CIEM5110-2: FEM, lecture 5.2

Introduction to nonlinear material models

Iuri Rocha and Frans van der Meer

Agenda for today

- 1. Nonlinear material models solver interface
- 2. An overview of different strategies for modeling nonlinear materials
- 3. Illustration: 1D plasticity

CIEM5110-2 workshops and lectures

	(Theory)	SolidModel (1.2, <mark>5.2</mark>)	FrameModel (4.1, 4.2)	TimoshenkoModel (2.1)
SolverModule	(2.2)	3.2	3.2	3.2
NonlinModule	(3.1, <mark>5.2</mark>)	6.1	4.1 + 4.2 + 5.1	
ArclenModule	(4.2)		4.2	
LinBuckModule	(4.1)		4.1 + 5.1	
ModeShapeModule	(6.2)	7.1	8.2	
ExplicitTimeModule	(6.2)		7.2 + 8.2	

Recap – Linear FEM

This is the general discretized equilibrium equation:

$$\underbrace{\int_{\Omega} \mathbf{B}^{T} \boldsymbol{\sigma} \, \mathrm{d}\Omega}_{\mathbf{f}_{\text{int}}} = \underbrace{\int_{\Omega} \mathbf{N}^{T} \mathbf{b} \, \mathrm{d}\Omega}_{\mathbf{f}_{\text{ext}}} + \underbrace{\int_{\Gamma_{t}} \mathbf{N}^{T} \mathbf{t} \, \mathrm{d}\Gamma}_{\mathbf{f}_{\text{ext}}}$$

Assuming linear elasticity, we could substitute $m{\sigma} = \mathbf{DBa}$ to get

$$\int_{\Omega} \mathbf{B}^T \mathbf{D} \mathbf{B} \, \mathrm{d}\Omega \, \mathbf{a} = \int_{\Omega} \mathbf{N}^T \mathbf{b} \, \mathrm{d}\Omega + \int_{\Gamma_t} \mathbf{N}^T \mathbf{t} \, \mathrm{d}\Gamma \qquad \Rightarrow \qquad \mathbf{K} \mathbf{a} = \mathbf{f}_{\mathrm{ext}}$$

Linearity is assumed twice there

 $\varepsilon = Ba$ (kinematic relation)

and

$$\sigma = \mathrm{D} \varepsilon$$
 (constitutive relation)

Recap – Elasticity

Constant stiffness, full reversibility

In Voigt notation in 2D plane stress:

$$\mathbf{D} = \begin{bmatrix} \frac{E}{1-\nu^2} & \frac{E\nu}{1-\nu^2} & 0\\ \frac{E\nu}{1-\nu^2} & \frac{E}{1-\nu^2} & 0\\ 0 & 0 & \frac{E}{2(1+\nu)} \end{bmatrix}$$

In Voigt notation in 3D:

Delft

$$\mathbf{D} = \frac{E}{(1+\nu)(1-2\nu)} \begin{bmatrix} 1-\nu & \nu & \nu & 0 & 0 & 0\\ \nu & 1-\nu & \nu & 0 & 0 & 0\\ \nu & \nu & 1-\nu & 0 & 0 & 0\\ 0 & 0 & 0 & \frac{1-2\nu}{2} & 0 & 0\\ 0 & 0 & 0 & 0 & \frac{1-2\nu}{2} & 0\\ 0 & 0 & 0 & 0 & 0 & \frac{1-2\nu}{2} \end{bmatrix}$$

Example: Bolted joints, Fruzsina Csillag (2018)

Objective: investigate the behavior of FRP-steel bolted connections

Analysis type: nonlinear analysis (plasticity, damage, contact)

Delft

Deformation of the bolt

Example: Circular micromodels, Pieter Hofman (2021)

Objective: make a micromodel that gives the same failure response in all directions

Analysis type: material nonlinear analysis

Making wind turbines last longer by understanding material behavior:

• Experimental observation: the material loses half of its strength after exposure to hot water

- Experimental observation: the material loses half of its strength after exposure to hot water
- Translating small scale phenomena back to the higher scale

- Experimental observation: the material loses half of its strength after exposure to hot water
- Translating small scale phenomena back to the higher scale

- Experimental observation: the material loses half of its strength after exposure to hot water
- Translating small scale phenomena back to the higher scale

- Experimental observation: the material loses half of its strength after exposure to hot water
- Translating small scale phenomena back to the higher scale

