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Abstract

To reduce drag on wings, aerodynamicists have long been trying to keep the boundary layer on the
wings laminar and to postpone transition to a turbulent boundary layer. To achieve this, laminar flow
control by means of boundary layer suction can be used. At the Delft University of Technology
has been adapted to design airfoils using boundary layer suction. This version is called. The
use of this design program was restricted because the transition point prediction methods in
could not predict the damping of disturbances in the boundary layer whensuction was used. The
objective of this study was therefore to implement a reliable transition predictionmethod into
that could predict transition for boundary layers with and without suction.

To achieve this a new databaseeN method was implemented into. This new method, dubbed
the ImprovedeN-method, was developed by Van Ingen with some assistance from the present author.
It uses the solutions of the Orr-Sommerfeld equation as calculated by Arnal,that describe the stability
diagrams for fifteen values ofReθcrit . These fifteen values ofReθcrit represent boundary layers with
shapefactors between 2.216 and 35.944. As characteristic parameter, the boundary layer shapefactor
is used to correlate arbitrary boundary layers to aReθcrit value. By scaling and shifting some para-
meters, the data is stored in splines suitable for interpolation and some extrapolations. It was found
that when using the ImprovedeN-method in due to the interaction between the boundary layer
iterations and the transition prediction, most solutions would not converge. Amethod using forced
transition was developed to remedy this problem. Using this method, convergence of the boundary
layer solution is achieved without affecting the accuracy. The ImprovedeN-method was found to be
able to accurately predict transition in boundary layers with and without suction.

After the implementation of the ImprovedeN method a study into the quality ofs laminar bound-
ary layer calculations revealed that the shapefactor can sometimes be a bit off, compared to a finite
difference method using the pressure distribution as calculated in. This has an impact on the
predicted transition point. Another problem is that for high suction velocities the shapefactor can go
below the value of 2, which is considered erroneous. Further research into this is recommended.

A case study concerning the DU99 airfoil, originally designed for the standard class ASW-28 sailplane,
was done using the ImprovedeN-method. For this airfoil a suction distribution is designed that results
in a 50 to 75 % reduction in drag in the low drag bucket, excluding the suction drag. The suction drag
is excluded because it is highly dependant on the suctionsystem. Also theClmax value is increased
from 1.4 to 1.7. This airfoil is therefore well suited for further testing in a windtunnel.
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Chapter 1

Introduction

1.1 Introduction

For a very long time aerodynamicists are trying to reduce drag on airplanes by trying to achieve
laminar flow over as large an area of the wings as possible. For the lower surface, at a not too high
Reynolds number, natural laminar flow is a good way of achieving almost totallaminar boundary layer
flow. For the upper wing surface a combination of natural laminar flow and boundary layer suction
holds most perspective for achieving the same for wings with not too high sweep angles. Research
into boundary layer suction has been ongoing since the late 1930s. This study hopes to contribute
to application of boundary layer suction by providing a tool for analyzing the influence of boundary
layer suction to the transition point as well as enabling aerodynamicists to design airfoils for use with
boundary layer suction.

1.2 Previous work

1.2.1 Preliminary work on transition

The first person to see that boundary layer suction could have huge benefits is Ludwig Prandtl [28]
in 1904. He saw in boundary layer suction a method of delaying separation.A problem since the
formulation of the boundary layer theory is to predict transition from laminar to turbulent flow in the
boundary layer, a phenomenon first observed in pipe flow by Reynolds[34](1883). Orr [27](1907) and
Sommerfeld [40](1908), derived the equations for the analysis of small disturbances in viscous par-
allel flows from the Navier-Stokes equations but were unable to find instability according to Herbert
[20]. In 1929 Tollmien [49] solved the Orr-Sommerfeld equation for the Blasius flow, and calculated a
neutral curve, outside of which the laminar flow is stable. Schlichting [36] in 1933 calculated growth
rates for the instable laminar fluctuations in the boundary layer flow. Also in 1933 Squire [41] showed
that the 3D problem of disturbances could be rewritten into an equivalent 2D problem. This meant
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that the transition is governed (in parallel flows) by 2D waves, while the turbulent fluctuations are 3D.
Rayleigh, Tollmien, Schlichting, Lin and others ([49], [37], [25]) developed the linear stability theory.
Linear stability theory considers a laminar boundary layer on which small disturbances are super-
imposed. These disturbances can be damped or amplified, depending on theflow conditions. Taylor
[46](1936) objected to linear stability theory being connected to transition, as he found that turbulence
in the free stream causes fluctuations inside the boundary layer and that these cause local separation
followed by transition. In 1941 (some sources give 1943) it was found that this mechanism is not valid
for less than 0.1% turbulence in the free stream and the relevance of linearstability theory was shown
by Schubauer & Skramstad [38]. This was not published until 1947 due towartime restrictions on re-
search publications. They experimentally showed the existence of the so-called Tollmien-Schlichting
waves in the boundary layer.

1.2.2 eN-method

Liepmann [24] found in 1943 (but due to war-time classification published after the war) the idea of
using the criterion ofA/A0 as a measure for the amplification, withA0 the unknown but small initial
amplitude, andA the wave amplitude. If one solves the Orr-Sommerfeld equation for real frequencies
to obtain the spatial growth rateαi from the complex wavenumberα = αr + iαi then the amplitude
ratio is then given by:

σ = ln
A
A0
= −

x
∫

x0

α(ξ, ω)dξ (1.1)

More detailed information considering the Orr-Sommerfeld equation is given insection 2.2. After
this came the creation of theeN-method for transition prediction (1956, Smith and Gamberoni [39],
and Van Ingen [50]). This method allows the part of the transition mechanismwith linear growth of
disturbances dominated by Tollmien-Schlichting waves to be predicted very well. As the growth of
the disturbances can be considered linear fromN = 0 up toN = 7, a large part of the entire growth
regime is approximated very well. The success of theeN method lies partly in that extrapolation into
the section with non-linear disturbance growth is only necessary in the small last part (N > 7) of the
entire curve, when assuming a criticalN-factor of 9. Initially it was called thee9-method, due to the
fact that in many cases, in flight as well as in low-turbulence wind tunnel testing, a criticalN-factor of
9 correlated well with the transition region. Later it was found that the criticalN factor was dependent
on (mainly) the free stream turbulence level, and that this factor should be adapted to the flowcase to
which the method was applied.
The advantage of this method is it’s fast calculation and ease of use. Disadvantages are the fact that
it relies on a good choice of the (empirical)Ncrit -factor: the amplification level at which transition to
turbulent boundary layer is assumed to occur. The method is still very popular today. The method was
used for boundary layer suction in [51], and a version capable of calculating very limited amounts of
damping of theN-factor was implemented in an airfoil design program () in 2002 although
it suffered some drawbacks. Since the discovery of theeN-method in 1956 many advances have been
made in transition modelling, mainly in extending the method for 3D flowcases and supersonic flows.
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1.3 Recent work at

The Department of Aerodynamics at the Delft University of Technology,and more specifically the
Low Speed Aerodynamics section, has taken an interest in boundary layer suction techniques for
Laminar Flow Control for many years now. The main focus is to reduce dragby using boundary
layer suction as a tool to delay boundary layer transition and boundary layer separation. Current
developments in hole-drilling techniques are taking away some of the most pressing practical issues
connected with the use of boundary layer suction. Also advances in research concerning boundary
layer suction (e.g. Steffens, [42]) are taking away barriers for the practical use of boundary layer
suction. For instance advances have been made in estimating the maximum suctionvelocity without
inducing transition and in hole drilling techniques that allow for many very small suction holes without
compromising the wing structure. With these advances there comes a desire for an airfoil design tool
that can cope with boundary layer suction. Using boundary layer suctionon existing airfoils may
reduce drag and/or increase performance. To study this phenomena and to be able to put thetechnique
to practical use a software program is needed that is adapted for use withboundary layer suction. The
effect of the boundary layer suction can be calculated with some of the existing software packages.
However these programs require the user to have expert knowledge of aerodynamics and suction
phenomena and are usually focussed on extensive analysis of the flow.Due to their long calculation
time and time consuming pre- and postprocessing cycles they are also slow in use. Therefore they do
not meet the demands which aerodynamic design programs make, such as fast iteration cycles to take
into account changes fast and user-friendliness to knowledgeable but not quite expert users.
To take full advantage of the benefits of boundary layer suction an airfoil design tool that can cope with
the aspects of boundary layer suction is definitely necessary. At the Delft University of Technology a
choice was made to adapt several programs to cope with boundary layer suction. These programs are:

• XFOIL, the 2D single element airfoil design program by M. Drela ([9], [10], [12], [13]) of ,
the modified version for boundary layer suction was named. This version however was
incomplete as the transition routine could predict only very limited damping of theN-factor,
which is the main driver behind the wish for such an adapted program.

• MSES, the 2D multiple element airfoil design program similar to XFOIL also by M. Drela ([9],
[11])of . This program has the same drawback as the, only very limited amounts of
damping of theN-factor can be taken into account.

• xSoaring a sailplane performance program developed at the Low SpeedLaboratory () at the
 ([17], [22], [47])

Adaptation of these programs for boundary layer suction has been ongoing since 2002 by several
workers([1], [14], [17], [22], [47], [48]). The focus of the present study is on.

In 2004 two transition methods were present in. One being the original version by M. Drela
[9], which is an envelopeeN method, and a fulleN method, originally written by Van Ingen and
implemented by Ferreira [14]. This method is based on Van IngenseN method as described in [50] and
[51] and was further developed over the years. Presently prof. VanIngen is working on an overview
of his 50 years involvement with theeN-method. This overview will end with a new database method.
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The present author assisted prof. Van Ingen in the new development and could consult a draft version
of this new method. More about the new method will be explained in chapter 3. From here theeN

method as implemented by Ferreira in 2002 in will be called the Van Ingen method. To avoid
confusion the method implemented in in this study (the new database method) will be named
the ImprovedeN method.

In Broers [1] deficiencies were found in both transition methods presentat the time in.

• The standard transition method by Drela is not able to predict decreasing amplification
factors that may occur when boundary layer suction is used. When suction is used the Drela
method can not cope with a growth rate of anything less than (or even equalto) zero. In the
Drela method always a very small mimimum growth rate of N is used (see figure 4.7), unless
theReθ is below theReθcrit , then theN-factor is kept constant. Never will aH occur at which
the amplification rate (dN

dx ) will be less than zero. Obviously this is not correct as damping will
occur in a stable boundary layer.

• The full eN method by Van Ingen as implemented by Ferreira [14] does not have the drawback
of not being able to calculate negative or zero values of the amplification rate, although these
negative amplification rates can only be quite small in this method. So the method canpredict
a decreasing N-factor, but has another flaw with regard to using it as a design tool in airfoils
employing boundary layer suction. The curve used in determining whether the boundary layer
is stable or not, theReθcrit − H curve, cannot cope with a boundary layer in which theReθ-value
is smaller that theReθcrit , if this happens, an amplification rate (dN

dx ) of zero is given.

1.4 Objectives of present study

With the problems in transition prediction in as mentioned in the previous section (1.1) objec-
tives for the present study can be formulated. The main objective of this study is:

To implement an improved transition region prediction method in  that achieves
reliable results for boundary layers on airfoils with and without boundary layer suction.

Connected with this 2 sub-objectives can be formulated:

• To make a comparison between the newly implemented transition region prediction method
and the ones already present in.

• A short practical study to recalculate the airfoil performance of an airfoil using boundary
layer suction and that is designed with the older transition region prediction methods.

Fulfilling the main objective should enable aerodynamicists to take full advantage of this study and
of earlier work done on, as up until now the limiting factor in designing for boundary layer
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suction was the transition region prediction method. Fulfilling the sub-objectives gives further insight
in the quality and user-friendliness of the newly added functions.

1.5 Approach of present study

This study will use as the new transition region prediction method the improved version by Van Ingen
[53] of the eN-method (Smith and Gamberoni [39] and Van Ingen [50]) This improved version of
theeN-method was developed by Van Ingen, using [58]. The new method will be a database
method that uses a set of stability diagrams calculated by Arnal [4] for a series of Falkner-Skan
boundary layers. The later phases of the development of the code were performed by prof.
Van Ingen concurrently with the work of the present author on the implementation in Fortran 77 for
inclusion in. Some suggestions for improvement by the present author were implemented in
both the and Fortran version of the method, after preliminary tests revealed some flaws. The
in  implemented version of this code (written in Fortran 77) was made by the present author
based on the version and differs in some respects due to the different programming language
used. The function or results of both versions of the method do not differ.
So first the improvedeN transition method was implemented into. Then some modifications
were made to the program to maximize the functionality and ease of use. Then the method
was extensively tested, which revealed some areas in which improvement was needed, notably in the
convergence of the boundary layer solution. Resolving this, a validation study was made, to prove
that the method implemented in is the same as the method. As this method
is proven to handle the data taken from Arnal ([4]) correctly, the same then holds for the
implementation. This validation is done using 7 test cases. After this is done a study is made of the
possible errors introduced by the boundary layer calculations in. The variables used for input
in the improvedeN-method are then also generated using a finite difference method developed by
Van Ingen [52]. After this the results of the improvedeN-method are compared for these two sets of
boundary layer variables. Then a comparative study is made between the transition methods present
in . This being the Drela method, the Van IngeneN-method and the newly added Improved
eN-method. A study of the first two was already done by Ferreira [14] and Broers [1].
As a final exercise a previously designed airfoil using boundary layersuction is evaluated. It was
designed using the Drela and Van Ingen transition methods, and now using the ImprovedeN-method
the performance is re-calculated and a new suction velocity distribution is designed. Also the newly
added functions and routines in are evaluated in this way to ensure user-friendliness and
functionality of the added features.

1.6 Outline

In chapter 1 an introduction into the subject of this study is given, along with asummary of the
previous work done on this subject by other workers. Also the objectives of this study are given in
this chapter. In chapter 2 an introduction into the theory of the subject is presented, including some
elements of the potential flow, boundary layer theory, the linear stability theory, the classiceN-method
and the finite difference theory. Chapter 3 will explain the ImprovedeN-method. In chapter 4 and
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the present state ofwill be discussed. Chapter 5 gives a description of the modifications made
by the present author to in implementing the improvedeN-method. In chapter 6 a validation
study is made to see if the results given by theeN-method in correspond with the values
generated by the version of the method. Also in this chapter a short grid convergence study
is presented. Chapter 7 gives the results of a comparative study of and a finite difference
method by Van Ingen to compare the boundary layer solutions of both methodsand their effect on
the transition point prediction. In chapter 9 the results of a case study in (re)designing a suction
distribution for an airfoil is made. This is done on the DU99 airfoil that was designed especially for
boundary layer suction but which suction distribution was designed with the older transition methods
in . Chapter 10 will give the conclusions and recommendations that follow fromthis study. In
appendix A a user guide for users of is given, providing future users some explanations and
practical information on the new functions in the program. Appendix B givesthe used airfoil grids
and appendix C gives additional figures that were made in the validation study but not included in
chapter 6.



Chapter 2

Theory

As in the next chapters some concepts and theories will be used without detailed information to go
with it, some basic theory will be introduced here.

2.1 Boundary layer equations

2.1.1 Navier-Stokes equation

For two dimensional incompressible viscous flows the fluid properties are governed by the Navier-
Stokes (by Navier [26] and Stokes [44], here taken from White [56]) equations, together with the
continuity equation. Omitting the body forces these equations can be written fora 2-dimensional flow
as follows:

∂u
∂t
+ u

∂u
∂x
+ v

∂u
∂y

= −
1
ρ

∂p
∂x
+ ν

(

∂2u

∂x2
+
∂2u

∂y2

)

(2.1)

∂v
∂t
+ u

∂v
∂x
+ v

∂v
∂y
= −

1
ρ

∂p
∂y
+ ν

(

∂2v

∂x2
+
∂2v

∂y2

)

(2.2)

∂u
∂x
+
∂v
∂y
= 0 (2.3)

In this equations 2.1 and 2.2 are the momentum equations in respectively x and ydirection. Equation
2.3 is the continuity equation. The notation is as commonly used, whereu andv are the x and y
components of the velocity,p is the pressure,ρ stands for density, andν is the kinematic viscosity
coefficient. The Navier-Stokes equations are difficult to solve for any but the most simplest geometries.
For flows with high Reynolds numbers, with the Reynolds number defined as 2.4

Re=
U∞c
ν

(2.4)

7
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(with c a characteristic lenght, for instance airfoil chord,U∞ the freestream velocity, andν is the kine-
matic viscosity coefficient), a thin layer near the wall exists where the tangential velocity decreases
from the free stream value at a small distance from the wall to zero at the wall surface quite rapidly.
This region is called the boundary layer.

2.1.2 Prandtl’s Boundary-layer Equations

In 1904 Prandtl [28] simplified the Navier-Stokes equations to form a set of boundary layer equations.
The boundary layer equations for steady flow along a plane wall are:

u
∂u
∂x
+ v

∂u
∂y

= −
1
ρ

∂p
∂x
+ ν

∂2u

∂y2
(2.5)

∂u
∂x
+
∂v
∂y
= 0 (2.6)

The continuity equation is untouched by Prandtl’s simplifications, but the y-momentum equation has
been reduced to:

∂p
∂y
= 0 (2.7)

So that
p = p(x) (2.8)

The observation made by Prandtl was that the pressure is a known variable in boundary-layer analysis,
with p = p(x) impressed on the boundary-layer by the inviscid outer flow.
The boundary-layer equations only hold for flows where the boundary-layer can be considered thin
with respect to the reference length scale (such as flat plate length). Equations 2.5 and 2.6 are also
valid for curved surfaces, where the boundary-layer thickness is small with respect to the radius of
curvature of the surface and the change in curvaturedr

dx remains small. Because the assumption of a
thin boundary layer is only valid at high Reynolds numbers the boundary layer equations are also only
valid at high Reynolds numbers. (Rex > 1000, according to White [56]).

