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SUMMARY ,

The following topics are discussed in the paper.

- A new laminar boundary layer calculation method is presented which combines the simplicity of Thwaites'
method for the prediction of the mementum loss thickness O with the accuracy of Stratford's two-layer method
for the prediction of the position of laminar separation.

~ Calculated boundary layer characteristics for arbitrarily prescribed pressure distributions in general
show a singular behaviour at separation. It is shown that a real separating flow te&ds to adjust itself in
such’ a way that the resulting pressure distribution prevents a singular behaviour of the bouﬁdary layer to
occur. It appears that m = - %Z g% shows a maximum value at separation.

- A simple calculation method for the laminar part of the separation bubble is presented. The pressure
distribution is not prescribed but it is determined from the calculation such that the separation streamline
assumes a prescribed shape. ]

= An earlier method for the prediction of transition in attached boundary layers, based on linear stability
theory, is extended to the case of separated flows.

~ 1Two methods are discussed which might be used to predict whether reattachment of the turbulent shear
layer will occur, thus leading to a closed separation bubble.

- Finally some results will be discussed of windtunnel experiments on two different models. The first

model is the FX 66-5-196-V1 Wortmann airfoil; the second model consists of a circular cylinder with a

tapered tail.

NOTATION
a constant in Eq. (2) - spatial amplification rate, Eq. (23)
b constant in Eq. (2) B Falkner-Skan pressure gradient parameter,
B constant in Eq. (16) Eq. (13)
c reference length, equal to chord for airfoil; Yy angle at which the separation streamline
equal to radius for cylinder leaves the wall; Fig. 1
£ i £ . £i . : ~
g profile parameter for veleocity profiles with Gk I (1—%)dy displacement thickness
reversed flow, Eq. (12) ?% u
- %/ ] g %(1—ﬁ)dy momentum 16ss thickness
2 IQE.: {B(U/U) . 1% angular distance around circular cylinder, -
wu 3(y/8)70 measured from leading edge
L 22 + 2m(2+H) .
5 3 Y streamfunction
84 du ] cps .
m - === ———Elg—} [¢) amplification factor, Eq. (23)
v odx 3¢ /8)2 0 . a
y v coefficient of kinematic viscosity
tati
P Zza L; pressure To wall shear stress
se .\U .
"‘VE'ZE w disturbance frequency, Eq. (22)
r m/m
sep
. erf c Subcripts .
c v BL Blasius value
R [ ‘T reattachment
6 v
) sep separation
u velocity component in boundary layer parallel tr transition
to wall 0 at surface
U velocity component at edge of boundary layer
U reference speed
_ref
U u/u

ref
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AU change in edge-velocity over length of separation

bubble; Fig. 1

X distance "along the wall
= X
% x
c
Ax length of separatien bubble, Fig. 1
y distance normal to wall
g ® msep

1. INTRODUCTION

Although quite a number of important references is available on the subject of the laminar separation
bubble in two-dimensional incompressible flow (see for instance refs. 1 through 6) a fully satisfactory
engineering method for the prediction of the characteristics of these bubbles does not yet exist. The
present paper tries to f£ill some of the gaps in our knowledge; it appears that a complete prediction of -
the bubble is now within our reach. Some of. the problems in this field are illustrated by the well known
picture of the pressure distributien(x)in the separation region (Fig. 1). First we have to determine the
separation point S; downstream of S we usually find experimentally a flattening of the pressure distribut-
ion. This part of the pressure distribution is not known a priori but it should follow from the calculation.
Most of the existing calculation methods assume a constant wall pressure within the bubble but this is

only a good approximation at low Reynoldsnumbers. The next problem is to predict the position of transition
T in the separated shear layer. Downstream of T we may find a rather steep pressure recovery curve, leading
to reattachment at R. Often R is assumed to lie on the dotted pressure distribution curve which would occur
without the presence of the bubble. Sometimes reattachment does not occur; the bubble "bugsts" and of
course a calculation method should be able also to predict this bursting.

In the following chapters the different problems, mentioned above will be discussed in turn.
2. PREDICTION OF THE SEPARATION POINT USING ENGINEERING METHODS.

