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Sumpary

This paper gives a review of research at Delft University of Technology on
laminar separation bubbles. Results of flow visualisation studies are used
to define an empirical relation for the angle v at which the separation
streamline leaves the wall. The "e-to-the-n" transition prediction wethed -
is extended to separated flows. A universal description of the laminar part
of the bhubble is proposed, resulting in a simple bubble prediction methed.

1. Introduction

At the Low Speed Laboratory (LSL) of the Department of Aerospace Enginee-
ring of the Delft University of Technology a long term research program has
been going on concerning the analysis and design of airfoil sections for
low speed flow. For these flows the possible occurrence of laminar separa-—
tion bubbles has a marked influence on the pressure distribution and on the
development of the boundary layer downstream of the hubble. As an example
Fig. 1 gives some results of pressure distribution measurements obtained at
ISL for a Wortmann airfoil. Within the bubble a ¢haracteristic flattening
of the pressure distribution can be noticed. At low Reynoldsmmbers (<.1 *
10¢ in Fig. 1) the turbulent flow may fail to reattach and "bursting" of
the bubble is said to have occurred. It will be ¢lear that any computer
code, aimed at predicting the characteristics of airfoils at relatively low
Reynoldsnumbers should be able to treat these separation ubbles. In a
rumber of papers [1-5] the author and his colleagues have reported on
studies at LSL regarding separation, transition and reattachment and also
on the design of low Reynolds number airfoils.

A schematic description of the flowfleld and the pressure distribution in
the ubble region is given in Fig. 2.

Due to lack of space the present paper will only discuss the laminar part
of the bubble (S~T) and transition (T). For discussions on reattachment the
reader is referred to [1-5]. In most engineering calculation methods the
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Fig. 1. Measured pressure distribu- Fig. 2. Schematic diagram of flow
tions for the Wortmann FX66-S-196VI field and pressure distribution in
airfoll, o« = 10. a laminar separation bubble.

pressure distribution in the bubble is treated as a local perturbation only
of the pressure distribution curve SR which whould occur for a turbulent
boundary layer. Hence the laminar separation point S and the reattachment
point R are thought to be on the turluilent curve. In reality a slight
undershoot is often noticed around S and R.

2. Some useful relations for separating laminar f£low
In a small neighbourhood of the separation point, where the inertial forces

may be neglected, the Navier-Stokes equations admit a simple analytical
solution [6~8]. Important results are: The separation streamline leaves the
wall at an angle v (Fig. 2) which is determined by:
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tanty) = - 5928 : "
where all cuantities in (1) are evaluated at the separation point {(for
nomenclature see section 8}.

The equation for the streamlines reads:

y2(x tan v - y) = constant (2}

where x is the distance downstream of separation.
The shear stress is zero at vy = ¥y for which:

1
¥y =5 ¥ tan vy (3)
The velocity component u exuals zero at y, for which:
-2 '
Yy =3 xtany (4)

Hence (when ¥y denotes the distance to the wall of the separation stream-
line):

Y1 1 ¥y ¥y =11:2:3 (5)

The pressure gradient is at an angle /3 with the wall and hence for thin
bubbles, where v is small, the pressure gradient normal to the wall is
small so that the boundary layer eguations might still give a reasonable
result,

If we start from the boundary layer equations and assume small values of u
and v we can also arrive at the previcus results. Here it is assunmed a
priori that ap/sx is independent of v.

Introducing £ and m for the non—dimensional shear stress and curvature of
the velocity profile at the wall respectively, we fimd

Y3/9 = - 3i/m {6)

Relations such as (3) through (6) are also valid with a good approximation
for the Stewartson solutions with reversed flow of the Falkner-Skan
equation.

