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Some known methods to obtain accurate solutions of the boundary layer

equations.

Similar solutions.

General.

The partial differential egquations (2.5) and (2.7) can be reduced to one
ordinary differential equation for "similar” boundary layer flows. Here
similarity means that the velocity profiles for all different staticns x
can be reduced to a single curve by rescaling the y and u variables with
scaling factors depending on x. Well known examples are the flat plate
boundary layer flow (Blasius, 1908, [ 33}) and the plane stagnation point
(Hiemenz, 1921, [34]). A detailed discussion of the occurrence of similar
boundary layers may be found in Goldstein [351, Mangler [36,3%],
Schlichting[7 | (chapter 8) and [20] (chapter V).

It was found that similarity is only possible if the velocity U at the

edge of the boundary layer is given by one of the following three

expressions.
m
U=u x L (3.1)
1
U= ul X—l (3'2)
u.x
2
JU=u, e (3.3)
1
where u

17 u, and ml are constants,
Expression (3.1) corresponds to the potential flow in the neighbourheod

of the vertex of a wedge with an angle =B where

2
1
p= EI;I (3.4)

The related boundary layer flows have been calculated by Hartree; they
will be discussed further in section 3.1.2,

In potential flow, (3.2) corresponds to a line source or-sink and hence
the related boundary layer flow is that between non-parallel plane walls.

It will be discussed extensively in chapter 6.
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Finally (3.3) describes the potential flow through & channel with curved
walls (Goldstein [35], Mangler [ 36,37]); it will not be discussed further
in the present work.

m

Hartree's boundary layer flows for U = u,x

Tl
For the wedge-type similar flows U = ulx 1 the proper non-dimensional

variables are 1 and £(n) defined by

+1
™

U
m=y 5 v (3.5)
m_ 41
ZVul 1
and Sy (x,y) = —7T X () (3.6)
1

In (3.6) ¥ denotes the streamfunction which is related to the velocity

components u and v by

T .oy
u= +_5§- 3ov= -5y 3.7

From (3.5), (3.6) and (3.7) it follows that

U (3.8)

=1
]

and

m_ +3 m_ -1 m_ -1

L Y ou, X £+

!
) 1 m 1 i (3.9

where primes denote differentiation with respect to 7.
With (3.7) the continuity equation (2.5) is already satisfied. The boundary

iayer equation (2.7) vreduces to

£+ F F'T o+ B(L - f'z) =0 (3.10)

The boundary conditions (2.8) and (2.9) lead to

H f'(o) = 0 (3.11)

(3.12)
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Equation (3.10) was first given - in a slightly different form - by
Falkner and Skan in 1930‘:38]-and is usually called after them. Special
cases of (3.10) had been given earlier for the flat plate (B=0) by
Blasius and for the stagnation point flow (B=1) by Hiemenz (see sections
3.1.3 and 3.1.4). Solutions of (3.10) for the no-suction case (f(o) = 0)
were obtained by Hartree in 1937 [39] using a differential analyser.

He found that for P 2> 0 the boundary conditions (3.11) and (3.12) specify
a unigue solution of (3.10) whereas for B< 0 an infinity of solutions
exists, all satisfying the boundary conditions. This is illustrated in
fig. 3.1 where velocity profiles are sketched which correspond to
solutions of (3.10) satisfying 3.11. It is seen from the figure that

for $2 O there is only one solution for which (3.12) is fulfilled; for
B £ 0 all solutions satisfy (3.12). For negative values of B Hartree
selected as the relevant solution that one which satisfied the extra

condition (see fig. 3.1)1
" ' = % —=>1 as fast as possible without making an overshoot”

With this choice the skin friction considered as & function of f becomes
continuous at B=0. For B = -0.198838 the solution determined in this way
gives £''(o) = O indieating that z boundary layer occurs which is on the
verge of separation at all values of x.