In Schlichting [6] the following observation is made: Outside the boundary layer the velocity gradient
∂u
∂y can be neglected en therefore equation 2.5 reduces to

U
dU
dx
= −1

ρ

dp
dx

(2.9)

using this, 2.5 can be written as:

u
∂u
∂x
+ v

∂u
∂y
= U

dU
dx
+ ν

∂2u

∂y2
(2.10)

Together with the continuity equation 2.3 this equation determines the developmentof the boundary
layer flow downstream of an initial stationx = x0 when the velocity profile atx = x0 is known. The
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following boundary conditions should be accounted for:

y = 0 : u = 0, v = v0(x) (2.11)

y → ∞ : u→ U (2.12)

2.12 implies that the suction or blowing that occurs on the wall is usually assumedto be strictly normal
to the wall.

2.1.3 Similarity Solutions

Equations 2.3 and 2.10 are partial differential equations (PDE) that in special cases can be reduced to
ordinary differential equations (ODE) using the idea of similarity of boundary layer flows. Similarity
means that the velocity profiles at all stations x can be reduced to a single curve by scaling the y and
u variables with scaling factors depending on x. Similarity can only be achieved in a limited number
of (free stream) velocity distributions. There are a number of similar boundary layers, of which 3 will
be looked at closer here:

• The flat plate flow by Blasius

• The wedge flow by Falkner-Skan

• The asymptotic suction boundary layer

Flat plate flow

Blasius [5] introduced the scaled variable

η =
y
x

√

Ux
ν

(2.13)

The stream function can then be written as:

ψ =
√
νUx f(η) (2.14)

where f is a function to be determined. With the stream function defined, expressions for u and v are:

u =
∂ψ

∂y
= U f ′(η) (2.15)

v = −∂ψ
∂x
= −1

2

√

νU
x

f (η) −
√
νxU

∂η

∂x
f ′(η) (2.16)

Substitution ofu andv into equation 2.10 yields:

f ′′′ +
1
2

f f ′′ = 0 (2.17)



10 Theory

This is the classic Blasius equation, which has no exact solution in closed form, but can numerically
be solved by for example a shooting method such as the Runge-Kutta method.

Wedge flow

For wedge type similar flow the free stream velocity distribution can be written as:

U = u1xm (2.18)

The non-dimensionalised scaled variableη is:

η =
y
x

√

Ux
ν

(2.19)

and the stream function becomes:

ψ(x, y) =

√

2νu1

m+ 1
x

m+1
2 f (η) (2.20)

u and v can again be denoted as follows:

u =
∂ψ

∂y
(2.21)

v = −
∂ψ

∂x
(2.22)

and by combining 2.19 and 2.20 u and v can be rewritten as:

u = U f ′(η) (2.23)

v = −
√

m+ 1
2

νu1xm−1

[

f +
m− 1
m+ 1

η f ′
]

(2.24)

where primes denote differentiation with respect toη. Now the boundary layer equation reduces to:

f ′′′ +
m+ 1

2
f f ′′ +m(1− f ′2) = 0 (2.25)

with

β =
2m

1+m
(2.26)

Equation 2.25 is a rewritten form of the Falkner-Skan equation. For a flat plate (β = 0) the equation
reduces to the Blasius equation.

Hartree [18] solved the Falkner-Skan equation numerically for severalvalues ofβ. Forβ > 0 always
only one solution exists. Forβ < 0 an infinite number of solutions exist. Hartree defined a condition
(now called the Hartree condition) that the correct solution of the Falkner-Skan equation is the one in
which the velocity in the velocity profile goes most quickly to 1 without overshoot. Stewartson [43]
showed (with complying to the Hartree condition) that there were also solutionswith backflow near
the wall forβ < 0.
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Asymptotic suction boundary layer

This similarity solution is special because it not only gives a similar velocity profile at different values
of x, these profiles are even identical. This so called asymptotic suction boundary layer occurs on a
flat plate with constant suction velocity (−v0) for x→ ∞. The velocity profile can be found by looking
for a solution of equations 2.5 to 2.8 that is independent of x. For equation 2.6 this gives

∂v
∂y
= 0 (2.27)

So thatv will be constant and equal to a valuev0. Then with equation 2.5 this gives the following for
the velocity profile:

u
U
= 1− e

v0y
ν (2.28)

From 2.28 the following values are found (irrelevant of the actual magnitude of v0, as long asv0 or x
is sufficiently large) :

−v0δ
∗

ν
= 1 and

−v0θ

ν
= 0.5 (2.29)

so that:

H =
δ∗

θ
= 2 (2.30)

Hence a shape factorH of 2 can be seen as the asymptotic limit for flows with boundary layer suction.

2.2 Linear Stability Theory

After having looked at the boundary layer equations we now take a look atthe Linear Stability Theory.
The Linear Stability Theory is a way of predicting the growth of disturbancesin a laminar boundary
layer. For a large part (from the first instability to aboutN = 7) this growth has a linear character. In
flows with transition dominated by Tollmien Schlichting waves ([49], [36]) this linear growth plays a
major role in the transition process. By accurately predicting the amplification ofdisturbances a good
estimate for the point where transition occurs, is acquired. The basis of Laminar Stability Theory is
the Orr-Sommerfeld equation which was derived from the above mentioned Navier-Stokes equations
2.1.1. The derivation goes as follows:u, v andp are assumed to fluctuate about their respective mean
values (ū, v̄, p̄) so that they can be represented as:

ũ = ū+ u′(x, y, t)

ṽ = v′(x, y, t) (2.31)

p̃ = p̄(x) + p′(x, y, t)
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Then 2.31 is introduced into the Navier-Stokes equations at 2.1, 2.2 and 2.3 and these equations
are then linearized. If one notices that 2.1, 2.2 and 2.3 hold for both the disturbed and undisturbed
equations and one eliminates the fluctuating pressurep′ the following equations can be written down:

∂2u′

∂t∂y
−
∂2v′

∂t∂x
+ u

(

∂2u′

∂x∂y
−
∂2v′

∂x2

)

+ v′
∂2u

∂y2
= ν

(

∂3u′

∂x2∂y
+
∂3u′

∂y3
−
∂3v′

∂x3
−

∂3v′

∂x∂y2

)

(2.32)

∂u′

∂x
+
∂v′

∂y
= 0 (2.33)

If then a periodic disturbance is assumed with the following stream function:

ψ(x, y, t) = φ(y)ei(ᾱx−β̄t) (2.34)

with:

u′ =
∂ψ

∂y
and v′ = −

∂ψ

∂x
(2.35)

the continuity equation is satisfied. For some time the temporal stability theory ( ¯α real, β̄ complex)
was used but the spatial version ( ¯α complex,β̄ real) has proven ([15]) to be more representative of the
transition problem on airfoils. Despite the fact that the originaleN-method used a temporal approach
that was transformed into the spatial form, here the newer approach of using the spatial approach right
away, is introduced. For the spatial versionβ is real and ¯α is complex (ᾱ = αr + iαi), so that the
wavelengthλ = 2π

ω
(asβ = βr = ω) and for the frequencyf = ω

2π . In this -αi determines whether the
disturbances are unstable, neutrally stable or stable; this corresponds respectively to a positive, zero
of negative−αi . Furthermore use is made of the propagation speedc. Using equations 2.32, 2.34 and
2.35 and nondimensionalising using:

ū =
u
U

; ȳ =
y
θ

; α∗ = ᾱθ; c̄ =
c
U

; φ =
φ

Uθ
(2.36)

The following equation is derived:

(ū− c̄)
[

φ′′ − α2
∗φ

]

− ū′′φ =
−i

(α∗Reθ)

[

φ′′′′ − 2α2
∗φ
′′ + α4

∗φ
]

(2.37)

Equation 2.37 is known as the Orr-Sommerfeld equation([27], [40]). Oneof the reasons for this
equation being difficult to solve stems from the right hand side, as due to the Reynoldsnumber a
large coefficient is paired with the highest derivative of the equation. The non trivialsolutions of the
resulting eigenvalue problem form the basis of the Laminar Stability Theory.

2.3 eN method

From the Orr-Sommerfeld equation the -αi value that determines amplification or damping of dis-
turbances can be calculated. An equation can be derived that governsthe growth or decay of these
disturbances. It follows from the stream function as displayed in 2.34. The amplification ratio ofa

a0

wherea0 is the amplification at coordinatex0 can be displayed as:

d(ln(a)) = −αi dx (2.38)
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or in integral form:

ln

(

a
a0

)

=

x
∫

x0

−αi dx (2.39)

or in different notation:

a
a0
= eσa where: σa =

x
∫

x0

−αi dx (2.40)

Whereσa is an older notation for the amplification factor, which is later renamedN. Then equation
2.40 can be nondimensionalised to:

σa =
U∞c
ν
· 10−6 ·

x̄
∫

x̄0

TŪdx̄ (2.41)

with:

T =
−αiθ

Reθ
· 106 (2.42)

and x̄ = x
c with c a constant reference lenght (in airfoils usually the chord) and T the amplification

rate. T can be calculated as a function of ¯x for a given value of the frequency if the velocity profile
and Uθ

ν
are known functions of ¯x. To calculate the T using theeN method, the stability diagrams for

the specific velocity profile would have to be known.

Many versions of theeN method exist since its discovery by Smith and Gamberoni [39] and inde-
pendently by Van Ingen [50]. Different versions exist using sometimes different stabilitydiagrams to
calculateT (and thus theσ or N factor). The first version (1956) by Van Ingen employed the stability
diagrams by Pretsch([29], [30], [33]). The second version (1965) used still only the Pretsch diagrams,
but to widen the application of the method to include suction profiles the assumptionwas made that all
possible stabilitydiagrams with arbitrary pressure gradient and suction form a one parameter family
with the critical Reynolds number as a parameter. Later on more stability diagramswere included in
the method([23], [45], [54]).

For some time the criticalN-factor was assumed to be constant at values between 7 and 10. (a value
of 9 is still often the default criticalN-factor in many computer applications) The criticalN-factor
however depends on the flow parameters such as turbulence spectrum inthe freestream. A workable
method was derived assuming that the critical value ofN (or σ) at which transition starts and ends is
influenced by the freestream turbulence level (Tu in %) in the following way (from [19]):

N1 = 2.13− 6.1810log(Tu) (2.43)

N2 = 5− 6.1810log(Tu) (2.44)

with N1 the value at which the transition region starts andN2 where the transition region ends and the
boundary layer is fully turbulent. The freestream turbulence level aloneis not sufficient to describe the
variation of theN-factor with all possible disturbances. This is due to the fact that not all turbulence
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will influence the transition region (due to differences in frequency), and moreover not all disturbing
factors may be included in the freestream turbulence level. Most importantly thereceptivity of the
boundary layer to disturbances originating from outside the boundary layer but also the sound level are
not included in the regular turbulence level but both do indeed influence the location of the transition
region. By using an effective Tu-level a better correlation can be achieved. This can be defined by
comparing the measured and calculated amplification ratios. The criticalN-factor will then become a
parameter that represents the flowquality of a windtunnel. TheN-factor should not be seen as a magic
number but be treated as a factor to bring into agreement experiments and theory.

2.4 Finite Difference Method

Apart from integral relations (of which some will be discussed in chapter 4) for the boundary layer,
a numerical calculation can be made by means of a finite difference method. The finite difference
method discussed here is one made by Van Ingen and an earlier version ofthis method can be found
in [52]. The calculation method remains in principle unchanged, however themore recent version
used in this study employs a Richardson extrapolation to reduce the error due to the grid spacing. The
basic idea behind this finite difference method will be briefly discussed here. It should be noted that
only the laminar form of this method is discussed because in this study it will only be used for laminar
boundary calculations. A turbulent form can be made using the eddy viscosity concept. The form of
the boundary layer equations used in this method is developed by Görtler [16] and is the same as used
in the Smith and Clutter method:

f ′′′ +
M + 1

2
f f ′′ + M

[

1− ( f ′)2
]

= x

[

f ′
∂ f ′

∂x
− f ′′

∂ f
∂x

]

(2.45)

in which the following scaling is used:

η =
y
x

√

Ux
ν

(2.46)

When the streamwise coordinate x is divided in a 1D non-uniform grid and a 3point form discretiza-
tion is used (figure 2.1) for an arbitrary variableg one can express∂g

∂x at point xm in the valuesgm,
gm−1 andgm−2 as follows:

(

∂g
∂x

)

m
= c0gm+ c1gm−1 + c2gm−2 (2.47)

with:

c0 =
1
d1
+

1
d3

c1 = − d3

d1d2
(2.48)

c2 =
d1

d2d3

The 2-point approximation, shown in figure 2.2, which is used in the startup of the calculation can also
be expressed in the three point form as shown in equation 2.47 but now using coefficients as shown in
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xmxm−1xm−2
d1d2

d3

gm

gm−1
gm−2

Figure 2.1: 3 point approximation

xmxm−1
d1

gm

gm−1

Figure 2.2: 2 point approximation

2.49:

c0 =
1
d1

c1 = − 1
d1

(2.49)

c2 = 0

Then:
(

∂ f
∂x

)

m
= c0 fm+ c1 fm−1 + c2 fm−2 (2.50)

(

∂ f ′

∂x

)

m
= c0 f ′m+ c1 f ′m−1 + c2 f ′m−2 (2.51)

and introducing these equations into equation 2.45 leads to:

f ′′′m +

[

M + 1
2

fm+ c0x fm+ c1x fm−1 + c2x fm−2

]

f ′′m+
[

−c1x f ′m−1 − c2x f ′m−2

]

f ′m+M−[M+c0x]( f ′m)2 = 0

(2.52)

This equation can be linearized and reduced to a linear, second order differential equation written as:

ū′′m+ S1ū′m+ [S2 + 2ũmS3] ūm = −M + (ũm)2 S3 (2.53)

with:

S1 =
M + 1

2
fm+ c0x fm+ c1x fm−1 + c2x fm−1

S2 = −c1xūm−1 − c2xūm−2 (2.54)

S3 = −M − c0x

and when writing:

P(η) = S1

Q(η) = S2 + 2ũmS3 (2.55)

R(η) = −M + (ũm)2S3
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the equations can be put into a 3-diagonal system of equations, easily solved by the Thomas algorithm.
The Thomas algorithm solves a tri-diagonal system of equations by changing the system into an upper
bidiagonal system. This is done by changing the main diagonal term and the right hand side of each
equation. Then the last equation of the system will be solvable, as it has onlyone unknown. From
that the other equations can be solved. A good and detailed description of the Thomas algorithm can
be found in [3].

To decrease the error due to the spacing of the points through the boundary layer at which the solution
is obtained, a Richardson extrapolation is used. This was not used in the finite difference method
described in [52]. In this method any three grids can be used as long as theratio to the coarsest grid
are 2 and 4 for respectively the second and third grids. The author used for the first and coarsest grid
201 evenly spaced points resulting in 200 intervals. The second grid consists of 401 points and the
third of 801 points. By decreasing the cell size by a factor 4 and applying the Richardson extrapolation
twice, the order of the total method is increased fromh2 to h6. The formula foru using the Richardson
extrapolation is as follows:

uextrap=
64u4(4n− 3)− 20u2(2n− 1)+ u1(n)

45
(2.56)

In this u4 stands for theu as calculated in grid 4, and so on. Please note that in using splines in this
method these splines are the limiting factor in the numerical accuracy.

2.4.1 Solution procedure

The solution procedure is such that at the start for the first point a Falkner-Skan profile is assumed.
From equation 2.52 it follows that atx = 0 the right hand side is taken out of the equation and
the solution starts as a member of the Falkner-Skan family. For the second point the same Falkner-
Skan velocity profile is assumed. This can also be explained using 2.52, as for x is small, and if the
behaviour of the righthand side term is regular, the solution will be nearly thesame as that forx = 0.
For airfoils this method is accurate enough, for some other cases a series solution nearx = 0 has been
derived. From here the 2-point form can be used to acquire the third point and from that onwards
the three point form is used. For every station a first guess for ¯um for the start of the iteration is
made. For the first and second point this is the value supplied by the starting profile and for the third
point a linear extrapolation from the first two points is used. From the third point onwards a linear
extrapolation based on the two previous points is used. This approximation is then improved by the
iteration process.

The skin friction is determined by:

cf =
τ0

1
2ρU2

=
2 f ′′(0)
√

Ux
ν

(2.57)

f ′′(0) is used to characterize the wall shear stress as a function of x.f ′′(0) is determined by fitting a
fourth degree polynomial through the 5 points closest to the wall. The other boundary layer variables
(δ∗,θ andH) are determined from the calculated velocity profile. A check is performed tomake sure
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that in the next step no separation will be encountered, because due to theGoldstein singularity no
accurate boundary layer solution can be acquired there. In this method thesquared value ofτ0 is used
to ease the extrapolation toτ0 = 0. The separation point is approached using small steps inx and by
making sureτ0 > 0.0001.
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Chapter 3

The improved eN method

3.1 Introduction

In this chapter the newly made improvedeN method will be discussed. This method has been devel-
oped by prof. Van Ingen with assistance from the author. Like similar developments the method did
not emerge suddenly in it’s present form but has been the result of an idea that evolved due to new
insights and elaborate testing and will continue to do so. In this process frequent communication and
cooperation between prof. Van Ingen and the author, while simultaneouslyimplementing and testing
the new method in different programming languages, has led to the method in it’s present form. The
full description of the method can be found in a yet to appear publication by prof. Van Ingen. The
following chapter is based on information from a draft version of the publication [53] by Van Ingen
and from many private conversations between the author and prof. VanIngen. References to this
article refer to the draft version where the improvedeN-method is discussed in full. Here the new
method will be discussed in a slightly more condensed form.