A well known engineering method for the calculation of the laminar boundary layer is that due to Thwaites
(ref. 7). The accuracy of the method is quite good for the prediction of the momentum loss thickness 6}

it is less accurate in the prediction of the separation position.

The idea behind this method is to use the von Kirm3n momentum integral relation and the first compatibility

condition of the boundary layer in the form: '

d gﬁ) o 22+2m(2+H) _

== ( L oand m= - ~? == {32
dx ‘v U U v

-—~——*“§}O . (&)

Thwaites assumed that £ and H and hence L are unique functions of m which allows us to caleculate %, m, H,

L and © as functions of x. The required functions 2(m), H(m) and L(m) were deduced by Thwaites from a

number of exact solutions of the laminar boundary layer equations which were available to him at that

time.
The momentum integral equation can be integrated easily between two points % and X, if a linear relation
L=a+bm, (2)
is assumed between L and m (Thwaites took a=0.45; b=6). The result is
b,2 b.2
U6 U9 _ X2 b-1
( Y )x=x2 ¢ v )x=xI - £I v dx 3

As soon as 6(x) is known, m(x), 2(x) and H(x) follow from the compatibility condition and the relations
2(m) and H(m). This allows us to find the separation point and an approximation to the boundary layer
velocity profile, As was remarked already the predicted values of © are sufficiently adccurate for
engineering use. For the favourable pressure gradient case (m<0) also the velocity profile is rather
accurate. For adverse pressure gradients (m>0) the velocity profile is lgss accurate and hence the

separatignais not predicted accurately enough for the present purpose. This is due to the fact that
position

(x) In the present paper we will by "pressure distribution" not only denote p(x) but also U(x).



11-3

Thwaites'

method belongs to the class where a fixed relation exists between £ and m so that separation

(2=0) is found at a fixed value of m.

An improved method has been obtained in which &£(m), H(m) and hence L(m) are allowed to depend on an extra

parameter. This parameter is taken as msep’ the value of m = - %w ix at separationm.

To introduce this improved method we refer to figs. 2 through 4 where L(m), H(m) and L(m) have been plotted

in the same way as Thwaites did for some special accurate solutionsof the boundary layer equations. The

selected solutions have in common that for zero pressure gradient (m=0) they all reduce to the Blasius

flat plate boundary layer. The separation values for H and I fall neatly on curves which coincide with the

curves representing the separation points in Head's two-parameter method (ref. 8).

For the range of values of mSep which is of practical interest (msep>'068) it follows that a good

approximation for Lsep is: 67103
Lsep= .14026+10 msep and hence Hsep= 3+ i;;-——w . %)

sep
It follows that £, H and L can be very nearly made unique functions of r':m/msep when properly scaled
(see fig. 5). In what follows Hartree's similar solutions of the Falkner-Skan equation have been used

to define these functions.

Introducing m as an extra parameter, to be determined later, the new method may now be defined as

ep )
follows. For favourable pressure gradients (m<0) use 2(m), H{(m) and 2(m) as for the Hartree flows for

which msep=.06815. For adverse pressure gradients (m>0) use the scaled functions

L-.44105"

. H-2.5911
ST -.44105
sep

o x e .
=L s g e
sep

2= 8(r) = H¥(r) (5)
as determined from the results for the Hartree flows. The momentum integral equation can then be
integrated once a starting value for 6 is available. As in Thwaites' method the integration can be
performed in the form (3) when using the linear approximation (2). Of course b now depends on the

S 5 wi 1 >, :
parameter msep’ with (4) it follows that for msep 068

_ _ 30079 _ 30079
b =10 T or msep <o (6)
sep
For favourable pressure gradientswe uée b=5.16, corresponding to the straight line comnecting

the stagnation point and the Blasius point in fig. 4; for all values of b we have a=.44105. For each
value of b (or msep) a Thwaites type method is obtained. For large values of b the method gives late
separation, for small values of b early separation is obtained.

Of course some additional information is needed to determine b. When analysing experimental results b
may be chosen such that the experimentally determined separation point is reproduced. In cases where
the separation point is not known a priori we use Stratford's two~layer method (ref. 9) in the version
of Curle and Skan (ref. 10) to provide the separation position. Lack of space does not permit to give

a more detailed account of the present method; details will be given in a forthcoming report by the
present author (ref. 11). A few results to illustrate the method may be found in figs. 6 through 8.