Subsequent to Hartree's work many investigations have been made of the
characteristic features of solutions of (3.10). An extensive review may
be found in [29], chapter V.21. The extra condition at the edge of the
boundary layer introduced by Hartree to obtain a unique solution has
become known as the "Hartree condition". A mathematical justification
for its use has been described recently by Goldstein [40].

It follows from (3.11) that in the case of suction similar solutions can
be found if the suction distribution vo(x) is chosen in such a way that
f(0o) is constant., The permissible suction distribution follows then from

ml—l

2
—vo(x) = constant . x (3.13)

Solutions of (3.10) for the case of suction have been obtained by various

authors. A review of work in this field may be found inI-ZQ], chapter V.21.
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3.1.3. Blasius' solution for the flat plate without suction,

d
For the flat plate E% = 0 and hence B=0; this reduces the Falkner-Skan

equation (3.10) to the well known Blasius eguation
f”'-]—ff”:O (3.14)
Boundary conditions for solutions of (3.14) in the no-suction case are

n=0: £=1£"=0 (3.15)
n=>en: f£'—=1 (3.18)

The solution of (3.14) has been given already by Blasius in 1908 [33].
Improved scolutions were given later by TUpfer, Hartree, Howarth, Smith ~
and others. (see [2@]).

Experimental observations of the £lat plate boundary layer were made by
Burgers and van der Hegge Zijnen in 1924 [41] and later by Hansen [42].
These investigations fully confirmed the validity of Blasius' sclution

at least for not too high values of the Reynolds number Fig. 3.2

Ux
Y
shows the boundary layer velocity profile according to this theory as
compared with results of a recent experimental investigation in the low
speed wind tunnel of the Department of Aeronautical Engineering at Delft
Technological University (unpublished).

According to the theory the shearing stress at the wall is given by

T -
o \{ »
—— = 0.332 —_— .
7 0.33206 T (3.17)
pl

Upon integration of (3.17) x = 0 to x = ¢ the friction drag coefficient

Cd of one side of a plate with unit span and length ¢ is found to be
£
C

f’r dx
o

c. =2 - 1.3282 (3.18)

dg %pUzc \/ Uc
'y

Experimental results for the friction drag, taken from the measurements

already referred to, are given as fig. 3.3.

It should be noted that for airfoil sections with unit span the drag
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coefficient is defined as the drag due to both the upper and the lower
surface divided by épUzc where ¢ is the chord length of the airfoil.

Hence, if the flat plate is considered as an airfoil section with zero
thickness the drag coefficient should be given twice the value following

from (3.18).

. The plane stagnation point without suction.

For a plane stagnation point U varies linearly with x as
U=u, x (3.19)

and hence B = 1. In this case (3.10) reduces to

f"'+ff“+1_f'2=0 (3.20)
with boundary conditions (3.15) and (3.16). This equation was obtained
and solved in 1911 by Hiemenz [34]; later investigations were made by
Hartree, Smith and many others (see section 3,1.2.)., Results of these

caleculations will be given in chapter 8.

The asymptotic suction boundary layer.

A very speéial similar solution is given by the asymptotic suction
boundary layer. Experimentally this layer is expected to occur far from
the leading edge of a porous flat plate with constant suction velocity
v (note that v, is negative for suction),
Assuming‘§;-= 0 in (2.5) and (2.7) it is easily found that
vy
%:1 - e (3.21)

The solution (3.2.1) is due to Griffith and Meredith { 8]. The special

feature of this boundary layer is that the velocity profiles at different

values of X are not only s=imilar but even identical, (see also section
8.11). From (3.21) it is easily found that for this case

- & -v B T O
o o

o]
—— =13 V:O.S;H:Zand’ﬂ=“T=0.25
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Solutions in series.

General.

In section 3.1 it was indicated that for a number of special functions
U(x) and vo(x) similar boundary layers are obtained for which the governing
equations (2.5) and (2.7) are reduced to one ordinary differential
equation. For more general functions U(x) and vo(x)itispossible to obtain
solutions of the boundary layer eguations by solving a series of ordinary

differential equations. In what follows some examples will be given.

Blasius' series.

