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Agenda for today
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1. Nonlinear material models — solver interface

2. An overview of different strategies for modeling nonlinear materials

3. Illustration: 1D plasticity



CIEM5110-2 workshops and lectures
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SolidModel FrameModel TimoshenkoModel

(Theory) (1.2, 5.2) (4.1, 4.2) (2.1)

SolverModule (2.2) 3.2 3.2 3.2

NonlinModule (3.1, 5.2) 6.1 4.1 + 4.2 + 5.1

ArclenModule (4.2) 4.2

LinBuckModule (4.1) 4.1 + 5.1

ModeShapeModule (6.2) 7.1 8.2

ExplicitTimeModule (6.2) 7.2 + 8.2



Recap — Linear FEM
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This is the general discretized equilibrium equation:

∫

Ω
B

T
σ dΩ =

∫

Ω
N

T
bdΩ +

∫

Γt

N
T
tdΓ

fint fext

Assuming linear elasticity, we could substitute σ = DBa to get

∫

Ω
B

T
DB dΩa =

∫

Ω
N

T
bdΩ +

∫

Γt

N
T
tdΓ ⇒ Ka = fext

Linearity is assumed twice there

ε = Ba (kinematic relation)

and

σ = Dε (constitutive relation)



Recap — Elasticity
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σ σ

E

σ

ε

E

σ = Dε

Constant stiffness, full reversibility

In Voigt notation in 2D plane stress:
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In Voigt notation in 3D:
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Example: Bolted joints, Fruzsina Csillag (2018)
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Objective: investigate the behavior of FRP-steel bolted connections

Setup

Deformation of the bolt

Damage of the FRP plate
Analysis type: nonlinear analysis (plasticity, damage, contact)



Example: Circular micromodels, Pieter Hofman (2021)
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Objective:
make a micromodel that gives
the same failure response in all
directions

Analysis type:
material nonlinear analysis



Example: Aging of composites, Iuri Rocha (2014-2018)
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Macroscale Mesoscale Microscale

Ply
Laminate

Fiber

Matrix

Interface

Making wind turbines last longer by understanding material behavior:



Example: Aging of composites, Iuri Rocha (2014-2018)
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45mm

0.5mm

Making wind turbines last longer by understanding material behavior:
• Experimental observation: the material loses half of its strength after exposure to hot water
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Example: Aging of composites, Iuri Rocha (2014-2018)
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Making wind turbines last longer by understanding material behavior:
• Experimental observation: the material loses half of its strength after exposure to hot water

• Translating small scale phenomena back to the higher scale



Recap — Nonlinear FEM
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Discretized form:
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Recap — Nonlinear FEM
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Discretized form:
∫

Ω
B

T
σ dΩ =

∫

Ω
N

T
bdΩ +

∫

Γt

N
T
tdΓ

Geometric nonlinearity:

B = B (a)

Material nonlinearity:

∂σ

∂ε
= D = D (a)



Load control with a nonlinear material
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Require: Nonlinear relation fint(a) with K(a) = ∂fint
∂a

1: Initialize n← 0, a0 ← 0

2: while n < number of time steps do

3: Get new external force vector: fn+1
ext

4: Initialize new solution at old one: an+1 ← a
n

5: Compute internal force and stiffness: fn+1
int

(an+1), Kn+1(an+1)

6: Evaluate first residual: r = f
n+1
ext − f

n+1
int

7: repeat

8: Solve linear system of equations: Kn+1∆a = r

9: Update solution: an+1 ← a
n+1 +∆a

10: Compute internal force and stiffness: fn+1
int

(an+1), Kn+1(an+1)

11: Evaluate residual: r = f
n+1
ext − f

n+1
int

12: until |r| < tolerance

13: n← n+ 1

14: end while



Load control with a nonlinear material
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a

⇓

ε = Ba

⇓

σ = σ (ε) D =
∂σ

∂ε
⇓

fint =

∫

Ω
B

T
σdΩ K =

∫

Ω
B

T
DBdΩ

Require: Nonlinear relation fint(a) with K(a) = ∂fint
∂a

1: Initialize n← 0, a0 ← 0

2: while n < number of time steps do

3: Get new external force vector: fn+1
ext

4: Initialize new solution at old one: an+1 ← a
n

5: Compute internal force and stiffness: fn+1
int

(an+1), Kn+1(an+1)

6: Evaluate first residual: r = f
n+1
ext − f

n+1
int

7: repeat

8: Solve linear system of equations: Kn+1∆a = r

9: Update solution: an+1 ← a
n+1 +∆a

10: Compute internal force and stiffness: fn+1
int

(an+1), Kn+1(an+1)

11: Evaluate residual: r = f
n+1
ext − f

n+1
int

12: until |r| < tolerance

13: n← n+ 1

14: end while



Hyperelasticity
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σ σ

E(ε)

