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An approximate method using the momentum equation for the calculation

of bhoundary layers with and without suction.

Introductory remarks.

In this chapter an approximate boundary layer calculation method, designed
for application to sucticon problems will be described. A preliminary
version of the method has been given in [65]. The essential point of the
method is that an expression for the velocity profile is chosen which
contains three important velocity profiles as special cases. These
profiles are selected to be

the boundary layer on a flat plate without suction,

the asymptotic suction profile,

and the separation profile from the method of Timman.
The expression contains three parameters to be determined as functions of
x from the momentum equation and the first and second compatibility
condition at the wall. The method can be regarded as an extension of
Schlichting’'s method discussed in section 4.3; the extension consists
of adding the separation profile and the second compatibility condition.
The results of the method are in good agreement with exact solutions
without suction and with weak suction. For large values of the suction
velocity the method breaks down because the expression selected for the
velocity profile is not flexible enough to represent the wide class of
velocity profiles, needed under greatly varying suction conditions.
However, in most of the cases to be discussed in the present work the
suction velocities will not be so high as to raise serious difficulties.
The accuracy of the method may be assessed from the examples to be given

in the present chapter and in chapters 8, 10 and 11,

The expression for the velocity profile and related parameters,

Yor the velocity profile the following expression is assumed:

u=g=F () +KF () +LF(n) (5.1)

s
]

In this expression K and L are shape parameters; 7 is the non-dimensional

wall distance defined by
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¥y
n = (5.2)

in which ¢ is a scaling factor related to the boundary layer thickness.
The functions Fl' Fz and F3 are chosen in such a way that some special
boundary layer velocity profiles are reproduced as accurately as possible
for certain values of K and L. The functions Fl, F2 and F, are defined

3
by the equations (5.3) - (5.9)

Fl(n) = fl(n) (5.3)

Fp(n) = fl(n) - fz(n) (5.4)

F3(n) =L () - fs(n) (5.5)

with

(=1 - e (5.8)

£.00 = 2 by - 5k 6bm’- 2060 for 0 < b 1

51 = 2 by - 5(by n 1" for 0% bn
(5.7)

fz(q) =1 for w21 {5.8)

2 . 2
fs(n) =1 _e 1 _ 1q e {(5.9)

In these equations u = fl(n) represents the asymptotic suction profile
for % = %%; fz(n) is a good approximation of the Blasius profile (see
section 5.4,2,) while fs(n) is the separation profile from Timman's
method (section 4.3). The coefficients a and b are scaling factors which
later on will be given the values 1.3 and 0.3 respectively. These values
were deteymined in such a way that some important boundary layers
different from the three mentioned above, will be reproduced as
accurately as possible. This point is discussed in detail in section

5.8. The functions defined by equations (5.3) to (5.9) are shown in
figure 5.1 for a = 1.3 and b = 0.3.

Using the expressions (5.3) to (5.9) and the definitions (2.17) and (2.18)
for the displacement thickness 6* and the momentum-loss thickness € it is

found that
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LI
o]
T = pl + pz K + p3 L

and K2 + p

2
- +
5 p4 p5K + pGL + p7 8L + pg KL

(5.10)

(5.11)

The coefficients p in (5.10) and (5.11) are rather complicated

expressions in a and b containing error functions. For

b = 0.3 the following values are obtained

P, = 0.76923 P, = 0.38462 P,
Py = -0.18315 Py = -0.01925 Py
Py = -0.33855 p6 = -0.01817 p9

Other important relations, to be used in what follows,

list of symbols}

— 2
JAL =2 d 0 d 62 uf e 2 (2] 2
1:9 —::;——:;———- =/El....
dx dx dx\ ¢ o
5. -voe B —VOG 9 ) 9
2 %t T T Ty ¢ 230
i = §f _ 8 /s
T e T 8/c
T 0 T G

[a + (a - 2b)K + aL]

For a = 1.3 and b = 0.3 the last relation becomes

£=2¢(1.3+0.7K+ 1.3 L)

@

The momentum eguation and compatibility conditions.