Fig. 6 gives some results for the potential flow pressure distribution around a circular cylinder where
U=sin X; a comparison has been made with the accurate numerical results due to Terrill (ref. 12). Fig. 7
gives some results for the measured pressure distribution on a Wortmann airfoil (see section 8).

The free-stream speed for this particular case was such that a closed laminar separation bubble occured.

. . . . . . . of the chord
Using the surface oil film technique the separation peint was found at a distance of 487 downstream of

()

the leading-edge . It should be noted that the curve of U vs.x becomes rather flat downstream of the
separation point leading to a point of inflexion shortly upstream of the sepération point. This appears

to be characteristic for all measured pressure distributions in the vicinity of separation.

It follows from fig. 7 that the present method does not predict separation for b>7.23; in fact the
calculation tends to the flat plate boundary layer far downstream. For b<7.23 we do find separation while
% tends to zero with x like Q&Q\f;;;;:ii This is the type of singularity discussed by Goldstein (ref. 13)
which always seems to occur when boundary layer calculations are performed for arbitrarily prescribed
pressure distributions. For b=7.23 separation is predicted at x=47.2% with a finite value of %% at
separation. Apparently the real flow adjusts itself such that the Goldstein singularity can be prevented.

(%) note that x is measured along the surface; hence at the trailing edge we have x>100% c.
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It should be remarked that the behaviour for b>7.23 is very similar to what Schubauer found when applying
Pohlhausen's method to the measured pressure distribution for an elliptic cylinder with observed laminar
separation: Later, Hartree (ref. 14) using an accurate numerical method could only find separation when
slightly modifying the observed pressure distribution. It is still an open question whether indeed a small
experimental error in Schubauer's experimental results is responsible for the failure to predict separation
or that small errors inherent in the boundary layer approximation and the neglect of the longitudinal sur-
face curvature are responsible for it. .

It is instructive to invert the present calculation method to find out to what extent the pressure distribut-—
ion should be modified to produce anoticeable shift in the separation position. The full curves in fig. 8

dg in the neighbourhood of the separation point

dx
for the same case as was shown in fig. 7. The dotted curve for & represents an arbltrarlly modified shear

give the values of £ (for b=7.23) and the values of U and

stress distribution for x>45% producing separation at 46%. The dotted curves for U and —i indicate the
modifications which have to be made to the pressure distribution to produce the changed wall shear stress.
These modifications are certainly within experimental error. Hence an important conclusion must be that
the accuracy to be obtained in the prediction of laminar separation may depend more on the accuracy of the

pressure distribution data than on the level of sophistication of the caleculation method.
3. ~SOME OBSERVATIONS ON THE CHARACTERISTICS OF THE SEPARATING LAMINAR BOUNDARY LAYER.

Laminar boundary layer calculations for arbitrarily prescribed pressure distributions in general show a
singular behaviqur at separation, such that T, and £ teénd to zero as the square root of the distance to
separation (Goldstein, ref, 13). It was shown in section 2 that this singular behaviour is reproduced by
the present method. It was also observed that for a measured pressure distribution the singularity may
be prevented by a proper choice of b. Therefore it seems possible that the boundary layer equations may
remain applicable through separation if only the proper pressure distribution is used. It should be
remembered however that very small deviations from this pressure distribution will restore the singular
behaviour. Therefore we must refrain from prescribing the pressure distribution in the separation region.
But we should prescribe a regular behaviour of some other quantity like Ty % or the displacement thickness.
A recent example of such a method is given by Carter in ref. 15.It is of course very easy to invert the
present method and prescribe a quantity other than the pressure. In fact fig. 8 gave a first example of

this procedure where %(x) was prescribed rather arbitrarily.

