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Stability and transition,

Introductory remarks,

In the preceding chapters laminar boundary layers have been discussed
only. It is known from experiments however, that solutions of the laminar
boundary layer equations cannot always be realised in practice because
transition to turbulent flow may occur., Fig. 3.3 for instance showed a
comparison with experimental results of Blasius' theory for the laminar
boundary layer on a flat plate, It is seen that the theory is confirmed
by experiments only when the leading-edge of the plate has not been
disturbed by a tripping wire and if only those stations on the plate

are considered for which the Reynoldsnumber o is less than 3 x 106.

v
At higher Reynoldsnumbers or when the flow is disturbed a turbulent
boundary layer is found. From detailed experiments by Schubauer and-
Skramstadl:87]'on a smooth plate in a wind tunnel with a degree of
turbulence less than O.lo/o it is known that the flow is completely
laminar when %? is less than 2.8 x 106 and fully turbulent for
2; > 3.9 % 106. For intermediate values of Ux a transition region

v
occurs where the flow passes from laminar to tarbulent. A similar
behaviour is shown by the fiow around airfoil sections or through pipes,
Although the phenomenon of transition has been known already since
Reynolds' famous experiments on pipe flow in 1883 [581 the mechanism
of transition is not yet completely understood. Neither is it possible
to predict theoretically for an arbitrary body the position where
transition will occur.
For a long time there have been two conflicting opinions about the
mechanism of transition. One school of thought supposes that
disturbances in the flow outside the boundary layer cause f£luctuations
inside the houndary layer which lead to local and instantaneous separation
followed by transition (Taylor [851). A different explanation is given
by the so called stability theory as developed by Rayleigh, Tollmien,
Schlichting, Lin, etc. (see [90] and [7], chapter 16).
In this theory it is shown that small harmonic disturbances in the
boundary layer may become unstable and amplify. It is supposed that

these disturbances cause transition as soon as they have gained a
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sufficient amplification. The unstable oscillations, predicied by the
stability theory were discovered in wind tunnel experiments on the
boundary layer of a flat plate by Schubauer and Skramstad in 1940 [87}.
It was found that the stability theory is valid only if the degree of
turbulence in ithe airstream is less than O.lo/o. For.high turbulence
levels Taylor's theory is more appropriate. In 1951 the existence of
unstable oscillations was also shown in free flight by Malotaux et al.
[91]. In the free atmosphere and in modern low speed wind tunnels the
degree of turbulence is considerably less than 0.10/0 and it is commonly
accepted now that under these circumstances transition on smooth

bodies - at least initially - is governed by the stability theory. An
exception should be made for cases where the laminar boundary layer
separates from the surface due to an adverse pressure gradient. It may
be possible that a shoxrt distance upstream of the separation point
Taylor's transition mechanism is the relevant one. Also transition in
the separated layer may be governed by a different mechanism.

This theory shows under which circumstances the laminar boundary layer
may become unstable and predicts the initial growth of the disturbances.
Since most of the existing theories are linearjsed by assuming small
disturbances they cannot describe the complete transition to the
irregular turbulent flow with relatively large disturbances.

OQur knowledge of transition has been steadily enlarged however through
experiments starting with the investigations by Schubauer and Skramstad.
A review of this work may be found in [291. Some recent results have
been described by Hinze et al. [92].

From the experiments it is known that in the transition region suddenly
"turbulent spots" are generated., These spots grow and merge as they
move downstream until finally at a certain position the flow is fully
turbulent [93]. According to Klebanoff and Tidstrom_[94] the spots seen
to develop from threedimensional concentrations of disturbance energy
in the originally two-dimensional disturbance waves,

In the first few sections of the present chapter the main principles and
results of linear stability theory will be collected for later use, In
the final sections it will be shown that the stability theory may be

used to develop a semi-empirical method for the calculation of the
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transition position on smooth bodies in an airstream with low degree of
turbulence. Throughout the present work it is assumed that surface

roughness is so gmall that it will have no influence on transition.

Principles of linear stability theory.

General.

The stability theory considers a given laminar main flow upon which small
disturbances are superimposed. It is assumed that both the undisturbed
and the disturbed flow satisfy the Navier-Stokes equations, After
linearisation a perturbation equation is obtained which under certain
circumstances may possess unstable solutions. It is found that important
factors determining the stabllity or instability are:

the shape of the boundary layer velocity profile

3

the Reynoldsnumber Hg— and

the frequency or wavelength of the disturbances.

The Ory-Sommerfeld equation.

In what follows a two-dimensional flow is considered which is subjected
to a two-dimensional disturbance., It is possible to omit three
dimensional disturbances since, according to Squire}iQSl, the instability
of incompressible boundary layer flows is initially determined by the
two dimensional disturbances. For the stability investigation it is
assumed that the u-velocity component of the undisturbed main flow
depends only on the wall distance y and that the v component is zero;

the pressure p only depends on the streamwise coordinate x. These
assumptions hold exactly for pipe- or channel flow and also with a good
approximation for boundary layers because here u changes much more
rapidly with y than with x. (Pretsch [96]).

On themain flow a disturbance is superimposed with velocity components
u'(x,y,t) and v'(x,y,t); the fluctuating pressure component is p'(x,y,t).