3.2 Characteristic parameter

In Van Ingen [51] the working hypothesis was made that all stability diagramscan be assumed to
form a one-parameter family with the critical Reynolds number (Reθcrit , with as reference length the
momentum thicknessθ) as the parameter. Some supporting arguments were given in [51], these will
be reproduced in [53]. TheReθcrit value is the lowest value ofReθ for which one or more frequen-
cies become unstable. The critical Reynolds number was related to a suitable form parameter of the
velocity profile, using Lin’s approximate formula [35]. Now a different characteristic parameter is
sought to correlate an arbitrary boundary layer to this critical Reynolds number in order to find the
corresponding stability diagram. Only then can one calculate the amplification ofdisturbances and
the transition point for an arbitrary boundary layer. In the first versionof theeN-method only stability
diagrams were available for the Hartree solutions of the Falkner-Skan equation. At that time, a cor-
relation was made betweenβ andλ (from the Pohlhausen method) to correlate the stability diagrams

19
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made by Pretsch of the Hartree boundary layers to other boundary layers. In the improved method
more stability diagrams are available, and becauseβ as the characteristic parameter does not allow
suction profiles it cannot be used here. Many workers have used the velocity profile shape parameter
H to correlate with the critical Reynolds number. Some research was done to find a better parameter.

The Orr-Sommerfeld equation found in 2.37 depends highly on both the velocity profile as well as
the curvature profile of the boundary layer as can be seen from the ¯u andū′′ present in the left hand
side of the Orr-Sommerfeld equation in 2.37. Also it is visible in the stability diagramsas a velocity
profile with an inflection point has a finite value for the amplification rate asReθ → ∞ while the
amplification rate goes to zero when such an inflection point is absent.

The shape factor is known to correlate well for the velocity profile, but there is some uncertainty about
it when the curvature profile is considered. Could perhaps a parameter connected to the curvature
function as the correlation parameter? Starting with the curvature it will be shown here that using the
curvature profile is inadequate for this use. The nondimensional curvature and slope at the wall are
denoted by

mT =

(

∂2ū

∂ȳ2

)

y=0
; l =

(

∂ū
∂ȳ

)

y=0
(3.1)

In figure 3.1 a graph (taken from [52]) shows the Hartree parametersl andmT . In the graph it can be
seen that the Hartree curve formT has a range smaller than necessary to account for other boundary
layers such as occur for̄U = 1− x̄n. Therefore usingmas the characteristic parameter is not possible,
as it simply cannot account for all occurring boundary layers.

Figure 3.1: m vs l for Hartree and ¯u = 1− x̄n

As an alternative for the curvature then the shape parameterH is considered. It has been used already
in this fashion and there is some support for using the shape parameter as the characteristic parameter.
This gives good correlation for the velocity, but the quality of correlation isunknown for the curvature
profile. When using the boundary layer equation in the form of 2.10 and using the continuity equation
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2.6:

u
∂u
∂x
+ v

∂u
∂y

= U
dU
dx
+ ν

∂2u

∂y2
(3.2)

∂u
∂x
+
∂v
∂y
= 0 (3.3)

and one wants to focus on the wall curvature, using

y = 0 u = 0 v = v0 (3.4)

then equation 3.2 becomes:

v0

(

∂u
∂x

)

0
= U

dU
dx
+ ν

(

∂2u

∂y2

)

0
(3.5)

if this is non dimensionalised with:

ū =
u
U

ȳ =
y
θ

l =

(

∂ū
∂ȳ

)

0
m=

(

∂2ū

∂ȳ2

)

0
K =

θ2

ν

dU
dx

w =
v0θ

ν
(3.6)

This leads to:
w · l = K +mT (3.7)

which means that without suction (w = 0):

mT = −K = −θ
2

ν

dU
dx

(3.8)

and if one differentiates 3.2 with respect toy and uses 3.3, one finds fory = 0:

v0

(

∂2u

∂y2

)

0
= ν

(

∂3u

∂y3

)

0
(3.9)

so that:

w ·mT =

(

∂3ū

∂ȳ3

)

0
(3.10)

This means that:
(

∂3ū

∂ȳ3

)

0
= 0 , f or zero suction (3.11)

This means that the third derivative ofu to y is always zero for boundary layers without suction,
irrespective of the pressure gradient. Then the curvaturemwill have a vertical tangent when plotted in
am, ȳ diagram. With this in mind, some suction boundary layers are observed. As anexample a series
of solutions of the Falkner-Skan equation is created for the boundary layer velocity and curvature
profiles using a flat plate boundary layer with suction and blowing. 22 of these solutions were created
in the range ofH-values from 2.2 to 4, thus comparable to the full range Hartree profiles. The results
compare very well, when theH value is made to be (nearly) equal. The exact values ofH for both
the Hartree solution with suction/blowing and with the pressure gradient for 4 representative cases
are shown in table 3.1 The velocity profile looks very similar, and maybe even more important the
curvature profile is very similar in a large region as well. The only appreciable difference is in the
curvature profile near the wall, and this difference gets increasingly larger for larger values ofH. As
was shown, the third derivative of ¯u with respect toy is zero for non-suction boundary layers and can
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be non-zero for suction boundary layers. How this difference in curvature close to the wall influences
the solutions of the Orr-Sommerfeld equation and therefore the comparison of the stability diagram
is as yet unknown. Specific calculations solving the Orr-Sommerfeld equation for both curvature
profiles (for a number of cases) can provide an answer to this, but this isfound to be beyond the scope
of this study. 4 representative cases from the 22 studied can be seen in figures 3.3 through 3.9 of
which the first four figures show velocity plots of cases 6, 17, 20 and 22, and the latter four show the
curvature plot of these cases. As case 17 represents the flat plate, nosuction or blowing is applied.
The great similarities in both the velocity and curvature profiles strengthen thecase for usingH as the
characteristic parameter, which will be used as such in the ImprovedeN-method. Figure 3.10 shows
the correlation between10log(Reθcrit ) − H. The curve is made up from a10log(Reθcrit ) of 4.3642 for
H = 2, as calculated by Hughes [21] and 15 values for10log(Reθcrit ) for 15 different shapefactors as
calculated by Arnal ([4]).
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Table 3.1: H for Hartree solutions

case # H pressure H for suction/blowing employed on a flat plate
6 2.2696 2.2696
17 2.5911 2.5911
20 3.0909 3.0909
22 4.0995 4.1010
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Figure 3.2: Hartree case 6, velocity
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Figure 3.3: Hartree case 17, velocity
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ū

f lat plate with suction/blowing
Hartree with pressure gradient

Figure 3.4: Hartree case 20, velocity



3.2 Characteristic parameter 25
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Figure 3.5: Hartree case 22, velocity
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Figure 3.6: Hartree case 6, curvature
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Figure 3.7: Hartree case 17, curvature
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Figure 3.8: Hartree case 20, curvature
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Figure 3.9: Hartree case 22, curvature
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Figure 3.10: correlation between10log(Reθcrit ) and10log(H)
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3.3 Basic concept

The improvedeN method is based on the well knowneN method in the spatial form. In section 2.3
the originaleN-method was already discussed but using some slightly different (older) notations. The
most important equations are therefore repeated here with the newer notations. In the spatial form the
amplification of disturbances grows ase−αi x. For the ratio of amplitudes between stationx1 and x2

one can write:

ln

(

a
a0

)

=

x2
∫

x1

−αi dx (3.12)

from this equation theN-factor (the formerσ) can be written:

N = ln

(

a
a0

)

=

x
∫

xinstab

−αi dx (3.13)

with xinstab is the value ofx for a specific frequency at which this frequency becomes unstable. Then

N =

x
∫

xinstab

−αiθ

θ

U
U

U∞
U∞

c d
( x
c

)

(3.14)

so that:

N =
U∞c
ν
· 10−6

x
∫

xinstab

−αiθ

Reθ
· 106 U

U∞
d
( x
c

)

(3.15)

Which can be written as:

N = Recreduced

x
∫

xinstab

T · Ū dx̄ (3.16)

with:

Recreduced =
U∞c
ν
· 10−6 (3.17)

T =
−αiθ

Reθ
· 106 (3.18)

Ū =
U

U∞
(3.19)

dx̄ = d
( x
c

)

(3.20)

This improvedeN method is a database method. The data used for this method come from stability
calculations performed by Arnal [4]. These calculations give values ofαiδ

∗ for 15 values ofH (ranging
from H = 2.216 toH = 35.944) with cross-cuts for 13 to 19 different values ofRδ∗ , and all of this
for up to 33 different frequencies denoted asωδ∗

U and asων
U2 . These variables are converted so that for

the amplification rate we useT instead of−αiθ, for the boundary layer Reynolds number we useReθ
and for the frequencies we useωθU and ων

U2 . For the latter frequency sometimes the logarithmic value
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10log(ων
U2 ) is used. Please note that no suction boundary layers are included in the data from Arnal. A

summary of the different boundary layer calculated by Arnal is shown in table 3.2. Added to these 15
cases is the asymptotic suction profile. Although no stability diagram is available for this profile, the
scaling parameters for this are available and will be used later on.

Table 3.2: summary for data from Arnal

case # H 10log(Reθcrit ) description inflection point present?
0 2.000 4.3643 asymptotic suction no
1 2.216 3.7514 stagnation point no
2 2.297 3.5279 no
3 2.411 3.0738 no
4 2.481 2.7479 no
5 2.529 2.5371 no
6 2.591 2.3024 flat plate no
7 2.676 2.0711 yes
8 2.802 1.8487 yes
9 3.023 1.6198 yes

10 3.378 1.4179 yes
11 4.029 1.2174 separated flow yes
12 6.752 0.8352 yes
13 10.056 0.6019 yes
14 16.467 0.3455 yes
15 35.944 -0.0378 yes

The converted data from Arnal can be scaled and represented in a waythat makes it possible to store
the data in splines which can be easily interpolated and extrapolated. In the following this will be
explained using some schematic diagrams. In figure 3.11 one can see 2 neutral stability curves in a
ωθ
U − Reθ plane showing schematic representation of a stability diagram of boundary layers with and
without an inflexion point. Also some typical graphs will be shown, these aretaken from the flat plate
stability diagram.

A typical stability diagram for an arbitraryReθcrit is shown in figure 3.12 with several cross-cuts at the
dotted lines, representing the data by Arnal and the criticalReθ number of this particular curve. The
values ofReθcrit will later be correlated with the shape factor in accordance with section 3.2.

Then this curve is scaled by using a different coordinate at the horizontal axis. The coordinate used is:

r =10 log(Reθ) −10 log(Reθcrit ) (3.21)

This means that for negative values ofr theT will be negative as well. The stability diagram will look
as shown in figure 3.13.

In figure 3.14 a typical shape of the amplification data in theT − ωθ
U plane is shown. For all cross-cuts

at differentReθ, then the maximum value ofT, calledTmax, is determined. The lines on which the
points ofTmax lie for each case will be called theaxisand is shown in figure 3.15.
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Figure 3.11: Stability diagrams with and without inflexion point
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Figure 3.12: Basic data
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Figure 3.13: Shifted stability diagram
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Figure 3.15: locations ofTmax values on axis

The values ofTmaxon thisaxisin theT− r diagram are plotted in figure 3.16. ATmaxmaxcan be found
that is the global maximum ofT for that case (i.e. that specific value ofReθcrit ). So there will be 15
values ofTmaxmaxfor the 15 cases present in the data plus a value for the asymptotic suction profile.

Tmax

rrtop

Tmaxmax

Figure 3.16: diagram of allTmax for 1 case

Now one can scale the curve of figure 3.16 in vertical direction asTmax
Tmaxmax

and in horizontal direction
with r

rtop
so that figure 3.17 appears. Although the 15 (+1) cases look very much alike when scaled,

theTmaxmaxvalues differ greatly in reality. The range forTmaxmaxruns from around .1 to over 5000.
A curve forTmaxmaxand a curve forrtop with respect toReθcrit are stored in splines. When putting the
axes of the cases together in a logarithmic plot in the10log

(

ων
U2

)

− r plane these axes will be straight
lines. Now yet again a scaling is used to account for differences in frequency where the maximum
value forαiθ (and thus forT) occurs. The scaling used is the distance from the ”top” of the stability
diagram (with the value ofTmaxmax) to the frequency where for the same ¯r, T becomes zero (so on the
neutral curve). Figure 3.18 shows this scaling parameter now called

(

ωθ
U

)

scale
.



3.3 Basic concept 33

T̄

r̄1

1

Figure 3.17: scaled diagram of allTmax for 1 case

For the frequency,F∞ is used that is defined as 601 logarithmically spaced values between 10−7 and
10−1 with:

F∞ =
ων

U2
∞

(3.22)

The frequencyωθU is determined by multiplyingF∞ by the present values forReθ and
(

U∞
U

)2
. By using

so many frequencies almost in every case there are enough frequencies between−2 ≤
(

ωθ
U

)

≤ 3,
which is the range of interest for our calculations. Almost always this is sufficient to give an accurate
description of the amplification rate but for some very small values ofH combined with high values
for Reθ too few frequencies are available for this range so that the range has to be expanded.
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axis
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r

Figure 3.18: location of top and
(

ωθ
U

)

scale
in stability diagram

Then the crosscut curves are plotted versus the new parameter that alsoscales it against each points
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local value of
(

ωθ
U

)

axis
, defined as equation 3.23.

(

ωθ

U

)

=

(

ωθ
U

)

−
(

ωθ
U

)

axis
(

ωθ
U

)

scaled

(3.23)

The effect of this can be seen in the typical figures 3.19 and 3.20. These curveshave some resemblance
to parabolic functions, but are in fact not exactly so. Therefore splines were favoured over an analytical
representation to store these curves.
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After this all the curves are shifted down a distanceTmax(each over it’s ownTmax) so that all maximum
values end up at the horizontal axis. This makes the final scaling on this axisto be as shown in equation
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3.24.

T̄ =
T − Tmax

Tmaxmax
(3.24)

The graphical representation can be seen in figure 3.21.
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All shifting and converting of the data provided by Arnal is essentially doneby only a few parameters.
These scaled and converted variables are stored in splines. The advantage of storing these parameters
in splines is that it is then easy to interpolate and to extrapolate. For extrapolation in the frequency,

as in some applications the values of
(

ωθ
U

)

fall outside the−2 <
(

ωθ
U

)

< 3 interval, the splines are
forced to be linear functions near the endpoints as extrapolation of a splinewill give faulty results due
to the fact that the 2nd and 3rd order terms are only meaningful on the interval in which the spline is
generated. These stored variables can be subdivided in three groups:

• VariableT̄ is the main variable in this method, it stands for the amplification rate. It is defined
in almost the whole of the data area and has a different value for each differentr andReθcrit

and is stored in splines. In figure 3.22 each circle represents an Arnal datapoint. Then the
splines are interpolated and redistributed in ther direction, to ease the use of the splines and to
make sure an accurate description of the stability diagram for each case is made. Therefore a
1-D Lagrangian interpolation is used to find 59 distributed splines from the Arnal data and the
extrapolated Arnal data. The 1-D Lagrange interpolation is shown in equation 3.25.

Y(i) = c1x1 + c2x2 + c3x3

c1 =
(xi − x2)(xi − x3)
(x1 − x2)(x1 − x3)

c2 =
(xi − x1)(xi − x3)
(x2 − x1)(x2 − x3)

c3 =
(xi − x1)(xi − x2)
(x3 − x1)(x3 − x2)

(3.25)

with xi the value to be interpolated andx1 ≤ xi ≤ x3. It can be seen (figure 3.22) that not the
whole range ofr is filled with data points, especially for the cases with a higher value ofReθcrit .
To remedy this, an extrapolation is made into the higherr values. TheTmax curve can be easily
extrapolated (usingTmax= r̄e1−r̄ ), and the shape of thēT curve is taken to be similar to that of
the last knownT̄ splines. The extrapolation ofaxis is a bit more difficult. This is becauseaxis
is a straight line when plotted in a logarithmic scale, with a kink in it for velocity profiles with
an inflexion point. Before the kink the slope is about−

√
2, after is the slope is−1. Figure 3.23

shows these kinks for the cases with an inflexion point, that is cases 7 through 15. These cases
are the ones for which theαi will not go to zero forReθ → ∞, but asT = − αiθ

Reθ
, T will go to

zero forReθ → ∞. The location of these kinks have been made into a function, as the data from
Arnal does not specifically locate these kinks.

In figure 3.24 the result is shown. With this the dataset forT̄ in r direction is now defined from
0 < r < 2.5. Frequency wise the curves in theT− ωθ

U plane faintly resemble parabolic functions,
and these are all defined in the range of−2 < ωθ

U < 3. But because of the scaling of the frequency

at large values ofReθ and corresponding low values of
(

ωθ
U

)

scaled
the

(

ωθ
U

)

values can grow to

up to 16.000. To account for such large values of
(

ωθ
U

)

the stability curve in theT −
(

ωθ
U

)

plane

needs to be extrapolated. Due to the approximately linear behaviour near
(

ωθ
U

)

= 3 of this curve
a linear extrapolation is used. Please note that this area of the stability diagramis hardly used.
Most boundary layer flows have transitioned to turbulent boundary layer flow long before they
reach the values ofReθ necessary for these high (scaled) frequencies. However as the choice of
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frequency in which to evaluate the data is not case specific a large number of frequencies will
be calculated every time to accommodate almost all possible cases.