In order to be able to proceed in this direction we should first gather more information about the exact
behaviour of the viscous flow near separation. Therefore it is useful to recall here an analytical solution
of the Navier-Stokes equations which is valid in a small neighbourhood of the separation point where the
inertial forces can be neglected. (See Legendre, ref. 16; Oswatitsch, ref. 17; Batchelor, ref. 18, page
226). It follows that the separation streamline leaves the wall at an angle vy (fig. 1) which is determined
by: dTo -

tan (y) = —3{ }p o)

8x
The streamlines can easily be calculated once y is known; they follow from:
2
¥ (x tan(y)-y) = constant ) (8)

where x is the distance downstream of separation., For points at which the u-component of the velocity

is zero we find %-= %—tan(y) and hence

Yu=0

Yw=o

The pressure gradient vector is at an angle l»Y with the wall and hence for shallow bubbles where Yy is

2
-3 9

small the pressure gradient normal to the wall is small so that the boundary layer equations might still
give a reasonable result.

If we start from the boundary layer equations and assume small values of u and v we can also arrive at
the results (7) and (9). Here it is assumed a priori that %& is independent of y. The result (9) also

follows from the expression for the velocity profile in the form:

=2%einD? o)

e
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which is valid for a sufficiently small neighbourhood of the wall, not necessarily near the separation point.

.From (10) it follows that

e (2. L w3 e S
g~ @ e @ i T, O
and hence : 5 . ‘
Jv=o -3 Vw0 m2n, Tus0 20 s o aw
g ) = Tm 76 n yw=o 3

An analogous behaviour is shown for solutions with reversed flow of the Falkner—Skan equation
F'"' + FF" + 8 (1-F'2) =0 (13)
This equation describes the similar solutions corresponding to the pressure distribution

U= 1 (14)

where Uy and m, are constants.

In (13) F is the non-dimensional streamfunction, primes denote differentiation w.r.t. non-dimensional v
B is the pressure gradient parameter related to m, by
2 my

o (15)

For B>0 equation (13) only allows solutions with positive skin friction; for 0<R<-.198838 solutions with
positive and negative skin friction are possible; B=~0.198838 represents the separation solution.
Extensive tables of solutionms with positive skin friction may be found in ref. 19. Some of the reversed
flowbsolutions have been calculated first by Stewartson (ref. 20). Table 1 gives some of the author's

own improved results.

Table 1: Some results for reversed flow solutions of Eq. (13)

B [ n H L zT:z o= Z%EQ - %&
-.198838 0 .06815 4,029 .8218 667 [ 0
~.18 -.0545 .05601 5.529 . 7343 667 2.917 2.920
-.10 -.0545 | .01503 | 12.625 | .3308 | .678 | 10.665 | 10.000
'-.05 -.0258 .00283 28.096 .1190 .698 25.748 27.350
-.025 -.0106 .00051 59.821 .0418 721 56.478 62.353
It follows from this table that with a good approximation - ; 2/3 and g = ye=0 = - %glas for the

Yw=o
velocity profile (10). It should be noted that at the end of the table, corresponding to velocity

profiles which are found far downstream in a separation bubble, extremely large values of the shape
factor H occur. This is due to the strong increase in 8® which in turn follows from the thick region
with reversed flow. Because the velocities in the separated region remain very small it may be expected
that Eq. (8) remains valid within a separation bubble at appreciable distances downstream of separatiom.
This is illustrated by fig. 9 in whicﬁ a smoke picture of a separation bubble is compared to results of
a calculation using Eq. (8). It should be noted that the streamlines can only be calculated when Yy is

known. In this case the value of y was taken from the smoke picture.

In ref, 21 it was shown from an extensive empirical investigation that for a wide variety of separated
flows it was possible to represent Y by the following simple empirical relation

tan (y) = 'ﬁgé'"“ (16)

V'sep

where B assumed values between 15 and 20. Later, Wortmann used the relation:
B = 64]P] 17)

where P is Gasters pressure gradient parameter for separation bubbles. It should be mentionad here already
that our own new series of measurements to be discussed in section 8 is in agreement with (16) for
B = 15 to 20 but it does not confirm Wortmann's relation (17). Therefore, in the present paper, we will

stick to (16) awaiting clarification of the discrepancy.

