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A new multimoment method to obtain solutions of the boundary layer

eguations.

Introductory remarks.

It was shown in chapters 4 and 5 that - at least for cases without
suction - reasonably accurate solutions of the boundary layer equations
can be obtained by means of the von Kdrmin-Pohlhausen technique. In
methods of this type a suitable expression for the velocity profile is
used in combination with certain compatibility conditions and moments.
Since these methods in themselves do not provide a check on their
accuracy, it will only be possible to get an idea about their validity
by applying them to boundary layer flows for which exact solutions are
available. If such a method works well for a specific example it may
reasonably be expected that the results for similar cases will also be
sufficiently accurate. For widely different cases however the results
may be entirely useless.,

It may be expected that the accuracy of the Pohlhausen-type methods

can be improved by increasing the number of parameters in the expression
for the velocity profile. These extra parameters then have to he
determined from additional compatibility conditions and/or moment
equations. Since moment equations are relations between mean dquantities
in the boundary layer while compatibility conditions give relations
between quantities at the wall or at the edge of the boundary layer only,
it can he expected that the best results will be obtained from taking
additional moment equations.

Increasing the number of moment equations leads to considerable
difficulties for existing metheds however; it has been explained already
in section 4.5. that the difficulties arise from the fact that non-linear
algebraic equations have to be solved.

Therefore if a workable Pohlhausen-type method, using many moment
eguations, is to be developed the moments should be defined in such a

way that the moment equations reduce to relations of the form (4.18)

= M (7.1)
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where the Jk are linear in the parameters specifying the velocity profile.
Such a method will be described in the present chapter; the principle idea

is outlined below,

It was shown in chapter 6 that for some special configurations a simple
description of the boundary layer may be given inthe 'phase plane", where
the shear T is plotted versus the velocity component u parallel to the
wall. For the case of inflow between impervious non-parallel plane walls
and for the asymptotic suction boundary layer the relation hetween 12 and

u is given exactly by a simple polynomial (eqs 6.34 and 6.30-6.31
respectively). This observation suggested the idea to develop a kind of
Pohlhausen method starting from the boundary layer equations written in

a form, where x = g and u = % are the independent variables and 72 is the
dependent variable. Here 7 is the non-dimensional shear stress to he
defined by equations (7.11) and (7.20). The governing equation is 2 modified
form of the well known Crocco equation [75] where 7 is used instead of 72
and where moreover compressible flow is assumed. In what follows the new
equation will be called the "modified Crocco equation"; a slightly
different form has been used by Sch¥8nauer [76, 77] to develeop a finite
difference method.

In the present method 7 will be approximated by a polynomial in U ' of
degree N. Moments are obtained by multiplication of the modified Crocco
equation with Ek for k= 0, 1, 2, ..... followed by integration over the
interval u = 0 to u = 1. The method allows N to be increased by taking
more moment equations without unduly complicating the procedure.

For special forms of the functions DU(X)} and ?O(E) solutions .in series

are possible; this series method shows many features similar to the exact
series solutions discussed in section 3.2.

In the application of the method, to be discusced in sSubsequent chapters,
the calculations were made on the Telefunken TR 4 computer of Delft

Technological University.

The modified Crocco equation.

Crocco [75] was the first to introduce a form of the boundary layer

equations in which x and u are used as independent variables and T as
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dependent variable. This edquation will be derived in the present section
for the specizl case of incompressible flow with constant viscosity.

The equations to be transformed are the boundary layer equation (2.7

Ju du av |, Yu
uﬁ‘;(—+v,a—y=U§+ 'ﬁ (7.2)

and the continuity egquation (2.5)

2—§+%§—=0 (7.3)
New independent variables % and y3E are introduced by
: 1
X =X
(7.4
y= v,y J/
From (7.4) it follows that
3 __2 .2 2¥
3 dx By ox*
> (7.5)
2 2 9y
oy" dy oy
rd
\
or %L_ -2 _ .2 9y
S e dy ox
C > (7.6)
"
I
2y 2%
%
oy )

*
Crocco selects yEE to be u; a partial differentiation with respect to x
then leaves u constant. Using (7.6) and noting that U does not depend

on v it follows that
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du  9u Jy k
ox Oy )
u_ 1
oy 37
Su

v
ov_ ou > (7.7)
Py DY

ou
du du
dx *

-~

With 7 = u éE and introducing (7.7) into (7.2} and (7.3) the followin
QY &

eguations are obtained

Py oo du 127
—uD—X;'FV--?UdX—* Eﬁ (7.8)
_a—i+?—-‘5=o (7.9)
Dx u

Fipally v is eliminated from these equations by differentiating (7.8)
with respect to u and subtracting (7.9) from the vresult. If in the

*
resulting equation x 1is again replaced by x and after some

rearrangement, the following equation is obtained

2
ot 21971 dv ja+t _
'ﬂ““(ﬁ) o (a_z) 'D“”d—x(a—a) =0 (7.10)
u u x

X

The subscripts u and x in equation (7.10) are added to emphasize that

the differentiations have to be performed at constant u and x
respectively. The eqguation is equivalent to Crocco's equation for the
special case of constant p and p.