A combination of allT̄ values for oneReθcrit value make up the stability diagram and can be
represented as spanning a (3D) surface in theωθ

U − r − T space. A visualization ofT for the flat
plate case can be seen in figure 3.25.
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Figure 3.25: 3d representation ofT surface for the flat plate case

• Two of the scaling variables are stored in splines for each of the 15 casesseparately. These
areTmax andaxis. Tmax is a line in theT − r plane andaxisa line in the10log(ων

U2 ) − r plane.
Plots of both are shown in figures 3.23 and 3.26, where in figure 3.26 all 15cases from Arnal
are plotted. For extrapolation purposesTmax can be approximated byTmax = r̄e1−r̄ . This
approximation is shown in figure 3.27, where again all 15 cases from Arnal are plotted, now
together with the approximating function. For extrapolation ofaxis, linear extrapolation from
the endpoints suffices when this extrapolation is needed in ¯r-direction. Shifting of theaxis is
necessary when extrapolation in10log(ων

U2 ) direction is wanted. For the shifting ofaxistheaxis
point of theTmaxmax, rtop point is used as an anchorpoint. The distance over which is shifted
can be determined using10log(F)top, of which the graph is shown in figure 3.31.

• The variablesTmaxmax, rtop,
(

ωθ
U

)

scale
, 10log(F)top andRthetacrit can each be represented by a sin-

gle curve. These variables are stored as splines againstReθcrit and are defined from10log(Reθ) =
−0.5 to 10log(Reθ) = 4.5, which spans all necessary values of10log(Reθ), so no extrapolations
will be needed. The curves ofTmaxmax, rtop,

(

ωθ
U

)

scaled
and10log

(

ωθ
U

)

top
can be seen in figures

3.28, 3.29, 3.30 and 3.31. Figure 3.32 shows the graph ofReθcrit versus10log(H) and is the same
as 3.10 but included here for completeness.
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The basic data is now with some extrapolations defined in the area from 0< r < 2.5 and from

−2 <
(

ωθ
U

)

< 3, as well as from−0.038<10 log(Reθcrit ) < 3.75. Now a view is taken from a broader
perspective to look at the range of variables where this data is to be used.Figure 3.33 (in which the
10log(Reθcrit ) is replaced by the shapefactorH using figure 3.32, though all inter -and extrapolation is
still done using10log(Reθcrit )) gives an overview of the areas where the basic data is to be used and
where it is known. Using this data and the scaling parameters within the area where the basic data is
defined as well as outside it using some extrapolations, the amplification of disturbances is calculated.
Each area in figure 3.33 will be discussed on how values ofT are calculated. Please note that the
stability diagrams that are mentioned are in reality a collection of 59 splines ofT̄ connected with a
singleReθcrit .
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Figure 3.33: Schematic roadmap

• Area 1 is the area withH < 2.216 andr < 0. A special form of extrapolation is used here. As
the stability diagrams of the six cases without inflection point are very much similarin size and
form it is assumed that in shifting the stability diagram of the stagnation point case(H = 2.216)
a good approximation is achieved for the stability diagrams up toH = 2. The curve forTmax

is taken to beTmax = r̄e1−r̄ and needs to be extrapolated towards ¯r < 0. Theaxis is devised
by shifting theaxiscurve of the stagnation point down according to10log(F)top. Then a linear
extrapolation foraxis is also needed for ¯r < 0. The correlation between10log(Reθcrit ) and
10log(H) is known from figure 3.32. The parametersrtop and

(

ωθ
U

)

scale
can be interpolated from

their splined functions shown in figures 3.29 and 3.30.Tmaxmaxand10log(F)top just have to be
interpolated as they contain values for the asymptotic suction profile.
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• Area 2 uses the samēT and (shifted)axis as area 1, but without the extrapolation foraxis
or Tmax. The correlation between10log(Reθcrit ) and10log(H) is known from figure 3.32. The
parametersrtop and

(

ωθ
U

)

scale
can be interpolated from their splined functions.Tmaxmaxand

10log(F)top just have to be interpolated as they contain values for the asymptotic suction profile.

• Area 3 is also much the same as area 1, the only difference being thatTmax andaxisneed to be
extrapolated in ther > 2.5 direction. To approximateTmax again ¯re1−r̄ is used to extrapolate.
The parametersrtop and

(

ωθ
U

)

scale
can be interpolated from their splined functions.Tmaxmaxand

10log(F)top just have to be interpolated as they contain values for the asymptotic suction profile.

• In area 4 the splines for̄T of the stability diagrams are interpolated using the one dimensional
Lagrangian method that uses (inReθcrit -direction) the closest stability diagram of the three near-
est cases and in this way a new interpolated stability diagram is made. TheTmax(again ap-
proximated by ¯re1−r̄ ) andaxisneed to be linearly extrapolated into the direction of ¯r < 0. No
shifting of theaxisis required, so10log(F)top is not used.Tmaxmax, rtop and

(

ωθ
U

)

scale
can just be

interpolated.

• Area 5 is the area where no extrapolations are needed except for the ones already performed
to extend the range of usable frequencies and the higherr values. Here a two dimensional La-
grangian interpolation using the nine closest stability diagrams in the10log(Reθcrit ) − r plane is
made to find the current stability diagram. Then the scaling parameters (foundalso by interpo-
lating) are used to rescale the splined and scaled stability diagram. This area isthe most used
area of all.

• In area 6 the splines of the stability diagrams of the Arnal cases are interpolated using the one
dimensional Lagrangian method that uses the closest (inReθcrit orH -direction) stability diagram
of the three nearest cases and in this way a new interpolated stability diagramis made. The
scaling parametersTmax(again approximated by ¯re1−r̄ ) andaxisneed to be linearly extrapolated
into the direction ofr > 2.5. Tmaxmax, rtop and

(

ωθ
U

)

scale
can be just be interpolated.

• Area 7 occurs for very high values ofH, but in the unlikely event of this occurring a simple
linear extrapolation for the splines for̄T of the stability diagrams is made from the two cases
with the lowestReθcrit values and a linear extrapolation is done forTmaxmax, rtop and

(

ωθ
U

)

scale
.

axis is not shifted. The scaling parametersTmax (again approximated by ¯re1−r̄ ) andaxisneed
to be linearly extrapolated into the direction ofr < 0.

• Area 8 occurs for very high values ofH, but in the unlikely event of this occurring a simple lin-
ear extrapolation for the splines for̄T of the stability diagrams is made from the two cases with
the lowestReθcrit values.Tmax is linearly extrapolated from theTmaxdefined by the two (inReθcrit

direction) cases andaxis is not shifted.Tmaxmax, rtop and
(

ωθ
U

)

scaled
need to be extrapolated.

• Area 9 occurs for very high values ofH, but in the unlikely event of this occurring a simple
linear extrapolation for the splines for̄T of the stability diagrams is made from the two cases
with the lowestReθcrit values and a linear extrapolation is done forTmaxmax, rtop and

(

ωθ
U

)

scaled
.

Theaxisis not shifted. The parametersTmax (again approximated by ¯re1−r̄ ) andaxisneed to be
linearly extrapolated into the direction ofr > 2.5.



Chapter 4

XFOIL

4.1 Introduction

As explained on’s website [59]”  is an interactive program for the design and analysis of
subsonic isolated airfoils.”The program has been around since 1986 and consists of a high-order (2D)
panel method combined with a strong coupled viscid-inviscid interaction method.Since 1986 many
changes were made to the program, usually improving the program and adding new features. Since
2001 the code was frozen, and significant changes were no longer implemented by itscreators,
M. Drela and H. Youngren. The version of as discussed here is 6.93.

4.2 Inviscid formulation in 

The inviscid formulation as used in is discussed in detail in [12]. Here a short overview of the
inviscid formulation is given to give the reader a basic understanding of theworking of the inviscid
part of. The inviscid flowfield is constructed by the superposition of a freestreamflow, a vortex
sheet of on the airfoil surface and a source sheet on the airfoil surface as well as on the wake panels.
In figure 4.1 an overview is seen from the panelling in. The graph is taken from [12]. In this
configuration the streamfunction is given by equation 4.1

Ψ(x, y) = u∞y− v∞x+
1
2π

∫

γ(s)ln r(s; x, y)ds+
1
2π

∫

σ(s)θ(s; x, y) (4.1)

with s the coordinate along the vortex and source sheets,r the magnitude of the vector between the
point ats and the field pointx,y. θ is the vector’s angle andu∞ = q∞cos(α) andv∞ = q∞sin(α) the
freestream velocity components. Each airfoil panel has a linear vorticity distribution and a constant
source strength. The wake panels only have a source strength. From the streamfunction finally a linear
system can be created that requires the streamfunction to be equal to some constant valueΨ0 at each

47
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Figure 4.1: panelling in

node of the airfoil. The linear system is given in equation 4.2.

N
∑

j=1

ai jγ j − Ψ0 = −u∞yi + v∞xi −
N+Nw−1
∑

j=1

bi jσ j (4.2)

with N the number of panels on the airfoil,Nw the number of panels in the wake,ai j andbi j the
coefficient matrices. By settingσi = 0 one gets the inviscid solution, for a specified angle of attack.
Since the flow inside the airfoil is stagnant, theui on the airfoil is simply equal to the local vorticityγ
on the suction side, and−γ on the pressure side as seen in equation 4.3.

uei = ±γ; 1 ≤ i ≤ N (4.3)

The influence of the viscous layer on the potential flow is properly modelled by the wall transpiration
concept if the local source strength is equal to the local gradient of the mass defectm≡ ueδ

∗

σi =
dm
dξ
= ±mi+1 −mi

si+1 − si
(4.4)

For the trailing edge two approaches exist, one for blunt trailing edges andone for sharp trailing
edges. For the blunt trailing edges a panel of uniform source strengthσT E is placed across the gap.
For smooth flow off the trailing edge the trailing edge panel strengthsσT E, γT E must be related to the
local airfoil surface velocity by:

σT E =
1
2

(γ1 − γN)|ŝ · t̂| γT E =
1
2

(γ1 − γN)|ŝ× t̂| (4.5)

Whereŝ is the unit vector bisecting the trailing edge angle, andt̂ is the unit vector along the trailing
edge panel as shown in figure 4.1. For the sharp trailing edge the nodesi andN coincide, and their
corresponding equations are identical. This results in a singular system, and has to be circumvented.
This is done by discarding thei = N equation in 4.2 and replacing it by an extrapolation of the mean
γ (between top and bottom) to the trailing edge as given in 4.6.

(γ3 − 2γ2 + γ1) − (γN−2 − 2γN−1 + γN) = 0 (4.6)

For both the sharp and blunt trailing edge the following Kutta condition is used in as in equation
4.7.

γ1 + γN = 0 (4.7)
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with sub 1 and subN as in figure 4.1. After the combination of the linear system from 4.2 with the
Kutta condition a (N+1)×(N+1) system forN node valuesγi (when considering the inviscid solution
σ j = 0) and airfoil surface streamfunctionΨ0 is acquired. This system can be solved using a Gaussian
elimination and gives as inviscid solution for the surface vorticity values equation 4.8.

γi = γ0i cosα + γ90i sinα +
N+Nw−1
∑

j=1

b′i jσ j 1 ≤ i ≤ N (4.8)

with γ0 andγ90 the inviscid vorticity distribution corresponding to a freestreamα of 0◦ and 90◦, and
with b′i j = −a−1

i j bi j is the source-influence matrix. TheCp can finally be calculated to be:

Cp = 1−
(

γ

q∞

)2

(4.9)

For the viscous solution the boundary layer equations have to come into play,with which we shall
deal in the next section.

4.3 Viscous formulation in

The most recent viscous formulation of can be found in [12] appended by [13]. Here a short
overview is given of the laminar boundary layer formulation found in. The viscous formulation
in  exists of a 2 integral equation model consisting of equations 4.10 and 4.11.

dθ
dξ
+ (2+ H − M2

e)
θ

ue

due

dξ
=

C f

2

(

+
v0

ue

)

(4.10)

θ
dH∗

dξ
+ (2H∗∗ + H∗(1− H))

θ

ue

due

dξ
= 2CD − H∗

C f

2

(

+(1− H∗)
v0

ue

)

(4.11)

With ξ the streamwise arc lenght coordinate and the righthand side parts in brackets the additional
parts added by Ferreira [14] in the version. This is to incorporate boundary layer suction into
the boundary layer equations. One extra equation is added to the existing two. For turbulent boundary
layers a lag equation for the maximum shear stress coefficientCτ is included. In the laminar region a
rate equation (see 4.12) for the growth of the amplitude ˜n of the most amplified Tollmien Schlichting
wave is included.

dñ
dξ
=

dñ
dReθ

(Hk)
dReθ
dξ

(Hk, θ) (4.12)

The empirical relationdñ
dξ (Hk) is a correlation of spatial growth rates computed from solutions of the

Orr-Sommerfeld equation, anddReθ
dξ (Hk,0) is obtained from the properties of the Falkner-Skan profile

family. The transition point is defined by the location where ˜n reaches some user defined value ˜ncrit .
In section 4.5 the transition routines are discussed in more detail. To close these boundary layer
equations the following dependencies are used:

H∗ = H∗(Hk,Me,Reθ)

H∗∗ = H∗∗(Hk,Me)

C f = C f (Hk,Me,Reθ)

CD = CD(Hk,Me,Reθ) (4.13)



50 XFOIL

HereH∗ is defined in equation 4.14 andHk is the kinematic shape parameter correlated by Whitfield
[55] for adiabatic flows in air as in equation 4.15.

H∗ =
θ∗

θ
=

∫ ∞
0

u
U

(

1−
(

u
U

)2
)

dy
∫ ∞
0

u
U

(

1−
(

u
U

))

dy
(4.14)

Hk =
H − 0.290M2

e

1+ 0.113M2
e

(4.15)

Note that forM = 0, Hk = H. The laminar closure relations are written in equations 4.16 to 4.19 and
can be found in [13]. Graphical representations are shown in figures4.2 to 4.4.

H∗ =















1.528+ 0.0111(Hk−4.35)2

Hk+1 − 0.0278(Hk−4.35)3

Hk+1 − 0.0002(Hk − 4.35)2H2
k , Hk < 4.35

1.528+ 0.015(Hk−4.35)2

Hk
, Hk > 4.35

(4.16)

H∗∗ =

(

0.064
Hk − 0.8

+ 0.251

)

M2
e (4.17)

Reθ
C f

2
=















−0.07+ 0.0727(5.5−Hk)3

Hk+1 , Hk < 5.5

−0.07+ 0.015
(

1− 1
Hk−4.5

)2
, Hk > 5.5

(4.18)

Reθ
2CD

H∗
=















0.207+ 0.00205(4− Hk)5.5 , Hk < 4

0.207− 0.0016 (Hk−4)2

(1+0.02(Hk−4)2) , Hk > 4
(4.19)
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Figure 4.2: Closure relation forH∗  & 
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The closure relations will normally be used only fromH = 2.216 (stagnation point) up to around
H = 10. In cases of high Mach numbers the kinetic shape factor can be lower,and up toH = 2, but
with suction this can also be achieved. These lowH numbers will be reached in a different manner so it
needs to be checked if the closure relations agree with the asymptotic suction boundary layer solution
for H = 2. To do this the value of the closure relations are calculated assuming the asymptotic suction
boundary layer. ForH∗ as in equation 4.14 can be written as:

H∗ =
θ∗

θ
=

∫ ∞
0

u
U

(

1−
(

u
U

)2
)

dy
∫ ∞
0

u
U

(

1−
(

u
U

))

dy
(4.20)

For the asymptotic suction profile this is written as:

θ∗ =

∞
∫

0

(

1− e
v0y
ν

)

(

1−
(

1+ e
v0y
ν

)2
)

dy

= −5
6
ν

v0

θ =

∞
∫

0

(

1− e
v0y
ν

) (

1−
(

1+ e
v0y
ν

))

dy

= − ν

2v0

This gives forH∗:
−5

6
ν
v0

− ν
2v0

=
10
6
≈ 1.667 (4.21)

which agrees with the value of equation 4.16 and figure 4.2.

Then forC f :

C f =
τw

1
2ρU2

(4.22)

and for the asymptotic suction profile:

u = U
(

1− e
v0y
ν

)

(4.23)

then:

µ
∂u
∂y
= µU

(

−
v0

ν
e

v0y
ν

)

(4.24)

then fory = 0 this can be written:

τw = µU
(

−
v0

ν

)

(4.25)

so that:

C f =
τw

1
2ρU2

=
2µU

(−v0
ν

)

ρU2
= 2

(−v0

ν

)

(4.26)
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and as for the asymptotic suction profile the following holds:

−v0θ

ν
=

1
2

−v0

U
=

1
2
ν

θU
(4.27)

gives the same solution as given by equation 4.18 and figure 4.3:

C f

2
Reθ = 1 (4.28)

ForCD:

CD =
µ

ρU3
e

∞
∫

0

(

∂u
∂y

)2

dy (4.29)

with:

τ = µ
∂u
∂y
= µU

(

−v0

ν
e

v0y
ν

)

(4.30)

gives:

CD =
µ

ρU3
e

∞
∫

0

U2
e

(v0

ν

)2
e

2v0y
ν dy

=
1
2

1
2

ν

θUe

=
1
4

1
Reθ

which gives with the previous acquired value of 1.667 for H∗ for CD
2Reθ
H∗ the value of 0.30, which

agrees with equation 4.19 and figure 4.4 Thus it can be concluded that the closure relations for
and can account for shapefactors up toH = 2, and will be valid for the asymptotic suction
boundary layer.