Comparing the thecretical result (7) and the empirical result (16) it follows that separating flows
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apparently adjust itself such that at separation the following relation is satisfied
dt

-3 ==

tan (y) =~ = dx _ecp (18)

(Eﬁ) (@E

* Visep 9x’ sep

Assuming %§»= 0 and ‘using Bernoulli's law and the definitions of 2 andm it follows that

au :
d2 _ B a% _ B msep i
I35 R (19)
dx’ sep 370 3 52)

sep

We have seen already that slight modifications of the pressure distribution near separation may correspond
to rather drastic changes of the boundary layer characteristics. Hence boundary layer calculations, even
when based on a measured pressure distribution, may easily fail to reproduce Eq. (19). However, the cal-
culation method described in section 2 may be inverted to find a corrected pressure distribution which
does reproduce Eq. (19). For furhter details on this method the reader should be referred to ref. 11.

5. CALCULATION OF THE LAMINAR PART OF THE SEPARATED FLOW.

In reference 21 an approxiﬁate method for the calculation of the laminar part of the separated flow was
introduced. Essential in this method is that the shape of the separation streamline is prescribed instead
of the pressure distribution. The pressure distribution then follows from the calculation. In the earlier
version of the method m ., Was constant and equal to the Hartree value. In order to maintain compatibility
with the present method for attached flows, described in section 2, we should make mSep variabel for the
separated flow as well.

To introduce this calculation method for separated flow, reference is made to fig. 10 where % and L have
been plotted vs. m for the attached as well as the reversed flow soluticns of the Falkner-Skan equation.
If it is assumed that the curves in fig. 10 would also apply to a non-similar boundary layer developing
from a stagnation point (m=-.08547 , L=0) via the pressure minimum (m=0, L=.44105) and separation
(m=.06815 , 2=0) downstream into the separated region toward the situation where m=0 , 2=0 , L=0, then it
follows that m = - %f-gg-shows a maximum at separation. Since at separation L is still positive, it
follows from the momentum integral equation that 62 is still incrasing at separation so that - §g~shou1d
be decreasing through separation. This leads to an inflexion point in the U vs.x curve slightly upstream
of separation. As soon as it is known that there is separation, it is possible to find the separation
position by looking for a maximum of m. It can easily be shown from Eqns. (1) and (4) that the condition

that m has a maximum at separation leads to:

5 &%
=2 .14026410 m
dx - sep (20)
a0, 2 m
& sep

Now, the right hand side of Eq.v(20) is only slowly varying with msep and assumes values between 11 and
12 for the values of b and msep which frE_Of practical interest (6 < b f 8; .075 < msep < .15). Hence the
separation position can be found from U(x) by looking for the value of x where the left hand side of
Eq. (20) assumes values between 11 and 12, For a number of experiments this gave a very good indication
of the separation point. A calculation method for the reversed flow region, which is comparable to that
~ for attached flow described in section 2, could now be developed if also for reversed flows the
characteristic parameters L, £ and H would be given functions of m/msep. Since, except for the Stewartson
profiles, no exact results for separated flows were available to the author these functions have been
"guessed" as follows. For & it was assumed that £ is a universal function of m/mSep given by the Stewartson
profiles, where msep follows from the calculation up to the separation point. For L(m) a curve was
assumed which is very similar to that for the Stewartson flows namely: tangent to L=a+bm at separation,
tangent to the vertical axis at m=0, L=0 (fig. 10) and super-elliptic in between. This leads to:

1

m__~m\n
(—EEE—-»> + (L:EEJH =1 or L = bmta {1-(1- §-~)n}n (21)
sep - sep

where the exponent n was taken equal to the value 1.65 which was found to give a good representation of

the Stewartson results. If necessary H can be found from m, %, L and the definition of L.
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Since in the separated region the shape of the separation streamline will be prescribed it appears that the

. . . Y= . . .
proper velocity profile shape parameter is g = g o . Using the approximation g = -3&4/m (Eq. 12) and observ-—
ing that 2 is assumed to be a universal function of m/msep it follows that we should use z = g = L where
m/insep is a universal function of z.

