequencies —~ have been denoted by a number

U By

f in table 2; results for intermediate values of mg- can be obtained by linear
interpolation in the parameter f. v

In what follows it will be assumed that table 2 can be applied to boundary

layer flows with arbitrary suction- and pressure distributions.

Some existing methods for the calculation of the transition point,

In preceding sections it has been shown that it is possible to determine
theoretically whether a particular boundary layer flow is stable or unstable.

For instance for the flat plate the boundary layer becomes unstable as soon

#

Ux &

as ??-exceeds a critical value of about 575 corresponding to -5 = 0,11 x 10,
From experiments it is kunown however that actual transition starts at %?-: 2.8x1C§

only. This means that a considerable distance will exist between the point of
instability and the transition point.

Since the transition process is not sufficiently understood theoretically it

is only possible to calculate the transition position by using semi-empirical

methods. Some of these methods are mentioned below.

In some methods the results of different transition measurements are plotted
in such 2 way that all points fall - as far as possible - on a single curve,
For a new case transition may be "predicted" by assuming that the new case
will also fall on this universal curve. An important example of thesSe methods
is due to Michel 520}. In his method 2? at the transition peint is plotted
versus the corresponding value of g?;'indeed results of different experiments
fall reasonably well on a single curve, The method is based on experiments

without suction and can not easily be generalised to suction problems,
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A different method has been given by Granville ?21}. Here a universal curve

is obtained by plotting (%?) - (%?) versus the mean value 4““1 of the
i

tr
2
Pohlhausen parameter .\ = 9-§E defined by
1 v odx
1 ?tr Hf
£ i ———— ] L =< 11
ANy == - bf’ 1 dx (11)
X -x, £
tr ix,
i

The subscripts "tr" and "i" denote transition and instability respectively.
Another suggested method is to assume that transition occurs at a constant
value of %?f. This results in a very rough estimate of the transition point
only, o

To improve upon the ahove methods the determination of the transition point
should not be based on local guantities only but ithe history of the boundary
layer should be taken intc account, because this determines the amplification

of unstable disturbances. Such a method will be presented in the next section,

A new method for the semi-empirical determination of the transition region,

General,

It was shown by Smith and Gamberoni [l,zj-and at the same time independently

by the present author [3,4,5} that different experiments on transition without
suction can be correlated on the basis of the amplification factor Ga. It was
shown that the maximum value of Ga which was reached at the transition position
wasg roughly equal for all cases investigated. Hence in new cases an accurate
estimate of the transition position may be found using the assumption that

transition occurs as soon as the calculated value of (oa) reaches this
max
critical value. In the references cited above the method was shown to be valid

for the no-suction case, It will be presented here in a modified form;

furthermore it will be shown that the method is also applicable to cases with

suction.

The amplification factor for the flat plate without suction.

The amplification factor 9, is defined by equation (8)

X
-5 UD_.C [,"'1 _
: O'a = 10 YR .j[ T,U dx (12)
X
[o]
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It for the fiat plate the reference velocity U§} and the reference length c are

chosen as U and % respectively, equation (12) reduces to

Ux
w8 2 Ux
o, = 10 %f Td () (13)
Ux

For the flat plate the relation between gg and %;—is known and it is possible
to calculate o, for different frequencies _Eg using table 2 and the formulae
; U
given in section 3.5. For this calculation a value of (Eg) has to be assumed;
crit
as some uncertainty exists here (see table 1) a range of values for the critical
Reynoldsnumber has been used., For (EE) = 260, which is the value obtained
crit
by Pretsch for 8 = 0, some vesults are shown in figs 2 and 3, Values of T

are shown in fig. 23 the amplification factor o, is shown in fig. 3 where
also the envelope giving the maximum amplification factor (Ga) has been

max
drawn.