- Experimental observation: the material loses half of its strength after exposure to hot water
- Translating small scale phenomena back to the higher scale

Recap – Nonlinear FEM

Discretized form:

$$\int_{\Omega} \mathbf{B}^T \boldsymbol{\sigma} \, \mathrm{d}\Omega = \int_{\Omega} \mathbf{N}^T \mathbf{b} \, \mathrm{d}\Omega + \int_{\Gamma_t} \mathbf{N}^T \mathbf{t} \, \mathrm{d}\Gamma$$

Recap – Nonlinear FEM

Discretized form:

$$\int_{\Omega} \mathbf{B}^T \boldsymbol{\sigma} \, \mathrm{d}\Omega = \int_{\Omega} \mathbf{N}^T \mathbf{b} \, \mathrm{d}\Omega + \int_{\Gamma_t} \mathbf{N}^T \mathbf{t} \, \mathrm{d}\Gamma$$

Geometric nonlinearity:

 $\mathbf{B}=\mathbf{B}\left(\mathbf{a}\right)$

Recap – Nonlinear FEM

Discretized form:

$$\int_{\Omega} \mathbf{B}^T \boldsymbol{\sigma} \, \mathrm{d}\Omega = \int_{\Omega} \mathbf{N}^T \mathbf{b} \, \mathrm{d}\Omega + \int_{\Gamma_t} \mathbf{N}^T \mathbf{t} \, \mathrm{d}\Gamma$$

Geometric nonlinearity:

 $\mathbf{B}=\mathbf{B}\left(\mathbf{a}\right)$

Material nonlinearity:

$$\frac{\partial \boldsymbol{\sigma}}{\partial \boldsymbol{\varepsilon}} = \mathbf{D} = \mathbf{D} \left(\mathbf{a} \right)$$

Load control with a nonlinear material

Require: Nonlinear relation $f_{int}(a)$ with $K(a) = \frac{\partial f_{int}}{\partial a}$

1: Initialize $n \leftarrow 0$, $\mathbf{a}^0 \leftarrow \mathbf{0}$

- 2: while n <number of time steps **do**
- 3: Get new external force vector: $\mathbf{f}_{\text{ext}}^{n+1}$
- 4: Initialize new solution at old one: $\mathbf{a}^{n+1} \leftarrow \mathbf{a}^n$
- 5: Compute internal force and stiffness: $\mathbf{f}_{int}^{n+1}(\mathbf{a}^{n+1})$, $\mathbf{K}^{n+1}(\mathbf{a}^{n+1})$
- 6: Evaluate first residual: $\mathbf{r} = \mathbf{f}_{\text{ext}}^{n+1} \mathbf{f}_{\text{int}}^{n+1}$

7: repeat

- 8: Solve linear system of equations: $\mathbf{K}^{n+1}\Delta \mathbf{a} = \mathbf{r}$
- 9: Update solution: $\mathbf{a}^{n+1} \leftarrow \mathbf{a}^{n+1} + \Delta \mathbf{a}$
- 10: Compute internal force and stiffness: $\mathbf{f}_{int}^{n+1}(\mathbf{a}^{n+1})$, $\mathbf{K}^{n+1}(\mathbf{a}^{n+1})$
- 11: Evaluate residual: $\mathbf{r} = \mathbf{f}_{\mathrm{ext}}^{n+1} \mathbf{f}_{\mathrm{int}}^{n+1}$
- 12: **until** $|\mathbf{r}| <$ tolerance
- 13: $n \leftarrow n+1$

14: end while

Load control with a nonlinear material

Require: Nonlinear relation $f_{int}(a)$ with $K(a) = \frac{\partial f_{int}}{\partial a}$

- 1: Initialize $n \leftarrow 0$, $\mathbf{a}^0 \leftarrow \mathbf{0}$
- 2: while n < number of time steps **do**
- 3: Get new external force vector: $\mathbf{f}_{\text{ext}}^{n+1}$
- 4: Initialize new solution at old one: $\mathbf{a}^{n+1} \leftarrow \mathbf{a}^n$
- 5: Compute internal force and stiffness: $\mathbf{f}_{int}^{n+1}(\mathbf{a}^{n+1})$, $\mathbf{K}^{n+1}(\mathbf{a}^{n+1})$
- 6: Evaluate first residual: $\mathbf{r} = \mathbf{f}_{\text{ext}}^{n+1} \mathbf{f}_{\text{int}}^{n+1}$