The shape of the separation streamline can be prescribed iq a number of different ways. In many applications
we used a straight separation streamline, leaving the wall at an angle vy given by Eq. (16) with B = 15 to 20.
Since in most cases the separation streamline is slightly curved upwards in the laminar region (see for
instance fig. 9) a better approximation may be obtained by assuming a linear variation of g with x downstream
of separation. Since 6 is still increasing in the bubble it follows that this leads, together with the linear
variation of g, to a separation streamline which is slightly curved upwards. In general the results do not
differ much for both cases, It should be remarked that any shape of the separation streamline could be
prescribed without difficulty. Summarising, the separated flow can be calculated as follows once msep and
proper starting values for § and U are given (for instance at separation).

1. Find g from 6 and the prescribed shape of the separation streamline.

2. Find m/m from the universal relation between z=gsm and m/m__ .

du S°P . seP gy _ SeP 9
3. Find Eg»from the first compatibility condition in the form = mv/8%.
4. Find %E'(% ) from the momentum integral relatiom. '

5. Advance 2 step in x-direction and find new starting values for U and 6, etc.

Full details of the method will be presented in ref. 1l; some examples will be given in section 8.
6. PREDICTION OF THE LOCATION OF TRANSITION IN THE SEPARATED FLOW.

For attached flows the position of transition can be predicted by means of?semi—empirical method which is
based on the calculation of the amplification of small disturbances in the laminar boundary layer. This
method was developed independently by Smith and Gamberoni (ref. 22) and the present author (ref. 23 and
24). In ref. 24 it was shown that the method is also applicable to boundary layers with suction. The idea
behind the method is that the calculated amplification ratio of the most critical disturbance at the measured
transition position attains nearly always the same value.

At present we are investigating whether this method is also valid for separated flows. This investigation
is based on the stability diagrams for some of the Stewartson velocity profiles with reversed flow which
have been published recently by Taghavi and Wazzan (ref. 25).

Since these calculations have been restricted to rather low values of Re the results have been supplemented
by calculating the limiting stability characteristics for R8 + % using the inviscid stability equation
(Rayleigh equation). These calculations have been performed on one of the hybrid computers of the Delft
University Computing Centre.

Both Wazzan's and our own computations were made for the linear stability theory in the spatial mode. This
means that in the expression for the streamfunction of the disturbance

i{ax-wt)

Y(x,y,t) = P (y) e (22)

. . s y . -0.X , . .
o is complex = ar+1 oy and ® is real. This leads to a factor e i in the amplitude of the disturbance.

Hence the logarithm of the total amplification of a disturbance follows from:
o =fni— = -4 dx (23)

@ neutral .
Application of the semi-empirical method for the prediction of transition requires the evaluation of
Eq. (23) for a range of reduced frequencies %%» to select the most dangerous frequencies. The available
time for the preparation of the present paper did not permit to perform these detailed amplification
calculations for the experimentally determined pressure distributions. However, we developed a short-cut
method which is thought to provide a reasonably accurate first estimate of the tramsition position in the
separated flow at rather low values of the Reynoldsnumber,where no appreciable amplification occurs prior
to separation. This short-cut method will be described in the remainder of the present section. Some examples
will be discussed in section 8.
It may be assumed with reasonable accuracy that in the laminar part of the separation bubble 6, U and Re

are constant and equal to their values at separation. Then constant values of
wd

o, U also mean constant values of Q@_
A v
Y
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Furthermore it may be assumed that downstream of separation g is proportional to X—Xsep with:
_Yyso (X“xsep)tan(\’) - (x—xsep) B
e= g § e ®D) (24
0 sep L
Hence Eq. (23) may be written as: .
(R,) R,) . ) .
_ _ 87 sep - ; _ _ 97sep -
O, =g (0 dlgxm )= go /(- 6)dz (25)
sep sep

so that the integration with respect to x has been replaced by an integration w.r.t. g. Similarly we can
over a short interval upstream of separation, assuming £ to be proportional to xsep—x, perform the integrat—
ion w.r.t. & instead of x. Now we make the further assumption that the Reynoldsnumber is so high that the

stability characteristics are given with sufficient accuracy by the limiting values determined from the
w9
U

Hence the integration w.r.t. z in Eq. (25) can be performed once for all independently of (Re)sep or the

inviscid stability equation. Then ~mie only depends on the value of and the profile parameter B or z.
pressure distribution for different values of %9 . A similar result holds for the integration w.r.t. 2
upstream of separation.

