F UNIVERSITY OF AMSTERDAM
E8 Amsterdam School of Economics

Machine Learning for Econometrics, 2022

Lecture 2: Deep Learning

Yi He
November 8, 2022

Plan for Today

1. Feedforward Networks
2. Understanding Neural Networks
3. Convolutional Neural Networks

4. Training Neural Networks

QUVA 1

Feedforward Networks

Why Nonlinear Models: An Example

e Two independent economic variables X = (X1, X3) € {0,1}2
¢ PIXj=1]=PX;=0]=1/2,j=1,2
e XOR regression function u(x) = E[Y|X = x] = 1[x1 # x2]

Consider the linear prediction rule
f(x;0) = Bix1 + Baxa + Bo, 0= (51,52, 50)
We can decompose the population squared risk
E[(f(X;6) = Y)?]
=E[(f(X; 0) — u(X) + pu(X) = Y)?]
=E[(f(X; 0) — u(X))*] + 2E[(F(X; 0) — (X)) E[u(X) — Y[X]]
——————
=p(X)—p(X)=0
+E[(Y — u(X))?].
N————

QUVA not depending on 6 2

Minimizing the first term
E[(f(X;6) — u(X))?]

:i{(ﬁo —0)*+ (Bo+ B — 1)°

+(50+52—1)2+(ﬁ0+ﬁ1+ﬁ2—0)2}

yields the solution (8o, 81, 52) = (1/2,0,0), corresponding to the
ideal linear prediction rule f*(x) = 1/2 # u(x).

We need a nonlinear model to express the XOR function.

QUVA

Shallow Feedforward Networks: Regression

Consider functions f : R — R of the following form:

M
f(x) = Z (2) E b()
NG

m=1 “
weight bias
d
1 1 1
zm:(f<a$,,)), agn)— El W()X_,+ b()
= weight bias

where o is some nonlinear activation function such as

ReLU(a) = max{0, a}.

ReLU is called Rectified Linear Unit activation function.

QUVA 4

In matrix form,
(1)
Gl

X1
: 1) _ (1) 1) _ ()
—w® || 40w = (Wm,j)’ p1) — (bm)
0 y
D1 (N [
— elemgtwse
A e (o)
0
Fx) = W@ | | +p@, W@ = (Wf,)n), b2 = (bf)), k=1
1
N
To summarize: for x = (x1,...,xq) ",

f(X) = W(Z)J(W(l)x + b(l)) + b(2)

where o is applied elementwisely.
QUVA

Expressing the XOR Function

z = ReLU(x1 ar X2) ZoR— ReLU(xl + X0 — 1)

f(x)=z1—22z

QUVA 6

Shallow Feedforward Networks: Multiple-Output

For K-class classification, we need to estimate a multivariate
regression function after one-hot encoding and softmax
transformation (Lecture 1):

f(x) =0 (W(2>a(w<1>x + bWy + b<2>)
where o outside the brackets denotes the softmax function.

e Add more rows into W) € RKXM 4pd p(2) ¢ RK

e If softmax transformation is not needed (for multiple-output
regression): use o as the identity function instead

e In general, we may also take o as another activation

QUVA 7

An Example Neural Net With K =2 Outputs

. X1

Input Layer 1

Hidden Layer 1 z; 2

Output Layer fi f

QUVA 8

Adding Hidden Layers

Input Layer € R? Hidden Layer € R* Hidden Layer € R? Output Layer € R?

o Input 2O = (x1,...,x4)7, My =d
e h-th Hidden layer for h=1,...,D — 1:

2 = g(a), A =)LD LB) ¢ RMx M

ouvA e Output layer: f(x) = a-(a(D)), Mp = K. .

Geometric Pyramid Rule: Masters (1993)

7
4

N
N
N
N
y
N
H
b
s
7
7

4

\

Input Layer € R* Hidden Layer € R Hidden Layer € R Hidden Layer € R* Output Layer € B!

Three hidden layers My = 32, M, = 16, M3 = 8. Works well in empirical
asset pricing; see Gu et al. (2020, RFS).

QUVA 10

https://www.sciencedirect.com/book/9780080514338/practical-neural-network-recipies-in-c-and-and
https://doi.org/10.1093/rfs/hhaa009

Fully-Connected Networks

Hidden layers
Output

A
e o0
S

e Mi=...=Mp_1=M
e Easy to increase depth compared with the geometric pyradmid

rule

QUVA 11

Understanding Neural Networks

Sigmoid VS RelLU Activation

The most traditional choice of activation function for shallow
neural networks is the sigmoid or the hyperbolic tangent function:

B 1

~ 1+exp(—a)
exp(a) — exp(—2)
exp(a) + exp(—a)’

Sigmoid(a)

tanh(a) =

In deep learning with (relatively) large D, however, it is often
better to use the ReLU activation

ReLU(a) = max{0, a}.

