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Phaseplane description of the boundary-layer flow between non-parvallel

plane walls.

Introductory remarks,

From the examples discussed in chapter 5 it follows that the behaviour of
boundary-layer flows strongly depends on the streamwise pressure gradient
and the suction velocity.

Another important example which may illustrate this is the viscous flow
between non-paraliel plane walls. This flow has been discussed already

in 1915 and 1916 by Jeffery'[ZS] and Hamel[_24] respectively using the
Navier-Stokes equations, From their work it is known that in the case of
inflow between non-porous walls the Navier-Stokes equations admit a
boundary layer type sclution for which the radial velocity component
hecomes pfactically constant at large distances from the wall.

For inflow between impervious walls such a boundary layer type solution

is also allowed by the boundary layer equations., This solution was given
in closed form by Pohlhausen in 1921 [22]; it will be discussed further

in section 6.3.

For outflow between diverging walls it is only possible to obtain boundary
layer type solutions in case a sufficient amount of suction at the wall is
applied.

This characteristic difference between the cases of inflow and outflow
becomes very clear when the flow is studied in a "phase plane” where shear
T is plotted versus the velocity component u paraltlel to the wall.

The phase plane concept is known from the theory of oscillations of non-
linear autonomous systems with one degree of freedom where speed is plotted
versus displacement. These oscillations are described by a second order
ordinary differential equation in the variables displacement x and time t

of the form
dx
+ g(x, 65) =0 {(6.1)

As the time t does not appear explicitly in this equation it can be

eliminated between (6.1} and
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dx
y = R (6.2)
where y denotes the speed.

The resulting equation is of the form

dy _ P(x,y)

EIE%0) 6.3

Singular points of this equation occur for values of x and y where both P
;nd @ vanish; the singular points correspond to equilibrium positions of
the oscillation. The type of singularity determines the character of the
stability (or instability) of the oscillation.

A general theory of equation (6.3) has been given by Poincaré [58];
reviews of this theory may be found for instance in the books by Minorsky
[691 and Stoker [70].

If the origin of a Cartesian coordinate system coincides with the singular

point under investigation eguation (8.3) may be written in the form

dy _ ax + by + P1(x,y)
dx ~ cx + dy + Ql(X,Y)

(6.4)

; 2 2
where P (0,0} = @ (0,0) = 0. If P, and Q, vanish like x +y when x and y
tend to zexro and if furthermore ad - bc £ O the type of singularity is

determined by the simpler equation

dy _ ax + by

dx ~ cx + dy (6.5)

A classification of the singularities may then be given in terms of the
constants a, b, ¢ and d (see for instance Stoker[:TO]) and hence the
different kinds of singularities of (6.3) may be determined without actually
solving the equation,

In the following section it will be shown that for the flow between non-
parallel plane walls the boundary layer equations can be reduced to the

form (6.1} so that the phase plane method may be used to study the flow
problem. It follows also that the singular points correspond to the edge

of the boundary layer; solutions of the boundary layer type will only

occur when the singularity is a saddle point or a stable node. The kind of
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singularity will depend on the amount of suction or hlowing; it is found

for instance that for outflow between diverging walls a minimum amount

of suction has to be exceeded before a boundary layer type solution will

be possible.

A similar treatment may be given for the full Navier-Stokes equations;

the results are essentially the same as for the boundary layer equations.
In some cases it is even possible to transform the Navier-Stokes

equations into the boundary-layer equations by introducing suitable new
variables; only the boundary conditions remain different. This difference
in boundary conditions vanishes when the Reynoldsnumber becomes large and
the solutions of the Navier-Stokes equations then tend to those of the
boundary layer equations., In this thesis only the results for the boundary
layer equations will be given. A more detailed review of this work,
together with the phase plane description applied to the Navier-Stokes
equations, may be found in [71].

As far as the author is aware, the only other phase plane representation
of viscous flow has been given by Ku [72] who discussed the boundary

layer flow for the flat plate and the plane stagnation point. As the equations
{3.14) and (3.20) describing these flows are of the third order a phase
space is needed instead of a phase plane. Since the general theory for
singularities in a three dimensicnal space 1s more complicated than for
the two-dimensional problem, Ku was unable to establish a relation bhetween

the types of singularities and the character of the flow.

The boundary layer equations for the flow between non-parallel plane walls.