The inviscid instability for different values of B is shown in figs. 1la and 11b. Values of 1OAf(—aiG)dz

are shown in fig. 12 for different values of 9% together with the envelope giving the maximum value I
of the integral as a function of z. Hence the maximum amplification factor o, follows from (25) in the
- (R.) I E
o o =107 "B”.Ti - (26)

a sep

According to previous experience with the transition prediction method it may be expected that transition
will occur in practice as soon as the calculated value of o, exceeds a critical value which is of the .order
of - 10.

A further simplification results when I(z) is replaced by the approximation (see fig. 13)

I = 650 V? 27)

Eq. (27) completely neglects the amplification upstream of separation but is rather accurate for large

values of z. Combining Eqs. (26), (27) and (24) it follows that the position of transition LI follows

from 2 8 2
X, -X e} 10" Bm 237 o Bm
tr “sep _ a sep _ a sep (28)
esep 6502 (R,) (Re)sep
6’ sep
Using as mean values B=17.5; msep=0.10 and Ua=14.4@ee section 8) we find:
X, _~X 4
tr "sep _ 8.6x10
2] - (R ) (29)
sep 6’/ sep

7. POSSIBLE METHODS TO PREDICT BURSTING OF THE BUBBLE.

\

A number of methods may be used to predict whether reattachment of the shear layer will occur downstream
of transition. A few of these methods will be briefly described in this section; some experimental checks

will be given in section 8.

In ref. 6 Crabtree observed that there seems to be a maximum limit to the pressure rise which a reattaching

turbulent shear layer may overcome. From a number of experiments he deduced that the pressure coefficient

Ur 2

o=1-( ) (30)

sep
is nearly constant for short bubbles about to burst; the constant value he suggested was 0.35. Since it
seems -better to correlate different experimental results on the preséure rise between transition and re-
attachment we will use a slightly different coefficient Oep defined by:

U 2
0 =1 GO (31)
tr

If Eq. (30) or (31) is to be used to predict whether reattachment will occur, the value of Ur at the
possible reattachment point has to be known. In a first approximation this may be taken from the pressure
distribution which would occur without the bubble being present at the position X (the "inviscid

pressure distribution").
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In ref. 26 Horton gave a method to predict whether and where reattachment may occur. This method is based

111
on the simple criterion that (g<§%)r = constant = ~,0082 for all reattaching turbulent shear layers.

A simple criterion for bursting is provided by Stratford's zero skin friction limiting pressure distribution,
(ref. 27). This is the adverse pressure distribution which a turbulent boundary layer can just negotiate
‘without separation. This limiting pressure distribution curve, starting at the measured transition point T
(fig. 1) can at low Reynoldsnumber fail to cross the "inviscid pressure distribution curve". This means that
the requested pressure rise is more than the Stratford pressure recovery can provide and hence bursting
occurs. For our experimental results on the Wortmamm airfoil (section 8) this gave a very good prediction

of the bursting Reynoldsnumber.
8. SOME EXPERIMENTAL RESULTS.

Two series of experiments were performed. The first one was on the FX 66-5-196-V1 Wortmann airfoil at an
angle of attack of 1-degree in a small 400 x 400 mm windtunnel. The chordlength of the airfoil was 360 mm.
The second investigation concerned a 400 mm dia. circular cylinder with a tail (to suppress a fluctuating

wake) in the large 1810 x 1250 mm low turbulence windtunnel (model configuration ¢, ref. 21).

Fig. 14 shows some of the pressure distributions for the airfoil at different Reynoldsnumbers; bursting
occurs between RC=.118 and .099 = 10 6. An‘extensive.series of flow pictures, similar to that shown in

fig. 9, was made using the special camera described in ref. 21. Fig. 15 shows a plot of tan(y) vs.{Re)Sep;
the region of (Re)Sep at which bursting occurs is indicated én the figure. It follows that before and

after bursting B lies always between 15 and 20.