For blunt-nosed bodies which are symmetrical with respect to the direction
of the oncoming flow the velocity U at the edge of the boundary layer can

he developed in a power series of the form

2n+l

u2n+1 ®

Tewx+u 5 +u §5+.....=Z (3.22)
3 5 o

1

The coefficients u depend on the shape of the body. In (3.22) x = x/c

2n+l
and U = U/U,, where ¢ and U,y are a constant reference length and ~speed
respectively. Using 2 non-dimensiopal wall distance 7 defined by

q=y 1 (3.23)

the streamfunction}p can be written in the form

1 -,
= (ul’x}c)2 Z X2t g

n=0

ans1 (M (3.24)

If, using (3.7) the expressions (3.22), (3.23) and (3.24) are introduced
into the boundary layer equation (2.7} and the coefficients of the various
powers of X are equated to zero a sequence of ordinary differential

equations for the functions F2n+1 is obtained. These equations can be

solved in succession giving Fl’ F3, ... etc. The procedure indicated

.above has been given by Blasius in 1908 [33].

The equation for Fl is found to be non-linear and identical to eguation



3.2.3.

- 21 -

(3.20) given hy Hiemenz for the plane stagnation point flow. Hence it
follows that the boundary layer on any symmetrical bluht-nosed hody
starts at the leading-edge as the plane stagnation point flow discussed
in section 3.1.4.

The functions F2n for n > 0 are obtained from Iinear differential

+1
equations in which the coefficients are determined by the functions

F2k+1 with k < n. Hiemenz showed [34] that the solution of the
differential equations for F1 and F3 can be made independent of uy and
u, by introducing new functions fl and f3 defined by
F =1
1 1
u, (3.25)
F,=4 — £
3 uy 3

Later Howarth showed that all the functions F2n+l can be written as sums

of universal functions which are independent of the Uy i1 and hence can
be calculated once for all, Calculations were made by Howarth, Fr&ssling,
Uirich and most recently by Tifford. At present the functions are
available up to and including n = 5; hence six terms of the series

(3.24) can be determined. References to the investigations merntioned
above and abstracts of Tiffords tables may he found in Curle [28],
chapter 2; (see also[_?j and [29]).

A similar procedure can be used for the non-symmetrical case when also
even powers of X occur in the power series development of U (Howarth,

[43]). However, only very few of the universal functions have been

calculated.

Series solution from a cusped leading-edge.

The procedure given by Blasius for bodies with a hlunt leading-edge can

he generalised to bodies with any wedge-shaped leading edge for which

_ny — -2
g = u, x [1 + al X + a2 X o aeean . J (3.28)

In this case also it may be expected that the boundary layer calculation
is reduced to the solution of a series of ordinary differential

equations. The first of these equations then would be the Falkner-Skan
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equation (3.10) with B determined by m. according to (3.4). Hence, it may

be assumed that the boundary layer on i body with a cusped leading-edge,
for which m o= B = 0, would start like the Blasius flat plate boundary
layer,

As far as the author knows, this case has not been worked out in as much

generality and detail as the Blasius series, Only for the speclal case

T=1-3%

calculations have been made by Howarth [441 for j = 1 and by
Tani [45] for j = 2, 4 and 8. Their results show indeed that the first
differential eguation of the series thus obtained is the Blasius equation
{3.14); the remaining equations are linear. Results of the calculations

by Howarth and Tani will be given in chapter 8.

Gtrtler's series method,

The most refined application of the series method available up till now
is due to G¥rtler [46, 47, 48, 49] ; see also Schlichting [7], chapter 9.
This method can be applied to any wedge-shaped leading-edge; it contains
the blunt and cusped leading-edge as specizal cases,

G8rtler introduces new variablesg;and 1 by

X .
- %f U dx (3.27)
(8}
X
1
n=yUu (2» f U dx)} 2 (3.28)
&)

The streamfunction y/is written in the form

Wx,y)y = V2 & F(E,p (3.29)