a= 1.3 and

= -0.,03938

= -0.10771 (5.12}

= ~0.12361

are (see also the
(5.13)
(5.14)

(5.15)

"% e’ efpuy _ o ()Fl) (an) (3F3
%‘T"ET"E(B"E)O"E[(D_T];K >, I,

(5.16)

(5.17)

The present method employs the momentum equation (2.16) which, using the

abbreviations given in the 1list of symbols, may be written in the form
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go? } 2f _ 2(2+H)J\1 - 21\2 i

dx U

(5.18)

al iz

In addition to (5.18) the first and second compatibility conditions (2,10}

and (2.11) are used. These may be written as

¥ ¥
L, (ﬁ)o =4, + (S:l-g)o (5.19)

2— 3.
A, (3_123_) - ( 9_13‘.) (5.20)
on o o o

Together with the expressions (5.3) to (5.9) defining the velocity
profile, equations (5.19) and (5.20) lead to the following relations
between K, L, {1 and {2.

2 2 3 3
-2 {2 -{a +1){1{2 + a %1 + a

K= (5.21)
%22(a_2a2b-2b) + 2 ap %2- 8>
2
2a?p 2.2 2% 4, +a” LA - a2t
2 2 19 1
L= = = 5 (5.22)
4’;2 (a_zab-zb)+2ab%2—a

In (5.21) and (5.22) a and b should take the values 1.3 and 0.3
respectively. The boundary condition u=1 for N~ ¢~ does not introduce
additional relations between the parameters involved because this
condition is satisfied already through the special choice for the

functions ¥ (1), Fy(n) and F ().

Similar sclutions.

. General.

For similar boundary layers the velocity profile - if suitably made non-
dimensional - has to be independent of the streamwise coordinate x
(section 3.1). Then, characteristic boundary layer parameters like £

and H become constants. In the present method this reguires constant
values for K and L and hence also /\.1,JAL2 and M should be independent

of x.
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Elimination of 8 from the following expressions

./\_1 -5 % (5.23)
dx
_2
d
and L .X (5.24)
dx u
leads to
Ay T
173 =
* LB A (5.25)
EE U ax
dx

Equation {5.25), in which M anddftl are constants, defines the functions
U(x) for which similar solutions may be obtained. Integration of (5.25)
gives

au

dx

+ M €n U = constant

A o

and after rearrangement

AL
constant . ﬁuﬂq dU = dx (5.26)
A second integration leads to
e, x
T=c. e it m=-N (5.27)
1 1
m
and to U= 0y = ! it M# - /\.1 (5.28)

In (5.27) and (5.28) cl, Cq and uy are irrelevant integration constants;

m1 is a constant defined by

Ay
= .2
T (5.29)
Equations (5.27) and (5.28) show, that the present approximate method

leads to the same permissible pressure distributions for the occurrence
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of similar solutions as the exact theories, discussed in section 3.2.
In what follows only the wedge-type flows, defined by (5.28) will be

discussed further.

The permissible suction distribution is deduced from the requirement that

also.ﬂLz should be a constant. Then from (5.23) and

_/\.2=vo . 9 (5.30)

it follows, through elimination of 6, that

(5.31)

With (5.28) this leads to
-1

—_ ™
m_ i 2

v, =-/\2 1z (5.32)
AN

which reproduces the exact result given by equation (3.13). In view of

further use (5.32) may be rewritten in the form

To\ wm_Ne (5.35)
U 27 \fj\i+M‘

m
. The similar boundary layers for U = u % 1 without suction.

For the similar boundary layer flowscorresponding to (5.28) without
suction Hartree's velocity profiles are obtained. {(section 3.1.2.). In
the present method these boundary layers are obtained as follows.

If suction is absent %2 = 0 and the boundary layer parameters become
functions of %1 only; they can easily be calculated using the formulae
given in sections 5.2 and 5.3. The value of Hartree's parameter B then
follows from (5.29) and (3.4).

Results of the calculations are given in fig. 5.2 where also a comparison
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is made with the exact solution. Velocity profiles are shown in fig. 5.3
for the flat plate (B = 0) and the plane stagnation point (B = 1).
Numerical values for some characteristic boundary layer parameters have

been collected in table 5.1.