Hlence the combined flow is given by
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w7, t) = uw(y) + u'(x,y,t)
V*(X’y!t) = V'(X!YJt) (9-1)
‘ P*(X,Y:t) = p(X) + P'(X;y,t)

If (see for instance [7], chapter 16)

a) equations (9.1) are introduced into the Navier-Stokes equations
(2.1) and (2.2) and the continuity equation (2.3);

b) the resulting equations are linearised in the disturbance
components;

¢) it is observed that alsoc the undisturbed flow should fulfil
equations 2.1 -~ 2.3;

d) the fluctuating pressure component p' is eliminated from two of
the resulting expressions;

the following equations remain:

azu' szv' N u( Dzu' B2v') + ¢ Dzu

Bt;;y - otax 0 X2y - sz g =
p( 23y +-3%ﬂ _ DSV' _ bgv') (9.2)
'bxz()y ? yS st axayz
' v _
= T 55 ° 0 (9.3)

Now a periodic disturbance is assumed with a stream function$” defined

by
Y (X: v, t) = (P(y)ei(ax_at) (9.4)
which, using '
v P r Y
u' = 5y and v = - 5% (9.5)

directly satisfies the continuity equation (9.3). Since (9.2) and (9.3)
are linear in the fluctuating quantities more general periodic
disturbances may be obtained by superposition of a number of components
of the form (9.4),

In the expression (9.4) it is assumed that & is a real quantity; it

2 —
determines the wave lengtth of the disturbance by Az ; B is

o
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complex with B = ﬁr + 1 Bi where E% is the frequency of the disturbance.
The sign of ﬁi determines whether the disturbance is stable or unstable.
For stable or unstable disturbances ﬁi is negative or positive
respectively; neutrally stable disturbances correspond to Bi = 0. The
amplitude function @(y) is complex and is assumed to depend on y only.

Furthermore use will be made of

(9.86)

the sign of ci again determines the stability of the disturbance; Cr
is the wave speed.

Using (9.4) and (9.5) equation (9.2) may be reduced to

"~ 2 2 A 4 2
(u—g)a-—q) (_1—259 P 19107 2&2’—5—-CP-+§4

- Pl (9.7
Ay

This eguation can be written in non-dimensional form by using the
velocity U at the edge of the boundary layer and the displacement

S
thickness, & as reference velocity and -length respectively. The result

is
— 2
— 2 % 2 2 *
Aol e 8 g (®,| 9w B @ _
u U 2 E:d 2 *
0y" U Us Dy U ud
3
o 34 * _ 2 2 * _ 4
—1§.§ _3 5 4 @™y B_g 8 @y 2 (9.8)
() % dy. U dy° U i

Fquation (9.7) or (9.8) is known as the Orr-Sommerfeld equation. It

is homogeneous in ¢ and hence admits the solution [y = 0; this of
course represents the undisturbed flow. The stability investigation

is concerned with non-zero solutions satisfying eguation (9.7) or (9.8)
together with some boundary conditions. These solutions are found by
solving the resulting eigenvalue problem. This will not be pursued
further here; extensive reviews may be found in [7, 29, 90].

In the following sections only those results of stability theory will

be presented which are used in the remainder of the present work,
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9.2.3. The stability diagram.

*
U —
For a given laminar boundary layer ngw and the velocity profile u(z;) are
% c c, 5
known, Then in egquation (9.8) 03, ﬁ£ and ﬁi remain as parameters. Usually
cr Ci Br 515*
T and i are replaced by —E—-and T using the following expressions.
U
Cy 5rv 1 USK
U_=_§—-—K'Y_ (9.9)
i) 873
*
c B.5
. R 1
and e (9.10)
B

Now, when a value for one of these parameters is assumed (for instance
aﬁ*) the values of the other ones may be determined for which (9.8) allows
non-zero solutions, Results of these calculations are usually presented

in an aa* - %?f plane: the "stability diagram”. As an example fig. 9.1

shows the stability diagram for the flat plate boundary layer. The curve
p.o*®

for = 0O denotes the neutrally stable disturbances. Inside the loop

Bi is positive and outside negative. This means that unstable disturbances
¥ £
will be found only for combinations of (8" and E;- inside the loop. Below
* —
a certain value of ue™ there are no values of 08%¥ for which unstable

>
Us¥

disturbances are possible; this value of o is called the critical

Reynoldsnumber.
The Orr-Sommerfeld equation (9.8) has been obtained for parallel flows
us®

only where u{y) - and hence % (X;) and - do not change with x. It is
5 .

general practice to apply results of stability calculations also to
flows where u(y) changes slowly with x. This implies that at each station

x the actual flow is replaced by a parallel flow with the same non-

u oy us®
(y)
1) a*

dimensional velocity profile T EE) and Reynoldsnumber 5 -
)
is independent of x and hence the same stability diagram applies at all

For a similar boundary layer the "shape of the velocity profile"
y

|=

values of x. If now a disturbance with a constant value of _g_ is
U
considered which is convected downstream with the flow, it follows
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x

U .
- because v increases with x - that the disturbance may at first be

stable, then hecome unstable and finally become stable again. The same
happens for non-similar boundary layers where however the stability
diagram changes with x,

It can be seen from the Orr-Sommerfeld equation (9.8) that the stability
diagram depends on the shape of the velocity profile. It turns out that
the curvature of the profile is very important: profiles with & point

of inflexion have a much lower cryitical Reynoldsnumber and hence are
much less stable than velocity profiles without inflexion peint

(fig. 9.2). Moreover, the height of the unstable loop is finite when

x
%?—-—%? «> for velocity profiles with an inflexion point while the

height tends to zero if there is no inflexion point. Hence it follows
that factors determining the occurrence of an inflexion point have much

infiuence on stahility and hence on transition.
2
An inflexion point occurs if ——% at the wall is positive. From the first
y
compatibility condition at the wall {(equation 2.10) it follows that
2
%y , qu )
5 depends on the pressure gradient term U T and the suction
dy o
velocity Vo An"adverse" pressure gradient (gg— £ 0) or blowing

2

D
(vo > 0) tend to make(ré—g > 0 and hence are destabilising factors.