(=]
Similar calculations have been performed for other values of (%7) Ifrom
crit
table 1; the results for (Ua) have been collected in fig. 4.
max ,
0f course the calculation of the amplification factor can be extended to arbitrary
.high Reynoldsnumbers, However, it is known from experiments (Schubauer and
Skramstad [10@) that transition sets in at %; = 2,8 x 106 and that the boundary
layer is completely turbulént for %;:) 3.9 x 106, These limits have been inserted

in fig. 4, it follows that to these values of EE certain values of (Ua)

Y max
correspond,

If Pretsch's value is used it is found that beginning and end of the experimentally

determined transition region correspond to (Ga) = 7,6 and 9.7 respectively,
. ., max
In the earlier version of the method (3,4,5_}the values 7.8 and 10 were obtained.

The slight differences with the present values arve easily explained by the fact
that at that time only small scale versions of Pretsch's charts were available
to the author which could not be read very accurately,

In the further calculations the method of{;ﬁg will be used in combination with
Lin's formulae for the critical Reynoldsnumber. Table 1 and fig. 5 show that

this leads to (Ga) = 8.2 and 11.2 at the beginning and end of the transition
max '
region respectively. In what follows it will be shown that nearly the same

values are obtained for other boundary layers, It should be noted that the
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linear stability theory has been used to calculate g, up till transition but
of course not too much significance should be attached to the details of these
calculations. The maximum amplification factor has to be considered only as a

convenient parameter correlating different factors which influence the transition.

The amplification Ffactor for the EC 1440 airfoil section without suction,

For airfoil sections the boundary layer is not similar and hence for different

values of x different gtability diagrams have to be used, If (g?) is known
B . T erit
as a function of x, for instance from Lin's formulae, it is easily possible to

calculate O, also for these cases using table 2.

In [3,4,5] results of transiiion measurements and calculations of the amplification
factor for the EC 1440 airfoil section have been presented. In this work
Pohlhausen's method was used for the boundary layer calculations; critical
Reynoldsnumbers for the velocity profiles were found by relating Pohlhausen's A

to Hartree's P used by Pretsch., This relagion was obtained by calculating

the Hartree boundary layers for U = uy %P with Pohlhausen's method. The
examples discussed in 53,4,51 will be recalculated here using the method
ofgmﬁg in combination with Lin's formulae, Results of the amplification
calguiation for & = O are shown in figs 5 and 6, Similar calculations have
been performed for other values of &; the results have been used to comstruct
fig. 7 where also the experimentally determined transition region is shown,

The curve (0,) = O in fig. 7 denotes the instability point; it follows
max
that both the instability point and transition move forward with increasing

angle of attack.
However, the distance between the instability point and transition can be very

targe, If the beginning of transition is assumed to occur for (Ua) = 9,2 it
max

may be seen from fig. 7 that the beginning of transition is predicted accurately
within 5°/0 of the chord length for O > -2°,

For Q& {”_20 transition is preceded by laminar separation; in this case the
distance between the predicted and actual positions wheretransition starts may
grow to 10%/0 of the chord length,

Smith and Gamberoni El,zj}applied 8 similar analysis to a great number of
experimental data including results of free flight measurements. They calculated
the laminar boundary layer by means of a method which for the flat plate

produces Hartree's velocity profile for B = 0O, Hence, using Pretsch' value
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for the critical Reynoldsnumber they should find (Ga) = 7.6 and 9,7 at the
max
beginning and end of the transition region. The conclusion of their analysis

was that (Ga) = 9 would correlate the experimental data very well. Since
max

no distinction was made between beginning and end of the transition region the
agreement with the values 7.6 and 9,7 is very good. A difference between the
present method and the method of Smith and Gamberoni is that the last authors

2
calculate the amplification at constant values of -Y- while for the present
2

=3 . [EF

method constant values of 453 are used, Since U = U/U,. does not change very

much in the regions of integest and moreover only the envelope of qa for
different fredquencies is used this difference apparently has no effect on the
resulits,

Anticipating the results of an experimental investigation on the effects of
suction through a porous surface - to be discussed in section 5.5 - it is

stated here already that the method is also applicable in the case of

suction.