For radial flow between non-parallel plane walls (fig. 6.1) the potential

flow velocity distribution is given by

U= u, x (6.6)

where ul is a constant., For ul > 0 equation (6.6) represents outflow
from a two-dimensional source at x = O; for u, « O inflow into a sink
is obtained. It has heen mentioned already in section 3.1.1 that for
U= x_l the boundary layer eguation (2,7) and the continuity equation

1
(2.5) admit a similar solution. To obtain this solution the non-dimensional
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wall distance 7 is introduced with

u
n=Z\f 1711" (6.7)

and the non-dimensional streamfunction £(n) by

;y=\f ) |ull £() -A ”l“l‘ fn x (6.8)

In equation (6.8) % is a constant which determines the suction velocity
at the wall according to equation 6.15.
With (3.7) and {(6.8) the continuity equation (2.5) issatisfied; the
velocity components u and v follow from
lull — . u
u= —— £ () = IU‘ £ () or U= 0= £'(n) (6.9)

v=\{lu] Tem +%\/\)lul| (6.10)

In (6.9), {(6.10) and subseguent equations in this chapter primes denote
differentiation with respect to 7.

Introduction of (6.9) and (6.10) in the boundary layer edquation (2.7)
leads to

TAARIU N LR e P

0 (6.11)

Since f does not occur in (6.11) the order of this equation may be

reduced through the intreduction of £' = . The resulting equation is

E"—>\E'+Gz—1=0 (6.12)
Boundary conditions for solutions of (6.12) are at the wall
n=0:u=0 (6.13)

and at the edge of the boundary layer n—=&m ¢

U-=+1 for outfiow (ul> 0)
u—> -1 for inflow (u, < 0 (6.14)

U'—> 0O both for outflow and inflow
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It follows from (6.10) that the normal velocity at the wall (n =0) is

v, = é} \/ v I ull (6.15)

This equation shows that v0 should be inversely proportional to x to

given by

obtain similar solutions; blowing occurs for )\ > 0 and suction for

»r < o,

The non-porous wall ( A = 0).

For the non-porous wall ( A = 0) equation (6.12) can easily be integrated
after multiplication with 2 u'. The result is

2

@) +§ES

-2 U=4A (6.16)
where A is an integration constant.

For inflow the boundary conditioms (6,14) at the edge of the boundary
4
layer require that A = + =, Then it follows from (6.16) that at the wall
2

3
— 4
(u'y = §; hence the non-dimensional shear stress at the wall is given by
' (o) = —2A51 The negative root is taken because in the present

coordinate system both the velocity and shear stress are negative for the
case of inflow,

For outflow the conditions (6.14) at the edge of the boundary layer lead
to A = - %. However, from (6.,16) it follows that A should be non-negative
to obtain a real value for the skin friction at the wall (u = 0). Hence
it is concluded that (6.18) does not allow a real houndary layer type
solution for outflow.

The sclution for inflow with A = + i can be written in the forms

3
du _ —, _ 4 - 2,3
E_u H_\/§+2u-§(u) (6.17)
u
d
n=-f U . (6.18)
o 2 + 20 E e
3 -3 "
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Agein the minus-signs in (6.17) and (6.18) are introduced since for the
cace of inflow both u and u' are negative. Integration of (6.18) leads

to the following expression for the velocity profile

- 2

U= 3 tgh Aoyo1,146]) - 2 (6.19)
'B

A graph of the velocity profile is shown in fig. 6.2. The solution (6.19)

was obtained by Pohlhausen in 1921 [22]. (see also[_?], chapter 9.hb).

That a corresponding solution for outflow does not exist can easily he
demonstrated by studying equation (6.12) in the phase plane.

Introducing the non-dimensional shear stress 1T b
y

- - _du
T=u' = an (6.20)
equation (6.12) may be written, for )\ = 0, in the form
d7 —2
ﬁ— 1 - u (6.21)

Elimination of % between (6.20) and (6.21) leads to the following first

order differential equation

(6.22)

Since equation (6.22) is of the form (6.3) it can easily be studied
using Poincaré's general theory. Singular points are obtained for 7T = 0
and u = -1 or +1; these points in the phase plane correspond tc the edge
of the boundary layer in the physical plane for inflow and outflow
respectively. Sclutions of (6.22) are easily found to be

-2 —_ .,
T =2y - % u3 + A (6.23)

where A is an arbitrary integration constant. Integral curves for
different values of A are shown in fig. 6.3. These trajectories were

obtained by solving (6.12) on an analog computer for different initial
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conditions; the curves in fig. 6.3 were drawn by a plotting machine
coupled to the analog computer. Arrows in fig. 6.3 indicate the direction
in which the trajectories are traversed with increasing wall distance .
This direction follows from (6.20) which shows that 7 increases with U
when T is pesitive.