Equation (7.10) will be transformed further by introducing non-dimensional

quantities, defined as follows
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- X - T8
= — = — “
X S T i
; = % 5 = ?2
> (7.11)
- u = =2
= — d. =
u= g 1 Uos
— U =2 dU
U= — = —_
Uers }\1 dx
5= 0\ e p
C Vv

In (7.11) ¢ and V.., represent a constant reference lenth and velocity
respectively; © is a given function of x related to the boundary layer
thickness. In gsection 7.3 the choice for & will be specified.

In what follows x and u are taken as independent variables while S is
the dependent variable. The transformation to the non-dimensional

variables follows from the following equations.

ER ] 1
X X aa . . (7.12)
) - 2 (2) () [
in which
RO
% u UZ dx ox « C 1\
_ _ (7.13)
2 -3 () - [

Introducing (7.11) and (7.13) into (7.10) leads to

4%y 2 2
(—-_- 3?\1) us + 88 - LshH _)\1(15 )s'

dx

)]

—:(ES)=

64
ox 1

(7.14)

In equation (7.14) and in the remainder of the present chapter primes
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denote differentiation with respect to u. Equation (7.14) will be called
"the modified Crocco equation". The boundary condition for (7.14) at the
edge of the boundary layer is S(1) = 0. At the wall (U = 0) a boundary
condition is provided by the first compatibility condition (2.10); this
will be discussed further in section 7.4.

If the requirement is made that at the edge of the boundary layer 1-0
tends to zero as e’ the shear stress 7 behaves like 1-u for u—> 1
{compare section 6.4). Hence S = Ez tends to zero like (1—5)2 for u—> 13
this leads to the following houndary conditions for equation (7.1%) at

=1
5(1) = 8'(1) =0 (7.15)

Equation (7.14) permits the calculation of S(u) provided for a certain
initial value of X the profile 8(u) is known and U and vO(E) are Kknown

asgs functions of x.

A special choice for .

Although & may be any known function of x it is convenient to choose
it in such a way that for some similar boundary layer flows the shear
function S will not depend on X but only on u. To point this out more

clearly possible similar solutions of (7.14) will be studied first.

If S does not depend on x eguation (7.14) reduces to

ac
( L 3)\9 TS+ 88" %(s')z_}\l(l_iz)s' =0 (7.16)

ax

This equation admits solutions independent of x only if both A 1 and
[+/04

-—i are constants. Hence it follows that

dx

_ 2
o =0% =0, +a, (7.17)

A=

1

2 o

dx

ol

= constant : (7.18)

where Qé and &3 are constants.
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If &2 # 0 it is possible, without loss of generality, to make a2 = 1 and

&, = 0 by a trivial change of the variable x.

Equation (7.17) then reduces to

A =03 == (7.19)

implying that

gz \p'——-j-i—- or
U

Elimination of 52 between (7.18) and (7.19) gives

Wl
&

— =1 (7.20})

Hoax=X (7.21)
b4 U
and upon integration
_ Y
U = constant . x (7.22)

Hence a first class of similar solutions, for which S bhecomes independent

of E, may be obtained for pressure distributions defined by

m

U = constant . x ° (7.22)
where m1 = X 1= constant and ® is defined by equation (7.20). This is
in agreement with the exact results discussed in section 3.1.

A second class of similar sclutions is obtained from the case az =0
which was hitherto excluded. This case may be shown to lead to
1%

— b2

U = constant . e (7.24)
where both A 1 and b2 are constant. Hence also for az = 0 one of the
results discussed in chapter 3 is regained; in this case & is defined
by &, =T 52 = constant,.

1

In what follows always the definition (7.20) for 9 will be used; the

corresponding expressions for O. and A 1 then become

1
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051 = x [\ 1= 62 gg =—i— g—g (7.25)
dx U dx
while equation {(7.14) reduces to
- 2 _
5 (1-3 )\1) W5+ 8S'T - 1(sh) -)\l(l—uz)s'
- (u S) = —
x x (7.26)

From the derivation of equation (7.26) it follows that for pressure
distributions defined by equation (7.22) solutions may be found for which

S is independent of X.

The polynomial approximation for 8 and compatibility conditions of the

modified Crocco equation,

It was shown in chapter 8 that for some special cases of similar boundary
layer flows S(u) is given by a simple polynomial. For instance for inflow
between impervious non-parallel plane walls the following result was

obtained {(equation 6.34)

&

(7.27)

5]

]
=

u
RIS
4
®
=
1
o b
c

For the asymptotic suction profile equations (6.30) or (6.31) lead to

_ - 2 )
S = Tz = constant (1 - u) (7.28)

In the present method it will be attempted to cobtain solutions of the
modified Crocco equation (7.26) by assuming that in all cases 8§ can be

approximated by a polynomial expression of the following form

— -2 N
8 = ao + alu tay un ok e By u (7.29)

In (7.29) the coefficients an are functions of x for general boundary
layer flows and constants for the similar boundary layers defined by

_ _m
U= Uy X L Introducing (7.29) into (7.26) gives
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_ - — _2
xé— § aun+l)=d+du+du+...+d“ﬁe(7.30)
3% = n 0 1 2 e

where e = N+1 for N< 3 and e = 2N-1 for N 2 3,
In equation (7.30) the coefficients ¢ are quadratic expressions in the

an. The first few of these read as follows

_ _ 1 -
dO =2 aa, - % a, >\1 ey (7.31)
d. = - 2 .
1 a_ + B a0a3 )\1 (3 ao + az) (7.32)
dz = a, * 12 aoa4 + 3 a1a3 - }\1(2 &, 3 a3) (7.33)

1f (7.30) is valid for all values of u the coefficients of equal powers .
of u in the left- and right-hand sides of the equation have to be equal.

