CIEM5110-2: FEM, lecture 5.2

Introduction to nonlinear material models

luri Rocha and Frans van der Meer
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Agenda for today

1. Nonlinear material models — solver interface
2. Anoverview of different strategies for modeling nonlinear materials
3. lllustration: 1D plasticity
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CIEM35110-2 workshops and lectures

SolidModel FrameModel TimoshenkoModel

(Theory) | (1.2, 5.2) (4.1,4.2) (2.7)
SolverModule (2.2) 3.2 3.2 3.2
NonlinModule (3.1,5.2) 6.1 41+4.2+5.1
ArclenModule (4.2) 4.2
LinBuckModule (4.1) 4.1+ 5.1
ModeShapeModule (6.2) 7.1 8.2
ExplicitTimeModule  (6.2) 7.2+8.2
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Recap — Linear FEM

This is the general discretized equilibrium equation:

/BTadQ: /NdeQ+ N1t dr
Ay . Ay I'; .

hd

fint fext
Assuming linear elasticity, we could substitute o = DBa to get

/ B'DBdQa = / N'bdQ + [ N'tdr — Ka = f.
Q Q Iy

Linearity is assumed twice there
e = Ba (kinematic relation)
and

o = De (constitutive relation)
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Recap — Elasticity

Constant stiffness, full reversibility

In Voigt notation in 2D plane stress:

0
1 E’ 7/2 1 _E'VQ
1%
— 0
D 1—v2 1—12
0 0 =
_ 214+ v)_
In Voigt notation in 3D:
1 — v v v 0 0
v 1—v v 0 0
E v 1 1—v 0 0
= 1—2v
1+v)(1—2v) | O 0 0 5 0
0 0 0 0o =
0 0 0 0 0

o]
TUDelft

o <—@—/ \/\/\/—@—> o

o = De
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Example: Bolted joints, Fruzsina Csillag (2018)

Objective: investigate the behavior of FRP-steel bolted connections

Bolt shaft (prescribed thermal load)

Analysis type: nonlinear analysis (plasticity, damage, contact)
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Steel plates

I

F

e S e s

DAMAGESHR
Envelope (max abs)
(Avg: 75%)
+9,997e-01
+9.164e-01
+8.331e-01
+7.498e-01
+6.665&-01
+5.832e-01
+4.999e-01
+4.166e-01
+32.332e-01
+2.499e-01
+1.666e-01
+8.331e-02
+0.000e+00

Damage of the FRP plate
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Example: Circular micromodels, Pieter Hofman (2021)

Objective:

make a micromodel that gives
the same failure response in all
directions

Analysis type:
material nonlinear analysis

0.0 x[]  >03 0.0 k[ >0.3
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Example: Aging of composites, luri Rocha (2014-2018)

Making wind turbines last longer by understanding material behavior:

Laminate

Ply

Fiber Interface

Matrix

Macroscale Mesoscale Microscale
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Example: Aging of composites, luri Rocha (2014-2018)

Making wind turbines last longer by understanding material behavior:
e Experimental observation: the material loses half of its strength after exposure to hot water

0.5mm
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Example: Aging of composites, luri Rocha (2014-2018)

Making wind turbines last longer by understanding material behavior:
e Experimental observation: the material loses half of its strength after exposure to hot water

e Translating small scale phenomena back to the higher scale
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Example: Aging of composites, luri Rocha (2014-2018)

Making wind turbines last longer by understanding material behavior:
e Experimental observation: the material loses half of its strength after exposure to hot water

e Translating small scale phenomena back to the higher scale

stress(s )

0.5mm

]
TUDelft 718



Example: Aging of composites, luri Rocha (2014-2018)

Making wind turbines last longer by understanding material behavior:
e Experimental observation: the material loses half of its strength after exposure to hot water

e Translating small scale phenomena back to the higher scale
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Example: Aging of composites, luri Rocha (2014-2018)

Making wind turbines last longer by understanding material behavior:
e Experimental observation: the material loses half of its strength after exposure to hot water

e Translating small scale phenomena back to the higher scale

¢ [7] Ty. [MPal €% [
3.2 +2.00e+01 1.60e-02
2.4 +2.50e+00 1.20e-02
1.6 -1.50e+01 8.00¢-03
0.8 -3.25e+01 4.00e-03

0.0 -5.00e+01 0.00e-00
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Recap — Nonlinear FEM

Discretized form:

/BTJdQ:/NdeQ—I—/ N1t dl
0 Q I'y
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Recap — Nonlinear FEM

Discretized form:

/BTadQ:/NdeQ—I—/ N1t dl
Q Q I';

Geometric nonlinearity:

B =B (a)

]
TUDelft 8-18



Recap — Nonlinear FEM

Discretized form:

/BTadQ:/NdeQ—I— N1t dl
Q Q I';

Geometric nonlinearity:
B =B (a)

Material nonlinearity:

oo
— =D=D
I (a)
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Load control with a nonlinear material
Require: Nonlinear relation f,;; (a) with K(a) = %
1: Initialize n < 0,a° < 0

2: while n < number of time steps do

3:  Get new external force vector: £’
4 Initialize new solution at old one: a"*! « a”
5. Compute internal force and stiffness: £ (am+1), Knt+1(a®+?!)
6:  Evaluate first residual: r = £77! — £ !
7 repeat
8: Solve linear system of equations: K" 'Aa =r
o: Update solution: a"*! «+ a”t! + Aa
10: Compute internal force and stiffness: £ (a”*+1), K" ! (ant1)
11: Evaluate residual: r = 77! — £ !
12: until |r| < tolerance
13: n<n+1
14: end while

]
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| oad control with a nonlinear material