5.4.3. The plane stagnation point flow with suction.

It follows from section 3.1.4 that for the plane stagnation point flow
ml = 1; then equation (5.29) shows that M should be zerc. Due to this
restriction only one independent parameter remains for which {2 will he

selected, Inspection of (5.32) shows that, as a consequence of m, = 1,

1.
Vo is independent of X. Some results of the present method for this case

are collected in table 5.2; they are plotted as a function of

-v
kz ==~ﬁg \/ %; in fig. 5.4 and compared to¢ exact solutions by

Schlichting and Bussmann. {(quoted by Mangler [371).
Comparison with section 3.1.5 shows that both the exact and approximaie

solution tend to the asymptotie suction layer for %\2—€>oﬂ.

5.4.4. The filat plate with v, e x“é.

2
For a flat plate U is constant and hence from {1 = gT gg it follows that
{1 = 0; equation (5.28) shows that also m, = 0. Equation (5.32) then

indicites that for similar boundary layer flows v, should be proportional
to x 2. From-{l = 0 it follows that the boundary layer parameters are
functions of {2 only in this case.

Results are given in fig. 5.5 and compared to exact solutions by.
Schlichting and Bussmann (quoted by Mangler[:ST]) and Thwaites [66];

Also for this case the boundary layer tends to the asympiotic suction

layer for )\ 2909.

5.5. Step by step calculation of the boundary layer starting from given initial

conditions.

— du —
In the boundary layer calculations it is assumed that U, av and vO are

dx
known functions of X. Furthermore at an initial station x = Eg a starting
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value for O shoﬁld be known. (The determination of this starting value
will be discussed in section 5.6). '

For the step by step integration of the momentum equation (5.18) it is
necessary to find M once 8 is known. This requires the knowledge of {1

and {2 which are determined by equations (5.13) and (5.14):

9
A= L, (%) (5.34)
_f\z =4, % (5.35)

) -2 - =
where./\l andaf\z are known fronl/\l =686 — andzAL = VO-B. The
ax

relations between.{i, {2 and % are rather complicated (see eqs. (5.11),
(5.21) and (5.22) and it is not easy to solve (5.34) and (5.35) directly
for {1 and {2. However, it was found that a simple iterative procedure
can be used for this.

S8tarting from known values OfJALl and.f\z and an estimated value of %,
values of 4, and {, are found from (5.34) and (5.35). Then K and L follow
from (5.21) and (5.22) which determine an improved value of % using
(5.11). Except very close to separation this process converges rapidly;
in calculated typical examples each step in the iteration procedure
increased the number of exact significant figures of %-by one., The
iteration should be stopped a&s soon as two consecutive values of %

agree within a certain prescribed tolerance. Once this accuracy is
achleved Q' and {' are known, satlsfylng (5.13) and (5.14). Then K

H from (5.15) and

and L follow from (5.21) and (5.22);
£ from (5.17). Now, all factors occurrlng in M are known and hence @

at the next station can he found, etc, From the known values of K and

L all boundary layer parameters and the wvelocity profile are khown as
functions of x.

In all applications of the method, to be described in the present report,
the iteration procedure outlined above was used. The step by step
integration was performed by means of the four point Runge-Kutta method.
In all cases the calculations were made on the Telefunken TR-4 digital

computer of Delft Technological University.
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it would be possible to speed up the calculation considerably if M were
known directly as a function of-/\l and-/Lz since then the iteration
process could be left out. This can be achieved by plotting M on a large
scale as function OflALl and.f\_2 according to the formulae given in
section 3.2 and 5.3. Fig. 5.7 shows a small scale version of such a plot.
For use on a digital computer it would be necessary to feed the graph
into the computer, either by fitting approximation formulae to the
curves or by reading a table into the computer's memory. This method has
not been used in the present work; for hand computation it would bhe an

advantage to use the graph however.