This leads to

0O = dO (7.34)
_ da
x —=4d; (7.35)
dx
" dal
b —_— = d2‘ (7.36)
dx

0=2aa, -3 alz - }\lal (7.37)
Edi=(l-3)\)a +G6aa ~2N.a (7.38)
a5 1’7o o 3 172 :

_ dal
X —= = a; + 12 aoa4 + 3 ala3 -2 Alal -3 )_\133 (7.39)

dx
Equations (7.37) to (7.39) are compatibility conditions at the wall

for the modified Crocco equation. They are the analogues to the

compatibility conditions discussed in chapter 2 for Prandtl's form of
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the boundary layer eguations.

In the derivation of the modified Crocco equation the normal velocity v
has been eliiminated. In order to be able to specify a boundary condition
on v at the wall and to discuss problems with suction, the normal velocity
v has to be introduced again by wmeans of the compatibility conditions

of Prandtl's boundary layer equations.

The first and second of these compatibility conditions read (see section

2.3)

v [g—u) = U S_U +v(i‘;“.) (7.40)
0 ¥ o .4 ay .
2 3
- (b—;‘) = (B_g) (7.41)
°\ oy oy
Q Q

Writing these equations in terms of S and u leads to

3' (o)
P

\
-)\2 S'(0) = 8¢ V 8¢0) (7.43)

in which A*z stands for

AL\ s = )\1 " (7.42)

-v 5 -v
(o]

Az = ¥ = T T:VO .5 (7.44)

wvhile ;g is defined by

v = (7.45)

If 8(o), S'{o) and S''(0) are expressed in terms of the an's eguations

(7.42) and (7.43) can be written in the form

. _z)‘lﬁz)\z\/ a (7.46)

Ao
ay = 21 (7.47)

2\[.;;‘

®
1
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Elimination of X 9 from (7.46) and (7.47) again leads to (7.37). This
means that the first and second compatibility condition of Prandtl’'s

houndary layer equation include the first compatibility condition of

the modified Crocco equation. This, of course, could be expected from
the derivation of the modified Crocco equation.

Some further relations between the coefficients an are obtained from

the conditions (7.15) at the edge of the boundary layer. They lead to

>
a =0 {7.48)
n=0C n
N
and 2;; na = (o] (7.49)

In what follows both conditions (7.48) and (7.49) at u = 1 will be
retained together with the equations (7.38), (7.46) and (7.47). In the
next section these equations will be supplemented by some moment

equations.

Moments of the modified Crocco equation.

In taking moments of the modified Crocco equation it should bhe tried
- in order to fulfill the requirement set out in section 7.1 - to

d.

reduce the left-hand side of (7.26) to the form —% in which J is a
dx

linear combinaticon of the an‘s. Evidently such a relation can be

obtained by multiplying the equation with some function G(u) and
integrating the resulting equation w.r.t. u from O to 1.

In what follows G(u) = ﬁk will be used where k in turn takes the

values 0,1,2,,.,., K. This leads to K+l moment equations defined hy

_ dJk

X — = Mk (7.50)
dx

M, = (13 A RESE )\l P+ 9 (7.51)

N

- s .52

Iy Y Jeon n (7.52)

n=0
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{7.53)

o
e
1l
=1
I} =
[N
o
]
e

k,n
N
Qk = éé%’ qk,{qn apa (7.54)

Jk,n = k+n+2

2n
pk,n (k+n) (k+n+2)

I
=
N
=
N
=

. ) 3 P (7.55)

=
r\.GI'.\J
5
/AN
oo
AN
=]

. n{n-1) An+l¢f-1)
U fon = = Eelmol

B oo
NN
= 2

o
FAY/N

Summary of the formulae to be used in the new calculation method.

This section summarizes the formulae derived in the preceding sections

which have to be used in the new calculation method.

The flow outside the boundary layer is determined by U(x) and Eg H
the suction distribution by v_(X) with dx
v
v 0 U,c
Yo = T ¥ v (7.56)

Furthermore the following definitions are used



5= \fu_ﬁ_.. (7.57)
]

=2 du X
)\l _d_x 4 (7.58)
dx T ax
v
_—— o Ux
}\2 = VO.E) - U— —;)- (7.59)

It should be noted that the pressure distribution only enters the
calculation through X 1 and Az while the suction distxibution only
enters through A.z. The shear stress function S is approximated by the

polynomial
N —_—
s=3Y a u (7.60)

where the coefficients a are determined as functions of x from the

following equations.