7: repeat

- 8: Solve linear system of equations: $\mathbf{K}^{n+1}\Delta \mathbf{a} = \mathbf{r}$
- 9: Update solution: $\mathbf{a}^{n+1} \leftarrow \mathbf{a}^{n+1} + \Delta \mathbf{a}$
- 10: Compute internal force and stiffness: $\mathbf{f}_{int}^{n+1}(\mathbf{a}^{n+1})$, $\mathbf{K}^{n+1}(\mathbf{a}^{n+1})$
- 11: Evaluate residual: $\mathbf{r} = \mathbf{f}_{\mathrm{ext}}^{n+1} \mathbf{f}_{\mathrm{int}}^{n+1}$
- 12: **until** $|\mathbf{r}| < \text{tolerance}$
- 13: $n \leftarrow n+1$

eltt

14: end while

Hyperelasticity

Analogous to a nonlinear spring

Popular for modeling large strains

Still fully reversible

Usually derived from a single scalar potential W

Viscoelasticity

Stiffness is time-dependent

Fully reversible response, but stiffer if loaded faster

An integral in time appears

Damage

Loss of load-carrying area modeled as loss of stiffness

A =	(1 -	-d)	A_0
-----	------	-----	-------

Damage

Loss of load-carrying area modeled as loss of stiffness

$$A = (1 - d) A_0$$

The damage *d* evolves according to a loading function:

 $f(\tilde{\varepsilon}, \alpha) = \tilde{\varepsilon} - \alpha, \quad f \leq 0, \dot{\alpha} \geq 0, f\dot{\alpha} = 0$

Damage

Loss of load-carrying area modeled as loss of stiffness

$$A = (1 - d) A_0$$

The damage *d* evolves according to a loading function:

 $f\left(\tilde{\varepsilon},\alpha\right) = \tilde{\varepsilon} - \alpha, \quad f \leq 0, \dot{\alpha} \geq 0, f\dot{\alpha} = 0$

and an evolution equation:

 $d = d\left(\alpha\right)$

Displacement control with a history-dependent material

Require: Nonlinear relation ${\bf f}_{\rm int}({\bf a})$ with ${\bf K}({\bf a})=\frac{\partial {\bf f}_{\rm int}}{\partial {\bf a}}$

- 1: Initialize new solution at old one: $\mathbf{a}^{n+1} \leftarrow \mathbf{a}^n$
- 2: Update material model: $\{\sigma^{n+1}, \mathbf{D}^{n+1}, \boldsymbol{\alpha}_{\text{new}}\} = \mathcal{M}(\varepsilon^{n+1}, \boldsymbol{\alpha}_{\text{old}})$
- 3: Compute internal force and stiffness: $\mathbf{f}_{int}^{n+1} = \int_{\Omega} \mathbf{B}^{T} \boldsymbol{\sigma}^{n+1} d\Omega$, $\mathbf{K}^{n+1} = \int_{\Omega} \mathbf{B}^{T} \mathbf{D}^{n+1} \mathbf{B} d\Omega$
- 4: Constrain \mathbf{K}^{n+1} so that $\Delta \mathbf{a}_c = \overline{\mathbf{a}}^{n+1} \overline{\mathbf{a}}^n$
- 5: Evaluate first residual: $\mathbf{r} = -\mathbf{f}_{\text{int},f}^{n+1}$

6: repeat

- 7: Solve linear system of equations: $\mathbf{K}^{n+1}\Delta \mathbf{a} = \mathbf{r}$
- 8: Update solution: $\mathbf{a}^{n+1} \leftarrow \mathbf{a}^{n+1} + \Delta \mathbf{a}$
- 9: Update material model: $\{\sigma^{n+1}, \mathbf{D}^{n+1}, \boldsymbol{\alpha}_{new}\} = \mathcal{M}(\boldsymbol{\varepsilon}^{n+1}, \boldsymbol{\alpha}_{old})$
- 10: Compute internal force and stiffness: $\mathbf{f}_{int}^{n+1} = \int_{\Omega} \mathbf{B}^{\mathrm{T}} \boldsymbol{\sigma}^{n+1} \mathrm{d}\Omega$, $\mathbf{K}^{n+1} = \int_{\Omega} \mathbf{B}^{\mathrm{T}} \mathbf{D}^{n+1} \mathbf{B} \mathrm{d}\Omega$
- 11: Evaluate residual: $\mathbf{r} = -\mathbf{f}_{\text{int},f}^{n+1}$
- 12: Constrain \mathbf{K}^{n+1} so that $\Delta \mathbf{a}_c = 0$
- 13: **until** $|\mathbf{r}|$ < tolerance