This being established, next the governing equations are discretized using 2-point central differences
(the trapezoidal rule) . The boundary layer variablesθ, δ∗, Cτ or ñ andue are defined to be located
at the panel nodes (althoughue is originally calculated on the panels itself and then an average value
is taken for the node). Each airfoil and wake panel therefore has three coupled nonlinear equations
associated with it. The focus of the next section will be on the solution procedure of these equations.

4.4 Solution procedure

The solution procedure is described in detail in [12] and will be summarized here with a focus on the
airfoil panels. The panels in the wake are treated slightly different, but as this has little effect on the
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general course of the calculation it is left out of this summary. If the solutionfor the airfoil vorticity
values of equation 4.8 is substituted into equation 4.3 this gives equation 4.31.

uei = uinvi +

N+Nw+1
∑

j=1

di j mj ; 1 ≤ i ≤ N + Nw (4.31)

This very general expression gives the potential flow about the airfoilfor any distribution of mass
defect on the airfoil and wake. Theuei in this formulation is essentially split in an inviscid part and
a viscous part. The inviscid part (uinv) is determined completely independent from the viscous part,
and only influenced by airfoil and wake geometry and the freestream angle of attack. The same holds
for the mass-influence matrixdi j . The viscous part ofuei is determined first by an iterative method
marching through the boundary layer, shown in equation 4.32. In this equation VS1 andVS2 are
the equation matrices for nodes #1 and #2 of the current panel, made up ofequations 4.10, 4.11 and
4.12. TheδA stands for the amplification of the T-S waves and theVSr stands for the righthand side
(residue) of the equations.
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(4.32)

After iterating and solving this system, theδθ, δm(= δ(uei · δ∗)) and ñ are inserted into the (global)
Newton method to couple the viscous part ofuei with the inviscid solution. The coupling consists in
the form the mass-influence matrixdi j . It is important to note thatdi j embodies the effect of the local
mj near the trailing edge on the globaluei distribution via its effect on the Kutta condition.

4.4.1 Newton solution

Equation 4.31 closed the discrete boundary layer equations. This nonlinear system of equations is
now rendered elliptic by the global mass influence onue and is solved using a so-called full Newton-
method. In the Newton method a system of nonlinear equations can be written as:

F(Q) = 0 (4.33)

where Q is the vector of variables and F the vector of equations. At some iteration levelk the solution
procedure can be written as follows:

Fk +

(

δF
δQ

)k

δQk = 0 (4.34)

Qk+1 = Qk + δQk (4.35)

The unknown vectorδQ contains the iterates of the variables:δθ, δmj and for the laminar part of
the boundary layerδñ. Variableδmi is chosen over theδδ∗ as the former will generate a matrix with
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only significant values at some diagonals to solve, which can be solved moreefficiently than a regular
matrix.
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; 1 ≤ i ≤ N + Nw (4.36)

In equation 4.36 matrixJi j is quite large, and almost sparse. By neglecting the small off-diagonal
values a sparse matrix is generated. The elements in the vector containingδθ, δmj andδñ are grouped
together corresponding to each streamwise station. The equations inJi j are grouped in a similar fash-
ion to create the tri-diagonal form of the matrix. This is then solved using a custom solver completing
one iteration of the global Newton procedure.

4.5 Transition routines

4.5.1 Drela Transition method

The transition routines in have been point of discussion for some time by several different au-
thors. First the working of the transition prediction is explained here. As wewill discuss 2 other
transition prediction methods we will name this method the Drela transition method after itsauthor.
The Drela method uses a linear approximation of the envelopes of the spatial amplification curves of
the Orr-Sommerfeld solutions for the Falkner-Skan profile family. This approximation of the curves
by straight lines is shown in figure 4.5. Any influence by behaviour of separate frequencies is elim-
inated by only approximating the envelopes. Dini [8] showed that the Drela method is not strictly
correct, and only applicable in case of similar boundary layers. Drela argues that the error is small
and overruled by other uncertainties in the code and the choice of theNcrit . However in chapter 8
it can be seen that these differences are substantial when compared to the Van Ingen, or Improved
eN-method. In the code the Drela method is implemented as follows. The slope of the amplification
curve is given by:

δN
δξ
=

AF · DADR
θ

RFAC (4.37)

with:

AF = −0.05+ 2.7

(

1.0
Hk − 1

)

− 5.5

(

1.0
Hk − 1

)2

+ 3.0

(

1.0
Hk − 1

)3

(4.38)

DADR = 0.028(Hk − 1.0)− 0.0345e−(3.87
Hk

Hk−1−2.52)2 (4.39)
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3.0 · RNORM2 − 2.0 · RNORM3;0 ≤ RNORM≤ 1

1.0 ;RNORM≥ 1
(4.40)

RNORM =

10log(Reθ) − (10log(Reθcrit )) − 0.08

2 · 0.08
(4.41)

10log(Reθcrit ) = 2.492

(

1
Hk − 1

)0.43

+ 0.7

(

tanh

(

14.0

(

1
Hk − 1

)

− 9.24

)

+ 1

)

(4.42)

This gives for the correlation between10log(Reθcrit ) and H for the Drela method figure 4.6. From
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Figure 4.5: Envelope approximation Drela method
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Figure 4.6: 10log(Reθcrit ) and10log(H) for the Drela method

equations 4.37 to 4.42 also a curve depictingθ δN
δξ

is made and shown in figure 4.7. In this figure

RFAC is made to be 1, which is true unlessReθ � Reθcrit . It can be seen that close toH = 2 theθ δN
δξ

does not go into the stable (negative) area, it does not even become zero. Therefore the Drela method
cannot cope with damping of the T-S waves as would possibly occur in suction boundary layers.
Instead when using suction with the Drela method for transition theReθ will become less thanReθcrit

at which point the amplification will be set to be zero. This is also not correctas the amplification
should also be allowed to decrease. It must be remarked that the Drela method was never intended
to cope with damping of T-S waves by using boundary layer suction, and therefore should not be
expected to do so.

4.5.2 Van Ingen method

In the adapted version of named which is made suitable for handling boundary layer
suction with the boundary layer equations another transition method is present. This method is called
the (full) Van Ingen method, after its author and was implemented by Ferreira [14] and later modified
by Broers [1]. This method was implemented to overcome the difficulties encountered with the Drela
method when employing boundary layer suction. This method uses no straightline approximation of
the envelope of the Orr-Sommerfeld solutions. It calculates the contribution of 100 frequencies to the
amplification and can predict damping of the T-S waves. Unfortunately it stops the calculation when
the10log(Reθ) value is lower than10log(Reθcrit ), and will keep the amplification factor constant. This
way the only damping that occurs is when still the10log(Reθ) value is higher than10log(Reθcrit ) (so
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at least one frequency is still unstable) but that the dominant frequencythat was responsible for the
maximum amplification has a much lower amplification ratio now, and the -now largest-amplification
ratio is lower than the former maximum value. It will be clear that this allows only for very small
amount of damping of the amplification. This method uses a different10log(Reθcrit ) − H correlation as
can be seen in figure 4.8. This method also has small discontinuities in theN-factor curve. These occur
when a switch is made to an amplification curve of a different frequency in the calculation. In figure
4.9 these discontinuities can be seen in a calculation for an airfoil with a lower surface resembling a
flat plate pressure distribution.

In  the boundary layer iteration converges badly when this method is used.s interaction
between the boundary layer iteration and transition calculation are to blame forthis. This is resolved
by letting the user define aNlimit value, at which the Van Ingen method switches to the Drela method
that does converge. A drawback is that the transition prediction is then influenced by Drela’s method,
but the difference can be small, depending on the difference betweenNcrit (at which transition occurs)
andNlimit (at which the methods are switched). Typical value for theNlimit at aNcrit of 9 is 7-8. Later
in this report an alternative to this fixedNlimit value is given to getNlimit closer toNcrit .
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Figure 4.8: 10log(Reθcrit ) and10log(H) for the Van Ingen method

Figure 4.9: discontinuities in Van Ingen method
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Chapter 5

Modifications to 

In the previous chapter the existing form of was discussed. In the present chapter the im-
plementation of the improvedeN-method and the necessary modifications that were made to

will be discussed.

5.1 General principles of adapting code

As mentioned in section 1.5 the approach of adapting the code is such as to ensure user
friendliness and functionality. In addition there is the desire to create a codeunderstandable by future
programmers who will adapt and use this code. To ensure these objectives are met, one has to take
certain measures and adopt some programming habits.

• make as little changes as possible in the original program

• not impede the working of already present functionalities of the program

• keep the general structure and style of programming already present intact, this will help to
keep a good overview

• include comments, this makes the intended effect of the code clear, and as a bonus makes the
programmer him- or herself conscious of the need and function of that specific part of the code.

• the code added to is -contrary to customary practice- not condensed. With the condens-
ing of code it is meant that the programmer will minimize the amount of code used to describe
a program. This deteriorates the readability of the code to others, and oftenin a dramatic way.
As it can be expected that other users will use or at least read this code (i.e. for implementation
in MSES ) no such condensation effort is made.

• make the user interface easy and transparent

61



62 Modifications to

• have the program produce warnings when special algorithms are used,but at the same time
prevent the user from being flooded with warnings and remarks.

These principles were observed throughout the process, but despitethe intention to keep the changes
as small as possible, quite some changes had to be made. As all programming was done in
77 some language specific principles apart from the general principles can be formulated:

• use variable and subroutine names no more than 6 characters long. This is a 77 stan-
dard to ensure portability. Many 77 compilers can also handle longer variable names
nowadays, but it is nonetheless needed to ensure all compilers can compile the pro-
gramme

• use variable declarations. can handle implicit variable declarations but this is prone to
error and deteriorates readability

In total over 2000 lines of new code were added to an estimated existing 30.000 lines of code of
. Each addition into the existing code is marked by a statement like:

C-----Modified by Jeroen Bongers(7-Nov-2005): start

to mark the start of the modified code and ended by:

C-----Modified by Jeroen Bongers(7-Nov-2005): end

to mark the end of the modified code and to give the date of the last (major) modification. This way
the code will be more easily readable. Because was published under the GNU General Public
License [57], when or if is to be published or publicly released, the source code of the adapted
program needs to be made public. It should be noted that under the GNU General Public License it
is not obligatory to publicly release modified versions of a program. In sucha public release, in the
program and its source code it needs to be made clear what changes were made by which developers.
To this requirement now complies by having every change marked in this manner.

5.2 Flowchart

In figure 5.1 a flowchart with the called subroutines is shown. It is divided into 3 zones: a
blue zone, a red zone and the rest. The red zone represents subroutines that were made from scratch,
the blue zone represents subroutines that were extensively modified, and the other subroutines were
only very slightly modified or not modified at all. The figure that is shown startswith the subroutine
 which stands for the viscous calculation routine. Starting from this the subroutines will be
briefly described and briefly the most important modifications made to it are mentioned.
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•  is the subroutine that is responsible for all viscous calculations. It checks the final conver-
gence of the global Newton iterations. This is also the reason for it being extensively modified,
as some work was done to improve convergence. This will be described in detail in section
5.3.3. Also some warning messages for the user were added.

•  is the subroutine that fills the global Newton method with the boundary layer coefficients.
It is also responsible for calling the marching boundary layer iteration routines. Together with
the two boundary layer marching routines( and) it calls the routine to
check for transition.

•  is the subroutine that initializes the boundary layer. This routine will use a prescribed
value foruei to march through the boundary layer while iterating at each station for a converged
solution. This subroutine checks for transition at each interval, at each iteration.

•  is the subroutine that does the actual marching through the boundary layerwhile iter-
ating at each station and continuously checking for transition. It also makesthe boundary layer
coefficients for the global Newton iteration. The iteration limit for every boundary layer inter-
val was changed from 25 to 26 for convergence reasons. For more details about this see section
5.3.3

•  is the subroutine that checks every boundary layer interval for transition by calling the
amplification rate of change (dN

dx ) routine. If transition is found in the current interval it
will iterate in this interval to find the exact location of the transition point. In this iteration again
 is called. Added are the different mechanisms to improve on convergence. For more
details about this see section 5.3.3

•  is included here as it calls to. It is meant to set up global Newton coefficients for the
boundary layer. In the laminar part also some amplification rate of change (dN

dx ) calculations are
necessary, and therefore it call on.

•  is the subroutine that calculates the amplification rate from (Drela method),
(Van Ingen method) or (improvedeN-method). Changes made here are to accommodate
the ImprovedeN-method. Also some calculations for the convergence improvement functions
are added, as are functions to be used in plotting some variables connectedto the transition
prediction.

•  is the subroutine that is responsible for the Drela method of transition prediction. The
flowchart does not go into details of this routine any further.

•  is the subroutine responsible for the Van Ingen transition prediction. The flowchart does
not go into details of this routine further either.

•  is the subroutine that was created newly for the improvedeN-method. It calculates the
N-factor and derivativedN

dx (needed for use in) at the current boundary layer interval.

•  is the subroutine that finds theReθcrit value for the current value ofH from a splined
function. Together with, , ,  and  it is given in grey to show
these routines belong to a group that all call the subroutines and. Plots of these
splined function can all be found in chapter 3.
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Figure 5.1: Flowchart of transition related subroutines in
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•  is the most important subroutine, it interpolates the data stored in. and creates an
interpolated (sometimes extrapolated) stability diagram which is used to calculate the amplifi-
cation rate for 601 frequencies at the current value forReθ.

•  is the subroutine that finds the value for
(

ωθ
U

)

scaled
for the current value ofReθ.

•  is the subroutine that finds the value ofTmaxmaxfor the current value ofReθcrit .

•  is the subroutine that does a nearest neighbour interpolation to find the ninestability di-
agram crossections from the database that are nearest to the currentReθ andReθcrit . Between
these nine crossections is interpolated using a 2D Lagrange method.

•  is the subroutine that finds the value ofrtop for the current value ofReθcrit .

•  is the subroutine that performs a standard 1 Lagrange interpolation.

• 2 is the subroutine that performs the 2 Lagrange interpolation to interpolate the nine
splines that describe the crossections through the relevant stability diagrams.

•  is the subroutine that finds the value of the slope ofaxisfor extrapolation uses.

•  is the subroutine that finds the value of10log(Ftop) for the current value ofReθcrit .

•  is the main routine that starts the program.

•  is the subroutine that initializes all global parameters needed in xfoil. Some parameters
needed for the improvedeN-method were included as well as a call to the subroutine.

•  is the subroutine that does nothing more than include that large data file..

• . is not a subroutine but included here for completeness. It holds all data connected to
the stability diagrams, such asT, axisandTmax.

•  ∗ ∗ ∗ ∗ ∗ is the collection of, , , ,  and.

•  is the subroutine that gets the correct spline for the subroutine that calls it tofind its needed
variable.

•  is the subroutine that evaluates splines. It is a slightly modified version of the routine
given in [7]. The difference lies in that spline definitions are not uniform. The original ppvalu
was made to also calculate derivatives of splines. The coefficients of these splines are thereto
multiplied by an extra constant. As splines were used that lacked these extra constants, this
subroutine was changed accordingly.

•  is a subroutine needed by and taken from [7].

5.3 Implementation of improvedeN

The two main subroutines in the implementation of the Van Ingen Improved method are  and
. These are supported, as can be seen in figure 5.1, by a multitude of smallersubroutines. In the
following these two main subroutines and their functions will be explained.
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5.3.1 

 is a subroutine that is called many times, as a call occurs at each boundary layer interval at
each iteration by some two to four subroutines. These intervals are dividedin 2 stations, station #1
and station #2, where the first is upstream of the last. The routines functionis to calculate thedN

dx
value in each interval for use in routine. This dN

dx is the rate of change of the totalN-factor,
and necessary for use in. To do this calculates theReθcrit from H using the correlation
seen in figure 3.10. It will then check whetherReθ ≥ Reθcrit to see if any amplification is present. If
this is not the case and theN-factor is equal to zero, further calculation is skipped. TheN-factor that
was zero will remain zero. If either there is amplification or theN-factor has a non-zero value already
it calls subroutine. This is to receive a vector 601 entries long which contains the values ofT
for that specificReθ − Reθcrit combination for 601 different frequencies. Each frequency has its own
amplification rate, be it negative (stable), zero (neutral), or positive (unstable) and is multiplied by the
local nondimensional speedU, and by 106 to makeTU. The specific level ofN for each frequency is
calculated for this interval in 3 different ways.

• If the frequency was stable at station #1, and remains so, the amplification factor will be set at
zero.

• If the frequency was unstable at station #1 the following formula is used, irrespective of the
value ofT at station #2, as it is applicable to unstable and stable values for station #2.

dN = dxRec · 10−6(TU1 + TU2) (5.1)

Notice that damping is also permitted if either (or both)TU values are negative.