Introduction of (3.27) through (3.29) in the bhoundary layer equation (2.7}
leads to the following differential equation for the non-dimensional

streamfunction F(E ,m):
+ FF +B(3)L1_F2]=
% i

2 & [Fan .- FE Fm] (3.30)

F
mn
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In this equation 5(&) depends on the given pressure distribution according
X
to dau
2 = 5[ U dx

Bk = — (3.31)
U

Boundary conditions for (3,30) in the no-suction case are:

n=0: F=20

|
]
o]

(3.32)

> FTI_>0 (3.33)

m,
For the similar boundary layers corresponding to U = al X 1 the function

5(%) becomes & constant; eq. (3,30} then reduces to the Falkner-Skan

equation (3.10). For functions U{x) of the form
m,+1

my 12 ml+l -g—'(m1+1)
U=x So + s% X + Sl X + 53 X + ...
g
(3.34)
with s # 0, ny # -1 the function 5(3) is given by
3
1 1 2
. ]
ﬁ(?)_BOJrB%é + B £ +B§§ o, (3.35)

2
The coefficients in the right-hand side of (3.35) follow from the
coefficients of (3.34); especially ﬁo is given by

p = 1 (3.36)

G8rtler assumes the following series for the streamfunction F(§& ,7)
3
3 1 2
F(E ) = F () + P bR e m e F 3T e L @D
2 —_—

2
When this expression is substituted into (3.30) and the coefficients

of various powers of_g are equated to zerc a series of differential
equations is obtained. The first of these equations is non-linear and
contains only F_ and ﬁo; it is identical to the Falkner-Skan equation

o
(3.10) for P = BO. Hence it follows that for bodies allowing an expansion
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(3.34) for U(x) the boundary layer at x = O starts as one of Hartree's
boundary layers. The differential equations for the functions F of higher
order are linear, the coefficients of the equations depend on the F's of
lower order. It was shown by G8rtler that the functions F can be split

up into universal functions which depend only on ﬁo. Hence these
functions can be tabulated once for all for each value ol the leading-
edge angle = ﬁo. For 50 = 0 and SO = 1 the universal functions are
available to calculate Fn for n=090, i, ...., B; for B_ = 1 sufficient
functions have been calculated to form Fn forn= 0, 3, 1, ..., 2 [48].
With the aid of the tabulated functions boundary layer calculations

can easily be made for U(x) conforming to (3.34); however in general

the results are not sufficiently accurate near & separation point
(section 3.2.5).

The series method was extended by G3rtler to the case of suction in[-49].

For pressure distributions given by

) m1+1 2(ml+l)
U= x s + 5. X + 5. X + o (3.38)
o 1 2

the permissible suction distribution follows Ifrom

m, -1

= x 2 + Xml+l + xz<m1+l) + (3.,39)
v = g, = Uy e .

The number of universal functions to be calculated is becoming very large
in the case of suction and - for so far the author knows - these
calculations have not yet been performed, Therefore this method will not
be discussed further. Resuits of GBrtler's method for some cases without

suction will be mentioned in chapter 8 of the present work.

Disadvantages of the series methods.

For slender bodies like airfoil sections it is impossible to represent
U by one of the series (3.22) or (3.34) with a resonable number of terms.
Hence the series methods can not be used for practical boundary layer
calculations, Of course'they remain useful for small values of x to start

the calculation near the leading-edge.
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Another disadvantage is the following. Even if an expansion (3.22),
(3.28) or (3.34) is possible with a small number of terms the number

of differential equations to be solved is in principle infinitely large.
The relatively small number of universal functions which is available,

is in general sulficient for boundary layer calculations not too near
separation. However, when separation is approached more functions are
needed to obtain sufficient accuracy. Therefore in this region the
available series methods have to be supplemented by different calculation

methods.

Finite difference methods.

Various authors deviséd methods to solve the boundary layer equations
with finite difference methods. A discussion of these methods is outside
the scope of the present work however. Reviews of available methods may
be found in [29]. Where they are available results obtained from these
methods will be used in chapter 8 to test the accuracy of the new

calculation methods,
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