A discussion of fig. 5.7 will be appropriate at this stage =ince it
brings out clearly some characteristic features of the present method.
The curve for]\.z =0 cofresponds to the case of zero suction and should
be compared to fig. 4.1 for Pohlhausens F(j\i) discussed in section 4.2
this will be pursued further in section 5.7.

Point P. corresponds to K = -1, L = 0 and hence represents the flat

1

plate without suction; P, is given by K = 0, L = O and hence represents

2
the asymptotic suction profile. Furthermore P3 represents Timman's
separation profile without suction for which K = O and L = -1.

Certain curves in fig. 5.7 represent a class of boundary layers. It has
been mentioned already that all boundary layers without suction fall on
the curve PP, for which/\, = 0. Similarly PP, for whichj\l =0,
covers all flat plate boundary layers with arbitrary suction distributions.
All plane stagnation point flows with suction, discussed in section 5.4.3
fall along P2P4.

The graph is closed on the upper left hand side by a curve which for
sz < 0.30 denotes separation. For/\ 5 > 0.30 separation is not yet
reached on the bounding curve but here double valued functions start to
appear. To avoid this complication the calculations are deliberately
stopped when this line is reached. Using the iteration process described
above, the calculation stops automatically because the iteration fails
to converge in this region. This difficulty is similar to the one
mentioned in section 4.3 for Schlichting's method; in the present

method the complication arises at larger values of4nL2 than for
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Schlichting's method.

From the similar solutions, already discussed and from some further
éxamples to be given in chapters 8, 10 and 11 it is found that the
present method can be used with some confidence for O S;<j\é < 0.5.
11 P2 and P3 of fig. 5.8

this was ensured a priori by the choice for the functions Fi, F2 and

This is not surprising since in the points P

-F3. Furthermore & and b have been given such values (see also section

5.8) that the results along P Pz and P_P_P_ became as accurate as possible,

1 314

The remarks given above about the accuracy of the method are not applicable
to cases where large discontinuities in pressure gradient or suction
velocity occur; for such problems the accuracy may be rather poor

(cf. section 8.12).

Determination of the starting value for O.

The boundary layer calculation has to start in the stagnation point where
=2

— de

U = 0. Hence it follows from (5.18) that in the stagnation point — —> ¢
dx

unless M = 0, This means that the boundary layer starts as one of the

plane stagnation point flows discussed in section 5.4.3.

From the relations given in table &2 and fig. 5.4 the starting values can
-1

. 4T
be determined if vo(—g;) in the stagnation point is known. The value of
dx

— 2 40
6 follows directly from the given value ofJN.l by usingJALl = & Eg.
48> 0 dx
However, —— takes the undeterminate value 6; this can be made determinate
dx
by applying L'Hopital's rule to eq. (5.18). The result is
o -
24T ou - %o dm
<] Tz _+ 8 , - - _/T
= ax= o\ ax 2\
— = - = (5.36)
dx av oM o O

ax ANy o5 oMy

where all values in (5.36) are to be taken in the stagnation point. In
general suction will not be applied near the stagnation point because
there is no tendency for transition or separation in this region. For the

no-suction case (5.36) takes a simple form analogous to a relation
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obtained for the Pohlhausen method ([7), chapter 12).

2 4%F Pu a’T dm
® 3 R 1758 A0
-2 dx a/\l dx 3[\1
de
(_ = = (5.37)
dx du PR daT Py
st — (1 - =) =1 -==
dx afy dx N
or withJA\l = 0.08572 and le = -4.844 in the stagnation point
M
o
d U)
_9 2
(%) = -0.07105 - 5t (5.38)
dx (dU);Z
St —
dx 5t

In general the step by step calculation will require short steps near
the stagnation point; moreover for experimentally determined pressure
distributions U and its derivatives will not be known with great
aécuracy near the stagnation point. Therefore it is recommended to start
the step by step solution a small distance Eg away from the stagnation
point. The starting value for 6 may then be found by applying one of the
similar - or series solutions from % = O to §6. For the case of zero
guction the simple formulae (5.40) to be discussed in section 5.7 should
be used.