QUVA 12

Plotting the Activation Function

(a from -6.1to 6.1)

—
o%+1

= tanh(a)

= max(0, a)

-1.0

Computed by Wolfram|Alpha

The hyperbolic tangent function is a mirror transformation of the
sigmoid via
tanh(a) = 2 x Sigmoid(2a) — 1,
so that it is centered around zero, that is, tanh(0) =0
QUVA 13

Why ReLU Function

The ReLU function enjoys the so-called projection property:
ReLU(ReLU(a)) = ReLU(a).

Activating many times does not change the signal, which can pass
through several layers without change:

ReLU(ReLU(...ReLU(a))) = ReLU(a).

k times

In contrast, applying the sigmoid function too many times through
layers loses the signal:

Sigmoid(Sigmoid(. . . Sigmoid(a))) — 0.659..., as k — co.

k times
The limit is a constant, making the input irrelevant.
QUVA 14

Universal Approximation

For any sufficiently smooth function © on a compact set with

finitely many discontinuities,. . .

there exists a ReLU feedforward network f that can approximate it
arbitrarily well if the width M and depth D are sufficiently large.

e The universal approximation property, however, does not tell
precisely how many hidden units are required.

e Generally speaking, there is a trade-off between M and D:
allowing large D may reduce the number of hidden units
needed for approximations dramatically

QUVA 15

How Deep Should It Be?

e In finance applications, the depth D is usually between 3 and
6 for monthly equity data

e In theory, the depth D should grow slowly to infinity with the
sample size n at the order of log(n), for instance. Even with
14 million observations in AlexNet, for example, the depth D
should be only a multiple of log(10°) ~ 14.

QUVA 16

Convolutional Neural Networks

Imaging Price Trends: OHLC Chart

Down OHLC Up OHLC

High Price High Price

—— Open Price —— Close Price
Close Price Open Price
Low Price Low i

_
N

=
11I =]

N
JlJ-+]l|||1H |l

— -

OHLC Chart with Volume Bar and 20-day Moving Average Line
QUVA 17

Jiang, Kelly and Xiu (2022+): OHLC Image

[[B) a) e) - » 9) 9J B]J

[@, 9’ e, . > @J @J @]J

[B, a) 8) » 8) BJ B]J

vy

[e, 255, @, ..., o, @, @],

[@, 255, o, ..., ®©, o, o],
—~ [e,255 e, ..., @, 255, @]

An Example 20-day OHLC Image (64x 60): 255=white, 0=black

We can represent grayscale image as matrix
V={V;:i=1,....,I,j=1,...,J}
where Vi ; indicates the grayscale of a pixel at the location (i, j).

QUVA 18

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3756587

Flattening

QUVA

Vectorizing V vyields a I x J dimensional vector
vec(V) = (Va1,..., Vi1, Vi, Vig, oo, Vag, o Vi) T,

This process converting multiple grids into a vector is called
flattening in machine learning.

Inputting the flattened feature vector to a neural network
ignores the spatial structure of the original matrices

Use a convolutional neural network (CNN) to incorporate
spatial information

19

Convolution Layer

. Output Channel 1
Input Image (6x6) Filter 1 (3x3) p

0 0 765 765
------ 0 0 765765

Output Channel 2
0 0 0 0
~—____0 0 0 O
765 765|510/ 255

765 765 510 255

Outputs for K = 2 filters

e The kernels are shared by all the subimages
e The kernels are weight parameters to be trained
ouvA e Feature maps Zx = 0(Ax + wxp), k=1,...,K

0 510‘

0
0 0 255 255

20

Max Pooling

Output Channel 1 Max-Pooling
0 0 765 765
0 0 765 765 0 765
0 0*fs10[510 0 510
0 o0 |2s52855————""
Output Channel 2
0 0 0 0
0 0 0 0 0 o

765 ?55‘| 510255

765 765|510 255

e Flattening the feature maps {Zy : k =1,...,K} directly
yields too noisy (and too many) inputs

e Pooling = Replacing non-overlapping divisions of the feature

QUVA

maps with their summary statistics (such as maximum) 21

24@48x48

24@16x16

1@64x64]

D:f :

Convolution Max-Pool Dense

e Flatten the feature maps after pooling
e ... and then input to an ordinary neural network
e Usually these new layers will be fully connected and called
the dense layers
QUVA 22

Training Neural Networks

Weight Decay

We can parameterize the neural nets by
f(x;0) = f(x; w,b)
where

e the vector w collects all the weights
e the vector b collects the biases.

By measuring the model complexity by C(6) = 3 |w||?, the
penalized method (Lecture 1) minimizes
A
Ls(f) + 5wl A>0
where Lg is the empirical risk function.

Use squared loss for regression and cross-entropy for classification
tasks (with one-hot encoded target)

QUVA 23

Gradient Descent

Starting with an initial value (w(0), b(0)), the batch gradient
descent algorithm updates the parameters for each step t:

_ [w(t)
b(t)

w(t+1)
b(t+1)

] —n-g(w(t), b(t)), n>0,

where g is the gradient function given by

To be continued next week.

QUVA 24

	Feedforward Networks
	Understanding Neural Networks
	Convolutional Neural Networks
	Training Neural Networks

