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Introduction



Example: Predicting Stock Direction

Let the target Y; = sign(r;) € {—1,1} be the sign of the stock
return at time t, and the feature X; = r;_1 to be the return at
time t — 1.

e Momentum Rule

1 X: >0
g(Xt) =
-1 X; <0
e Reversion Rule
-1 X;>0
—g(Xt) =
1 X <0

e Error rates for daily returns on S&P 500 index between 2012
and 2021 (n = 2516): Momentum = 52%, Reversion = 48%.
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Decision Stumps

e Target Y € {—1,1} and a univariate feature X € R.

e Consider a simple threshold rule for decision:

1 X >0 -1 X>0
-1 X<@0 1 X <0

e Decision stumps:
G ={g(x) =sign(@ —x)-b: 0 € R, b==£1},

e For multivariate feature X € R¥:

G=qg(x)=sign(@—x;)-b: je{l,...,d}, §eR, b==1
——— ——

pick one feature
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Decision Stumps As Weak Classifiers

e Take any decision stump g € G, then —g € G

e g€ Gor—g€Gisno worse than a random guess but shows
only weak predictive performance in general:

N =

min {P(g(X) # Y),P(-g(X) # Y)} <

because

B(g(X) # Y) + B(—g(X) # )
—P(g(X) # Y) + P(g(X) = Y) = 1.

e In our stock example: reversion rule = 48% < 50%.
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Does Ensembling Work?

Can we combine the performance of many weak classifiers, say,
g1(x),...,gm(x) to produce a powerful committee?

Consider M = 25 weak classifiers and fix some value x:

e Each classifier g, € {—1,1} has equal base error rate ¢ = 0.35

e Assume errors made by classifiers are independent (hardly true
in practice, but let us assume it here for simplicity)

e Ensemble classifier

1 g1+ ...+85>0

sign(gi+...+g5) =
-1 g +...+ g5 <0,

where sign denotes the sign function.
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Probability that the committee makes a wrong prediction:
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Least Squares Boosting



Additive Regression Models

Consider the candidate prediction rule in an additive form given by

M
F(x) = fm(x), fm€G, (1)
m=1

where

e G is a set of base regression learners (stumps or T-terminal
node trees) such that

geg =w-gcg, YwekR
e M is some positive integer (a hyperparameter)

Let span(G) denote the set of function generated by (1) over all
possible choices of M € {1,2,3,...}.
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Least-Squares Regression With Additive Models

Our goal is to estimate an ideal prediction rule f* € span(G) that
(nearly) minimizes the population risk

Lp(f) = E[((f(X), Y)]

for the (half) squared loss function

o If u(x) =E[Y|X = x| € span(G), then it is the ideal rule.

e Unlike neural networks, there is no guarantee of universal
approximation property with stumps. [For advanced reader,
see Theorem 7 in Alon et al.(2022)]
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Fitting Additive Regression Models: First Attempt

Let us take the bases as stumps such that
fm(X) :g(X;_jm’ Qm, Cmi, CmZ)
=cm1[x;, < 0m] + cm21[x, > Om].
Given a dataset {Y;, X; : i =1,..., n}, the empirical risk is

1 n M 2
Ls(f) = %Z ( fm(Xi) — Yi) :

i=1

e Difficult to solve for large M: better optimization /statistical
method?

e How to regularize the estimation?
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Greedy Stagewise Approach: One At A Time

e The least-squares estimation is easy with M = 1, however,
and denote the fitted function to be ?1

e For M = 2, the standard algorithm does not store 1?1 but
optimize f; and £ simultaneously again. Note that ?1 may
change.

e To save computational efforts, the stagewise method stores fl
but only fit 1?2 by minimizing

A(X) + LIS (hoo) - YO
72(1 )+ H(Xi) — i) —%;(2( i)=Y >>
where YI.( V. A(X;) are the first-step residuals.
e Repeat this procedure to fit new bases one-at-a-time
sequentially: fit ?m to the residuals from the previous step
YT =¥ R(X) — . — Fnea(X0).
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Sequential Optimization

e Initialize F(O(x) with zero or a constant F(9)(x) = Y the
sample average of the target values.
e For m=1to M do:

1. Calculate the residuals \7, =Y — F("”l)(X;)
2. Fit a base to the residuals:

1 S(m-1))
fm = argmin — (f Xi) =Y, ) .
feg ”; (X)
3. Accumulate the base learners:

Fm) = p(m=1) 4 ¢

e Output 7(x) = FIM)(x).
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Regularization: Early Stopping

e Boosting forever can overfit (although slowly)!