da
w— 0
x— = (1-3 A l)ao + 6 a 8, - 2 A 182 (7.61)
dx
al=-2)\l-g)\2\/ao (7.62)
% a
By = - 2 1 (7.63)
Z\fao
Conditions at the edge oi the Egundarg_layer_Eu_: 1):
a1+2a2+3a3+. ....... +Ns.N=O (7.64)
a, + ay + a, + ag + eivasses + ay = 0 (7.65)
Moment equations
dJk
X ——= Mk for k=0,1,2,.....,K (7.66)
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where the Mk follow from equations (7.51) - (7.553). The total number of
equations (7.61) to (7.66) thus obtained is E+6. These equations should

yield the N+1 coefficients an; hence it follows that
E=N-5 (7.87)

Some further remarks on the compatibility conditions at the wall and the
moments may he made here. The choice of the moments and the compatibility
conditions to be used has been made in a rather arbitrary manner. No
systematic investigation has been made of the best possible choice,
However there is an argument in favour of the present choice which will
be given now. The compatibility conditions (7.37) through (7.39) have
been obtained .by equating to zero the coefficients of terms with various
powers of u in {7.30). The same result will be obtained by repeated
differentiation of (7.30) w.r.t. u and putting u = O in the resulting
eguations. A natural complement to these compatibility conditions would
be a set of moment equations obtained by repeated integrations of (7.30)
w.r.t, u-from u = O to u and putting u = 1 in the final results. This has
in fact been precisely achieved because it can be shown that the members
of the present set of moment equations are linear combinations of the
equations which appear upon repeated integration of (7.30). The number

of compatibility conditions was taken as small as possible because it

was felt that the moment equations might be more decisive for the mean
boundary layer characteristics than the compatibility conditions. However,
since in the first compatibility condition (7.62) the square root of aD
already occurs it was decided to go on and to include (7.61) in the system
which provides a differential equation from which ao can easily be

calculated.

Step by step solution starting from given initial conditions,

In this section it is assumed that at some station x = §; starting values
of the an's are known (The determination of the starting values will be
discussed in section 7.9). The an downstream of E; can be determined in
the following way using one of the numerical methods for the integration

-0of & system of ordinary differential eguations.
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From the given starting values at X = §5 the value of ao at the next

station is found using equation (7.81). Then a1 and a2 follow from

(7.62) and (7.63) respectively. The values of the Jk at the next station

follow from equations (7.68). The only remaining problem is to find the
a, for n 2 3 from the values of the Jk' As the Jk are linear relations

in the an (equation 7.52) this leads, in combination with the conditions
(7.64) and (7.65) at the edge of the boundary layer, to the following set

of linear equations.

3 &y + 4 a, + B Bg toeeaenn + N ay = -2 - 2 a, = Bl
aq + a, + ag Foauseas F aN = -ao - al - a2 = Bz (7.68)
®3 a0 %5 N o "1 2

&5 k+6 k+7 ettt TREONTZ T Yk k2 k+3 k4 T k43

where the coefficients Bn have been introduced to denote the known right-
hand sides. The last equation should be used for k = 0,1,2,...... ,N-5.,

The left hand sides of (7.68) do not contain specific. data of the boundary
layer being calculated and therefore the coefficient matrix of the
equations can be inverted once for all, for all values of N to be used.

As the original matrix is very orderly built the inverse can easily be
obtained by hand computation for increasing values of N. Denoting with

aij the coefficient of ai in the jth row of the set (7.68) the elements

of the inverse matrix wilizbe denoted by Aij where i and j assume the
values 1,2,3,...... ,N-2, The results are gilven in table 7.1 for N=5 to 10.
It is noticed that the elements of A become very large for large values

of N. This is caused by the tendency of the coefficient matrix of (7.68)
to become singular at large values of N, It may be noted that the tendency
to singularity had no influence on the accuracy of the inverses presented
because these were obtained by hand computation in the exact number of

figures.

Solutions of (7.68) can now be given in the form

a = Z An_z’j Esj (7.69)

in which n» 2.
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When the value of N is increased, only the number of linear equations to
be solved increases but the method remains in principle the same. Hence

it may be conjectured that the approximate solution will approach the
exact solution when N is successively increased,

A practical limit to the maximum permissible value of N is imposed however
by the loss of significant figures which occurs in (7.69) for large values
of N. This is due to the fact that hoth the an and 5J are of order 1 while
the Aij are of a considerably larger ovder of magnitude (see table 7.1).
This difficulty may be postponed to large values of N if the procedure
outlined above is not applied to the an and Jk but only to the increments
of these quantities,

When values at the initial station are denoted by a bar the increments

follow from

&a = a -a_

jad T n
AJk=Jk _3‘1; (7.70)
ABj=ﬁj~£33

As both the initial and final values satisfy the linear equations (7.68)
it follows that also the increments are determined by the equations
{7.68) when the a ., J, and Bj are replaced by A a Fa J, and JAN Bj

respectively. Hence for n 2= 3 the A a are given by
N-2
A = .
Aa_ ng Ann,y DBy (7.71)

or after separating the contributions of A\ ao, Zﬁal, £§a2 and t&Jk:

N-2 An 2,
= - A e
Aan Aao n-2,2 4 J-1
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The number of significant figures retained is made as large as possible
by first evaluating the terms between brackets in (7.72).

