
 

Machine Learning for Econometrics

Lecture 4: Boosting

Yi He

November 22, 2022



Plan for Today

1. Introduction

2. Least Squares Boosting

3. AdaBoost

@UvA 1



Introduction



Example: Predicting Stock Direction

Let the target Yt = sign(rt) ∈ {−1, 1} be the sign of the stock

return at time t, and the feature Xt = rt−1 to be the return at

time t − 1.

� Momentum Rule

g(Xt) =

1 Xt > 0

−1 Xt < 0

� Reversion Rule

−g(Xt) =

−1 Xt > 0

1 Xt < 0

� Error rates for daily returns on S&P 500 index between 2012

and 2021 (n = 2516): Momentum = 52%, Reversion = 48%.

@UvA 2



Decision Stumps

� Target Y ∈ {−1, 1} and a univariate feature X ∈ R.
� Consider a simple threshold rule for decision:

g(X ) =

1 X > θ

−1 X < θ
or − g(X ) =

−1 X > θ

1 X < θ

� Decision stumps:

G = {g(x) = sign(θ − x) · b : θ ∈ R, b = ±1} ,

� For multivariate feature X ∈ Rd :

G =

g(x) = sign(θ − xj) · b : j ∈ {1, . . . , d}︸ ︷︷ ︸
pick one feature

, θ ∈ R, b = ±1

 .

@UvA 3



Decision Stumps As Weak Classifiers

� Take any decision stump g ∈ G, then −g ∈ G
� g ∈ G or −g ∈ G is no worse than a random guess but shows

only weak predictive performance in general:

min {P(g(X ) ̸= Y ),P(−g(X ) ̸= Y )} ≤ 1

2

because

P(g(X ) ̸= Y ) + P(−g(X ) ̸= Y )

=P(g(X ) ̸= Y ) + P(g(X ) = Y ) = 1.

� In our stock example: reversion rule = 48% < 50%.

@UvA 4



Does Ensembling Work?

Can we combine the performance of many weak classifiers, say,

g1(x), . . . , gM(x) to produce a powerful committee?

Consider M = 25 weak classifiers and fix some value x :

� Each classifier gm ∈ {−1, 1} has equal base error rate ε = 0.35

� Assume errors made by classifiers are independent (hardly true

in practice, but let us assume it here for simplicity)

� Ensemble classifier

sign (g1 + . . .+ g25) =

1 g1 + . . .+ g25 > 0

−1 g1 + . . .+ g25 < 0,

where sign denotes the sign function.

@UvA 5



Probability that the committee makes a wrong prediction:

P[sgn (g1 + . . .+ g25) ̸= Y |X = x ]

=P

(
25∑

m=1

1[gm ̸= Y ] ≥ 13 | X = x

)
=

25∑
i=13

(
25

i

)
εi (1− ε)25−i = 0.06

How can we use this idea to improve learning?@UvA 6



Least Squares Boosting



Additive Regression Models

Consider the candidate prediction rule in an additive form given by

f (x) =
M∑

m=1

fm(x), fm ∈ G, (1)

where

� G is a set of base regression learners (stumps or T-terminal

node trees) such that

g ∈ G ⇒ w · g ∈ G, ∀w ∈ R

� M is some positive integer (a hyperparameter)

Let span(G) denote the set of function generated by (1) over all

possible choices of M ∈ {1, 2, 3, . . .}.

@UvA 7

https://machinelearningtheory.org/docs/Boosting/weak-learner/#tau-terminal-node-tree
https://machinelearningtheory.org/docs/Boosting/weak-learner/#tau-terminal-node-tree


Least-Squares Regression With Additive Models

Our goal is to estimate an ideal prediction rule f ∗ ∈ span(G) that
(nearly) minimizes the population risk

LD(f ) = E[ℓ(f (X ),Y )]

for the (half) squared loss function

ℓ(f (X ),Y ) =
1

2
(f (X )− Y )2

� If µ(x) = E[Y |X = x ] ∈ span(G), then it is the ideal rule.

� Unlike neural networks, there is no guarantee of universal

approximation property with stumps. [For advanced reader,

see Theorem 7 in Alon et al.(2022)]

@UvA 8

https://doi.org/10.48550/arXiv.2001.11704


Fitting Additive Regression Models: First Attempt

Let us take the bases as stumps such that

fm(x) =g(x ; jm, θm, cm1, cm2)

=cm11[xjm < θm] + cm21[xjm ≥ θm].

Given a dataset {Yi ,Xi : i = 1, . . . , n}, the empirical risk is

LS(f ) =
1

2n

n∑
i=1

(
M∑

m=1

fm(Xi )− Yi

)2

.

� Difficult to solve for large M: better optimization/statistical

method?

� How to regularize the estimation?