In what follows we will sometimes use

g =yy/f == 34/m [

as a shape factor for velocity profiles with reversed flow near the wall.
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Because the velowities in the separated region remain very small it may be
expected that eg. (2) remaihs valid within a separation ubble at appreci-
able distances downstream of separation. This is illustrated by Fig. 3 in
which measured streamlines from a smoke picture of a separation bubble [10]
are compared to results of a calculation using eg. (2). It should be noted
that the streamlines can only be calculated when 7 is known. In this case
the value of y was taken fram the smoke picture.
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Fig. 3. Streamlines inside the laminar part of the separation ubble
obrtalned from a smoke picture. Comparison with equation (2). Same airfoil
as in Fig. 1.

3. Results of flow visualisation studies of Jaminar separation bubbles
When a boundary layer calculation is performed for a prescribed pressure
distribution, generally the so-called Goldstein singularity will occur at
separation for which the wall shear stress r, tends to zero like the sguare
root of the distance to separation. In this case eg. (1) would predict a
separation angle v of 90 degrees, which is chviously in contradiction with
experimental evidence. Usual ways to proceed with the calculation through
the separation point, are to use the Navier-Stokes equations or at least a
strong interaction model using the boundary layer equations.

An alternative way was followed at 1SL, in oxder to develop an engineering
method for the calculation of separation hulbbles. An extensive series of
flow visualisation studies was made in the hope that a sufficiently general
empirical relation might be found from which the separation angle y can be
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Fig. 4. Separation argle vy for various Fig. 5. Separation angle v for the
flows, {9]. airfoil of Fig. 1 [10].

determined as a function of the boundary layer characteristics upstream of
separation. Once v is known the separated flow might be calculated using
simple methods.

A first series of results has been reported in [9]. Measurements were
performed on seven different model configurations in three different low
speed windtunnels. The flow was made visible by means of smoke introduced
into the separation bubble. The shape of the front part of the bukble was
determined photographically, from which the separation angle y could he
measured. -

The results are shown in Fig. 4, vhere measured values of tan{y) are plot-
ted vs. the corresponding value of R, at separation. It follows that a
reasonably unique relation exists between y and (R;) which can be
approximated by

sep

tan(y) = B/(Ry)gep (8)

with a value for the ‘constant’ B of about 15 to 20.

Iater [10], similar experiments have been performed on a Wortmann FX 66-5-
196VI airfoil; results are given in Fig. 5. For these experiments the chord
Reynolds mumber was reduced to such low values that bursting of the ubble
occurred., It follows from Fig. 5 that even after bursting relation (8)
remains valid. In the LSL airfoil computer program for airfoil analysis and
design eg. (8) is used with a constant mean value for B equal to 17.5.
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4. Computational methods for the laminar part of the hubble
When the separation streamline for a curved wall is plotted in boundary
layer coovdinates, where distances are measured along and normal to the
wall, respectively, the first part of the dividing streamline in the
laminar part of the hubble is reasonably straight or slightly curved
upwards (Fig. 3). This finding has been used [9, 10, 11] to develop a
sirple calculation procedure for the separated laminar flow. This method
employs the Von Karman momentum integral relation and the first ‘compatibi-
lity condition’ of the boundary layer ecuations. This condition relates the
curvature of the velocity profile at the wall to the streamwise pressure
gradient. The following additional assumptions are made.
1. The angle vy can be determined from (R by an empirical relation
such as (8) with B = 17.5.
2. The separation streamline has a prescribed shape in the laminar part
of the bubble.
3. The reversed flow velocity profiles can be represented by the
Stewartson second branch solutions of the Falkner-Skan eguation.
Tt shouid be observed that the pressure distribution in the separvated
region is not given a priori but it follows from the calculations. In other
words: the pressure distribution is determined such that the assumed shape
of the separation streamline is compatible with the other assumptions and
with the equations used. Initial conditions which are required to start the
calculation at the separation point are ¢ and U, These conditions follow
from the boundary layer calculation upstream of the separation point.
The above mentioned method has been used for some time in the ISL airfoil
computer program. The resulting pressure distributions were always found to
be very similar, showing the characteristic flattening in the laminar part
of the bubble (Figs 1 and 2). At a later stage, the pressure distributions
have been directly derived from a universal relation which is based on a
combination of experimental evidence and calculations (see chapter 5 and
(41).
Wwork iz in progress at ISL to replace this simple engineering method with a
more advanced "strong interaction! procedure as introduced by Veldman [12,
13]. In order to make the new method fast enough for design studies, where
many boundary layer computations have to be made to optimise the design,
use will be made of an integral method. The present rapid engineering
method may be used as a first iteration to speed up convergence.
A well-known testcase for these laminar strong interaction calculations is
the indented flat plate ("Carter and Worrnum trough, Fig. 6). Veldman and
Henkes [17] used it to show that Veldman’s simuitanecus calculation methiod