Once the ﬁ.an are obtained from (7.72) the values of a, at the next
station follow from (7.70). These values can be used asg starting values
for the next step etc.

In all examples given in the present work the integration was performed
by a third order Runge-Kutta method. It should be understood that in this
method a full step is made up of some sub-steps and that the procedure
outlined above has to be applied in each sub-step. As in certain
applications of the method the largest permissible step length may vary
considerably with X use was made of one of the Runge-Kutta formulae with
self-adjusting step length given by Zonneveld [78}. These formulae
provide explicit expressions for the last term of the Taylor series
taken into account. The step length.used is adjusted in such a way that
the absolute value of this last term is equal to a certain tolerance,

to be specified in the program.

A

Similar solutions for U = X L

A

It was shown in section 7.3 that for U = X ! ¥ith constant A ) similar
solutions may occur for which the an are constants. From the compatibility
conditions (7.62) and (7.63) it follows that alsc A 9 should be constant.
Therefore the permissible suction distribution for this class of similar

boundary layersis given by
1—1

—_ —_ 2
Vo = }\2 X (7.73)
From the fact that the an are constant for the similar solutions under

consideration it follows that all terms with E.EZ vanish from the
dx
equations (7.61) to (7.68). Hence the moment equations for this case

reduce to Mk =0 with k¥ = 0,1,2,..., N-5.

Since the resulting equations contain non-linear terms they are not easy
to solve directly; hHowever, solutions can easily be obtalned by
interpolation or iteration., In what follows two different procedures

which were used for this purpose will be described,
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It should be noted that due to the non-linearity multiple solutions
may occur. One of these solutions is always a = 0 which of course is
an unrealistic ome, In all the examples to be discussed in chapter 8,

only one realistic solution occurred.

A procedure to obtain similar solutions by interpoletion. If values for

ao, a7, aS,....., aN are assumed, the compatibility conditions (7.61)

to (7.63) with the additional condition x E: = 0 provide values for al,
dx

az and a3 while a4 and a5 can be expressed as a linear relation

in a6 using (7.64) and (7.65). In this way the moment equations Mk =0
are reduced to quadratic equations in a6; real roots of these egquations
provide, for each value of k, one or two values of 36 for which Mk = 0,
Repeating this procedure for other values of ao, a6, a7, aS, Lo it is
rather easy to find by interpolation values for the an for which all
compatibility conditions and moment equations are satisfied. The method
outlined above works well for N g 7; for higher values of N however it
becomes too complicated., Therefore an iterative procedure was designed

which will be outlined in the remainder of the present section.

An_iteration procedure to obtain similar solutions. At first it was
attempted to use the step by step method of section 7.7 for this purpose
by starting from guessed initial values and running the program for
constant X 1 and A,z until the an's became constant. It was found that
the reéuired solutions were stable so that the proposed procedure was
convergent. However, a large amount of computation was required to
obtain the solutions with sufficient precision. It turned out that the

solutions could be obtained much more rapidly by using the following

iteration procedure.

For the similar solutions equations (7.61) through (7.68) reduce to:
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- -— -_ A = h
El (1-3 A l)ao + 8 aoag 2 1 a, 0
E2 = a1 + 2 1 + 2 A 2 \f ao =0
2 « A

E3 = 2 az ao + 2 a1 =0

= = L74)
E4 a, + 2 a, + 3 aq + + N aN 0 > (7.74
E5 =a_ + al + a2 + aS + + aN =0

=M =

E6+k k 0 -

The last equation written down in (7.74) has to be used for
k=0,1,2,...., N-5, The equations (7.74) can be solved using an iterative
procedure equivalent to Newton's method for ome eguation.

If initial values Eﬁ for all an are assumed fo be known, then also initial
values Ei of the functions Ei can be calculated. Now, the Ei will in
general be different from zero; to make them zero the a should be changed
by amounts 6an. For small variations the Ei may be replaced by their
Taylor series expansions usin% only terms up to and including those of

the first degree. Hence, if %E%-is denoted by ®in and San by tn the

edquations (7.74) are replaced n by

E1 = El + e10 to + 912 tz + e13 t3 = 0

E2 = E2 + eZO to + e21 tl =0

ES = E3 + 830 'to + 631 tl + 832 t2 = O
N L (7.73)

E4 = E4 + z: e4n tn =0
n=0

_ N

E5 = E5 + e5n tn = 0

n=0
_ N
Boak = Bouc ¥ 2;0 ®6+k,n ‘n =0

The derivatives ®in are given by



- 77 -

‘A — )\2 Eé

€10 = 1-3 A+ 6 a, €0 = = eso_\{?
[8] [o]
€12 = -2 }\1
13 = 68, ®p1 = 1 €31 7 )\2
32 T 2V, 5(7.76)

94n =n for n==ae,1,2,...., N
esn =1 for n=20,1,2,...., N

oMy
96+k,n =,3—'a; for k=0,1,2,..., N-5

n=0,1,2,..., N P

From equations (7.51) through (7.54) it follows that

oM ‘ n
K . —
e = (L8 A PIkn ™ N Pen t {?;) YGe,2.n 22

=3

N
+ q 2 (7.77)
2 hend %2

It is convenient fo select the initial values Eﬁ in such a way that the
compatibility conditions at the wall (equations 7.6l to 7.63) and the
conditions at u = 1 (7.64) and (7.65) are satisfied which means that

Ei =0 for 1 =1,2,...,5. Then, denoting §6+k by ﬁk the equations (7.75)
reduce to the following set of linear algebraic equations.