14: Commit material history: $\alpha_{old} \leftarrow \alpha_{new}$

Discontinuous damage

Model an actual displacement discontinuity

Traction-separation through a cohesive zone law

Special interface elements are needed

Similar to damage, but explicit link to energy dissipation

$$\begin{bmatrix} \mathbf{u} \end{bmatrix} = \mathbf{u}^{\text{top}} - \mathbf{u}^{\text{bot}} \Rightarrow \begin{bmatrix} \mathbf{N} & -\mathbf{N} \end{bmatrix} \begin{bmatrix} \mathbf{a}^{\text{top}} \\ \mathbf{a}^{\text{bot}} \end{bmatrix} \Rightarrow \llbracket \mathbf{u} \rrbracket = \mathbf{N}_{\Gamma} \mathbf{a}_{\Gamma}$$
between the second se

Plasticity

Deformations are split:

$$oldsymbol{arepsilon} = oldsymbol{arepsilon}^{\mathrm{e}} + oldsymbol{arepsilon}^{\mathrm{p}}$$

Plasticity

Deformations are split:

$$oldsymbol{arepsilon} = oldsymbol{arepsilon}^{\mathrm{e}} + oldsymbol{arepsilon}^{\mathrm{p}}$$

A yield surface defines the plasticity threshold:

 $f(\boldsymbol{\sigma}) = \tilde{\boldsymbol{\sigma}} - \sigma_y \left(\varepsilon_{\mathrm{acc}}^{\mathrm{p}}\right)$

Plasticity

Deformations are split:

$$oldsymbol{arepsilon} = oldsymbol{arepsilon}^{\mathrm{e}} + oldsymbol{arepsilon}^{\mathrm{p}}$$

A yield surface defines the plasticity threshold:

 $f(\boldsymbol{\sigma}) = \tilde{\boldsymbol{\sigma}} - \sigma_y \left(\varepsilon_{\mathrm{acc}}^{\mathrm{p}} \right)$

Plastic flow occurs when the yield surface is pushed:

$$f = 0, \dot{f} = 0 \quad \Rightarrow \quad \dot{\boldsymbol{\varepsilon}}^{\mathrm{p}} = \dot{\gamma}\mathbf{m}$$

We need to keep track of history variables $\boldsymbol{\alpha} = [\boldsymbol{\varepsilon}^{\mathrm{p}}, \varepsilon^{\mathrm{p}}_{\mathrm{acc}}]$

Hardening plasticity for bending moments

Curvatures are split:

 $\kappa = \kappa^{\rm e} + \kappa^{\rm p}$

A yield point defines the plasticity threshold:

$$f(M, \kappa^{\mathrm{p}}) = |M| - M^{\mathrm{y}}(\kappa^{\mathrm{p}}_{\mathrm{acc}}), \quad \kappa^{\mathrm{p}}_{\mathrm{acc}} = \int_{t} |\dot{\kappa}^{\mathrm{p}}| \mathrm{d}t$$

Plastic flow occurs when the yield surface is pushed:

 $f = 0, \dot{f} = 0 \implies \Delta \kappa^{\mathrm{p}} = \Delta \gamma \operatorname{sign}(M)$

History variables are $\boldsymbol{\alpha} = [\kappa^{\mathrm{p}},\kappa^{\mathrm{p}}_{\mathrm{acc}}]$

 $M = EI\left(\kappa - \kappa^{\mathrm{p}}\right)$

0.000 0.001 0.002 0.003 0.004 0.005 0.006 Downwards displacement

Recap and outlook

This short story on nonlinear FEM is now round:

- Sources of nonlinearity
- Dealing with geometric nonlinearities
- Dealing with material nonlinearities
- Solver strategies for nonlinear FEM

If you want to keep digging, this is just the beginning:

- CIEM5210-2: Advanced constitutive modeling
 - Computational plasticity, continuum and discrete damage, advanced path following methods
- CIEM1303 (upscaling techniques) and CIEM1301 (advanced computational mechanics):
 - Multiscale/multiphysics modeling, recent advances in nonlinear FEM