Yy ‘o
A "favourable" pressure gradient (gg T 0) or suctiom (vO < 0) tend

az
to makfa(ér%%) <: O and hence are stebilising factors. This point will
¥

be discussed further in section 2.3.

The amplification factor.

It was shown in section 9.2.3. that the amplification or damping of
disturbances in the boundary layer is determined by the msgnitude of ﬁi.
In what follows an equation will be derived which governs the growth

of the amplitude of the disturbances. This equation follows from the
expression (2.4) for the stream function. Of course, only the real

part of the stream function er is physically significant.

From (9.4), together with 0 = 9.+ i @i,it follows that
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B.t
[ =e . [ P,. cos(Ox - Brt) - P sin(0ix - 5rt)

cPr
or denoting &r-by tg 1T

Bt Wy _
yyr = -e To5 T sin (Cx - 3rt -T) (9.11)

For the velocity components u' and v' of the disturbance similar
expressions are found. Because ¢ and hence Y depend only on y the
amplitudes a and a + da for a fixed value of y at times t and t + dt

are related by
d(dn a) = B, dt (9.12)

Hence if the amplitude for the neutral oscillation at time to is denoted

by ao, the amplitude at a later time t follows from

£

mlm

o

t .
= f ﬁi dt _ (9.13)
t
Q

t
o
2 a
or — = e where g o= B. dt (9.14)
a & i
t
o

In what follows o  will be called the "amplification factor".

For parallel flows the parameter ﬁi in (9.14) is constant but it may
vary with x for non-parallel flow.

Since the integration variable t in (9.14) is a 1ittle obscure for
instability calculations in boundary layers a change will be made to

the variable X by using

ax . (9.15)

This means that a disturbance is followed on its way downstream, Using

(9.15) eguation (9.14) for v, may be written as
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or after introducing convenient non-dimensional quantities

x
g —Ui 10"6f T.U dx (9.186)
a = Ty _ . .
X
[o]
In equation (9.16) T denotes
B.o*®
3 @*et
T = u (9.17)
= z .
gfv (USX)
Uz by
and x = g-where ¢ is a constant reference length. The quantity T may be
— p
calculated as a function of x for a given value of —%— if the shape of
* U
the velocity profile and HS— are known as functions of x. Moreover

stability diagrams have to be known for the velocity profiles
encountered.
The lower integration limit E;in (9.16) denotes the value of x at which

aF

for the frequency considered —%—— = 0 for the first time.

Some available stability diagrams.

As the stability calculations are rather laborious not many stability
diagrams have been calculated., A review of these results may be found
in{j7], chapter 16 and [29], section IX; a selection of these results

will be given below.

For the flat plate boundary layer without suction critical Reynoldsnumbers
from different sources have been collected in table 9.1, stability diagrams
are shown in fig. 9.3, It is seen that the results of various calculations
show considerable differences. This is caused on the one hand by the
different procedures followed for the stability calculations. On the

other hand the Rlasius profile has been approximated by different
analytical expressions; in many cases the velocity profile for the flat
plate boundary layer from some Pohlhaugen type method has been used.

Since these velocity profiles and especially their curvature may be
different, the stability diagrams are not necessarily identical.

Some available stability diagrams for the plane stagnation point flow
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without suction have been compared in fig. 9.4; again considerable
differences are shown.
Calculations for a whole series of Hartree profiles (see section 3.1.2)
have heen made by Pretsch [96, 97, 9%]. Stability diagrams are shown in
fig. 9.5; the critical Reynoldsnumber is given in fig. 9.6 as a function
of B, Figures 9.5 and 9.6 clearly show the stabilising influence of a
favourable pressure gradient (P > 0). Also amplification calculations
have been made by Pretsch; these results will be discussed in more
detail in section 9.5.
The neutral stability curves for some cases with suction and blowing have
been calculated by Ulrich [99]. The flows considered are

1. the flat plate with constant suction velocity

2. the flat plate with v, o x_%

3. the plane stagnation point with constant suction velocity.
The cirtical Reynoldsnumber is shown as a function of A g = :gg %?
in fig. 9.7 which clearly shows the strong stabilising influence of
suction. From the examples discussed in chapter 8 it is known that for
the boundary layer flows considered by Ulrich the velocity profile tends
to the asymptotic suction profile if the suction velocity -vo becomes
infinitely large (A 2~E;°” }. According to Ulrich's calculations the
critical Reynoldsnumber 293 becomes as high as 70000 for this case;

a recalculation by Freeman [ﬁodl gave 78000. Fig. 9.8 shows some

stability diagrams selected from Ulrich's results for different boundary
us*

¥ “erit
different boundary layers also the remainder of the neutral stability

layer filows. This figure shows that if ( is equal for two
curve is roughly the same, irrespective of the pressure gradient or
suction velocity.