— .y
elOto + elzt2 + e13t3 =0
eZOto + e21t1 =0
e _t = 0
®30% T %31%1 * ®a2ba
% S (7.78)
<) t =0
20 4n n
N
Z e._ t =0
3
B “n n
3 ?15 t = M for
= ’aan n k -
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Solving these equations for the tn gives improved values for the an from

IS
=

= Eh + tn: these values for the an can be used as new starting values

Eﬁ etc. It should be noted that throughout the iteration process ﬁl to

Eé remain zero which means that the compatibility conditions are always
satisfied. The iteration procedure serves to adjust the an such that

also the moment equations are satisiied.

Series solutions for special types of the functions U{x) and vo(x).

General remarks.

In section 7.7 it was assumed that for a certain initial value of X
starting values for the an were known. It will be shown ncow that these
starting values can he determined from a series solution starting from

x = 0.

In the series solution a new variable z is used defined by
Z = X (7.79)

where f may be any real positive number. Series solutions for the
coefficients a, will be obtained for those functions k 1 and }\2 which

can be developed in power sSeries in z of the following form

oD
>\1= Z )\1,p zF (7.80)
p=0
Ay = f— Az’p z
p=0

p (7.81)

The expressions (7.80) and (7.81l) correspond to special forms of the

pressure- and suction distributions. They are sufficiently general however

to be applied near X = 0 for all problems likely to he encountered. The
pressure- and suction distributions which lead to (7.80) and (7.81) will
be obtained first.

From (7.80) and

A =

1

W0 d Unih ' (7.82)
dz dz

np
|2
dll?

M|
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it follows that

?-\i!-g+)\ + A z + A z2+....+)\lpzp'l+...

d -
=t & o T (7.83)

Integration of (7.83) leads to

Al,O Al,l 1 A1,2 2 Al,p e
_ 5 —f—-'Z'l-g ¥ Z +...+T + .
U = constant . =z e
(7.84)

Development of the exponential function in a power series in z results
in the following expression for ]
A10
= b 2 P
U= 2 [u0+ U,z tu, z . uP Z° F s } (7.85)
In terms of x the permissible pressure distribution follows from (7.79)

and (7.85)

- = )\1,0 —f —2f — pf
U=x (u0+u1x * U, X +....+upx + ...) (7.88)
The permissible suction distribution then follows from (7.57), (7.59) and

(7.86) Al 0_1

_ x - 2 —f — 2f %

v, = 5 X (u0 + u, X + u, x + ae.s) (7.87)
Noting that x 9 is represented by the series (7.81) and developing the
square root in (7.87) gives the following expression for the permissible
suction distribution

1,0"1
— - 2 —£ — 2f — pf
= veees T e .

v, T X (so+ s, % + s, X + Sp X + ) (7.88)
In practical applications of the series method the coefficients up and
sp in (7.86) and (7.88) are given while the coefficients of the series

(7.80) and (7.81) have to be determined. It is possible to derive
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universal formulae from which these coefficients can be calculated hut
they will not be given here. In the examples of the method to be discussed
in chapter 8 the series developments of h 1 and Az will be given directly

for each case.

The series solutions are cbtained from equations (7.61) to (7.66) if in

—d d
these equations x — is replaced by f = =" The equations obtained in
dx
this way read as follows:

da
[0}

ALY
fz = (1-3 A l) ao + 6 a0a3 - 2 A 1 a2

1 —2)\1-2‘A2\/ ao.

AZ 1 >

]

©
n

(7.89)

il
1

B "
=
b
il
]

™=
‘;!D

i

o

i
O

In sections 7.9.2 to 7.9.4 the solutions in series of the equations (7.89)

will bhe given.

Series expressions for some functions occurring in the theory.

For pressure- and suction distributions which conform te

[ ]
A - > )\l pzp (7.90).

1 p=0
A 5 A P
and = Z (7.91)
2
2 g P

Solutions of the equations (7.89) will be sought of the form

a = Z a =P (7.92)
n S P

To do this some functions occurring in the equations have to be expressed
in the form of a power series in z. This will be done in the present

section.
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For V ao the following series is used

[ ¥} .
\fao = :E: r =P ' (7.93)
p=0 P .

where the rp follow from:

s = \/a (7.94)
o 0,0
* P
= 2P _
rp =3 ] Gp for p >0 (7.95)

in which for p even and } 2

P
(r /2)2 ) 2-1
= —%"f‘m -+ ;— _S I‘ll‘ i (7.96)
b o] o 1=l p-
and for p odd and i
p-1
1
0, = 7 T s (7.97)
B o i=1 B

The sums in (7.96) and (7.97) must be omitted when the upper bound is
smaller than 1.

The series development (7.93) is not possible for a = 0; this means
that the series method is not applicable in cases whére the boundary
layer starts at ¥ = 0 with a separation point. As such a boundary layer

cannot easily be imagined this seems no real limitation of the method.