@UvA 9



Greedy Stagewise Approach: One At A Time

� The least-squares estimation is easy with M = 1, however,

and denote the fitted function to be f̂1.

� For M = 2, the standard algorithm does not store f̂1, but

optimize f1 and f2 simultaneously again. Note that f̂1 may

change.

� To save computational efforts, the stagewise method stores f̂1

but only fit f̂2 by minimizing

1

2n

n∑
i=1

(
f̂1(Xi ) + f2(Xi )− Yi

)2
=

1

2n

n∑
i=1

(
f2(Xi )− Ỹ

(1)
i

)2
,

where Y
(1)
i = Yi − f̂1(Xi ) are the first-step residuals.

� Repeat this procedure to fit new bases one-at-a-time

sequentially: fit f̂m to the residuals from the previous step

Y
(m−1)
i = Yi − f̂1(Xi )− . . .− f̂m−1(Xi ).

@UvA 10



Sequential Optimization

� Initialize F (0)(x) with zero or a constant F (0)(x) = Ȳ the

sample average of the target values.

� For m = 1 to M do:

1. Calculate the residuals Ỹi = Yi − F (m−1)(Xi )

2. Fit a base to the residuals:

fm = argmin
f∈G

1

2n

n∑
i=1

(
f (Xi )− Ỹ

(m−1)
i

)2
.

3. Accumulate the base learners:

F (m) = F (m−1) + fm

� Output f̂ (x) = F (M)(x).

@UvA 11



Regularization: Early Stopping

� Boosting forever can overfit (although slowly)!

Figure 3 from Zhang and Yu (2005)

� A simple strategy is early-stopping: choose M based on a

validation set

@UvA 12

https://doi.org/10.1214/009053605000000255


Regularization: Shrinkage

� Initialize F (0)(x) with zero or a constant F (0)(x) = Ȳ the

sample average of the target values.

� For m = 1 to M do:

1. Calculate the residuals Ỹi = Yi − F (m−1)(Xi )

2. Fit a base to the residuals:

gm = argmin
f∈G

1

2n

n∑
i=1

(
f (Xi )− Ỹ

(m−1)
i

)2
.

3. Set fm = η · gm ∈ G. Accumulate the base learners:

F (m) = F (m−1) + fm = F (m−1) + η · gm

� Output f̂ (x) = F (M)(x).

The hyperparameter η ∈ (0, 1) is called ‘learning rate’ or ‘shrinkage

parameter’.

@UvA 13



AdaBoost



Log Odds

� Binary target Y ∈ {−1, 1} and features X ∈ Rd

� Recall the softmax representation[
P(Y = 1|X = x)

P(Y = −1|X = x)

]
=

[
exp(a1(x))

exp(a1(x))+exp(a2(x))
exp(a2(x))

exp(a1(x))+exp(a2(x))

]
=

[
σ(a(x))

σ(−a(x))

]

where

a(x) = a1(x)− a2(x) = log
P(Y = 1|X = x)

P(Y = −1|X = x)

is called the log odds, and σ(a) = 1
1+exp(−a) is the sigmoid

function (Lecture 2).

� The Bayes classifier CBayes(x) = sign(a(x)).

@UvA 14



Additive Logistic Model

Suppose we want to estimate a(x) with some additive models

f (x) =
M∑

m=1

fm(x), fm ∈ B.

such that the resulted Bayes decision rule

h(x) = sign

(
M∑

m=1

fm(x)

)
= sign

(
M∑

m=1

αmgm(x)

)
is a weighted majority vote. Each gm(x) ∈ {−1, 1} is a ‘voter’, and

αm > 0 is its voting weight.

⇒ Take B to be stumps such that

B = {f (x) = αg(x) : α > 0, g ∈ G},

where G denotes the set of base classifiers so that g(x) ∈ {−1, 1}.

@UvA 15



Exponential Loss

(Tute) The true log odds minimize the expected exponential loss:

a(x) = argmin
f :Rd→R

E[ℓexp(f (X ),Y ) | X = x ],

with

ℓexp(f (x), y) = ϕ(f (x) · y), ϕ(x) = exp

(
−1

2
x

)
.

� The exponential loss is similar to hinge loss:

ℓHinge(f (x), y) = ϕ(f (x) · y), ϕ(x) = max{0, 1− x}.

� The exponential loss is similar to the zero-one loss

ℓ0-1(f (x), y) = ϕ(f (x) · y), ϕ(x) = 1[x < 0].

� However, the function ϕ(x) = exp
(
−1

2x
)
is strictly convex

and identifies a(x).

@UvA 16



Factorizing the Empirical Exponential Risk

Again, it is hard to optimize the empirical (exponential) risk over

all base functions f1, . . . , fM simultaneously for large M.

