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The equations for two-dimensional laminar boundary layer flows.

The Navier-Stokes equations.

Two-dimensional flows of an incompressible viscous fluid are governed
hy the Navier-Stokes equations and the continuity equation. Omitting
body forces the equations may be written in cartesian coordinates as

follows (see [71, chapter 3).
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Egquations (2.1) and (2.2) are the equations of motion in x and ¥
direction respectively; (2.3) is the continuity equation. The notation
is as usual: u and v are the velocity components in x and y direction,
p is the pressure, p the density and ¥ the coefficient of kinematic
viscosity. Throughout the present work p and ¥ are assumed to be constant.
At the surface of a body placed in the flow the relative velocity
vanishes. This leads to the usual boundary conditions that the normal
and tangential components of the relative velocity vanish at the
surface. In the present investigation problems with suction and blowing
are considered so that a small normal component of the relative
velocity at the surface will be allowed.

The Navier-Stokes equations are difficult to solve for flows around
bodies of arbitrary shape. In a few cases where the geometry of the

problem is very simple exact solutions show that for high values of the
U,c
Reynoldsnumber —~ the effect of viscosity is confined to a narrow region

near the surface called the boundary layer and a region behind the bhody
called the wake. Within the boundary layer the relative velocity component
tangential to the surface rises very fast from zero at the wall to a

nearly constant value at a small distance from the wall.
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This observation led Prandtl in 1904 [27] to his boundary layer theory
which simplifies the Navier-Stokes equations by expressing the fact that
there is a boundary layer of which the thickness is small compared to

the body length.

Prandil's boundary layer equations.

Prandtl's simplification of the Navier-Stokes equations leads to the

following set of equations for the case of steady flow along a plane wall:
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Here x and y are taken along and normel to the wall respectively. Eq.(2.4)
is the boundary layer equation and results from (2.1). The equation of
motion in y-direction (2.2) leads to the result that within the boundary
layer:%g-can be neglected and hence for steady flow p only depends on X.
The continuity equation (2.3) remains unchanged (2.5). A discussion of
the boundary layer equations may be found in the books by Schlichting
[7], Curle [28] and also in [29].

1t can be shown that (2.4) and (2.3) are valid alsoc for a two-dimensional
curvéd body provided the radius of curvature is large compared to the
boundary layer thickness and no rapid changes of curvature occﬁr

([7], chapter 7). For curved bodies an orthogonal curvilinear coordinate
system (x,y) should be used where x and y are measured parallel and
normal to the wall respectively (fig. 2.1).

Outside the boundary layer the velocity gradient au can be neglected

oy

and hence (2.4) reduces to:

du 1 dp
= . = == 2.
u dx o dx (2.6)

Using this, (2.4) may be written as
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Together with the continuity equation (2.5) this equation determines the
development of the boundary layer flow downstream of an initial station
X = Xo when the velocity profile at x = Xo is known. Solutions of (2.5)

and (2.7) are subject to the following boundary conditions:

vy = O u=0, v= vo(x) (2.8)

V-»en u—= U (2,9)

In boundary layer theory the velocity U at the edge of the boundary
layer is assumed to be known either from a calculation using potential
flow theory or from measurements,

The boundary conditions (2.8) imply that no chlique suction or blowing
is considered.

Although the boundary layer equations are much simpler than the full
Navier-Stokes equations, they can only be solved exactly for special
types of the functions U{x) and vo(x). Some of the available exact
solutions will be reviewed in chapters 3 and 8.

The application of finite difference methods to obtain accurate nuﬁerical
solutions has been limited in the past due to the large amount of work
required. However, due to the introduction of high speed digital computors
this situation has changed, so that now a number of accurate solutions
has been made available. Some of these solutions will be discussed in
chapter 8, In what follows both the exact solutions and accurate finite
difference solutions of the boundary layer equations will be denoted as
"exact" solutions. Approximate methods of solution have found a wide
application in the past due to the difficulty of obtaining "exact"
solutions. An important approximate method was introduced by Pohlhausen
in 1921 [ 22] (see also [[7] chapter 4). In methods of this type the
boundary layer equations are not satisfied from point to point but
relations are sought which fulfil certain more simple formulae derived
from (2.5) and (2.7). Some of these formulae will be described in the
remaining Sections of the present chapter.

It should be stated in advance that these egquations do not provide
information which goes beyond the boundary layer equations; they only
give a part of the information contained in the boundary layer equations

in a different form.
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Compatibility conditions of the boundary layer equations,.

If the boundary conditions at the wall (2.8) are substituted into the

boundary layer equation (2.7) the following result is obtained
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where the subscript O denotes values at the wall (y = 0). Equation
(2.10) is called the first compatibility condition at the wall; it
relates the curvature of the velocity profile at the wall to the shear
stress, pressure gradient and suction velocity. Compatibility
conditions of higher order can be obtained by repeated differentiation
of (2.7) with respect to y and using (2.5) and (2.8). The second

compatibility condition thus obtained reads

2 3
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and the third is found to be
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Moments of the boundary layer equations.

The boundary layer equation (2.7) can be written symbolically as
F{x,y) = 0 (2.13)

It follows that solutions of the boundary layer eguations satisfy
equations of the type:
7
U/g(x,y) G(x,y)dy = O (2.14)

o]

Where G(x,y) may be any function subject to the condition that the
integral (2,14) exists. Relations of the form {2,14) are called moments
of the boundary layer equations. Since & wide class of functions G may

be used many different moments can be obtained.
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Von Kdrmén's momentum equation. With G(x,y) = 1 the well known von

Karmén momentum equation is found d:?], chapter 8). This equation can be

written in the forms
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0 = % (1 - %)dy = momentum loss thickness (2.19)
o
6*
H = 5 = shape factor of the velocity profile (2.20)

Equation (2.15) was first obtained by von Karmén [30] as an equation
expressing the momentum balance in the boundary layer. Later Pohlhausen

[221 gave the derivation referred to above.

The kinetic-energy equation. With G(x,y) = u eguation (2.14) leads to:

d 3 2
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(see for instance [7], chapter 8 and 13). Equation {(2.21) is called the
kinetic energy equation, while £ and I} denote the energy-loss thickness

and dissipation integral.. They are defined hy
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Usually from &£ and © a second shape factor H is defined by
= . &
H = 5 (2.24)

The kinetic-energy equation expresses the balance between mechanical
energy and heat developed through frictional forces; it was first given
by Leibenson [31] and later by Wieghardt [32].

Other moment eguations can be derived for instance by taking G(x,y) = uk

with k» 1. The resulting expression becones
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It can easily be shown that equation (2.,25) reduces to the momentum
equation (2,15} for k = O and to the kinetic energy equation (2.21) for
k=1,
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FIG. 2.1: COORDINATE SYSTEEM FgR BOUNDARY LAYER THEQRY.