Other series expressions to he used are the following

“D ~
_ P
Jk = E: Jk,p Z
p=0
oy
Pk = z Pk Zp
p=0 P L (7.98)
[%5]
Q = 2 9y 2
e 90
oy
_ ) _ P
M, = (1-3 A 9 NP +Q = > My o7

p=0
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. ~
J = j a
k,p ngo Ik, “n,p
N
P = P a
k:P rigl k:n l‘l,p
N N P
= a . a . =
Qk,p o ;;i{ égé qkfﬂ,n £,1 “n,p-1
N N
= (a a + a a 7.99
EE% ;é%’ qkyﬁ,n {uo n,p ~E.p n,o) > )
N

N p-1
i

* £§£‘ qk,%,n ;;i %ﬁ,i an,p-i

1
]

P
M = dJ + - 3 . J .
k,p k,p Qk:p Z X 1,i k,p-i

W

b

=

The coefficients Jk n’ P n'and qk Lo follow from equations (7.55).
r 2 ¥

If the series expression:,given ahove are inserted into the equations
(7.89) and the coefficients of successive powers p of z are egquated
to zero a set of algebraic equations is obtained for each value of p.
Coefficients in these equations are determined by the an,j for j {p
and by,K 1, and A 2,3 for j £ p. For p = 0 the set of equations
contains non-linear terms and hence is not easy to solve directly; it
will be discussed further in section 7.9.3. For p )’0 the equations are
linear in the unknown a and can be solved easily provided the

)

solutions of the sets of order less than p are known. This will be

discussed further in section 7.9.4.

The zero-order terms of the series solution.

For p=0 the following set of equations is obtained
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- -2 =
a 3)\1,0)2l 0 0,0 3,0 >\l,o a2,o 0
2 =
}\2,0 ao,o * a1,0 * 2)\1,0 0
2 a2,0 ao,o +}\2,o 1,0 =0
B (7.100)
al’o + 2 az'o + ... + N aN,O = 0 P
a + a + 8 Foireaan + a = 0
0,0 1,0 2,0 N,o
= - - P =
Mk,o 1 3}\1,0) Jk,o /\1,0 k,0 * Qk,o ©
{for k = 0,1,2,...,N-53)

-~

In the last equation J 1 P and Qk follow from equations (7.99)

k,o" "k,o y
for p = 0., The equations (7.100) are non-linear due to the occurrence

of a ; a a and the Q which contain quadratic terms in the
0,0 0,0 3,0 k,o
an o However, a comparison with equations (7.74) shows that the
’
solution for p=0 corresponds to the similar solution for )\ 1 = A 1.0
r

and A 9 = )\ 2,0°

These similar solutions have been discussed already in section 7.8 and
hence the solutions of (7.100) can be considered as known,

From the preceding remarks it follows that the present approxirﬁate method
reproduces the result known from exact solutions (see chapter 3) in this
respect that a boundary layer for which U(x) and ;0(55) are given by (7.88)

and (7.88) with f=1, starts at X = O as & similar boundary layer.

7.9.4. The terms of order p>» O of the series solution.

For p » O the following set of equations is obtained

(fp-1 + 3)\1,0 -6a, Ja 2}\1,0 B0~ ¢ 200 %50
P p-1 P
=3 i§=:‘1 )\1,1 &o,p-1 T 8 El 6,1 P3,pi " 2 igl ) 1,i %2,p-1
/\2’°a + a =2 A 0-2)\ _2210:)\ r
ro oy p i,p 2,0 p 1,p s 2,1 "p-i
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{
a

2,0 ‘

a b a + 2 r a =
rO c,p }\230 1,p o 2,p l
!

p-1 Iy

= 2 - 2 a -
%%2,0 f:L 2,i ‘p-i 121 Az, 1,04

N
ngo 8p ~© > (7.101)
and for k = 0,1,2,...., N-5
N N
(fp-1 + 3 }\ 1,0) 2 ‘jk,n an,p. + }\1,0 Z—- Peon *n,p
n=0 n=1
N N
- — = Y%, 4,0 (gﬁ,o e T o a{qp) =
P P
= -3 :L-; Ayi Trpes " ?=;1 A1,i Pepos
N N p-l
+J§O 2—:1 %, 2,0 i§=:1 2,1 %n,p-1

From an inspection it follows that the equations are linear in the an b
¥
with coefficients depending only on p and the leading-edge conditions

(These leading-edge conditions depend onl& 1 0; AX and N; they are
1

2
given by the guantities with second subscript equal %g ZEro) .

The conditions downstream of x = O enter only through the right-hand
sides of the equations. Therefore the coefficient matrix of the equations
can be inverted once for all for given leading-edge conditions. For =
specific example with the same leading-edge conditions the coefficients

a can then be obtained by simple multiplications of the right hand
siées of the equations with universal constants obtained from the inverse
matrix.

This is analogous to what happens in G¥rtler's method where universal
functions are used which only depend on the leading-edge conditions.