E)sep
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for the pressure distribution and the viscous flow produced good results
using a finite difference method to solve the boundary layer equations.
Heidsieck [14] showed that the boundary layer equations, used in Veldman’s
interaction scheme, give results which are in good correspondence with
results of the Navier-Stokes equations. Heidsieck and Oskam [15] showed
that aiso a treatment of strong interaction using a two-parameter integral
method produced good results.

Some results due to Hemkes [16] are shown in Figs. 7 and 8.

It turns out that at low Reynolds mmbers the adverse pressure gradient
over the trough is so nuch relieved by the dispiacement effect that the
bubble disappears. Tt follows from Fig. 7 that the theoretical results are
in a certain Reynolds mamber range very similar to the experimental cor-
relations as shown in Figs. 4 and 5; only when the Reynolds number of the
computations is reduced below a certain value (which depends on the depth
parameter o of the trough), the hubble suddenly disappears. It is under-
standable that the disappearance of abbles did not show up in the early
experimental research at LSL. Chservations were always restricted to flows
which were forced to separate. 2n experimental investigation of the Carter
and Wormom trough with ¢ = -0.03 was attempted at LSL [18]. Here the
disappearance of the bubble with decreasing Reynolds number was clearly
noticed. Some results of the experlments are compared to the numerical
results in Fig. 8. Differences between the two sets of results may be
partly due to the fact that in the experiment the pressure gradient outside
the trough region was not exactly zerc and even slightly favourable

(“*‘p = -.01 for X < 1). Imposing this outside pressure gradient on the
ax
calculation leads to a shortening of the bubble with an amount ax/I, = .04.
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method.

In future the pressure gradient will be better controlled in the experiment
and taken into account in the calculations. It should be observed that it
is very difficult to measure the pressure distribution acgurately. To keep
the fiow laminar until after reattachment and to cbtain a measurable
separation angle the wind tunmel speed has to be kept Iow. In the experi-
ment the bubble disappeared below about 3 n/s.

In order to see to what extent a simple one-parameter integral method,
using Veldman‘s strong interaction scheme, could be used as a fast design
method, the simple calculation procedure, referred to above, was modified
by replacing the empirical input (asswmptions 1 and 2) by Veldman’s inter-
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action scheme. Figs. 7 and 8 contain some results of this method as
compared to Henkes’ calculations. Tt follows that the present method is
able to give a reasonable approximation at a much reduced computer time. It
is intended at ISL to replace the present engineering method used in
airfoil design by a two-parameter integral method. The present transition
prediction method (section 6) will also he replaced by a two-parameter
version.

5. A postulated universal description of the laminar part of the bubble
In order to arrive at a universal model of the laminar part of the bubble
we start from the boundary layer equation:

pu, . gu_ _1dp, , azu '
uax+vaym pdx+yﬂy {(9)

8
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and the continuity equation:

gu gi; =0 (10)
Tt seems reascnable to assume the validity of (9) even within the separated
region if only we refrain from prescribing the pressure distribution. The
pressure gradient term in (9) can be related to the velocity U at the edge
of the boundary layer using the Bernoulli equation.
We now make (9) and (10) non-dimensional by using # sep as a characteristic
length and U sep as a characteristic velocity. Takirg again x as the dis—
tance downstream of separation we now define:

(Rylgep ™ Vgep Psep/™) Y =¥/ u = wl U= U/l
& =X/ gpp Rgsep) v=(v R""sep)/Usep (11)

Note that in non-dimensionalizing x and v a factor (R )Se has been used.
This is to cbtain values of ¢ and v with a reasonable order of magnitude
and moreover to arrive at the following eguations which do not contain the
Reynolds number explicity:

cou, ;al_gdl, a%u 1
uaé+va§ d§+ - (12)
A . v _

a§+a§ 0 (13)

If now we make the foliowing assumptions:

a. U/, is a universal function of ¢ downstream of separaticn.
b. All velocity profiles at separation are the same when plotted as

v/, sep VS Y/ Bsep'

then equations (12) and (13} and the corresponding boundary conditions are
always the same, leading to a universal solution. From this it would follow
that

T = Ugeps 7 = 0/ gepr Yo/fgep @8 G = Y/t
are universal functions of €.

IfEg=yy/% is a universal function of ¢, then we find (note that g = 0 at
separation):
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_ ., av &g _ ey
tan 1 = ( Gheo = (& adeo = By )eep L (4

With ( dé.) £=0 equal to a universal constant, say B, we retrieve our ex-
perimental relation (8).

It should ke stressed that the available experimental evidence to support
assumption (a) is scarce and scattered. Moreover the assumption (b) is a
very rough first approximation only because varicus separation profiles
certainly show a variation of the shape factor H. Nevertheless we will
proceed on this line because it will lead us to a useful frame of reference
to present experimental resuits.

6. The e method for transition prediction

The e" method for transition prediction for attached flows was developed in
1956 independently by Smith and Gamberoni [19] and Van Ingen [20].

method was extended by Van Ingen to the case of suction [21] and separated
flows [10,11].

The method employs linear stability theory to calculate the amplification
factor ¢ for unstable disturbances in the laminar boundary layer (s is
defined as the natural logarithm of the ratio between the amplitude of a
disturbance at a given position to the amplitude at neutral stability). It
is found that at the experimentally determined transition position the
calculated amplification factor for the critical disturbances attains
nearly the same value (about 9) in many different cases for flows with low
free stream turlulence levels. To include the effects of higher free stream
turbulence lavels, the critical amplification factor was made dependent on
the turbulence level.

To obtain the critical disturbance, calculations are made for many dif-
ferent disturbance frequencies; the envelope N of the ¢—x curves for these
different frequencies is used as the critical amplification factor control-
ling transition. Denoting the value of v, at transition by n, it follows
that the calculated ratio of the amplitude a of the unstable disturbances
to the neutral amplitude a, is given by:

afa = e" (15)

This of course explains the name of this semi-empirical method. It is cus-
tomary at ISL to use o, instead of n.

In linear stability theory a given two—dimensicnal laminar main flow is
subjected to sinusoidal disturbances with a disturbance stream function:
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b= ly) e(e¥et) . (16)

For the spatial moxde » is real and o is complex o = an. ¥ i oy . This leads
to a factor exp(-a;x) in the disturbance amplitude and ¢ follows from:

X
a =_f -, dx (17)
X

where ¥ is the streanwise position where the disturbance with frequency o
is neutrally stable.

Various stability data obtained from litterature and some additional invis—
cid stability calculations at ISL have been reduced to a table containing
about 300 numbers [10].

Using this table, the amplification rate —o; can easily be obtained for any
velocity profile,. as soon as the critical Reynolds number is known. At ISL
a boundary layer calculation method is used [10] which, for attached flow,
is similar to Thwaites’ method. It contains an extra parameter however,
which mekes the prediction of the separation position as accurate as for
Stratford’s two-layer method. In separated flows an integral method is used
in which the shape of the separation streamline is prescribed. Both for
attached and separated flow the primary profile shape parameter is m/msep.
The critical Reynolds number is a function of m/msep; this function is
assumed to be equal to that obtained for the Falkner-Skan solutions.