Comparison of this result with figs 9.3 and 9.4 reveals that the
stability diagrams calculated by different authors for the same flow
show as much variation as the stability diagrams obtained by the same
author for different velocity profiles with the same value of the
critical Reynoldsnumber,

In the remainder of the present work the amplification factor for
boundary layers with arbitrary pressure- aﬁd suction distributions will
be calculated, For this calculation stability diagrams including

information about the amplification rate at ﬁi:> C have to be known.
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To the best of the author's knowledge these results are ohly provided
by Pretsch's stability disgrams and it will be attempted to apply these
diagrams to arbitrary boundary layers.

In view of the comparisons of different stability diagrams made above,
the following procedure seems to be justified for assigning a stability
diagram to a certain velocity profile. From an approximate formula due
to Lin (section 9.4) the critical Reynoldsnumber is found. Then the
stability diagram from Pretsch's series with the same critical Reynoldé
number is assumed to be valid for the velocity profile under

investigation. This implies that all possible stability diagrams are

considered to form a one-parameter family with the critical Reynoldsnumber

as parameter.
If only the critical Reynoldsnumber is needed a quick estimate may be

made using a formula of Wieghardt LlOl].

*

Ud Ue 26.3 - 8H
(=) =H (L) =Ile (2.18)
crit crit
63?
where H = 5 Fig. 9.9 shows that indeed .equation (9.18) gives a

reasonably good approximation to the critical Reynoldsnumber for a
variety of boundary layers. For relatively strong suction however
Wieghardts relation seems to become invalid (Head, [63]); and it is
safer to use Lin's formula for all cases.

S8ince in boundary layer calculations using the momentum eguation the
momentum loss thickness © is the proper thickness parameter it is

advantageous in many cases to use & critical Reynoldsnumber based on O.
From fig. 9.9 it follows that for the boundary layers, which have been

congidered in the present section, equal values of H mean equal values

Ue Us* .
of (:7) and hence also of (—;70 . Therefore the comparisons of
crit crit
the stability diagrams made in the present section can also be made
Us®

N = a8 —
in terms of UGB and %r, instead of QS* and ——» Wwithout altering the

conclusions.,

Lin's formulae for the critical Reynoldsnumber.

A simple approximate formula for the calculation of the critical

Reynoldsnumber has been given by Lin[:QO], and reads
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(—';‘) = — T (92.19)

In this equation d may beany length which is used to make the wall

distance y non-dimensional.

G& is the value of u for which the following eguation is satisfied
TR
i Ou ) a(y/d)z = 0.58 (2.20)
Noy/a/ (_5)3 - ’
oy/d

For the momentum method discussed in chapter 5 it is appropriate to

take d = ¢ leading to % = 7. Then equations (9.19) and (9.20) lead to

[e] =}
25 e
Uo _ pu g
(T) ” S (9.21)
CcCIri u
= ¥u
NTg
and an 0.58

— = T (9.22)
du L0
5ﬁ uu

For the multimoment method given in chapter 7 it is useful to make d

equal to © as defined by equation (7.20). In that case (9.18) and (2.20)

reduce to

[
[}
| i}
o
=
o]
| @
7

=) (9.23)

= —— (9.24)
S S ﬂ\iao

The equations (9.22) and (9.24) can easily he solved by iteration for a
given velocity- or S-profile, It is even possible td include Lin's

formulae in a computer program for the boundary layer calculation.
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A comparison of results obtained with Lin's formulae and those from
other calculations may be found in section IX of [291. Some resulis for
the flat plate boundary layer without suction have bheen collected in
table 9.2. For the asymptotic suction profile the formula leads to

*
(%?) = 40000 or H;— = 80000 as compared to 70000 according
crit crit

to Ulrich and 78000 obtained by Freeman. It follows from these

compariscns that the accuracy of Lin's formula is quite satisfactory.

Reduction of Pretsch's results to a form suitable for use on a digital

computer,

Detailed stability calculations for some of the Hartree profiles have
been made by Pretsch [96-931. The stability diagrams are showan in fig.
9,5, while some characteristic parameters of the profiles have been
collected in table 9.3. Stability diagrams for some other values of P
have been obtained by Smith and Gamberoni [1] from interpolation in
Pretsch's diagrams. In what follows these diagrams will be used to
calculate the amplification factor g, - It follows from equation (9.16)
that the only information needed from the diagrams is the guantity T

as defined by (2.17). Values of T for a range of values of —Ig and
* U

Hg— have been obtained from Pretsch's work for £ = 1, 0.6, 0, -0.10,
.0.198 and for P = 0.2, 0.1, -0.05 from | 1].
In fig. 9.10 for example the resulis are shown for the flat plate

10
(P = 0) plotted as function of log %?. It is seen from the figure

v
that the curves for constant values of —LE may be approximated by
parabola's of the form v
10 e 2
T = To - Kl ( log < - Kz) (9.25)
B>
where the coefficients To, Kl and K2 depend on P and —- Values for
U
these coefficients have been obtained for all values of P and a range
. By
of values for —;—. The results for B = O are shown in figure 9.11 as
10U Isrv
function of log —=. The approximation given by (9.25) to the actual

2
U
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values is shown in fig. 9.10. Finally cross plots have been made to find
By
To’ Kl and K2 a3 functions of B for constant values of —Eg. Since a unidque
u
) : ue
relation exists between [ and (:7) (see fig. 9.6) it is possible to
) o erit g, i)
consider To, K1 and K2 as functions of log (=) .
crit
Since it may be expected that Pretsch's results will not be very accurate,
linear interpolation in 10 log (Hg) seems to he justified to find the
crit 10 Ue
coefficients of (9.25) for arbitrary values of log (150 . Table 9.4
ﬁrv crit
and K2 for different values of —5 at equidistant values of
ve u .
log (77) . The numbers quoted in the table have been chosen in such
crit 1 vo
a way that by linear interpolationin log (77) the valueg obtained
crit

. K
gives TO

10

1

from Pretsch's diagrams will be regained.