In the present approximate method it is of no use to calculate and store
the universal constants for a whole series of leading-edge conditions and

values of p. It is easier to store the values of the an o corresponding
’
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to given A 1 0; A 2.0 and N (which in fact corresponds to the solutions
L 3

for p = 0) together with a machine-program which calculates the an for
H

successive values of p > O,

Comparison of the new series method with existing series methods.

From the preceding sections it follows that the series soclution for the
present approxXximate method displays several features of the exact methods

discussed in chapter 3. Some important points are listed below.

Both in the exact and approximate methods the zero-order terms correspond
to one of the similar solutions. In the exact methods this seclution
follows from a non-linear ordinary differential equation whereas in the
approximate method a set of non-linear algebraic equations has to he
solved,

For the exact methods further terms of the series solution are obtained
from linear ordinary differential equations in which the coefficients
depend on the leading-edge conditions only. The full solution is obtained
by multiplication of the universal functions with constants depending

on the pressure- and suction distributions downstream of X = 0. In the
approximate method the terms of higher order follow from a set of linear
algebraic equations. The coefficient matrix of these equations only
depends upon the leading-edge conditions and the.order of the terms to
be found.

An advantage of the present approximate method ahbove the exact series
methods is, that the calculation of higher order terms is so simple that
it can be done anew for each example to be calculated whereas in the
exact metheds a considerable number of universal functions has to be
tabulated.

A further advantage of the present series method is that the same
quantities are used as in the step by step method discussed in section
7.7. Hence the series method need only be used near % = 0 to start the
calculation. As soon as the series is no longer sufficiently convergent
the boundary layer calculation may be continued using the step by step

method. In existing series methods however, an entirely different method



.10,

- 86 -

is used for the continuation in regions where the series is not
sufficiently convergent. Such a continuation is always necessary near

separation.

Calculation of some characteristic boundary layer parameters from the

coefficients an.

In the present method the boundary layer calculation is reduced to the
determination in terms of X of the coefficients an in the polynomial
expression (7.29). The familiar boundary layer parameters can easily be
calculated from these coefficients, The related formulae will be

summarised in the present section.

Once the a_ are known the shear stress may he calculated from (7.29).

Then the velocity profile follows from

U f du (7.102)
kY4 T

<
]

o
n

e

(o]

The parameters 6*, 8 and as defined by (2.18), (2.19) and (2.22) are

given hy
1
Y — N
'f)aE I_Ji_g_ j (1-w) aa
X v 5 —
-
o
1
) Ux 6 _ u(i-u) — \
< v 5 = f — du (7.103)
T
Q
L e
£ Ux £ i[ u{l-u’) —
= P = du
bid v S —
T
o

The integrals in (7.103) can be found numerically using Simpson’s rule
for instance. The integrals have to be evaluated with some care near

U = 1 because 1 —> 0 for G —1, Therefore, in the examples to be
discussed in chapter 8, the integrals were calculated using Simpson's
rule from u = O to u = 0.99. For 0.99 £ u $: 1.00 the integrals were

calculated as follows.
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Because v —» O like 1-4 for u -——> 1 (see section 7.2) the following
<1

approximation for T may be made in the interval 0.99 < u <

T = 100 0.

99 (1-u) - (7.104)

Now, using (7.104) the integrals in (7.102) and (7.103) can be found

analytically for 0.99 £ u £ 1 and hence the equations reduce to
0.

99 _ ) N
X\ Ux w1 tn 100(1-D)
X v — " 100 %
T 0.99
0
. 0.99 o .
8\ /ux _ (1-uydu 10~
[ — —
8 OJ g T0.99
o.99 A > (7.105)
o \/ux u(1l-u)du  0.995 10°
x v — _
0 v T0.99
0.9, _ .
€ \/ox _ H(1-uT)du , 1.985033 10
X b2 - ? ?
6} 0.99 B

Once the integrals have been calculated all parameters of interest can

easily be found.

7.11. Some related methods known from the literature.

In the lifterature two methods are found which have some features in
common with the present method. However, for so far known to the author
they have not been worked out in as much detail as the present method.
The first one is due to Trilling [79] who starts from Crocco's equation
in the form (7.10), the compatibility condition at the wall (7.42) and

the condition at the edge of the bhoundary layer
T=0 for u=1 (7.106)

Furthermore the following approximation for T is used

- -2 —G
T = T, t T u + To + .een Tﬁu (7.107)
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Substituting (7.107) into (7.10) and (7.42) and using (7.106) leads to-
an ordinary differential equation for TO(X) which contains the known
functions vo(x), %g and their derivatives with respect to x. The
application of the method seems rather cumbersome; only one example has

been given in [ 79].

The second method has been designed by Dorodnitsyn [8@]. In his method
the von KéArmén-Pohlhausen momentum equation (2.15) is used together with
some related moment equations of the type 2.14 . The resulting equations
are written in terms of 71, % and U.

Then, solutions of the equations are sought of the form

%: I @ +am+ands ... ) (7.108)

{(1-w)

&
1]

— — -2

(l-u) (b_+b,u+ b u + .....) (7.109)
o 1 2

The coefficients 2, and.bi in (7.108) and (7.109) are expressed in the

values of T at some equidistant values of u.

It is shown,in,£80] that a good agreementmis chtained for the simiiar

= -1
boundary layers corresponding to U = ul X .
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