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Summary .

In this dissertation the results are presented of some theoretical and
experimental investigations of two-dimensional laminar boundary layers
with and without sucticn. Throughout the work the velocities involved
are assumed to be of such a small magnitude that the effects of
compressibility can be neglected. The investigations were undertaken
with the purpose to clarify some points concerned with maintaining
laminar flow in a boundary layer by means of suction through a porous
surface. In the course of this work several results were obtained which
also may be of interest for laminar houndary layers without suction.

A first investigation is concerned with the calculation of laminar
boundary layers by means of approximate methods of the type introduced
by Pohlhausen. A new method is described which, by a special choice of
the velocity profile, is capable of providing accurate results in those
cases where the suction velocity is not too large.

The second theoretical investigation deals with a "phase plane"
description of the laminar boundary layer flow bhetween non-parallel
plane walls. Here shear T is plotted versus the velocity component u
parallel to the wall.

This is analogous to the use of the phase plane method in the theory of
non-linear oscillations with one degree of freedom where speed is plotted
versus displacement. In the latter theory singular points in the phase-
plane correspond to equilibrium positions of the oscillation. For the
flow between non-parallel plane walls the singularities in the "phase
plane" are shown to correspond to the edge of a boundary layer. It is
shown that the occurrence of boundary layer type solutions depends on
the character of the singularity which is determined by the amount of
suction.

For the case of inflow between converging walls without suction Tz can
be expressed as a polynomial in u. From this observation a new calculation
method for leminar boundary layers evolves which is described in detail.
The method assumes for T2 a polynomial expression in u with coefficients
depending on the streamwise coordinate x. These coefficients are
determined from compatibility conditions and from moments of a modified

form of Crocco's boundary layer equation. In contrast to existing
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approximate methods the new approach allows the degree N of the
polynomial to he increased without unduly complicating the methoed,

For increasing N the results of the approximate method seem to converge
to the exact scolution.

The experimental part of the work consists of measurements on two
airfoll sections in a low speed wind tunnel., The first model is a 28° /0
thick laminar flow airfoil section with an impermeable surface and a

- chord iength of 1 meter, A detailed survey of the velocify profiles

in the laminar houndary layer was made with hot wires; the measurements
were extended so far downstream as to include the laminar separation
point. Results of the measurements and a compariscn with laminar boundary
layer theory are presentied.

The second model is a 150/0 thick, 1.35 meter chord, laminar flow wing
section with porous upper- and lower surfaces between the 300/0 and
900/0 chord positions. The inside of the model is divided into 40
different compartments each with its own suction line, flow.regulating
valve and -measuring device. Hence the chordwise suction distribution
could be varied between wide limits. Wake drag and transition position
were measured for several suction distributions; for some of these
detailed boundary layer surveys were made. In one case the suction
distribution was chosen in such a way that a separating laminar boundary
layer was obtained,

From the transition measurements on the porous model a semi-empirical
method is derived which permits the determination of the transition
position for two-dimensional incompressible laminar boundary layers with
arbitrary pressure- and suction distributions. This method is an
extension of an existing method which was shown to be valid for the
no~suction case beoth by Smith and Gamberoni [1,2] and the present author
[3,4,5].

The boundary layer calculation methods and the transition criteriomn
provide the means for a rational design of the suction distribution
needed to maintain laminar flow for a given pressure distribution. For
instance & suction distribution may he determined for which the total

drag coefficient is as small as possible.
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T (eq. 3.36)
A
1-3 1
measure for boundary layer thickness in general

defined by S \/2; =1 in chapter 7 and further

& U,c

c ¥y v
displacement thickness (I-u)dy
6*\ /U,,,c o1

c VI

defined by eq. (2,26)
&

energy loss thickness v/fﬁfl—ﬁz)dy

ml+1 U ©

v 5 gy in section 3.12
!

¥ \f— 1in section 3.2,2,
vC

defined by eq. (3.28) in section (3.2.4)

in chapter 4

al oo

in chapter 5

uf )
%\/l vll = %\/iU‘I}x in chapter 6

uAn in chapter 6

£

momentun loss thickness d/ra(l—a)dy
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_ 106
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equation (92.4)



XVII

subscripts

i at the instability point
o at the surface

sep at the separation point
st at the stagnation point
ir at transition

te at trailing edge

le at leading edge

primes denote differentiation with respect to 7 in chapter 3 and & and

to u in chapter 7. They denote fluctuation components in chapter 9.
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