AdaBoost fits fm sequentially:

� The empirical exponential risk function at m-th step

1

n

n∑
i=1

exp

−1

2

m−1∑
j=1

fj(Xi )Yi −
1

2
fm(Xi )Yi


=

n∑
i=1

1

n
exp

−1

2

m−1∑
j=1

fj(Xi )Yi

 · exp(−1

2
fm(Xi )Yi

)

=
n∑

i=1

w̃
(m)
i · ℓexp(fm(Xi ),Yi )

� We are minimizing weighted exponential error at each step.

� The weights w̃
(m)
i are known from the previous steps.@UvA 17



Normalizing the Weights

� Normalizing the weights w̃
(m)
i does not change the solution:

w
(m)
i =

w̃
(m)
i∑n

i=1 w̃
(m)
i

� Normalized weights are easier to interpret as probabilities.

� Henceforth we minimize the error function at m-th step:

fm = argmin
f ∈B

n∑
i=1

w
(m)
i · ℓexp(f (Xi ),Yi )

with the normalized weights such that
∑n

i=1 w
(m)
i = 1.

@UvA 18



AdaBoost: Solving the Base Learner

Now consider any candidate base f = αg , g ∈ G and α ≥ 0.

Because g(Xi ),Yi ∈ {−1, 1}, g(Xi )Yi =

−1 g(Xi ) ̸= Yi

1 g(Xi ) = Yi ,

ℓexp(f (Xi ),Yi )

= exp

(
−1

2
αg(Xi )Yi

)
=

exp
(
1
2α
)

g(Xi ) ̸= Yi

exp
(
−1

2α
)

g(Xi ) = Yi

=exp

(
1

2
α

)
1[g(Xi ) ̸= Yi ] + exp

(
−1

2
α

)
1[g(Xi ) = Yi ]︸ ︷︷ ︸
1−1[g(Xi ) ̸=Yi ]

.

=

exp

(
1

2
α

)
− exp

(
−1

2
α

)
︸ ︷︷ ︸

>0, ⇔ α>0

1[g(Xi ) ̸= Yi ] + exp

(
−1

2
α

)
@UvA 19



AdaBoost: Key Steps

Using the normalization condition
∑n

i=1 w
(m)
i = 1:

n∑
i=1

w
(m)
i ℓexp(f (Xi ),Yi )

=

exp

(
1

2
α

)
− exp

(
−1

2
α

)
︸ ︷︷ ︸

>0 ⇔ α>0


n∑

i=1

w
(m)
i 1[g(Xi ) ̸= Yi ]︸ ︷︷ ︸

Jm(g)

+ exp

(
−1

2
α

)

� Fit a classifier gm ∈ G minimizing the weighed

misclassification error Jm(g)

� Then solve the first-order condition for α gives that

αm = log
1− ϵm
ϵm

, with weighted error ϵm = Jm(gm)

� Jm(gm) < Jm(−gm) implies that ϵm < 1/2 and αm > 0@UvA 20



To reduce computational costs, save the history of w
(m)
i and

update the data weighting coefficients along the path.

� Using the fact that Yi , gm(Xi ) ∈ {1,−1},

w̃
(m+1)
i = w̃

(m)
i exp

(
−1

2
αmgm(Xi )Yi

)
∝ w

(m)
i exp

(
−1

2
αm(1− 21(gm(Xi ) ̸= Yi ))

)
∝ w

(m)
i exp(αm1(gm(Xi ) ̸= Yi )) ·

���
����H

HHH
HHH

exp

(
−1

2
αm

)
� Update and normalize:

w
(m+1)
i ← w

(m)
i exp(αm1(gm(Xi ) ̸= Yi )),

w
(m+1)
i ←

w
(m+1)
i∑n

i=1 w
(m+1)
i

Points that are misclassified are given greater weight when used to

train the next classifier in the sequence.
@UvA 21



Remark: LogitBoost

� You may consider the logistic loss

ℓLogit(f (x), y) =ℓCE


(

σ(f (x))

σ(−f (x))

)
︸ ︷︷ ︸

Bivariate Regression Function

,

(
1[y = 1]

1[y = −1]

)
=ϕ(f (x) · y)

with

ϕ(x) = log(1 + exp(−x)).

� . . . which gives the ‘LogitBoost’ algorithm in Friedman et al.

(2000).

@UvA 22

https://doi.org/10.1214/aos/1016218223
https://doi.org/10.1214/aos/1016218223


Comparing the derivative ϕ′(x) for AdaBoost (purple) and

LogitBoost (blue):

LogitBoost could be less sensitive to outliers

Friedman et al. (2000) conclude in their simulation studies:

It is likely that when the shrinkage parameter [η here] is

carefully tuned . . ., there would be little performance dif-

ferential between them.@UvA 23


	Introduction
	Least Squares Boosting
	AdaBoost