For convenience the reduced fregquencies —35 have heen denoted by a number
U ﬁr‘v
f in table 9.4} results for intermediate values of —p can be obtained by
i)

linear interpolation in the parameter £f.
In view of the remarks made at the end of section 9.3 it will be assumed
that table 9.4 can be applied to boundary layer flows with arbitrary

suction- and pressure distributions.

Some existing methods for the calculation of the transition point.

In preceding sections it has been shown that it is possible to determine
theoretically whether a particular boundary layer flow is stable or
unstable. For instance for the flat plate the boundary layer becomes
unstable as soon as ng exceeds a critical value of about 575
corresponding to H; =0.11 x 106. From experiments it is known however
(see section 2.1) that actual transition starts at 2? = 2.8 x 106 only.
This means that a considerable distance will exist between the point of
instability and the transition point.

From fig. 3.3 it follows that the instability has no direct effect on
the friction drag; only when transition occurs the friction drag
increases. It follows that fof the calculation of the characteristics

of airfoil sections it is important to possess a method for predicting
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the possible occufrence of transition. Since the transition process is
not yet sufficiently uanderstood these methods will necessarily be semi-

empirical in nature., Some of these methods are mentioned below.

In some methods the results of different transition measurements are
plotted in such a way that all points fail on a single curve. For a new
case transition may be "predicted" by assuming that the new case will

2lso fall on this universal curve. An important example of these methods

is due to Michel [106]. In his method EQ at the transition peint is plotted

¥y
U
versus the corresponding value of ?;; indeed results of different

experiments fall reasconably well on a single curve. The method is based
on experiments without suction and can not easily be generalised to
suction problems.

A different method has been given by Granville {1071. Here a universal

curve is obtained by plotting (2?) - (Hg) versus the mean value j\l
tr i
of the Pohlhausen parameter-le, defined by

X
tr

N - L A e (9.26)

tr ~ Fi X,
i

The subscripts "tr" and "i" denote transition and instability respectively,
Another suggested method is to assume that transition occurs at a constant
value of ng_ This results in a very rough estimate of the transition
point only.
To - -improve upon the above methods the determination of the transition
point should not be based on local quantities only but the history of
the houndary layer should be taken into account, since this determines
the amplification of unstable disturbances. Such a method has been

designed by the present author; it will be presented in the next section.

A new method for the semi-empirical determination of the transition region.

General.

It was shown by the present author in [3-5] and at the same time

independently by Smith and Gamberoni [1,2] that different experiments
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on transition without suction can be correlated on the basis of the.
amplification factor Ga' It was shown that the maximum value of Ga which
was reached at the transition position was roughly equal for all cases
investigated. Hence in new cases an accurate estimate.of the transition
position may be found using the assumption that transition occurs as soon

as the calculated value of (ca) reaches this critical value. In the
max
references cited above the method was shown to be valid for the no-suction

case. It will be presented here in a modified form; furthermore it will

be shown that the method is alsec applicable to cases with suction.

The amplification factor for the flat plate without suction.

Teh ampiification factor Ga is defined by equation (9.18)

-6 U.c ; —
Ua = 10 - T.,U dx (9.27)

X
o

If for the flat plate the reference velocity U, and the reference length

¢ are chosen as U and % respectively, equation (9.27) reduces to

Ux
—
5 Ux
Ua = 10 / T d(—;)—) . (9.28)
Ux
_°
1%
i vo Ux |, e
For the flat plate the relation between — and —> is known and it is

¥
possible to calculate o, for different frequencies _Eg using table 9.4
u
and the formulae given in section 9.5, For this calculation a value of

(g?) has to be assumed; as some uncertainty exists here (see table
crit
9,1) a range of values for the critical Reynoldsnumber has been used.
For (%?) = 260, which is the value obtained by Pretsch for P = 0,
crit
some results are shown in figs 9.12 and 9,13, Values of T are shown
in fig. 9.12; the amplification factor Sy is shown in fig. 9.13 where
also the envelope giving the maximum amplification factor (Ua) has
max
been drawn.

(2]
Similar calculations have been performed for other values of (27)
crit
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from table 9.1; the results for (cra)max have been collected in fig.
9.14. 0f course the calculation of the amplification factor can be
extended to arbitrary high Reynoldsnumbers. However, it is known from
experiments (see section 9.1) that transition sets in at gﬁ = 2.8 X 106
and that the boundary layer is completely turbulent for 2;— > 3.9 x 106.
These limits have been inserted in fig. 9.14; it follows that to these
values of %ﬁ certain values of (Ua)max correspond which are shown as
function of (%g) in fig. 9.15 and table 9.5.

crit
If Pretsch's value is used it is found that beginning and end of the

experimentally determined transition region correspond to (Ua) = 7.6
max
and 9.7 respectively. In the earlier version of the methodi:3~51 the

values 7.8 and 10 were obtained. The slight differences with the present
values are easily explained by the fact that at that time only small
scale versions of Pretsch's charts were available to the author which
could not be read very accurately.