• If the frequency was stable at station #1 and will become unstable at station #2 a different
formula is used to let theN-factor grow from the (inT) linearly interpolated root.

dN =
1
2

(dx2 − dx1)Rec · 10−6 TU2
2

TU2 − TU1
(5.2)

Then the dominant frequency is selected. The selection is based on which frequency has the largest
cumulative amplification factor at that interval. This means that theN-factor for each specific fre-
quency at the previous interval is included. A frequency that is being damped in the current interval
can still have an overall higher level of amplification due to high levels of amplification in previous
intervals, and be the dominant frequency. FinallydN

dx is calculated according to:

dN
dx
=

N2 − N1

x2 − x1
(5.3)

To increase the calculation speed the variables from station #1 and #2 are saved for future use. If
iteration is going on in the same interval, the #1 values can be re-used without calculation effort. If
the iteration is continued into the next interval, the #2 values will be the new #1 values. In all other
cases both the #1 and #2 values will be calculated anew.
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5.3.2 

 is intended to supply with the vector ofT for the currentReθ−Reθcrit for 601 frequencies.
This is done using the approach described in section 3.3. To this end the

(

ωθ
U

)

scaled
andTmaxmaxare

determined first (Reθcrit is already known fromH). Then using the nearest neighbour interpolation the
9 closest stability diagrams inr andReθcrit direction will be determined. After that the 2 lagrange
interpolation coefficients are derived from two times applying the 1 Lagrange method. (The 1
Lagrange interpolation is given in equation 3.25.) First the 1 Lagrange interpolation is used along
Reθcrit = constant, and then alongr = constant. Now it is possible to apply these 9 interpolation
coefficients to the spline coefficients of the stored stability data to create interpolated splines. This can
be applied to splines describingT, axisandTmax. However, not always there are 9 close datapoints
but in that case some coefficient will be set to zero. On points outside 0≤ r ≤ 2.5 (see figure 3.24)
only one stability diagram dataset is used from each case (as the other have interpolation coefficient
zero). See figures 5.2 and 5.3 for the situations with 9 available stability diagrams and with only 3
available stability diagrams. For more information on when which inter- or extrapolations are used
the reader is referred to section 3.3.

There are warnings issued whenever some extrapolation is used whenever the current value ofReθcrit

andReθ fall outside of the region given by 0≤ r ≤ 2.5 and 2.216 ≤ H ≤ 35.944. Also because of
the working of the the program, a limit is put on the value ofReθcrit , so it will not go higher
than 4.3643 (the value corresponding withH = 2). The situation can occur that due to boundary layer
suction the laminar value forH comes below 2. This is considered an unphysical situation and should
therefore be regarded as erroneous. However this situation can sometimes occur when high boundary
layer suction velocities are used, and to avoid crashing the program aReθcrit value is used of 4.3643
letting the user decide whether or not to use the results.
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Figure 5.2: interpolation in 9 points
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5.3.3 Convergence

The convergence of the boundary layer solution in is quite important and also strictly defined. If
an airfoil does not meet the convergence standards, it will be not be possible to use the results in a drag
polar orCl −Cd graph for instance. Therefore a solution that is nearly converged, is of no more use to
the user than a solution quite some way from convergence. As was mentionedbefore, the Van Ingen
method implemented by Ferreira [14] and adapted by Broers [1] is troubled by convergence problems.
These are not caused by the method itself, but caused by interaction with theboundary layer iterations
in . The problems were at the time solved by skipping to the Drela method when theN-factor
nearsNcrit . This is a reliable method that unfortunately results in a kink in theN-factor graph due to
the difference in both methods. The error due to this is smaller as the value at which theswitch in
methods is made is nearer toNcrit . After the implementation of the improvedeN method it is found
that similar convergence problems occur with this method. During the iterations inthe boundary layer,
often theH value oscillates heavily, especially at the start of iterations. As the improvedeN-method is
sensitive to theH factor and allows for both damping and amplification of theN-factor this oscillating
behaviour has a large impact on the predicted transition location. Due to the strong reaction of theN-
factor to the changingH it can often be difficult to reach a converged solution as the transition point
keeps changing position with every iteration as the boundary layer variables change. The problem
occurs close to and in the transition interval as the changes in boundary layer variables are largest
there due to switching between laminar and turbulent flow. One change was made in the boundary
layer iteration routine that was helpful in lessening the oscillation of the shapefactorH. This was to
change the iteration limit for each interval from 25 to 26. It was found that all ”extreme” H values
occurred on odd-numbered iterations. This phenomenon is quite odd as thecalculation is expected
to converge on a solution, but apparently the solution is allowed to jump, but only on odd numbered
iterations. TheH values are still used if all iterations have finished and no converged boundary layer
solution is found in that interval. Unless they seem absurd to, as then a extrapolation from the
former interval is used, the non converged variables are used. Thesevalues seem agreeable for the
Drela transition routine but it does not mean they do not hamper the convergence using the improved
eN-method. To counter this, the iteration limit was set to 26 which helps achieving convergence, but
still more needed to be done. Several options were considered:

• Using the switching method as it exists

• Try to improve on the switching method by letting theNswitch get closer toNcrit .

• Fix the transition point put at the closest node

• Lower convergence demands by accepting larger errors in boundarylayer variables.

• Use the forcing routine existing in to influence the movement of the transition point during
iterations.

The first method was rejected as the Drela method to which is switched, cannotpredict damping and
because of the kink in theN-factor curve the result is ambiguous. The second method was tried to
see whether getting the switching point close enough to the transition point would yield better results.
Some success was obtained by implementing a predictor that calculates whethertransition is likely to
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occur in the next interval. If that is the case, a switch in methods is made. However in many cases
the predictor needs to predict transition several intervals ahead for the switched method to work. A
”safety factor” can be changed by the user to have this switch occur earlier. The predictor is very
basic, it predicts the expected level of theN-factor in the next interval assuming the next interval
has the same value fordN

dx as well as the same length as the current interval (inx). If for the next
interval the predictedN-factor is higher than theNcrit value the switch is made. The user can specify
this so-called safety factor with which the predicted rise inN-factor is multiplied. For instance: if a
value of 2 is used, the prediction will be usually 2 intervals early with predictingtransition (provided
the bothdN

dx anddx do not change) and a switch is made 2 intervals in advance of the real transition
interval. An example can be seen in figure 5.4. In this figure one can see thepredictedN-factor.N3 is

x
x1 x2 x3

N

N1
N2

N3

N′3

N′′3

dx1dx1dx1

dx2

actual N− f actor

predicted N− f actor

Figure 5.4: Safety factor prediction method

the actualN-factor that occurs atx3 and theN′3 value is the predicted value for a safetyfactor of one.
If however the safety factor is taken to be 2, the predicted rise inN-factor is multiplied by two and
N′′3 will be the predicted value forx3. (here the safety factor of two is represented by adding another
intervaldx1) This method works and is implemented in but as it cannot predict damping in
or past the area where the switch is made this was not found to be sufficient. However for the (older)
Van Ingen method it is beneficial and is kept for use with this method.

Putting the transition point into the nearest node would probably not resolvethe problem. The problem
lies not so much in finding the transition point with every iteration but in fixation it inone location, so
it becomes independent of the iterations when found. Together with lowering the convergence criteria
putting the transition in a node was thought to have negative effects on the accuracy and both methods
were therefore discarded.

The last method of using the forcing routine to influence convergence wasconsidered promising. The
forcing method in is a way to manually force transition at a point. If upstream of that point free
transition is found, this is the transition location found. With this method, the manualforcing can still
be used as was the case before. The forcing is used in 2 different ways to improve convergence:

• if the transition point in iterationi, calledxti is within 0.01% of the chord (1· 10−4 x
c) of the last

transition pointxti−1 and no convergence is achieved, the method forces the transition to be on
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this point. Then this transition point is fixed and within a few iterations usually convergence is
achieved.

• if the transition pointxti is no more than 10% of the chord apart fromxti−1, and no more apart
than 2% of the chord fromxti−2 (essentially when thext is ”jumping” with every iteration be-
tween two stations maximum 10% apart and movement from these two locations of transition
limited to 2%) a special treatment is used. (The maximum distance of 10% of the chord is nec-
essary for separation bubbles, where convergence is a problem with all of the three transition
methods.) When the pointsxti and xti−1 are more than 2% of the chord apart the most down-
stream location will be forced forward at 0.5% of the chord every iterationuntil the difference
between them is no smaller than 2% of the chord. This is shown in figure 5.5 (every iteration
this special treatment is used counts as a step in figure 5.5). Usually the transition point will
be found in front of the forcing point and convergence will be reached, if not and the transition
points are no more than 2% apart a slower rate of moving the downstream point closer is used.
It can only then move at a rate of1

4 of the distance between the two points until they are within
a distance of 0.01% of the chord at which the first forcing mechanism forces the two pointon
one point. The latter situation is not expected to occur in practice.

step1
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dx1
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Figure 5.5: Forcing method

In the vast majority of cases in which this forcing method is used, the disturbingof an infinite loop
in which the iteration can get caught, is usually enough to ensure convergence ‘on the basis of a free
transition point. In allowing the forcing of the transition point to move only 0.5% ofthe chord, it
is guaranteed that the error in transition point due to this forcing is no more than this 0.5% of the
chord. This is within the accuracy of the choice forNcrit and other errors due to (empirical) relations
in the program. Some example calculations are given in table 5.1. Note that theseairfoils were
run with 360 panels in for accuracy reasons (see also 6.3). In this table one can see the
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range of non-converged solutions transition points of the method without theforcing method and the
converged solution transition points of the forcing method. In all cases the transition as calculated
using the forcing method was of the free type, which means the converged transition point was found
to be in front of the forcing point. The differences in most cases are small, perhaps except in the
case of NACA0018, where a large separation bubble was present thatgives a longer range for the
non-converged transition points. In the cases where the non forcing method converges (NACA0012
and the lower surface of NACA1912) there is no difference between the methods. This reinforces
the thought that the forcing method has no significant effect on the transition location, only on the
convergence.

Table 5.1: Transition points for different convergence improvements

airfoil transition (xc) forcing method transition (xc) without forcing method
NACA0012 top: 0.4913 0.4890 - 0.4937∗

α = 1,Rec = 1 · 106 bottom: 0.6749 0.6738 - 0.6754∗

Flat plate airfoil top: 0.4271 0.4271∗

α = 1.33,Rec = 5 · 106 bottom: 0.8819 0.8817 - 0.8825∗

NACA4415 top: 0.7016 0.6998 - 0.7045∗

α = 1,Rec = 1 · 105 bottom: 1.000 1.000∗

NACA642-A-215 top: 0.5567 0.5567 - 0.5568∗

α = 0,Rec = 2.75 · 106 bottom: 0.5469 0.5469∗

NACA1912 top: 0.0572 0.0571∗

α = 5,Rec = 1 · 106 bottom: 0.7762 0.7757 - 0.7768∗

NACA0018 top: 0.6393 0.6389 - 0.6406∗

α = 2,Rec = 1 · 105 bottom: 0.8761 0.8696 - 0.8872∗

∗ = non-converged solution (2 values denote the maximum range of non converged solutions obtained)
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Chapter 6

Validation

6.1 Test Airfoils

Before the validation phase can be started some test airfoils need to be chosen. The test airfoils need to
represent all flow phenomena that can occur on airfoils in which the improvedeN-method is expected
to be used. In this light 7 cases are tested, using 4 different airfoils. These are mentioned in table
6.1. Some other cases were considered in addition to the ones mentioned in table6.1. These cases
were mainly theoretical cases such as the Rheinboldt strip suction and a flatplate with boundary layer
suction. These cases are shown in this section, but further analysis wasabandoned as their results are
considered unphysical due to a wrong handling of the boundary layer by ’s boundary layer
equations. This conclusion is however of such importance that these cases were included in section
6.2. Some applications of the ImprovedeN-method to more ”theoretical flows” can be found in [53].

Table 6.1: Studied Airfoils

name airfoil Rec α suction used
NACA0012 1 · 106 3◦ no
NACA0012 1 · 106 0◦ no
NACA0012 1 · 106 0◦ yes, between 25%x

c and 55 %x
c ,base· 1

NACA0012 1 · 106 0◦ yes, between 25%x
c and 55 %x

c ,base· 2
NACA0018 1 · 105 2◦ no
”Flat Plate Airfoil” 5 · 106 1.33◦ no
NACA642-A-215 airfoil 2.75 · 106 0◦ no

Of the testcases NACA0012 is used because it is so well studied and givesa classic pressure distribu-
tion of an adverse pressure gradient on the suction side of the airfoil and a partly favourable pressure
gradient on the pressure side. This airfoil is first studied with an angle ofattack of 3◦ and then with
a zero angle of attack. At zero angle of attack also suction on the upper airfoil side is used, in be-
tween 25%x

c and 55 %x
c with a strength as calculated by the first iteration of the routine present

73
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in  in the menu. The base suction distribution is given in equation 6.1 and taken from
Broers [1].

v0

U∞
=

1
0.2205

1
U

U∞

d( U
U∞

)

d( x
c)

Reθ
Rec

(6.1)

In this equation as a first iteration theReθ is assumed constant over the area to which the suction is
applied. It is a first attempt to achieve laminar flow in the area it is used in. Hereits objective was
solely to test a realistic suction distribution so no more iteration cycles are used and this basic suction
distribution is used right away. The case in which it is doubled represents acase in which heavy
suction is used, where theoretically theN-factor will become zero again. The NACA0012 airfoil
was also calculated with the single and the double amount of suction provided by . Both suction
distributions are shown in figures 6.5 and 6.6. The pressure distributions of all three of the NACA0012
cases are shown in figures 6.1 to 6.4. In theCp − x figures 6.1 to 6.14 the dotted lines represents the
inviscid solution by, the red line represents the upper surface viscous solution and the blue
line represents the lower surface viscous solution.

Figure 6.1: Cp NACA0012 forα = 3◦, Rec = 1 · 106, no suction



6.1 Test Airfoils 75

Figure 6.2: Cp for NACA0012 atα = 0◦, Rec = 1 · 106, no suction

Figure 6.3: Cp for NACA0012 atα = 0◦, Rec = 1 · 106, base suction
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Figure 6.4: Cp for NACA0012 atα = 0◦, Rec = 1 · 106, 2 · base suction
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Figure 6.5: suction distributionbasefor NACA0012
α = 0◦, Rec = 1 · 106
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Figure 6.6: suction distribution 2 · base for
NACA0012α = 0◦, Rec = 1 · 106
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NACA0018 was used to check the handling of large separated flow areas. Its pressure distribution is
shown in figure 6.7. At the low Reynolds number large areas of separatedflow will occur. This can
be seen in figure 6.8 where the skin friction is shown.

Figure 6.7: Cp for NACA0018 atα = 2◦, Rec = 1 · 105

The ”flat plate airfoil” is an airfoil which has an almost flat plate pressure distribution on the lower
surface at an angle of attack of 1.33◦ and is taken from [14]. The airfoil’s resemblance to a flat plate
flow is checked in a few ways. The pressure distribution can be found in figure 6.9. This shows apart
from the very start at the leading edge and the area close to the trailing edgea pressure coefficient
of zero (although any constant pressure would suffice), as it would need to be to resemble a flat plat
boundary layer. Also the development of the momentum thickness represented byReθ is compared in
figure 6.10 and 6.11 to theReθ according to Blasius:

θ

x
=

0.664
√

Rex
(6.2)

Apart from the very start as already mentioned the agreement is good. When one studies the shape
factor in figure 6.12 at first it seems to be quite close to 2.591, the value for the Blasius solution.
However on close inspection the shape factor seems to be 2.56, thus a little short of 2.591. Later on
the consequences of this are shown. As to the reason this value is not closer to the flat plate value,
one must look at equations 4.10 to 4.19. In these laminar boundary layer equations nor in the closure
relations a pressure coefficient of 0 is guaranteed to yield a shape factor of 2.591. As already seenin
figure 6.10, the momentum thicknessθ is in good agreement with the flat plate value, so a difference
in shape factor must originate in the displacement thicknessδ∗.

As the last airfoil NACA642-A-215 was used, as it is an airfoil studied in Van Ingens dissertation and
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Figure 6.8: C f for NACA0018 atα = 2◦, Rec = 1 · 105, upper surface (red), lower surface (cyan)

Figure 6.9: Cp for ”flat plate airfoil” atα = 1.33◦, Rec = 5 · 106
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Figure 6.10: Comparison ofReθ for the ”flat plate air-
foil” and the Blasius solution
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Figure 6.11: Zoomed in comparison ofReθ for the
”flat plate airfoil” and the Blasius solu-
tion
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Figure 6.12: H for flat plate airfoil atα = 1.33◦,Rec = 5 · 106
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for which some data are available. Unfortunately the data gathered in the windtunnel is influenced by
the large size of the model. Therefore no good comparison could be made between calculated data and
measured data and from here onwards only calculated data is used. The airfoil pressure distribution
according to the data in [51] is shown in figure 6.13. This pressure distribution is only the calculated
inviscid distribution that clearly shows bumps on the upper surface near thenose, and at around 60%
of the chord on the lower surface. The reason for this behaviour is thatthe nose is not well defined and
has a dimple. In Van Ingens research [51] the same phenomenon was found in the windtunnel model
made up from these coordinates, and it was resolved by smoothing out the surface. The same is done
on the numerical model in. The oscillatory behaviour on the lower surface however was not
found on the windtunnelmodel. This because it stems from a numerical feature of the airfoil. The
NACA642-A-215 has a straight line on the lower surface from 59% of the chord to the trailing edge
which produces a small kink in the curvature of the airfoil profile. Due to thiskink, the 2nd derivative
is no longer continuous. Due to this effect the vorticity is forced to a higher value. This bump in the
pressure distribution was also removed by making the airfoil smoother at thatspot. The corrections
made on the NACA642-A-215 result in the new pressure distribution seen in figure 6.14.