0

execess classflication error

number of iterations

Excessive convex loss. Exe

Figure 3 from Zhang and Yu (2005)

e A simple strategy is early-stopping: choose M based on a
validation set
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https://doi.org/10.1214/009053605000000255

Regularization: Shrinkage

e Initialize F(O(x) with zero or a constant F(9)(x) = Y the
sample average of the target values.
e For m=1to M do:
1. Calculate the residuals Y; = Y, — Fm=1(X;)
2. Fit a base to the residuals:

gm = argmin 2i Z (f(XI.) -~ gi(m—l))z |

feg n i=1
3. Set f, =1 - gmn € G. Accumulate the base learners:
Fim = pm=1) L ¢ — F(m=1) 4y g
e Output f(x) FM) ().
The hyperparameter 1 € (0, 1) is called ‘learning rate’ or ‘shrinkage
parameter’.
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AdaBoost




Log Odds

e Binary target Y € {—1,1} and features X € R?
o Recall the softmax representation

P(Y =1|X = x) ] _ [exp(aﬁi‘>’§?ﬁ§§3232(x>>] _ [ (el ]

v Sewo)
P(Y=-1UX=x)| |somm)teee@mm)

where
P(Y =1|X = x)
P(Y = —-1|X = x)

a(x) = a1(x) — a2(x) = log

is called the log odds, and o(a) = 1+e+p(_a) is the sigmoid

function (Lecture 2).

e The Bayes classifier CB¢5(x) = sign(a(x)).
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Additive Logistic Model

Suppose we want to estimate a(x) with some additive models

M
F(x) =) fum(x), fn€B.
m=1

such that the resulted Bayes decision rule

M M
h(x) = sign (Z fm(x)> = sign (Z amgm(x)>

m=1
is a weighted majority vote. Each g, (x) € {—1,1} is a 'voter’, and
am > 0 is its voting weight.

= Take B to be stumps such that
B={f(x)=ag(x):a>0,ge€g},
where G denotes the set of base classifiers so that g(x) € {—1,1}.
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Exponential Loss

(Tute) The true log odds minimize the expected exponential loss:

a(x) = argmin E[lexp(f(X),Y) | X = x],
fRISR

with

1

Eexp(f(x)v)/) = ¢(f(X) ‘)/)7 ¢(X) = exp (—2X> .

e The exponential loss is similar to hinge loss:
Chinge(f(x),y) = ¢(f(x) - y), d(x) = max{0,1— x}.
e The exponential loss is similar to the zero-one loss
lo1(F(x),y) = ¢(f(x) - y), o(x) =1[x <0].

e However, the function ¢(x) = exp (—%x) is strictly convex
and identifies a(x).
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Factorizing the Empirical Exponential Risk

Again, it is hard to optimize the empirical (exponential) risk over
all base functions fi, ..., fyy simultaneously for large M.

AdaBoost fits f,, sequentially:

e The empirical exponential risk function at m-th step

e We are minimizing weighted exponential error at each step.

@UVA e The weights vT/,.(m) are known from the previous steps. 17



Normalizing the Weights

e Normalizing the weights vT/,.(m) does not change the solution:

Sy @™

1
e Normalized weights are easier to interpret as probabilities.

e Henceforth we minimize the error function at m-th step:

fm = argmin E W,-(m) Lexp((Xi), Vi)
feB

with the normalized weights such that 7, Wi(m) = 1,
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AdaBoost: Solving the Base Learner

Now consider any candidate base f = ag, g € G and o > 0.
-1 g(Xi)#Yi

Because g(X;), Y; € {—1,1}, g(X))Y; =
g(Xi)=Yi

exp (30)  g(Xi)#Yi
exp (—3a) &(Xi) =Y
1

s Ca) 1[g(Xi) # Y] + exp (—2a) 1g(X) = Yi].
1-1[g(X))#Yi]

— e (30) o0 (~30) | 1he00) # ¥+ o0 (- 30)

>0, & a>0
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AdaBoost: Key Steps

Using the normalization condition "7 , W(m) =

ZW exp i)) Yl)

| o0 (1) 0 (3o | Sttt £ i 0 ()

>0 < a>0
“ Im(g)

e Fit a classifier g, € G minimizing the weighed
misclassification error Jy,(g)
e Then solve the first-order condition for « gives that

— Em, with weighted error €, = Jm(gm)

€m

OUVA o J(gm) < Jm(—gm) implies that €, < 1/2 and oy > 0 20

am = log



To reduce computational costs, save the history of w'™ and

i

update the data weighting coefficients along the path.

e Using the fact that Yi, gm(Xi) € {1, -1},

Wi(erl) _ VT/i(m) exp <_;amgm(x,-)Y,->

o< wl™ exp (~Jam(1 ~ 21(gn() # )

X W,-(m) eXp(am]l(gm(Xi) - Y,)) '

e Update and normalize:

(™) W™ exp(aml(gm(X:) # V7)),

w;
m—+1
Wl.( )

21'1_1 W.(erl)

Points that are misclassified are given greater weight when used to

1
w,("7+ )

ouyatrain the next classifier in the sequence.



Remark: LogitBoost

e You may consider the logistic loss

Cogit(f(x), y) =Lce ( a () ) ’ ( Iy =1] )

a(—=f(x)) Iy =-1]
Bivariate Regression Function
=¢(f(x) - y)
with
6(x) = log(1 + exp(~x)).
e ... which gives the ‘LogitBoost" algorithm in Friedman et al.
(2000).
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Comparing the derivative ¢/(x) for AdaBoost (purple) and
LogitBoost (blue):

(x from -2.7t0 2.7)

1
1

79)(4
— 1l
2

LogitBoost could be less sensitive to outliers

Friedman et al. (2000) conclude in their simulation studies:
It is likely that when the shrinkage parameter [n here] is
carefully tuned ..., there would be little performance dif-
ferential between them.
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