The singularity at (-1,0)} in the phase-plane is a saddle point; it
corresponds to the edge of the boundary layer for inflow. At (+1,0) a
center occurs which represents the edge of the boundary layer for
outflow,

A solution of (6.22) which satisfies the boundary conditions (6.13) and
{6.14) should produce a trajectory in the phaseplane connecting & point
on the T-axis (n = u= O} with one of the singularities. It follows from
fig. 6.3 that such a solution may be found for inflow; it is defined by
the trajectory PS5 for which A = + %. This trajectory clearly represents
Pohlhausen's solution (6.17).

The boundary layer velocity profile follows ifrom

n = U{M du (6.24)
',?

it can easily bhe produced by the analog computer. The velocity profile
cbtained in this way is shown in fig. 6.4 together with the profiles
corresponding to some adjacent trajectories in fig. 6.3. The figure
shows that Pohlhausen's solution is a unique one. It should also be noted
that the solutions of (6.22) for the case of inflow show the same
behaviour as the Hartree solutions for the Falkner-Skan eqguation in

case B > 0 (cf. section 3.1.2).

It is clear from fig. 6.3 that no boundary layer type solution can be
found for outflow because (+1,0) is an isolated singular point, It will
be shown in the next section that for outflow boundary layer type
solutions may be found only if a sufficient amount of suction is applied

at the wall.

The effects of suction and blowing (A # 0).

For>\ # O the walls of the channel should be porous giving a2 normal
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velocity distribution in accordance with equation 6.15. This equation
shows that there is suction at one wall and blowing at the other one with
a normal velocity inversely proportional to x. In what follows only the
lower wall will be considered for which A < © or A > O means suction
or blowing respectively. A solution of (6.12) in c¢losed form can not be
found for A # 0. According to Mangler]:373 numerical scolutions have
been obtained by Holstein [73]; detailed numerical results will not be
given in the present work however, Instead of this, equation (6.12) will
be studied in the phase plane giving a better insight inte the structure

of the equation.

— d
Introducing T = E% and eliminating 7 from (6.20) and (6.12) leads to

the following equation

- I -2

ar Arer - @ 1-u : (6.25)

du T
Equation (6.25) is again of the type (6.3) and hence can easily be studied
using Poincaré's theory. For all values of A the singular points are found
at T=0, u= + 1 and hence are the same as in the no-suction case (A = 0).
It is easily found that the singular point (-1,0), representing the edge
of the boundary layer for inflow, is always a saddle point irrespective
of the amount of suction or blowing. The type of the singularity at (+1,0),
corresponding to the edge of the boundary layer for outflow, depends on
the value of X according to table 6.1,
Phase plane portraits for different values of A , obtained from the anzalog
computer, are shown in fig. 6.5.
Since the singularity at (-1,0) is always a saddle point there is a unique
boundary layer type solution for the case of inflow irrespective of the
amount of suction or blowing. These solutions correspond to the
trajectories connecting the - 7 axis with the singularity (-1,0). The
corresponding velocity profiles are shown in fig, 6.6 for different values
of )\.
A boundary layer type solution for ocutflow would require a trajectory in
the phase plane connecting some point on the + T-axis with the singularity

{(+1,0). Fig. 6.5 shows that for blowing ( A> 0) atl trajectories lead
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away from the singular point. Hence, a boundary layer type solution is
not possible for outflow with blowing at the wall. From section 6.3 it

is known already that also for the impervious wall ()\ = 0) no seclution
is possible,

For suction at the wall ()\<: 0) an infinity of solutions exists; however
not all these soluticns are physically acceptable. For -2 2 & /\41 0]
the singularity at (+1,0) is a spiral point which produces velocity
profiles of the type shown in fig. 6.7. In this case u approaches 1 in

an oscillatory manner which is physically not acceptable. With increasing
intensity of suction the spiral changes into a stable node for )\s; -2\[;:
the corresponding velocity profiles are of the type shown in fig. 6.8.
Some of the velocity profiles have an overshoot and hence are rejected

a5 physically unacceptable. Thére remains however an infinity of
solutions for which u —® 1 from below; it is not clear on physical
grounds which of these solutions should he selected as the relevant one,
This situation is analogous to the problem encountered by Hartree in his
study of solutions of the Falkner-Skan equation (3.10) for B < O (see
section 3.1.2), To obtain & unigue solution Hartree introduced the extra
condition that the relevant solution is the one for which U —3> 1 as