Figure 6.13: Cp for uncorrected NACA642-A-215 atα = 0◦, Rec = 2.75 · 106
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Figure 6.14: Cp for corrected NACA642-A-215 atα = 0◦, Rec = 2.75 · 106

6.2 Abandoned Test Cases

The dropped test cases are the Rheinboldt strip suction and high suction velocity employed on a flat
plate. As can only handle airfoils and can handle no single flat plate, the ”flat plate airfoil” is
used in both cases. Other approaches in getting a flat plate boundary layer have proven unsuccessful,
because either no constantCp distribution could be achieved or because a very thin plate results in
poor numerical accuracy in. The Rheinboldt strip suction proved to be unpractical for
as the very high suction velocity employed over a small strip prevented convergence of the boundary
layer solution. This leaves only the flat plate with high suction velocity, with the suction not as high so
as to prevent convergence. The suction is only applied to the lower surface of the ”flat plate airfoil”.In
figure 6.15 the pressure distribution is shown, in figure 6.16 and in figures6.17 to 6.20 the shape factor
and theN factor are given. It must be stressed that the solution with a laminar shape factor of less
than 2 is considered unphysical, and that therefore this solution cannot be considered to be correct. It
is instructive nonetheless in showing the faulty behaviour of the boundarylayer routines in.
This test case is abandoned for the rest of the calculations as the boundary layer variables seem to be
erroneous.
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Figure 6.15: Cp for flat plate suction airfoil atα = 1.33◦, Rec = 5 · 106
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Figure 6.16: v0 for flat plate suction airfoil atα = 1.33◦, Rec = 5 · 106
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Figure 6.17: H for flat plate suction airfoil atα =
1.33◦, Rec = 5 · 106, lower surf.
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Figure 6.18: H for flat plate suction airfoil atα =
1.33◦, Rec = 5 · 106, upper surf.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

9

10

x

N

Figure 6.19: N for flat plate suction airfoil atα =
1.33◦, Rec = 5 · 106, lower surf.
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Figure 6.20: N for flat plate suction airfoil atα =
1.33◦, Rec = 5 · 106, upper surf.
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6.3 Grid convergence

Before any airfoils were calculated using, a grid convergence study was made. The default
number of panels for nowadays is 160 panels (originally it was 120, later changed into 140 and
then to 160), which is supposed to give a high resolution solution. As a comparison will be made
of different transition methods the objective is to isolate as much as possible other factors that can
influence the transition calculation. The panel density is one of the factors that can have an influence
on transition. To reduce the contribution of the error in transition location as much as possible a grid
convergence study is made of the airfoils that are used. The results of thiscan be seen in figures 6.21
to 6.34. As the scale of the figures differs a lot arrows are added that give approximately 1% of chord
length. Notice that for the suction surfaces (figures 6.26 and 6.28) the convergence is especially bad.

The panelling of the airfoils is given in appendix B.
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Figure 6.21: xtransition lower surface for NACA0012
α = 3◦, Rec = 1 · 106
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Figure 6.22: xtransition upper surface for NACA0012
α = 3◦, Rec = 1 · 106
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Figure 6.23: xtransition lower surface for NACA0012
α = 0◦, Rec = 1 · 106, no suction

100 150 200 250 300 350 400 450 500
0.58

0.581

0.582

0.583

0.584

0.585

0.586

0.587

0.588

0.589

0.59

tr
an

si
tio

n 
lo

w
er

 s
ur

f

number o f panels

Figure 6.24: xtransition upper surface for NACA0012
α = 0◦, Rec = 1 · 106, no suction

As can be seen in figures 6.21 to 6.34 the transition location sometimes varies quitea bit in the region
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Figure 6.25: xtransition lower surface for NACA0012
α = 0◦, Rec = 1 · 106, suctionbase
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Figure 6.26: xtransition upper surface for NACA0012
α = 0◦, Rec = 1 · 106, suctionbase
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Figure 6.27: xtransition lower surface for NACA0012
α = 0◦, Rec = 1 · 106, suction 2· base
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Figure 6.28: xtransition upper surface for NACA0012
α = 0◦, Rec = 1 · 106, suction 2· base
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Figure 6.29: xtransition lower surface for NACA0018
α = 2◦, Rec = 1 · 105
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Figure 6.30: xtransition upper surface for NACA0018
α = 2◦, Rec = 1 · 105
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Figure 6.31: xtransition lower surface for flat plate
airfoilα = 1.33◦, Rec = 5 · 106,
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Figure 6.32: xtransition upper surface for flat plate air-
foil α = 1.33◦, Rec = 5 · 106
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Figure 6.33: xtransition lower surface for NACA642-A-
215α = 0◦, Rec = 2.75 · 106
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Figure 6.34: xtransition upper surface for NACA642-A-
215α = 0◦, Rec = 2.75 · 106



6.4 Validation of transition method 87

with less than 200 panels. The oscillations vary in size from airfoil to airfoil. But for all airfoils the
oscillations are small at around 360 panels, and therefore this is the number of panels used for all
airfoils. The error in transition location due to the panelling of the airfoil is no more than 0.0025x

c (or
0.25% of the chord) in any of the evaluated cases (having 360 panels) andis considered small with
regard to the other errors present in the total handling of the airfoil and the transition method and will
from here on be neglected.

6.4 Validation of transition method

In the case of the improvedeN-method the validation is done by a select group of airfoils given in
table 6.1. These airfoils are selected in such a way that most flow phenomenausually encountered in
airfoils are represented, such as favourable and adverse pressure gradients, large separated flow areas
and boundary layer suction. These airfoils (upper and lower surface) were calculated using a total of
360 panels. Then theN-factor as calculated by with the implemented improvedeN-method
is compared to the routine of the improvedeN-method as made by Van Ingen. As input for
the routine the boundary layer variables (H, Reθ, ū) as they were calculated by were
used. In figures 6.1 to 6.40 the results for the NACA0012 atα = 3◦ andRec = 1 · 106 are shown.
Figure 6.1 gives the pressure distribution, figures 6.35 and 6.36 give theshape factor for the lower
and upper surface, figures 6.37 and 6.38 give the10log(Reθ) and10log(Reθcrit ) for the lower and upper
surfaces, and figures 6.39 and 6.39 give theN-factor for the upper and lower surfaces as calculated by
the routine implemented into (in red) and the routine (in blue). For the other airfoils
only the figure of the pressure distribution and theN-factor are shown, but in appendix C all figures
are shown for all test case airfoils.
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Figure 6.35: H for NACA0012α = 3◦, Rec = 1 · 106,
lower surf.
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Figure 6.36: H for NACA0012α = 3◦, Rec = 1 · 106,
upper surf.
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Figure 6.37: Reθ and Reθcrit for NACA0012 α = 3◦,
Rec = 1 · 106, lower surf.
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Figure 6.38: Reθ and Reθcrit for NACA0012 α = 3◦,
Rec = 1 · 106, upper surf.
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Figure 6.39: N for NACA0012α = 3◦, Rec = 1 · 106,
lower surf.
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Figure 6.40: N for NACA0012α = 3◦, Rec = 1 · 106,
upper surf.
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Figure 6.41: N for NACA0012 atα = 0◦, Rec = 1 ·
106, no suction, lower surf.
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Figure 6.42: N for NACA0012 atα = 0◦, Rec = 1 ·
106, no suction, upper surf.



6.4 Validation of transition method 89

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

9

10

x

N

matlab implementation
f ortran implementation

Figure 6.43: N for NACA0012 atα = 0◦, Rec = 1 ·
106, base suction, lower surf.
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Figure 6.44: N for NACA0012 atα = 0◦, Rec = 1 ·
106, base suction, upper surf.
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Figure 6.45: N for NACA0012 atα = 0◦, Rec = 1 ·
106, 2 · base suction, lower surf.
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Figure 6.46: N for NACA0012 atα = 0◦, Rec = 1 ·
106, 2 · base suction, upper surf.
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Figure 6.47: N for NACA0018 atα = 2◦, Rec = 1 ·
105, lower surf.
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Figure 6.48: N for NACA0018 atα = 2◦, Rec = 1 ·
105, upper surf.
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Figure 6.49: N for flat plate airfoil atα = 1.33◦, Rec =

5 · 106, lower surf.
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Figure 6.50: N for flat plate airfoil atα = 1.33◦, Rec =

5 · 106, upper surf.
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Figure 6.51: N for NACA642-A-215 atα = 0◦, Rec =

2.75 · 106, lower surf.
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Figure 6.52: N for NACA642-A-215 atα = 0◦, Rec =

2.75 · 106, upper surf.
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As can be seen in all cases bothN-factor calculations give excellent agreement. Mostly only the
red lines are visible in the diagrams as they lie on top of the blue ones. With the agreement for
all upper and lower boundary layers of the testcases it is assumed that both methods will yield the
same results as long as the same input variables are used. Thus in proving that the database method as
implemented in correctly depicts the data as calculated by Arnal in [4], also proves the

implementation to depict this data correctly. Proof of this can be found in [53],which was not yet
published at the time this thesis was written, but a draft version was made available to the author in
which this proof could be found. Assuming the Arnal data is correct, the method as implemented in
 and uses correct solutions of the Orr-Sommerfeld equation for use in itseN-method.
The only question mark left is whether the one parameter approach for the stability diagrams is valid.
Some supporting arguments have been given in section 3.2, but no decisive argument has been found
yet. If the working hypothesis of a single parameter approach should hold, the validity of this method
is achieved as the validation of theeN-method has been done already by many authors (i.e. [39],
[50]) in the past. However the validation is then only valid for the area in whichdata from Arnal is
available. The zones of extrapolation cannot so easily be proven to be valid, but in chapter 3 some
sound arguments are given to assume their validity.
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Chapter 7

Results of the finite difference boundary
layer calculation

As a separate check the finite difference method boundary layer calculation was done on the pressure
distribution output of. This means only theue on every panel is used for the finite difference
boundary layer calculation. The reader has to keep in mind that there is no further interaction between
the boundary layer variables as calculated by the finite difference method and the pressure distribution
coming from. The pressure distribution from is however the final converged solution
where the boundary layer interaction is taken into account. The difference due to leaving out the
interaction with the boundary layer in the finite difference method can be considered small, as the
only possible influence would be the effect of the difference between the boundary layer solution
from  and the finite difference method. The working of the finite difference method is described
in section 2.4. The results of these calculations done with the finite difference method can be seen in
figures 7.1 to 7.28. In these figures only the shape factor and theN-factor is shown, as theReθ values
are in very good agreement and for these cases can be found in appendix C. Also a comparison is
made with theN-factor calculation using the and the finite difference calculated boundary
layers.

Figures 7.19 and 7.20 do not go up toN = 9 because there is separation occurring which causes
the finite differences method to stop the calculation. As can be seen in the figures the shape factor
as calculated using the finite differences method is different in many cases. The finite difference
method is believed to be more accurate and therefore the laminar boundary layer formulation as used
in  and is often underestimating or overestimating the shape factor. This is a serious
observation, as this implies that the transition position as calculated by and can be
quite a bit from the actual location. This has not such a big impact if there is a steep rise inN-factor
but can be quite dramatic when theN-factor does not rise so steep. This is very clear in figure 7.23
where the transition point differs more than 20% of the chord. The sensitivity of theN-factor to the
shape factor can now also be clearly seen. Observing figures 7.21 to 7.24 the conclusion is drawn that
when the shape factor and theReθ are the same also theN-factor will be the same. This implies that
the only disturbing factor in the difference seen in these figures is due to the difference inH.
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Figure 7.1: H at lower surface for NACA0012α = 3◦,
Rec = 1 · 106
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Figure 7.2: H at upper surface for NACA0012α = 3◦,
Rec = 1 · 106
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Figure 7.3: N at lower surface for NACA0012α = 3◦,
Rec = 1 · 106
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Figure 7.4: N at upper surface for NACA0012α = 3◦,
Rec = 1 · 106
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Figure 7.5: H at lower surface for NACA0012α = 0◦,
Rec = 1 · 106, no suction
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Figure 7.6: H at upper surface for NACA0012α = 0◦,
Rec = 1 · 106, no suction
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Figure 7.7: N at lower surface for NACA0012α = 0◦,
Rec = 1 · 106, no suction

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

9

10

x

N

f inite di f f erences
x f oilsuc

Figure 7.8: N at upper surface for NACA0012α = 0◦,
Rec = 1 · 106, nosuction
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Figure 7.9: H at lower surface for NACA0012α = 0◦,
Rec = 1 · 106, suctionbase
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Figure 7.10: H at upper surface for NACA0012α =
0◦, Rec = 1 · 106, suctionbase
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Figure 7.11: N at lower surface for NACA0012α =
0◦, Rec = 1 · 106, suctionbase
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Figure 7.12: N at upper surface for NACA0012α =
0◦, Rec = 1 · 106, suctionbase
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Figure 7.13: H at lower surface for NACA0012α =
0◦, Rec = 1 · 106, suction 2· base
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Figure 7.14: H at upper surface for NACA0012α =
0◦, Rec = 1 · 106, suction 2· base
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Figure 7.15: N at lower surface for NACA0012α =
0◦, Rec = 1 · 106, suction 2· base
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Figure 7.16: N at upper surface for NACA0012α =
0◦, Rec = 1 · 106, suction 2· base
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Figure 7.17: H at lower surface for NACA0018α =
2◦, Rec = 1 · 105
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Figure 7.18: H at upper surface for NACA0018α =
2◦, Rec = 1 · 105
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Figure 7.19: N at lower surface for NACA0018α =
2◦, Rec = 1 · 105
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Figure 7.20: N at upper surface for NACA0018α =
2◦, Rec = 1 · 105
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Figure 7.21: H at lower surface for flat plate airfoil
α = 1.33◦, Rec = 5 · 106
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Figure 7.22: H at upper surface for flat plate airfoil
α = 1.33◦, Rec = 5 · 106
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Figure 7.23: N at lower surface for flat plate airfoil
α = 1.33◦, Rec = 5 · 106
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Figure 7.24: N at upper surface for flat plate airfoil
α = 1.33◦, Rec = 5 · 106
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Figure 7.25: H at lower surface for naca 642-A-215
α = 0◦, Rec = 2.75 · 106
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Figure 7.26: H at upper surface for naca 642-A-215
plate airfoilα = 0◦, Rec = 2.75 · 106
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Figure 7.27: N at lower surface for naca 642-A-215
α = 0◦, Rec = 2.75 · 106
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Figure 7.28: N at upper surface for naca 642-A-215
α = 0◦, Rec = 2.75 · 106



Chapter 8

Transition method comparison

After the evaluations of the panelling and the laminar boundary layer equations, now the different tran-
sition methods present in will be evaluated. First the different curves for the10log(Reθcrit )−10

log(H) are compared in figure 8.1.

The Drela method, the Van Ingen method and the improvedeN-method are compared with the seven
test cases used earlier (mentioned in table 6.1). The results for the seven test cases are presented in
figures 8.2 to 8.8.

Figure 8.2 showsN for NACA0012 withα = 3◦, Rec = 1 · 106. The Van Ingen and the Improved
eN-method show very similar behaviour, except the part upward ofN = 8 where the Van Ingen method
switches to the Drela method. The Drela method displays a similar trend but with an offset to the other
two methods. The same holds for figure 8.3 whereN for NACA0012 withα = 0◦, Rec = 1 · 106 and
without suction is displayed. Figure 8.4 is interesting as it employs suction(the 1· basedistribution)
on a NACA0012 withα = 0◦, Rec = 1 · 106. All three transition methods predict a similar trend for
theN-factor.

When the suction velocity is doubled a different graph can be seen, shown in figure 8.5. Very clearly
the advantage of improvedeN-method can be seen. Both the Van Ingen and the Drela method fail in
predicting damping of theN-factor whereas this is predicted by the improvedeN-method. The fact
that the ImprovedeN-method has a somewhat steeper curve in the second unstable part offsets partly
the differences in the different methods predicted point of transition. Figure 8.6 gives again a similar
trend predicted by all three methods, albeit that the Drela method has an offset as usual to the other
two methods. The flat plate airfoilN-factor displayed in figure 8.7 shown again a similar trend but an
offset for the Drela method and the kink in the Van Ingen method which makes the transition point
nearly the same to that of the ImprovedeN-method. The same pattern is seen in figure 8.8.
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Figure 8.1: 10log(Reθcrit ) −10 log(H) for all three transition methods
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Chapter 9

Case study DU99 airfoil

The DU99 airfoil is a 14.7% thick airfoil designed for the standard class sailplane ASW-28. It is quite
well suited for use with boundary layer suction to extend the laminar boundary layer on the upper
surface as the upper surface already has a long laminar boundary layer. This airfoil is planned to be
provided with boundary layer suction to serve as demonstration wing. Transition is forced on both
the upper (at 95% c) and lower (at 85% c) surface to avoid laminar separation. Up to these locations
strong suction can prevent laminar separation, but at the upper trailing edge no suction can be used
downstream of 95% c and at the lower surface a flap will be present from 85% onwards. A case
study is performed on the DU99 airfoil to study the effect of the ImprovedeN-method transition point
prediction on the performance of the airfoil. Also a suction distribution is designed for this airfoil to
achieve better performance. The DU99 airfoil with the panel distribution used is shown in figure 9.1.
For this airfoil 360 panels were used on the surface for all calculations tominimize differences in the
comparisons due to the panelling.

Figure 9.1: DU99 airfoil with the 360 panel grid

9.1 Performance without suction

First the performance polars are calculated using all three transition prediction methods present in
, being the Drela method, the Van Ingen method and the newly implemented Improved eN
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method. These polars can be seen in figure 9.2.

It can be seen that both the Van Ingen method and the ImprovedeN-method behave very similar. This
was to be expected as the methods differ not greatly except for the ability of the ImprovedeN-method
to calculated damping of theN-factor and the ability to calculate more frequencies than the Van Ingen
method so theN-factor curve is smoother. Both the Van Ingen and the ImprovedeN-method predict
transition earlier (up to 10 % c) than the Drela method at adverse pressure gradient situations.