In most of the further calculations the momentum method of chapter 5
will be used in combination with Lin's formulae for the critical
Reynoldsnumber. Table 9.5 shows that this leads to (Ga)max = 9.2 and

11.2 at the beginning and end of the transition region

- respectively. In what follows it will e shown that nearly the same

values are obtained for other boundary layers. It should be noted that
the linear stability theory has been used to calculate Ga up till
transition. Of course not too much significance should be attached

to the details of these calculations. The maximum amplification factor
has to be considered only as a convenient parameter correlating

different factors which influence the transition.

The amplification factor for the EC 1440 airfoil section without suction.

For airfoil sections the boundary layer is not similar and hence for
different values of x different stability diagrams have to be used. If
a8 = .
(%7) is known as a function of X, for instance from Lin's formulze,
erit :
it is easily possible to calculate Ga also for these cases using table

9.4,
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In,[3—5] results of transition measurements and calculations of the
amplification factor for the EC 1440 airfoil section have heen presented.
In this work Pohlhausen's method was used for the boundary layer
caleulations; critical Reynoldsnumbers for the velocity profiles were

found by relating Pohlhausen's A to Hartree's B. This relation was
B
obtained by calculating the Hartree boundary layers for U = uy XZ—B
with Pohlhausen's method. The examples discussed in [3-5] will be
recalculated here using the momentum method of chapter 5 in combination
with Lin's formulze. Fig. 9.16 shows U as a function of s and the
results of the boundary layer calculations for different values of the
angle of attack &, Results of the amplification calculation for ¢ = Oo
are shown in figs 9.17 and 9.18, Similar calculations have heen
performed for other values of O; the results have been used to comstruct
fig. 9.19 where also the experimentally determined transition region

is shown. The curve (Ga) = 0 in fig. 9.19 denotes the instability
max :

point; it follows that both the instability point and transition move
forward with increasing angle of attack.
However, the distance between the instability point and transition can

be very large. If the beginning of transition is assumed to occur for

(Ua) = 9.2 it may be seen from fig., 9.19 that the beginning of
max o

transition is predicted accurately within 57 /0 of the chord length for

a > -2°%.

For O <: -20 transition is preceded by laminar separation; in this case
the distance between the predicted and actual positions where transition
starts may grow to 100/0 of the chord length.

Smith and Gamberoni [1,2] applied a similar analysis to a great number
of experimental data including results of free flight measurements,
They calculated the laminar boundary layer by means of a method which
for the flat plate produces Hartree's velocity profile for B = 0O,
Hence, using Pretsch' value for the critical Reynoldsnumber, they should

find (aa) = 7.6 and 9.7 at the beginning and end of the transition
max
region. The conclusion of their analysis was that (oa) = 9 would
max
correlate the experimental data very well. Since no distinction was made
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hetween beginning and end of the transition region the agreement with
the values 7.6 and 9.7 is very good, A difference between the present
method and the method of Smith and Gamberoni is that the last authors

=Y
calculate the amplification at constant values of -35 while for the

Brv Uen

present method constant wvalues of — are used, Since U = U/Uen
U

does not change very much in the regions of interest and moreover only
the envelope of Ga for different frequencies is used this difference

apparently has no effect on the results.

It has been mentioned already that the method becomes less accurate

if transition occurs close to or even downstream of the calculated

separation point. Some possible explanations for these discrepancies

are listed below.

1. Near secparation the transition mechanism assumed in stability theory
may not be the relevant one so that a method which is based on this
theory may become less accurate.

2, Especially close to separation the shape of the calculated boundary
layer velocity profiles may be in error so that a wrong value for
(gg ig found.

crit

3. In cases where the critical Reynoldsnumber is low - which occurs close

to separation - really nothing is known about the accuracy of Lin's
formulae or Pretsch' stability diagrams.

4, There is no clear reason why the critical wvalues of (ca) at
max
transition should be constants. An exact correspondence between

experiment and theory for the results shown in fig. 9.19 might have
peen obtained for instance by assuming that the critical values are
suitable functions of the critical Reynoldsnumber at transition.
However, in further experiments no systematic variation of (ca) with
(2?) at transition was Zound and hence in what follows cons%ggt
critgg;g values for (Ga) have been used,

max

9.7.4. The amplification factor for boundary layers with suction through a

porous surface.

‘Anticipating the results of an experimental investigation on the effects
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of suction through a porous surface - to be described in chapter 11 -
it is stated here that the method is also applicable in the case of

suction.

Some results for the flat plate with different suction laws.

The flat plate with constant suction velocity.

In section 8.11 the boundary layer on a flat plate with constant suction

velocity has been discussed, It was found that the non-dimensional
-v 8

parameter.f\z = and the shape of the velocity profile only depend

on the variable x defined by
x= (=) = (9.29)

Since the critical Reynoldsnumber depends on the shape of the velocity
profile only it also depends only on X.

ve -
Values of - may be found as function of x for different values of the

-V
suction coefficient cq = —ﬁﬂ from

...VOQ
Ue Y
== {(9.30)
_°
U

Results of some calculations using the momentum method in combination
with Lin's formulae for the critical Reynoldsnumber, are shown in fig.