Require: Nonlinear relation f;,;(a) with K(a) = %

1: Initialize n < 0,a° < 0

2: while n < number of time steps do a

3:  Get new external force vector: £’ - v

4: Initialize new solution at old one: a”*! < a” © :uBa

5. Compute internal force and stiffness: £ (am+1), Knt+1(a®+?!) o—o(e) Do oo
6:  Evaluate first residual: r = £77! — £ ! I g
/- repeat fint = / BTod) K — / BTDBAQ
8: Solve linear system of equations: K"t'Aa =r 2 2
9: Update solution: a"*! <« an*! + Aa I

10: Compute internal force and stiffness: £ (a”*+1), K" ! (ant1)

11: Evaluate residual: r = 77! — £ ! |

12: until |r| < tolerance

13: n<n+1

14: end while
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Hyperelasticity

Analogous to a nonlinear spring Ef(e)

o <—@—/ \/\/\/—@—> o

Popular for modeling large strains
Still fully reversible

Usually derived from a single scalar potential W
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Viscoelasticity

Stiffness is time-dependent E n

o <«—@ - 1—@ o
Fully reversible response, but stiffer if loaded faster VVVVI—]

An integral in time appears

t
7 =Dt | Dve(t—ﬂaz@df
0

)
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Damage /
—A— -

Loss of load-carrying area modeled as loss of stiffness

A=(1—d) A e VAYAAYA o
—V\VVV—
—/NIVNV—
7
(1—d)F

o= (1—-d)D°
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Damage /
—AAAA— -

Loss of load-carrying area modeled as loss of stiffness

A=(1-d)A o VIV o
—— —0—
The damage d evolves according to a loading function:
fE,a)=é—a, [<0,a>0,fa=0 Ce
o
A
(1—d)FE

o= (1—-d)D°
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Damage /
Loss of load-carrying area modeled as loss of stiffness —V\V\V\V— - ©

A=(1—d) A o AZAA% o
— 00— —0—
The damage d evolves according to a loading function:
fE,a)=é—a, [<0,a>0,fa=0 Ce
o
and an evolution equation: A
d=d(a) (1—d)E

o= (1—-d)D°
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Displacement control with a history-dependent material

Require: Nonlinear relation f,;; (a) with K(a)

1

—
<

11:
12:
13:

14

© 0 N O kR N

int
Constrain K**! so that Aa, = a"t! — &
Evaluate first residual: r = —f";
repeat

Update solution: a”*! < a”*! + Aa

Compute internal force and stiffness:

Evaluate residual: r = —f1";
Constrain K”*! so that Aa,. =0
until |r| < tolerance

: Commit material history: a1q < Qpew

o]
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_ 8fint
- QDa

Initialize new solution at old one: a”*! «+ a”
Update material model: {o" ", D", appew } = M (€™}, ag1a)

Compute internal force and stiffness: /
Q

fn—l—l _

int

Blo"T1d0, K"+l = / BTD"*'Bdf
Q

Solve linear system of equations: K" ™' Aa =r

Update material model: {1, D" atpew } = M (€™M, ato1q)

/ Blo"t1dQ, Knt! = / BTD"'BdN
Q Q
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Discontinuous damage L —
Model an actual displacement discontinuity I
Traction-separation through a cohesive zone law |
< atop
Special interface elements are needed [u] = u*P —u* = [N -N] Lbot] = [u] = Nrar
t

Similar to damage, but explicit link to energy dissipation 1

[u]

t=T ([u]) = fil;lt:/NIItdF
r
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Plasticity
Deformations are split:

e =%+ ¢€P

o —@—/ \N\/\_III—@— o
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Plasticity
Deformations are split:

e =%+ ¢€P

o —@—/ \N\/\_III—@— o

A yield surface defines the plasticity threshold:

f (U) =0 — Ty (Egcc) o
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Plasticity
Deformations are split:

e =%+ ¢€P

o —@—/ \N\/\_III—@— o

A yield surface defines the plasticity threshold:
f (U) =0 — Ty (Egcc) o
Plastic flow occurs when the yield surface is pushed:

f=0,f=0 = ¢ =9m =

We need to keep track of history variables ac = [eP, epcc] e
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Hardening plasticity for bending moments

Curvatures are split:

Bl
R R M <—@—/ \NA\_TM—@— M
A yield point defines the plasticity threshold:
FOLRR) = M= M (Rfe) - W= [0l M
Plastic flow occurs when the yield surface is pushed:
f=0,f=0 = AxrP = Aysign(M) ) o
History variables are o = [kP, Kkhec] - T K

M = EI (k — kP)
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Hardening plasticity for bending moments — examples

— 2
0.5
1
wn 07
0.5
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Compression load (top right)

—— Plastic hinges (M, =0.2)
—— MY =0.2-0.05exp(—100a)

0.000

0.001

0.002 0.003 0.004 0.005 0.006
Downwards displacement
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Hardening plasticity for bending moments — examples

Compression load (top right)

—— MY =0.2-0.05exp(—100a)

0.000 0.001 0.002 0.003 0.004
Downwards displacement
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Hardening plasticity for bending moments — examples

Compression load (top right)

—— MY =0.2-0.05exp(—100a)
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Recap and outlook

This short story on nonlinear FEM is how round:
e Sources of nonlinearity

e Dealing with geometric nonlinearities
e Dealing with material nonlinearities
e Solver strategies for nonlinear FEM

If you want to keep digging, this is just the beginning:
e CIEMS5210-2: Advanced constitutive modeling

e Computational plasticity, continuum and discrete damage, advanced path following methods
e CIEM1303 (upscaling techniques) and CIEM1301 (advanced computational mechanics):
e Multiscale/multiphysics modeling, recent advances in nonlinear FEM

]
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