9.2 Suction distribution

For the DU99 a suction distribution is designed. A Reynolds number of 1.05 · 106 andM = 0 was
used. The variation of Reynolds withCl is such thatRe

√
Cl is constant. This corresponds with a

stationary flight situation, where the flight speed varies but that the total liftremains equal. In Broers
[1] it is shown as a practical result that forRe

√
Cl constant, thev0 distribution for this situation is

practically constant forCl > 0. This way the suction velocity can be scaled by1
U∞
√

Cl
so that:

v0(x)

U∞
√

Cl
≈ constant (9.1)

Because thev0 distribution is not exactly constant a suction distribution needs to be calculatedfor
several values ofCl , after which the most demandingCl value determines the suction distribution. For
this airfoil two suction distributions for the upper surface were calculated.The first by using the built
in command in for a first suggestion for a suction distribution to keep a flow laminar (com-
mandbase). The suction distribution was then modified by hand to avoid boundary layerseparation.
This resulted in a suction distribution as shown in figure 9.3. As can be seen the suction distribution
runs from 50% to 95% of the chord. This resulted in the polars calculated withall three transition
methods shown in figure 9.4.

The suction distribution shown in figure 9.3 is somewhat irregular. As the airfoil will be built at some
later stage and provided with boundary layer suction a more smooth and regular suction distribution
is preferred to ease the construction and suction control mechanism. Along with this it is possible
to extend the start of the suction distribution forward. This makes it possible to redesign the suction
distribution and to make it a simpler one. The new suction distribution is shown in figure 9.5. In figure
9.6 both suction distributions are plotted in one figure. A new performance polar was calculated using
the second suction distribution, again using all three transition methods and it isshown in figure 9.7.

A comparison is made of the polar without suction (cyan curve), and with suction distributions no.1
(blue curve) and suction distribution no.2 (magenta curve) in figure 9.8 . The advantages of boundary
layer suction are very clear in this figure. In the low drag bucket region the profile drag of the airfoil is
reduced by about 50% to 75%. This excludes suction drag, because thisis dependant on the efficiency
of the suction system, and possible ejection of the air taken in by the suction system. Even when
transition point occurs just in front of the start of the suction distribution (at aroundCl = 0.9 for the
second suction distribution) and the turbulent boundary layer is presentin the suction part, the drag
is still a lot less than the non suction case through the effect of suction on the turbulent boundary
layer. Also theClmax is with suction around 1.7 instead of 1.4 without suction. So for the DU99 airfoil
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Figure 9.2: DU99 polar without suction
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Figure 9.3: DU99 suction distribution no. 1

a carefully designed suction distribution can dramatically reduce drag and increase lift by delaying
both transition and laminar and turbulent separation. Therefore this airfoilis very well suited for
windtunnel testing and verifying the calculations.
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Figure 9.4: DU99 polar with suction distribution no. 1
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Figure 9.5: DU99 suction distribution no. 2
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Figure 9.6: DU99 suction distribution no. 1 & 2
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Figure 9.7: DU99 polar with suction distribution no. 2



116 Case study DU99 airfoil

Figure 9.8: DU99 polar, without suction, and both suction distributions



Chapter 10

Conclusions and Recommendations

10.1 Conclusions

From this study some conclusions can be drawn with regard to the objectiveslaid out in section
1.4: To implement an improved transition region prediction method in that achieves reliable
results for boundary layers on airfoils with and without boundary layer suction. A reliable transition
prediction method was implemented in in the form of the improvedeN-method, and it can
calculate both amplification and damping of theN-factor. Some measures to ensure converging of the
boundary layer calculation inwere necessary. These measures use the forcing routine already
present in to interrupt infinite loops can otherwise be caught in. These measures do
not significantly influence the location of transition.

Without boundary layer suction the results of this method are very similar to the Van Ingen method
implemented earlier in, as long as theN-factor is strictly increasing. Compared with the
Drela method for non-suction boundary layers, the improvedeN-method shows a steeper curve for
theN-factor all cases except the flat plate airfoil, where the gradient is similar.When boundary layer
suction is applied, only the improvedeN-method can predict damping of theN-factor. This is of
great value when designing airfoils specifically meant for use with boundary layer suction to delay
transition and boundary layer separation to reduce drag.

In analyzing the grid convergence it was found that the default value of160 panels is for many cases
not a dense enough distribution and 360 panels were used to ensure the influence of the panelling on
the transition locations could be neglected.

The laminar boundary equations of and were found to differ significantly from the
results made with a finite differences method. It is believed the laminar boundary equations or its
closure relations in and are somewhat inaccurate with regard to the shapefactor. As this
influences the transition location calculation highly this is a serious observation. Connected with this
is the fact that for high suction velocities a laminar shapefactor of less than 2is given by.
Finding the cause of this was thought to be outside the scope if this study, butthe observation deserved
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to be mentioned here.

The DU99 airfoil is suited well for use with boundary layer suction. Drag reductions (excluding
suction drag) are between 50% and 75% in the low drag bucket. Outside the low drag bucket the
drag reductions are also significant. Also using boundary layer suction aClmax of 1.7 can be achieved,
compared with aClmax of about 1.4 for the case without suction.

10.2 Recommendations

A few recommendations for future study can formulated after this study.

• It would be interesting to verify the working hypothesis about the asymptotic suction boundary
layer having a stability diagram very similar to that of the stagnation point with calculations.
This could be done by making or using an Orr-Sommerfeld equations solver and calculating
the stability diagram of the asymptotic suction boundary layer and comparing it tothe stability
diagram of the stagnation point.

• A study in determining the actual frequencies responsible for the dominant amplification of
disturbances beforehand would increase the efficiency of the method, because a large range
of frequencies(601) is used to try all possible dominant frequencies are included in the calcu-
lations, but in some cases the number of frequencies in the unstable area is too small for an
accurate description of the amplification rate curve.

• A detailed study should be made into the laminar boundary layer calculation of and-
 as they were found to differ from results using a finite differences method and in suction
cases allow a shapefactor of less than 2 to appear.

• Connected with the previous suggestion is the recommendation to study the lack of conver-
gence in due tos handling of the interaction of the boundary layer iterations and the
transition calculation.

• A grid convergence study should be done for each profile that is to be extensively analyzed
using or . Especially when using suction, results can vary much with the number
of panels used.



Appendix A

User Guide Transition

This user guide is a short guide for users working with and who want to use the (full) Van In-
gen or the improved Van Ingen transition method. This last transition predictionis valid for boundary
layers with and without suction. This short guide is split in two sections: one concerning the choice
of transition method () and another with the convergence improvement () usually needed in
 for the two above mentioned methods.

*Warning* A warning beforehand is needed here, as this user guide maybe separately used from
the thesis it is appended to. In testing it was found out that the boundary layer formulations
in  allow for a shape factor of less than 2 when suction is used. It is believed that this is
*NOT* correct, and that only values above H= 2 should be trusted.

A.1 

The command stands for TRansition MEthod and can be found in demenu. When entering
the command a short menu will appear giving the user 3 choices:

1. 2nd order Drela method

2. Van IngenseN method

3. Improved Van IngenseN method

A.1.1 2nd order Drela method

This method is an improved version of’s first transition method, the 1st order Drela method.
This 2nd order method is more accurate than the 1st order method but is essentially the same. It is

119



120 User Guide Transition

an envelope method that is based on self-similar Falkner-Skan velocity profiles. From H= 5 onwards
non-similar profiles are used for better accuracy in separated flow situations. This transition method
cannot cope with damping of TS instability (as can occur with boundary layersuction) and has the
implicit disadvantages of envelope methods (although alleviated by the use of non-similar profiles
for H > 5) but is the best converging method of all three and therefore needs nohelp in finding a
converged solution that both other methods need.

A.1.2 Van IngenseN method

The (full) Van Ingen method implemented in 2002 in was meant to be able to account for
damping TS instabilities, as can occur when using boundary layer suction. This it is able to do, but
to a very limited amount only. This is because the calculation is stopped whenever a Reθ lower than
Reθcrit is found. TheN-factor is kept constant when this happens. The only damping can come from the
dominant frequency that, even though it is being damped, stays dominant. Atleast one other frequency
needs to be unstable, to keep the calculation going. The method is a fulleN semi-empirical method
which usesReθ and the H factor to calculate the present N factor. In the boundary layer iteration
converges badly when this method is used.s interaction between the boundary layer iteration
and transition calculation are to blame for this. There are 2 solutions to this convergence problem,
both boiling down to the same: namely to switch slightly before transition to Drela’s method. This
can be done by using the Nlimit or the safety factor method. See A.2.2 and A.2.1.The Nlimit method
is the default method for this transition method.

A.1.3 Improved Van IngenseN method

The improved Van IngeneN method is invented by Van Ingen in 2005. This improved method is able
to cope with amplifying and damping TS instabilities, which makes it possible to use boundary layer
suction. This is of great importance to, in which already the boundary layer formulation
was adapted to handle normal velocities on the wall. Using this routine will enablethe user to design
airfoils using boundary layer suction with accurate transition predictions. However also when this
method is used in the boundary layer iteration converges badly. Agains interaction between
the boundary layer iteration and transition calculation is to blame. The before mentioned solutions of
switching to the Drela method can be used, however in cases of boundary layer suction a third method
is preferred which is known as the forcing method. See A.2.3. The defaultmethod is the forcing
method for this transition method.

A.2 

This is the convergence method selection. This command opens a small menu featuring 4 options:

1. Safety factor method, uses predicted N to switch
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2. Nlimit, fixed N limit method

3. Forcing xt at calculated xt coordinate

4. No convergence improvement

A.2.1 Safety factor method

The safety factor uses thedN
dx value multiplied by the (current)dx value. This is then multiplied by

the ’safety factor’ and added to the currentN-factor. If this value is larger than the specified N at
which transition is assumed the method switches to the Drela method. This way the method switches
at the latest possible interval, so that the deviation due to the difference in method is small. The
safety factor can be changed from its default value of 1. separately for each side, or for both sides
at once. The higher the safety factor, the earlier switching occurs. In the iteration output the values
for the switching interval on each side are displayed to be compared to the transition interval. Some
caution is advised when using this method in a situation where the n factor will risesteep only to go
down further on. During a steep rise the predicted value can be quite large, especially when boundary
layer suction is used, and too early switching occurs. (especially the suction cases are dangerous as
the Drela method to which is switched cannot cope with damping of TS instabilities) will
give the interval in which is switched during iterations, so the user kan adapt the ’safety factor’ value
accordingly.

A.2.2 Nlimit method

The Nlimit has a similar working as the safety factor but is more direct. The Nlimit value is the value
above which the transition method is switched to the Drela method. This value can also be separately
set for each side, or both sides at once. The default setting is 8.will give the interval in which
is switched during iterations, so the user kan adapt the Nlimit value accordingly.

A.2.3 Forcing method

The forcing method can only be used with the improved Van Ingen method and works quite differently
from the methods mentioned above. If the transition point is fixed and does not move more than
0.0001x

c the transitionpoint is forced to that spot. In forcing the transition there, convergence will be
easier achieved. To combat the infinite loops in which can get stuck, this method also checks
whether two consecutive values for the transition point are closer than 0.1x

c and also checks whether
these points are not too volatile. The maximum distance they are allowed to move in an iteration is
0.02 x

c . If this is established the downstream transition point (as long as the distancebetween the
points is at least 0.02xc) is forced 0.005x

c forward. Transition can still occur freely in front of this
downstream point, but not after. This process goes on untill both transition points (the upstream and
downstream one on one side) are closer than 0.02x

c or the values ’merge’ to 1 transition point at
which convergence occurs (due to the first forcing case or naturally). In the case of the two points
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being close, the downstream one is forced forward1
4 of the distance between them every time untill

the two points match at a free or forced transition point. This way the accuracy is never more off than
0.5% of the chord and convergence is good, even in separated flows.

A.2.4 No convergence improvement

This option is to disable all the convergence improving options.
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Airfoil Grids

Figure B.1: NACA0012 with 160 panels

Figure B.2: NACA0012 with 360 panels
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Figure B.3: NACA0018 with 160 panels

Figure B.4: NACA0018 with 360 panels

Figure B.5: Flat plate airfoil with 160 panels

Figure B.6: Flat plate airfoil with 360 panels
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Figure B.7: NACA 642-A-215 with 160 panels

Figure B.8: NACA 642-A-215 with 360 panels
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Appendix C

Validation figures

Figure C.1: Cp NACA0012 forα = 0◦
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Figure C.2: H for NACA0012α = 0◦,Rec = 1 · 106,
no suction, lower surf.
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Figure C.3: H for NACA0012α = 0◦,Rec = 1 · 106,
no suction upper surf.
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Figure C.4: Reθ and Reθcrit for NACA0012 α =

0◦,Rec = 1 · 106, no suction, lower surf.
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Figure C.5: Reθ and Reθcrit for NACA0012 α =

0◦,Rec = 1 · 106, no suction, upper surf.
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Figure C.6: N for NACA0012 atα = 0◦,Rec = 1 ·106,
no suction, lower surf.
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Figure C.7: N for NACA0012 atα = 0◦,Rec = 1 ·106,
no suction, upper surf.
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Figure C.8: Cp for NACA0012 atα = 0◦,Rec = 1 · 106, base suction
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Figure C.9: H for NACA0012 atα = 0◦,Rec = 1·106,
base suction, lower surf.
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Figure C.10: H for NACA0012 atα = 0◦,Rec = 1 ·
106, base suction, upper surf.
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Figure C.11: Reθ and Reθcrit for NACA0012 atα =
0◦,Rec = 1·106, base suction, lower surf.
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Figure C.12: Reθ and Reθcrit for NACA0012 atα =
0◦,Rec = 1·106, base suction, upper surf.
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Figure C.13: N for NACA0012 atα = 0◦,Rec = 1 ·
106, base suction, lower surf.
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Figure C.14: N for NACA0012 atα = 0◦,Rec = 1 ·
106, base suction, upper surf.
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Figure C.15: Cp for NACA0012 atα = 0◦,Rec = 1 · 106, 2·base suction
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Figure C.16: H for NACA0012 atα = 0◦,Rec = 1 ·
106, 2·base suction, lower surf.
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Figure C.17: H for NACA0012 atα = 0◦,Rec = 1 ·
106, 2·base suction, upper surf.
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Figure C.18: Reθ, Reθcrit for NACA0012 at α =

0◦,Rec = 1 · 106, 2·base suction, lower
surf.
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Figure C.19: Reθ, Reθcrit ffor NACA0012 at α =

0◦,Rec = 1 · 106, 2·base suction, upper
surf.
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Figure C.20: N for NACA0012 atα = 0◦,Rec = 1 ·
106, 2·base suction, lower surf.
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Figure C.21: N for NACA0012 atα = 0◦,Rec = 1 ·
106, 2·base suction, upper surf.

Figure C.22: Cp for NACA0018 atα = 2◦,Rec = 1 · 105
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Figure C.23: H for NACA0018 atα = 2◦,Rec = 1 ·
105, lower surf.
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Figure C.24: H for NACA0018 atα = 2◦,Rec = 1 ·
105, upper surf.
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Figure C.25: Reθ and Reθcrit for NACA0018 atα =
2◦,Rec = 1 · 105, lower surf.
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Figure C.26: Reθ and Reθcrit for NACA0018 atα =
2◦,Rec = 1 · 105, upper surf.
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Figure C.27: N for NACA0018 atα = 2◦,Rec = 1 ·
105, lower surf.
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Figure C.28: N for NACA0018 atα = 2◦,Rec = 1 ·
105, upper surf.
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Figure C.29: Cp for flat plate airfoil atα = 1.33◦,Rec = 5 · 106
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Figure C.30: H for flat plate airfoil atα = 1.33◦,Rec =

5 · 106, lower surf.
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Figure C.31: H for flat plate airfoil atα = 1.33◦,Rec =

5 · 106, upper surf.
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Figure C.32: Reθ andReθcrit for flat plate airfoil atα =
1.33◦,Rec = 5 · 106, lower surf.
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Figure C.33: Reθ andReθcrit for flat plate airfoil atα =
1.33◦,Rec = 5 · 106, upper surf.
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Figure C.34: N for flat plate airfoil atα = 1.33◦,Rec =

5 · 106, lower surf.
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Figure C.35: N for flat plate airfoil atα = 1.33◦,Rec =

5 · 106, upper surf.
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Figure C.36: Cp for NACA642-A-215 atα = 0◦,Rec = 2.75 · 106
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Figure C.37: H for NACA642-A-215 atα = 0◦,Rec =

2.75 · 106, lower surf.
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Figure C.38: H for NACA642-A-215 atα = 0◦,Rec =

2.75 · 106, upper surf.
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Figure C.39: Reθ and Reθcrit for NACA642-A-215 at
α = 0◦,Rec = 2.75 · 106, lower surf.
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Figure C.40: Reθ and Reθcrit for NACA642-A-215 at
α = 0◦,Rec = 2.75 · 106, upper surf.
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Figure C.41: N for NACA642-A-215 atα = 0◦,Rec =

2.75 · 106, lower surf.
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Figure C.42: N for NACA642-A-215 atα = 0◦,Rec =

2.75 · 106, upper surf.
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[26] Navier, C. L. M. H.:Mémoire sur les lois du mouvement des fluides, Mem. Acad. R. Sci. Paris,
vol. 6, (1823)

[27] Orr, W.M.F.: The Stability or Instability of Steady Motions of a Perfect Fluid and of a Viscous
Liquid, Proc. Roy. Irish Aced. Sect. A. (1907)
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