-V _4
9.20, It follows that for _ﬁg 2 0.980 x 107 nowhere along the length

of the plate %? will exceed (E?) and hence the boundary layer is
_ crit -v 4
stable at all values of x. For values of _ﬁE less than 0,980 x 10~

the boundary layer becomes unstable in a certain interval.
A simjilar calculation has been made by Ulrich [99] using Iglisch' exact

4]
solution for 27 and the results for (HQ) shown in figure 9.7. He
crit
found that the suction coefficient cq should exceed the value

1.18 x 10-4 to ensure & stable boundary layer for all values of X. The
difference between the values 1.18 and 0,980 is easily explained by the

different procedures used to determine the critical Reynoldsnumber.
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Fig. 9.21a and b show the drag of a flat plate with the constant

suction velocity -vo = 1,18 x 10_4 U. Appendix 1 should be consulted for
an explanation of the terms "wake drag", "suction drag" and "total drag"
which are mentioned in figure 9.21. Included in the figure is the drag
for the flat plate without suction for both laminar and turbulent flow
(section 3.1.3). It is seen that the total drag with suction is higher
than for the Blasius boundary layer. However, it remains much smallexr
than the drag of the flat plate with turbulent boundary layer which would
occur at high values of %? without suction.

The percentage reduction in total drag which would result from keeping
the boundary layer laminar is shown in figure 9.22., It follows that drag
reductions 0£85 /o will be possible at the value 25 x 106 for the
Reynoldsnumber %? which is representative for the wing of a modern jet
airliner in cruising flight.

The drag reduction shown in fig. 9.22 has been calculated on the
assumption of a constant suction velocity with such a magnitude that the
boundary layer remains stable along the full length of the plate. It may
be expected that less suction will be required if the boundary layer is
allewed to become unstable to such a degree that the maximum amplification
factor remains slightly below 9.2. This will be pursued further in the
remainder of the present section. A further reduction of the suction
gquantity may be obtained by allowing the suction velocity to vary along
the length of the plate, This will be discussed further in section

9.8.2.

For the case of a constant suction velocity the amplification factor can
easily be calculated as follows.
I1f the definition (9.29) for X is used it is implied that the reference

length ¢ has been defined as

Uy
C = e————

= (9.31)
3
(—vo)

If the reference speed Ues is made equal to the constant free stream
U..c

speed U then the Reynoldsnumber Rc = — becomes
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2
Rc = (—li—) = ¢ -2 ] (9.32)

X

g =10 ¢ f T dx (9.33)
x
[e]

Results of amplification calculations for different values of Cq have

been collected in fig. 9.23 where (aa) is shown as function of X.
mag
The peak value of the amplification factor is plotted in fig. 9.24 as

function of cq. If it is assumed that transition starts as soon as

(Ua) reaches the critical value 9.2, then it may be concluded from
max
tig., 9.24 that transition will not occur unless cq £alls below the value

0,485 x 10_4. This value is only 500/0 of the suction coefficient
required to keep the boundary layer stable. Then it may be concluded
that the suction coefficient can be much smaller than was assumed for
the calculation of the drag reduction shown in fig., 9.22, This implies
that the possible drag reduction may be much larger than shown in fig.
9.22, '

Furthermore it should be noted that using a constant value of —vo
results in & suction intensity which is too high at most stations on the
plate. Only in the critical region this suction velocity is really
necessary to prevent transition. To obtain a minimum suction quantity
the suction velocity should be adjusted to the local needs of the

boundary layer. This will be discussed further in section 9.8.2.

The flat plate with varying suction velocity.

Using the momentum method in combination with Lin's formulae for the
critical Reynoldsnumber, it is easy to calculate the suction distribution

which will maintain a neutrally stable boundary layer characterized by

U
v

©

ni

& (9.34)
crit
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Since the momentum method and Lin's formulae lead tO‘%? = 0.661 V %?
o
and (%7) = 221 for the boundary layer on a flat plate without suction,
erit ’

it follows that instability arises downstream of the position where

%? = 0.11 x 106. If suction is started at this point and the requirement
(9.34) is fulfilled, further downstream the suction distribution shown

in fig. 9.256 results. It may be seen from thiz figure that only locally

& high suction intensity is needed. For H;-—;—Vﬁ the suction velocity
takes the constant value 0.125 x 10‘4LlThis value easily follows from the

Ux
observation that for 77-——§cf3 the asymptotic suction profile is found

-v 8
for which —7$—-= 0.50 and (Eg) = 40000 so that to satisfy equation
crit
(9.34) the suction velocity should be given by
-V 8
v _92
°o_ _? _ .95 _0.125 x 107%
U ue 4
- 4 x 10

The total suction quantity obtained in this case is much less than for
the case of constant suction velocity. A further reduction will be

obtained if the amplification factor (Ua) is allowed to reach the
max
critical value 9.2. However, this will not be pursued further in the

present work.



Table 9.1: Critical Reynoldsnumber for the flat plate houndary layer.

£

(ngD (EEJ lolog(gg) references
erit crit crit

321 124 2.003 Timmar et ai [104]

420 162 2.210 Tollmien [iog

420 162 2.210 Lin [zog]

480 185 2,268 Lin, eqguations 9.1% - 9.20
575 222 2.346 Ulrich (921

845 249 2.306 Schlichting-Ulrich [115]
530 260 2.416 Pretsch, p=0 |96]

Table 9.2: Results of Lin's formulae for different approximation to the velocity

profile on a flat plate.