Some resgults for the flat plate with constant suction velocity.

The boundary layer on a flat plate with constant suction velocity has been

discussed by Iglisch TZZ?. It was found that the non-dimensional parameter
~-v_8 -7

j\z = 13 and the shape of the velocily profile only depend on the variable
x defined by
“ v \2
— [ Tlel Ux
=i —f = 14
x i T } 5 (14)

Since the critical Reynoldsnumber depends on the shape of the velocity profile
only it also depends only on x,

may be found as function of x for different values of the
-V

Values of ??

suction coefficient cq = —ﬁg from
-V 8
o
L. (15)
¥ Vs
U

Results of some calculations using the method of 6} in combination with
Lin's formulae for the critical Reynoldsnumber, are shown in fig. 8. It follows

"vo 4 Ug .
that for " ;} 0.980 x 10 novhere along the length of the plate - will
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Ue —
exceed (mT) and hence the boundary layer is stable at all values of X,
crit, _y 4
For values of —ﬁQ-less than 0,980 x 10 the boundary layer becomes unstable

in a certain interval,
A similar calculation has been made by Ulrich g23—]using Iglisch' exact solution
o ) i
for %7 and his own results for (EEb . He found that the suction coefficient cq
crit
should exceed the value 1,18 x 1072 to ensure a stable boundary layer for all

values of X, The difference between the values 1.18 and 0,980 is easily

explained by the different procedures used to determine the critical Reynoldsnumber.

For the case of a constant suction velocity the amplification factor can easily
be calculated as follows.
If the definition (14) for X is used it is implied that the reference length ¢
has been defined as

Uy
If the reference speed U,, is made equal to the constant free stream speed U

U,c
then the Reynoldsnumber RC = mgr-becomes

rd 2
f 3 -2
R_ =;_§_~3 = ¢ (17)
V0 <
and equation (&) reduces to
X
-6 -2 _
g = 10 ¢ f T dx (18)
a q o
X
e)

Results of amplification calculations for different values of cq have been

collected in fig. 9 where (Ua) is shown as function of x. The peak value
max
of the amplification factor is plotted in fig. 10 as function of cq. If it is

assumed that transition starts as socon as (Ua) reaches the critical value
max
9.2, then it may be concluded from fig. 10 that transition will not occur unless

cq falls below the value 0.485 x 10"4. This value is only 500/0 of the suction

coefficient required to keep the boundary layer stable.
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5.5, Some results for the NACA 649-A-215 airfoil with suction.

Some investigations have been made on the NACA 642-A-215 airfoil with

suction through a2 porous surface between the 300/0 and 900/0 chord positions,

An extensive review of this work may be found in.EG}; in the present paper only

a few typical results will be presented.

Figs. 11 and 12 show a comparison between the calculated and measured transition
position foxr the upper surface at different values of the suction f£low coefficient

cq. It may be seen that the rearward movement of transition due to suction is

predicted rather accurately.

Conclusions.

It has been shown that an eavlier method for the prediction of transition for
two-dimensional boundary layers without suction is also applicable in the case
of suction through a2 porous surface, Using this method it becomes possible to
design rational suction distributions for a given airfoil or to improve the

design of the airfoil section itself.
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Table 1: Critical Reynoldsnumber for the flat plate boundary layer,

= !
Lot e 10, juel ' ;
e — logﬁj?} references
¥ erit Y erit ' exit et
e
321 124 2,093 | Timman et. al. | 28|
* ~ 5 - ‘
420 162 2.210 . Tollmien |24 ;
420 162 2,210 . Lin |26 ' ;
! ! T l
i 480 185 2.288 :  Lin, approximate formulae|
575 222 2.346 ' Ulrich | 23] |
645 249 2.396 | Schlichting-Ulrich {25
680 260 2,416 ' Pretsch, B = 0 [17]
577 221 2.345 . method of {6 |with Lin's |
formulae i
i

[ —
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