σ

ε

W (ε) ⇒ σ =
∂W

∂ε
⇒

∂σ

∂ε
=

∂2W

∂ε2

Analogous to a nonlinear spring

Popular for modeling large strains

Still fully reversible

Usually derived from a single scalar potential W



Viscoelasticity
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σ σ

E η

σ

ε

σ = D∞ε+

∫ t

0
Dve

(

t− t̃
) ∂ε

(

t̃
)

∂t̃
dt̃

Stiffness is time-dependent

Fully reversible response, but stiffer if loaded faster

An integral in time appears



Damage
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σ σ

ε

σ

σ

ε

(1− d)E

σ = (1− d)De
ε

Loss of load-carrying area modeled as loss of stiffness

A = (1− d)A0
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The damage d evolves according to a loading function:

f (ε̃, α) = ε̃− α, f ≤ 0, α̇ ≥ 0, f α̇ = 0



Damage
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σ σ

ε

σ

σ

ε

(1− d)E

σ = (1− d)De
ε

Loss of load-carrying area modeled as loss of stiffness

A = (1− d)A0

The damage d evolves according to a loading function:

f (ε̃, α) = ε̃− α, f ≤ 0, α̇ ≥ 0, f α̇ = 0

and an evolution equation:

d = d (α)



Displacement control with a history-dependent material
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Require: Nonlinear relation fint(a) with K(a) = ∂fint
∂a

1: Initialize new solution at old one: an+1 ← a
n

2: Update material model:
{

σ
n+1,Dn+1,αnew

}

=M
(

ε
n+1,αold

)

3: Compute internal force and stiffness: fn+1
int =

∫

Ω

B
T
σ

n+1dΩ, Kn+1 =

∫

Ω

B
T
D

n+1
BdΩ

4: Constrain K
n+1 so that ∆ac = a

n+1 − a
n

5: Evaluate first residual: r = −fn+1

int,f

6: repeat

7: Solve linear system of equations: Kn+1∆a = r

8: Update solution: an+1 ← a
n+1 +∆a

9: Update material model:
{

σ
n+1,Dn+1,αnew

}

=M
(

ε
n+1,αold

)

10: Compute internal force and stiffness: fn+1
int =

∫

Ω

B
T
σ

n+1dΩ, Kn+1 =

∫

Ω

B
T
D

n+1
BdΩ

11: Evaluate residual: r = −fn+1

int,f

12: Constrain K
n+1 so that ∆ac = 0

13: until |r| < tolerance

14: Commit material history: αold ← αnew



Discontinuous damage
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JuK = u
top − u

bot ⇒
[

N −N
]

[

a
top

a
bot

]

⇒ JuK = NΓaΓ

t

JuK

G

t = T (JuK) ⇒ f
Γ
int =

∫

Γ
N

T
ΓtdΓ

Model an actual displacement discontinuity

Traction-separation through a cohesive zone law

Special interface elements are needed

Similar to damage, but explicit link to energy dissipation



Plasticity
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σ σ

E

σ

ε

εp

E

σ = D (ε− ε
p)

Deformations are split:

ε = ε
e + ε

p
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σ σ
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σ

ε

εp

E

σ = D (ε− ε
p)

Deformations are split:
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e + ε
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A yield surface defines the plasticity threshold:

f (σ) = σ̃ − σy (ε
p
acc)



Plasticity
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σ σ

E

σ

ε

εp

E

σ = D (ε− ε
p)

Deformations are split:

ε = ε
e + ε

p

A yield surface defines the plasticity threshold:

f (σ) = σ̃ − σy (ε
p
acc)

Plastic flow occurs when the yield surface is pushed:

f = 0, ḟ = 0 ⇒ ε̇
p = γ̇m

We need to keep track of history variables α = [εp, εpacc]



Hardening plasticity for bending moments
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M M

EI

M

κ

κp

EI

M = EI (κ− κp)

Curvatures are split:

κ = κe + κp

A yield point defines the plasticity threshold:

f (M,κp) = |M | −My (κpacc) , κpacc =

∫

t

|κ̇p|dt

Plastic flow occurs when the yield surface is pushed:

f = 0, ḟ = 0 ⇒ ∆κp = ∆γ sign (M)

History variables are α = [κp, κpacc]



Hardening plasticity for bending moments — examples
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Hardening plasticity for bending moments — examples

17-18

Step 282



Recap and outlook
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This short story on nonlinear FEM is now round:
• Sources of nonlinearity

• Dealing with geometric nonlinearities

• Dealing with material nonlinearities

• Solver strategies for nonlinear FEM

If you want to keep digging, this is just the beginning:
• CIEM5210-2: Advanced constitutive modeling

• Computational plasticity, continuum and discrete damage, advanced path followingmethods

• CIEM1303 (upscaling techniques) and CIEM1301 (advanced computational mechanics):

• Multiscale/multiphysics modeling, recent advances in nonlinear FEM
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