It was found that for the typical case of an airfeil without suction

the solution at larger distances from the stagnation point is rathexr
insensitive to the starting values used. Therefore it appears that the

calculation of the starting values may be rather inaccurate.

Simplification of the method for the no-suction case.

When no suction is applied eq. (5.21) and (5.22) show that X =-l—{1 and
L= {i; this leads to a considerable simplification because only one
parameter ({1) occurs and the method becomes analogous to the Pohlhausen
method. Important boundary layer parameters for {2 = 0 have been given
in table 5.3 as a function of {1; the results are plotted in fig. 5.8

as a function oflq.l. Assuming a linear relationship between M andj\_l

‘of the form
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M.—:al-bl-l\-l (5.39)

(compare Walz, section 4.2) the momentum equation (5,18) can he

integrated from El to Eé giving

X
b b b. -1
=1 =2 = 1 =2 — —
(U 9)~ - (U~ 8~ =28 j UI dx (5.40)
x x
2 1 p
1
From an inspection of fig, 5.6 it is seen that for the present method

the best vélues of ay and bl are as follows

region of applicability a bl

0) 0.415 4.84

near stagnation point (M

from sfagnation point (M = 0) to

pressure minimum (/\1 = 0) 0.437 5.10

from pressure minimum (f\l = 0)

to separation (J\.l = -0.087072) 0,437 6

For engineering applications the results will be sufficiently accurate
if the values al = 0.437 and bl = 6 are used all the way from stagnation
point to separation.

Then, if the calculation is started in the stagnation point eq. (5.40)

reduces to

x
7 82 - o.437f T ax (5.41)
o]

Determination of the best values for a and b.

Petermination of b,

In section 5.2 it was mentioned that a and b should take the values 1.3
and 0.3 respectively to obtain the best overall results of the present

method. This may be discussed now in some more detail.
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For boundary layer flows without suction it was found in section 5.7

that K = —1—{1 and L = {1. Hence (5.1) reduces to

u= 1) £,00) - 4 £,(n) (5.42)

showing that fl(n) and hence the coefficient a no longer occur in the

expression for the velocity profile. Therefore the results of the present

method, for boundary layers without suction, only depend on b.

For {1 = -1 only the separation profile fs(n) is obtained, which is
independent of b. For {1 = 0 only fz(n) remains which gives the flat
plate boundary layer without suction, The expressions (5.7) and (5.8)
for fz(n) contain b but only as a scaling factor for y which does not
influence the non-dimensional boundary layer parameters iike £, m, H
etc, Hence both for {1 = 0 and -} the results of the present method are

independent of b. For other values of %1 however they depend rather

‘strongly on b. The bhest value of b was defined as the value which leads

to the best representation of the Hartree profiles (¢f. section 5.4.2).

It was found that b = 0.30 should be taken to obtain this.

Determination of a.

Once a value for the scaling factor b has been chosen only the scaling
factor a remains to be determined; this was done as follows.

For the flat plate with constant suction velocity -V, an exsact solution
has been given by Iglisch[:GiL this sclution will be discussed in
chapter 8. The present approximate method was used to calculate the
boundary layer for this case, using different values for a. By
comparison with the exact solution it was found that a = 1.30 shows

the best overall results.,



Table 5.1: Some characteristic parameters for the fiat plate (B=0} and the plane stagnation
point (B=1).
Method gf %E g g? H = gf ;%E
f=0 8=1 E=0 p=1 p=0 B=1 £=0 B=1
Pohlhausen 1.750 0.641 0.686 G.278 2,565 2.31 0.230 0.331
Schlichting 1.742 0.630 0.655 0.266 2.66 2.37 0.215 0.310
Timman 1.715 0.636 0 .660 0.267 2.60 2.38 0.218 0.312
present 1.728 0.659 0.661 0.293 2.61 2.25 0,219 0.384
exact 1.721 0.648 0.664 0.202 2.59 2.21 0.221 0.360
a
Table 5.2: Results of the momentum method for the plane stagnation point with constant suction.