Gaster's pressure gradient parameter P is shown in4the lower half of fig. 16 for the closed bubbles.
Extrapolation of this curve to the first value of (Re)Sep measured after bursting would give a point beyond
Gasters bursting line. It follows that -.185 < P < -,120 so that Wortmann's relation (Eq. 17) would give

7.7 < B < 11.8 which is not in agreement with fig. 15.

The upper half of fig. 16 shows the pressure recovery coefficient between transitionm and reattachment. It
follows that the maximum value of Gcr=0'36 which is obtained just prior to bursting is in good agreement
with Crabtree's suggested maximum of 0.35.

Figs. 17 and 18 show the pressure distributions in the region of the bubble for the highest and lowest
Reynoldsnumber at which a closed bubble was observed. The curve labelled B=15 is the result of a calculation
using the method discussed in section 5 with a straight separation streamline. Results for a linear variation
of g and/or B=20 are only slightly different. It is seen that the best fit is obtained at the highest
Reynoldsnumber; results for 6 intermediate values of R, show a gradual change from the results shown in

fig. 17 to those of fig. 18. The curves labelled "Horton" indicate the locus of possible reattachment points.
Where this curve crosses the "inviscid pressure distribution" indicated by a dotted curve, a closed bubble

is obtained. It follows that Hortons method indicated bursting already in fig. 18. Results for the inter—
mediate Reynoldsnumbers show that bursting is indicated too early by this method. It is possible that a
modification of the constants in Horton's method would lead to a better result; this has not been attempted
however. The curves labelled Stratford indicate Stratfords limiting pressure distribution starting from the
measured transition point. It follows from fig. 18 that according to this method the bubble is about to burst
at Rc='118 S 106; this is in agreement with experimental observation.

The length of the laminar part of the bubble is shown in fig. 19 as a function of R, The broken curve
indicates the predicted length for Ga=12.5 and B=15 using the method of section .6 where I(z) is taken

from fig. 12.

Results similar to those for the Wortmann airfoil have been obtained for the cylindrical model. In this case
only short bubbles have been measured on the cylindrical part. Fig. 20 shows the length of the laminar part
of the bubble; %ncluded in the figure are calculated curves for B=15 and 20, using the value Ga=12.5 which
was found.to correlate well the measurements for the airfoil at B=15. It follows that in general the bubble
is longer on the cylinder than on the airfoil. From some further calculations, the results of which are not
shown in the figures, it follows that for a mean value B=17.5 the value of o, is about 11.7 for the airfoil
and 14.4 for the cylinder.

Figure 21 shows a comparison of both series of results in the form of é% Vs'(RS)sep where Ax is the length
of the laminar part of the bubble and § = esep' Besides the measured points some calculated curves are shown

together with an empirical correlation curve which was given by Vincent de Paul in ref. 28. It follows that




11-10

the different measurements do not correlate very well so that some cther parameter should Bé of importance.
An important difference between our own two series of measurements is that they have been obtained in two
different windtunnels. The airfoil was tested in a small tunnel where the noise level, the amount of
vibration and possibly the free stream turbulence intensity are much higher than in the large low turbulence
tunnel. The large tunnel was very quiet at the low speeds ﬁsed, while at these low speeds the turbulence
level is of the order of .02Z. To check whether the noise in the small tunnmel could have caused earlier
transition, the noise at different speeds was recorded on a tape recorder and reproduced in front of an
open window in the test section of the large tunnel. This had a marked effect on transition; the length

of the separated region decreased by about 1 degree at high speeds and by about 3 degrees at the lowest
speed, The corresponding decrease in ég ranged from 35 to 50; the value of o, which correlates the measure-
ments at B=17.5 decreased from l4.4 for the quiet situation to 13.1 with the noise. (see also fig. 21)

In a further experiment the cylindrical model was subjected to tones recorded from an electronic organ;

it proved possible to obtain the same reductions of the distance to transition if only at each speed the
proper frequency was used. These frequencies correlated rather well with the dangerous frequencies which
can be obtained from fig. 12. Of course there may be other variables like longitudinal surface curvature,
mechanical vibrations, free stream turbulence level, etc. which have to be taken into account.

For the time being it is suggested that transition in the bubble can be calculated for "quiet" flows using

the method of section 6 with mean values B=17.5; Ga=14.4; msep=0'10'
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