It is clear that ¢ is a function of % and « for a given boundary layer; o
can be calculated as soon as stability diagrams are available for the velo-
city profiles for successive streamwise positions x. '

Since transition occurs in a region rather than in-a point, Van Ingen
intreduced two values of o, namely ¢, and o, [10] corresponding to
beginning ard end of the transition region. The values of o, and ¢, depend
on the free strean turbulence characteristics. )
Although it is clear that the initial disturbances camnot be sufficiently
characterised by the r.m.s. value of free stream turbulence alone, it may
be attempted to find a relation between oy, ¢, and the r.m.s. free strean
turbulence Tu (in %).

In many different papers relations between Tu and R, or R, at transition
have been given for the flat plate. The measured transition positions may
be converted to oa-values: then o, will decrease when Tu increases. In {11]
it is shown that, based on these flat plate results, ¢ , and o5 can be
related to an "effective" turbulence level Tu (%) by
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2.14 - 6.18%010g Tu (18)

i

5 - 6.18 %09 Tu (19)

72

Application of the e method requires the evaluation of eg. (17) for a
range of reduced frequencies wv/U2_; this is done on a routine basis in the
1SL airfoil program. For separation bubbles a short-cut method was
developed [10,11] which is thought to provide a reasonably accurate first
estimate of the transition pesition in the separated flow at rather iow
values of the Reynolds number, where no appreciable amplification occurs
prior to separation. This short-cut method will be described in the remain-
der of the present chapter.

Starting from {(17) and using the non-dimensicnal coordinate ¢ we can write
(the integration starts where the specific disturbance first becomes
unstable}:

8

o
o= —aj = (Ry)gep [ g,;sep d (20)

The non-dimensicrial frequency w¢ /U may be written as:

Wi /U= (w asep/usep>(e/esep)(U/Usep)'l (21)
Then, using the results of chapter 5 that U/Usep' Wgsep and the shape
factor may be taken as universal functions of £, it follows that for each
frequency the integral in (20) is a function of £ and (Re)sep' Now we make
" the further assumption that the Reynolds mumber, although low in absolute
sense, is relatively high w.r.t. the critical Reynolds number so that the
stability characteristics are given with sufficient accuracy by the
limiting values determined from the inviscid stability equation. Then —ajd
only depends on the value of wé/U and the profile parameter g but not on
R,. Hence the integrals for the different frequencies and alsc the envelope

[
are universal functions of ¢. Therefore we can write:

o, = (Rﬁ)sep F(#) (22}

vhere F(¢) is a universal function of ¢ which may be determined from the
¥nown relations between ¢, g and the various stability data.
A further simplification can be made when it is assumed that in first
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approximation in the laminar part of the kukble ¢, U and R, are constant
and equal to their values at separation. Then constant values of wv /U2
also mean constant values of wf/U. In the present short cut method we assu-
me that downstream of separation ¢ is proportional to ¢ according to

g=DB¢ (23)

Hence (20) can be replaced by an integration w.r.t. g.

Similarly we can, over a short interval upstream of separation, assuming £
to be proportional to Xoep s perforn the integration w.r.t. £ instéad of
X.

Hence the integration in eq.(20) can be performed once for all indepen-
dently of (Rg b sep or the pressure distribution for different values of

wd /. From the effective turbulence level Tu the critical amplification
factor follows using (18) and {19). The position of transition behind the
separation point then follows from the definition of ¢ and the known
function F{¢).

At LSL we use this short-cut method to obtain a first estimate of the
transition position only. Subsequently we always perform the full amplifi-
cation calculation where also the upstream influence is taken into account.
This may lead to a shorter bubble than follows from the short-cut method.