t, 1 K L 5%/a 8/0 H £ A A, A,

Q 0.5835 -1.5835 90,5835 Q.8617 0.3833 2.248 0.3642 0.08572 ©.0000 )
0.1 0.5359 -1.5555 0.5843 0.8563 0.3842 2.229 0.3729 0.07910 0.03842 0.1366
0.2 0.4893 -1.519% 0.8821 0.8505 0.3851 2,208 0.3824 2.07256 0.07702 0.2859
Q.3 0.4437 -1.4738 0.5761 0.8441 0.3862 2,188 0.3828 0.08620 0.1159 0.4504
0.4 0.3991 -1.4165 0.5652 0.8373 0.3872 2.182 0.4039 0.05983 0.1548 0.6333
0.5 0.3554 -1.3455 0.5482 0.8301 0.3881 2.139 0.4156 0.05352 0.1241 0.8392
0.8 0.3127 -1.2582 0.3239 0.8223 0.388% 2.114 0.4279 0.04728 0.2333 L.073%
o.7 O.2707 -1.1518 0.4904 0.8142 0.3896 2.090 G.4407 0.04109 00,2727 1.3453
0.8 90,2290 -1.0238 0.4460 0.8058 0,3900 2,066 0.4536 0.03483 0.3120 1.6711
G.9 .1873 -0.8712 O, 3887 0.7972 0.3900 2,044 ¢.4662 0.02849 0.3510 2.0794
1.0 0.1448 -0.6922 ¢.3186 ¢.7888 ¢.3896 2.025 ©.4780 0.02193 0.3896 2.6271
1.1 0. 1004 -0.4858 0.2281 0.7810 ©.3886 2.010 ©.4882 0.01516 0.4275 3.4728
1.2 ©.0527 -0.2536 0.1224 0.7743 0.3870 2.001 0.4959 0.00789 0.4644 5.2297
1.3 Q.0000 -0, 0000 Q.0000 0.7692 0.3846 2.000 0.5000 0.00000 0.5000 Pt




Table 5.3: Some characteristic parameters of the momentum method for the no-suction case

(/\Ezo).

x

A

£ 0/ 5 /o H L= A, ML)
-1.3 0,26510 1.1544 4.3546 -0.,047718 -0.081361 1.0657
-1,2 0.27556 1.1389 4.1330 -0.033087 -0.061120 1.0515
-1.1 0.28556 1.1233 3.8337 -0.017134 -0.089699 1.0302
-1.0 0.29508 1.1078 3.7542 8} -0.087072 1.0021
-0.9 0.30413 1.0922 3.5812 +0.018248 -0.083246 ¢.96738
-0.8 0.31272 L.0767 3.4430 0.037526 -0 .078235 0.92872
~0.7 0.32083 1.0612 3.3077 0.057749 -0,072052 ©.88035
-0.6 0.32848 1.0456 3.1831 0.078835 ~-0,064739 0.82876
-0.5 ©.33566 1.0301 3.,0689 0.10c70C ©.056334 0,77250
-0,2 0.34236 1.0145 2.9633 0,12325 -0.046883 0.71188
-0.3 0.34880 0.99%00 2.,8657 0.14641 -0.036457 0.64780
0.2 ¢.354386 0,98346 2.7753 0.17009 -0.025114 Q.58004
-C.1 0.35966 ¢.98792 2.6912 0.19422 -0,012936 0.50082
o 0.36449 0.95238 2.6129 ¢.21869 o 0.43738
+0.1 0.36885 0.93684 2.53e8 0,24344 +0.013605 0.36334
+0.2 0.37274 0.92130 2.4717 0.26837 +0.027787 0.28822
+0.3 0.37616 0.8057¢ 2.4078 0.22340 +0.042449 0.21258
0.4 0.37911 0.83022 2,3482 0.31845 0.057490 0.13694
0.5 0.38158 0.87468 2,2922 0.34343 0.072805 0,081872
Q. 0.38360 0,80914 2.2397 0.36826 0.088289 -0.012118

0.38514 0.84360 2.1804 0.39284 0.10383 -0.084408
0.8 0.38621 0.82806 2,1441 0.41711 0.11833 -0.15481
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