fast as possible without making an overshoot. If this "Hartree condition”
is alsc accepted for the present problem it follows that the steeper

main branch of the stable node should be used (fig. 6.9)., Some further
arguments in favour of Hartree's choice can be produced in the present
case. If it is required that u approaches 1 exponentially it should be
‘possible to develop 7 in a power series in (u-1) starting with a2 term

of the first degree, This is only possible for the two main branches of
the node; the other trajectories through the node can only be represented
by non-analytical series. The power series for the steeper main branch
has finite coefficients for all values of K é - 2 2; for the other
main branch however some of the coefficients in the series may become
infinite at certain values of A . Hence if u should tend to 1 exponentially
with 7 for all values of A , only the steeper main branch of the node may
he used; this is in agreement with Hartree's choice.

A further argument follows from an inspection of the phase plane portraits

in fig. 6.5, It fellows that with increasing suction the steeper main
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branch moves into a region with higher shear and hence produces a
thinner boundary layer. For the other main branch, however, increased
suction produces a smaller values of 7 and a thicker boundary layer; this
conflicts with our physical ideas about the effects of suction on houndary
layer flows.
If, finally, the steeper main branch of the node is selected as
representing the relevant boundary layer type soclution for the case of
is obtained for h S; -2

outflow a unique velocity profile 2. The

velocity profiles for some values

From fig. 6.5 it feollows that for

pecomes very high and the steeper

of)\ are shown in fig. 6.6.

}\ —= _¢ the wall shear stress

main branch of the node tends to a

straight line through (+1,0). In the same way the relevant trajectory

through the saddle point becomes a straight line, This property is shown

more clearly after introduction of the following transformations

N =

sl
I

(6.26)

(6.27)

Substituting (6.26) and (6.27) into (6.25) leads to the following

equation
—2
= 1-u
dr, LR
— = — (6.28)
du Tl
which for }\—-:» - ¢n reduces to
aT
-1 (6.29)
du
From (6.29) it follows that the trajectories'through the singularities
(+1,0) are given by
?l =1-u for outflow (6.30)
T, =-1 -4 for inflow (6.31)
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Using (6.26), (6.27) and integrating (6.30) and (6.31) leads to

A

l EI =1 - e_nl =1-e (6.32)

With (6.7) and (6.15) equation (6.32) may be written in the form
vy
(o]

-— v

lul =1-e {6.33)
Equation (6.33) shows that bhoth for outflow and for inflow with increasing
suction the velocity profile tends to the asymptotic suction profile

discussed in section 3.1.5. This result had been obtained already by

Pretsch [74] (see Mangler [37]).

Consequences of some results of the phase plane description for practical

boundary layer calculations.

For the case of inflow between impervious walls equation (6.17) shows

- _ .
that the relation between T and u is given by the following polynomial

-2 2 3 4

T = - "3" u + 2 u + § . : (6-34)
—2 2 — 2 —
or T = 3 (u+1)(2-w (6.35)

In the last part of section 6.4 it was shown that both for cutflow and
for inflow the asymptotic suction profile is obtained whmak —_— _on,
From equations {(6.30) and (6.31) it follows that also in these cases
the relation between E? and u is a simple polynomizl.

It can be shown that for the case of inflow, at arbitrary values ofA, T

may be developed in a power series in (v + 1) of the fornm
- — - .2 — .3
T = yl(u+1) + 7, (u+l)”™ + Ys(u+1) + ovaaas (6.36)

(note that for inflow u = -1 at the singularity). It may be shown

that the series converges rapidly for all values of.x . For,x = 0 the
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=

2 - 2 —
sexries expansion of \/ 3 (u+l) (2-u) is obtained.
For the case of outflow with k 5;-2 2 a series expansion around

u= +1 is possible of the form
- — —. 2 —. 3
T=r (1) + To(t-u)™ + vo(l-w)” + L (6.37)

It is found that the series converges well except for values of)\ near

the limiting value -2 V 2.
The numerical results quoted above suggest the idea that a practical
calculation method of the Pohlhausen type can be developed in which the

velocity profile is defined by a2 polynomial expression of the form

- — —2
T = ao + au + AU’ e (6.38)

Such a method will be described in the next chapter.



Table 6.1: Type of the singularity for equation (5.25) at (+1,0}

A type of singulariiy
o -2 V? stable node
-2 v_é\ <, A <0 stable spiral
o3 center
o < A < 2 Vo unstable spiral
?/ 2V 2 unstzble node
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