*®

ud

(=) (Eﬁ) lolog (HE) Yelocity profile
v ¥ FY

crit crit erit

480 185 2.268 exact
577 221 2,345 momentum method
754 310 2,492 neltimoment methed N = &
493 196 2.292 " N N=6
508 200 2,301 » " N=7
519 203 2.307 " " N=28
498 194 2.288 " " N=28

Table 9.3: Characteristic parameters of the Hartree velocity profiles including the

critical Reynoldsnumber according to Pretsch.

£
| Us Ue o, UB 10, U6
p H (< (= log(—) 1og(;—)
crit crit crit crit
1 2,22 12400 be03 4,094 3.748
0.6 2,27 8640 3795 3.936 3.579
0.2 2.41 2955 1225 3.471 3.088
0.1 2,48 1658 669 3,219 2,825
0 2,589 680 260 2.832 2.416
-0.05 2.87 354 133 2,549 2.123
-0.10 2,80 126 45 2,100 1.654
-0.198 4,03 o] o] - .




Table 9.4: Cosfficients of

equation (9

.25) obtained from Pretsch’ diagrams.

f=1 £=2 =3
B B v Y%
—%— = 107% *%‘ = 2.5 107 —g- - 5,107
i} U U
10, Ue
log (=) T K K T e K T K E
¥ erit o 1 2 o 1 2 o 1 2
1 .04 .00 4.270 13.05  116.00 3.750 25.60 169 3.115
1.5 .75 o 4.200 4.00 87.00 3.870 15.10 136 3,250
2 1.20 10.50 3.988 2,85 58 .00 3.590 4.60 105 3.385
2.5 .55 10.50 3.800 .81 21.50 3.578 1.10 35 3.390
3 .22 10.50 3.900 .40 21.50 3.640 .80 35 3.450
3.5 .22 10.50 4.000 .23 20,00 3.731 o 35 3.510
a .22 15.00 4,100 —c22 38.50 3.825 -C.80 35 3,570
f=4 £=5 £=86
Y By p ¥V
S =75 1078 - - 1078 5= 2.5 1070
i U U
10, U8
us. ¥ X
1og(y ] ) T0 Kl K2 TU 1 K2 T0 Kl 2
crit
1 33.80 212 3.020 39.90 245 2,966 62.70 401 2,790
i.5 19.70 180 3,140 23.10 213 3.068 36,60 365.5  2.845
2 5.60 148.5 3,260 8.30 1581 3.170 10.50 331 2,800
2.5 1.55 54 3.270 2,15 76 3.200 3.50 186 2.945
3 1,10 a4 3.338 1.10 54 3.260 ~0.10 51.5  3.030
3.5 -0,275 44 3.402 _0.735 33 3.316 -4.10 o 3.113
4 ~1.10 44 3,466 _2.40 11 3,370 _8.10 0 3,156
f=7 t=8 f=9
p B v 53%
. . _4
%:5.105 %:7.5105 - =10
u U u
10, ,Ua
log{—>» TD Kl K2 To Kl Kz TO Kl Kz
erit
1 83,40 890 2,660 | 104.00 1224 2.560 | 125.80 1720 2.480
1.5 50.50 685 2.860 63.10 921 2.560 74,00 1234 2.450
2 17.60 480 2.700 21.20 620 2.570 22,20 760 2.490
2.5 3.30 345 2,750 1.40 511 2,640 0 705 2.555
3 - 1.60 200 2.850 | - 1.10 400 2,710 | - 1.10 650 2.625
3.5 - 6.50 60 2.950 | - 3.80 300 2.780 | - 2.20 600 2.695
4 _11.40 o 3.050 | - 6,10 200 2.850 | - 3.30 550 2.765




Table 9.4: (continued)
f =10 f =11 £=12
By B v B v
- = 2.5 1074 Lo 51070 5= 7.5 1071
: U u? U
lo, U8
log(;r) ) To K1 KZ ’I‘0 Kl Kz To Kl K2
arit
1 182.00 3025 2,240 218.80 4215 2.040 213 4930 1.945
1.5 100,50 1965 2,240 111.40 2670 2.040 104,56 3120 1.945
2 19,00 880 2.240 4,00 1800  2.040 4 1330 1.945
2.5 - 7.70 845 2.400 -103.40 1045 2,040 4 0 1.945
3 - 7.70 810 2.560 -103.40 200 2,040 4 o 1.945
3.5 - 770 770 2.720 -103,40 0 2.040 4 o 1.945
4 - 7.70 730 2,880 ~103,40 ¢ 2.040 4 o 1.945
f =13
By
o= 107
U
10 e
log (=) T K
Y erit ° : K
1 202.80 5350 1.885
1.5 95,40 3475 1,855
2 - 12 1560 1.865
2.5 - 12 0 1.865
3 - 12 o) 1.865
3.5 - 12 0 1.865
4 - 12 0 1,865

Table 9.5: Amplification factors at transition for the flat plate without

suction.

Value assumed for (Ua)
max
1010g(H§) (Hg) at thé ?xperlméntally determined
erit b crit transition region

beginning end
£.4186 260 7.8 9.7
2.345 222 9.2 11.2
2,268 185 11.0 12.8
2.693 124 15.0 16.8
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