A plot of F(¢), as derived from the stability diagrams of the Stewartson
velocity profiles is shown in Fig. 9. For small values of £ we way use as a
good approximation:

10% F(e) = 70 + 530 ¢ (24)
For large values of ¢ we may use:
10% F(e) = 491 /2 (25)

The linear approximation (24) will be used below as a frame of reference
for some further experimental results.
The square root approximation may be brought in a familiar form, which has
been used by previous writers to present their experimental results. It
should be noted that (25) completely neglects the anplification upstream of
separation but is rather accurate for large values of £.
Using eg.(25) it may be shown that the position of transition x . follows
from {take ¥sep = 0):

Z
sep § ‘sep
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= 0,10 we find:

Sep

X 415 o _2
T .8 og15 o2 oi0 (27)
L Rﬂ a Rg

P sep sep

which is similar to a relation given by Horton [22]:

;‘tr -c (th))“ (28)
sep ¥ 'sep

with values of C ranging from 2 to 5. This rarge of C values corresponds to
o, values between 8.5 and 11. It should be noted that (25) and hence (28)
can only be used when transition occurs rather far downstream in the
bubble; that means it is a very low Reynolds number approximation. It would
lead to the unrealistic result that, with increasing Reynolds mmber the
bubble would only disappear at infinite Reynolds numbers. At the higher
Reynolds numbers it should be expected that (24) is a better approximation.
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The two methods of correlating experimental results for data collected at

ISL.

Series 1: Wortmann airfoil FX66-5-196 VI, o = 1 degr. in a small noisy
tunel.

Series 2: The same Wortwann airfoil but now in the large low turbulence

) tunnel at LSL.

Series 3: A circular cylinder with a wedge-shaped tail in the large tunnel
(one of the confiqurations of [9].

Series 4: Same as series 3 but noise from the small tunnel recorded on tape
and replayed in the test section of the large low turbulence
tunnel.

The linear expression (24}, together with (22) leads to

104 _ 70 + 530¢ (29)

(Ry )sep %a

Using the definition of ¢ in eq. (11} this can be further reduced to

10%¢
AX  _ a 70 (30)

= + 3530 (Ry)
esep 530 530 ‘" ‘sep

Hence, at transition, where 7, assumes a value determined by Tu, linear
relations should be observed between various characteristic parameters.
Figs. 10, 11 and 12 show these relations in comparison to a number of data
collected by Horton [22] and measurements at ISL [11]. In these comparisons
the relation (19) between Tu amd the value ¢, for ¢, at the end of transi-
tion has been used.

12
13
14
15
16
17
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It should be stressed again however that all approximations discussed in
this chapter are based on the assumption that no appreciable amplification
ocCurs upstream of separation. Only the full amplification calculation,
which we use in the LSL airfoil program, will give a proper prediction of
transition.

7._Concluding remarks
The present paper gives a very brief review of sume aspects of laminar

separation kubble research at the Iow Speed Laboratory (ISL) of the
Department of Aerospace Engineering at the Delft University of Technology.
Due to latk of space it was not possible to discuss the reattachment
problem. Neither could attention be paid to the application of this basic
research to the analysis and design of airfoils for low Reynolds number
applications. References [1-5] may be consulted to get a detailed overview
of the work at Delft.

8. Nomenclature
The symbols used are the conventional cnes. Only a few are wentioned speci-
fically below.

y3/6'; shape parameter
TOH/HU)

=g

_ 6z qy
v o dx

UmC/u

Ud /v

distance along wall

turbulence level; %

edge velocity

free stream speed

U/, or U/Usep

. X distance along wall, in general measured from separation
point
distance from wall

3 ¥y for separation streamline

separation angle (Fig. 2)

momentum loss thickness

b/ Iﬁ?sep

amplification factor

envelope of o~x

o, at beginning of transition

SC‘ o= E U:m:GO’.:U E]

=]

il

Q @) = 2

Q
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=



vy v, at end of transition

75 wall shear stress

Subscripts:

S, s, sep separation

T, tr transition

R, r reattachment
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