
 

Machine Learning for Econometrics, 2022

Lecture 1: Statistical Learning Framework

Yi He

November 1, 2022



Plan for Today

1. Course Introduction

2. Motivating Example: Support Vector Machines

3. Beyond SVM: Statistical Learning Framework

4. Unifying Classification and Regression

@UvA 1



Course Introduction



ML for Econometrics 2022–2023

Our team:

Yi He Mario Rothfelder Sander Barendse

� Tuesday lectures and Friday tutorials on campus

� Submit pre-class questions by every Thursday noon.

� Computer labs by my colleagues Mario and Sander
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What is Machine Learning . . . for Economists?

Athey S. (2018), “The Impact of Machine Learning on

Economics”:
. . ., machine learning is a field that develops algorithms

designed to be applied to datasets, with the main areas

of focus being prediction [regression], classification, and

clustering or grouping tasks.

� Statistical Learning Framework: Week 1

� Deep Learning I: Week 2

� Deep Learning II + Guest Lecture (Fri 18 Nov): Week 3

� Boosting: Week 4

� Random Forest: Week 5

� Causal inference: Week 6
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https://www.gsb.stanford.edu/faculty-research/publications/impact-machine-learning-economics


ML for Econometrics 2022–2023: Assessment

� Computer assignments: 20%+20%=40%

� Final exam, 2 hours: 60%

� Form assignment groups voluntarily until Mon 8 Nov via

Canvas

� Max 3 students in each group

� On Tue 9 Nov, the remaining students will be randomly

assigned.
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Learning Materials

Our main learning materials are in the online reader:

https://machinelearningtheory.org/

More reference materials:

� Links for free online reading of the reference books on Canvas
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Motivating Example: Support

Vector Machines



Optimal Separating Hyperplane

S = {Yi ,Xi : i = 1, . . . , n},
Xi = (Xi1, . . . ,Xid)

T ∈ Rd ,Yi ∈ {−1,+1}

Figure 19.1 of Efron and Hastie (2016): linear discriminant function f (x) =

wT x + w0, decision rule C (x) = sign(f (x))
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https://hastie.su.domains/CASI/


Signed Distances

Signed distances from points Xi to the decision boundary

{x : wT x + w0 = 0, ∥w∥ = 1}

are given by:

wTXi + w0 =


> 0 ⇒ C (Xi ) = 1

= 0 on the boundary

< 0 ⇒ C (Xi ) = −1

, i = 1, . . . , n

Signed distances taking into account the classification errors:

Yi · (wTXi + w0) =


> 0 ⇒ C (Xi ) = Yi

= 0 on the boundary

< 0 ⇒ C (Xi ) ̸= Yi

, i = 1, . . . , n
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Hard-Margin Support Vector Machine

Assuming separability, maximizing the margins gives hard-margin

SVM [Tute Q1]:

maximize
w ,w0,M

M

subject to Yi · (wTXi + w0) ≥ M︸ ︷︷ ︸
Beyond Margin

∀ i

∥w∥ = 1

⇔ minimize
β,β0

1

2
βTβ

subject to Yi (β
TXi + β0) ≥ 1 ∀ i

. . . in the sense that they give the same decision boundary

{x : ŵT x + ŵ0 = 0} = {x : β̂T x + β̂0 = 0}
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Soft-Margin Support Vector Machine

The soft-margin SVM, with some hyperparameter C > 0:

minimize
β,β0,{ξi}

1

2
βTβ + C

n∑
i=1

ξi

subject to Yi (β
TXi + β0) ≥ 1− ξi︸ ︷︷ ︸

Violating Margins

∀i

ξi ≥ 0 ∀i

Sending C → ∞ gives the hard-margin version.

For each i , the constraints areξi ≥ 1− Yi (β
TXi + β0)

ξi ≥ 0
⇔ ξi ≥ max{1− Yi (β

TXi + β0), 0}
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Alternative Formulation of Soft-Margin SVM

Minimizing ξi for all i gives that

ξi = max{1− Yi (β
TXi + β0), 0}

Plugging in the objective function yields a unconstrained problem:

minimize
β,β0,��HH{ξi}

1

2
βTβ + C

n∑
i=1

max{1− Yi (β
TXi + β0), 0}︸ ︷︷ ︸

ξi

Dividing the objective function by the constant nC does NOT

change the solution of β, β0

minimize
β,β0

λβTβ +
1

n

n∑
i=1

max{1− Yi (β
TXi + β0), 0}

with λ = 1
2nC > 0.
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Hinge Loss

The objective function

λβTβ +
1

n

n∑
i=1

max{1− Yi (β
TXi + β0︸ ︷︷ ︸
f (Xi ;β,β0)

), 0}

=λβTβ +
1

n

n∑
i=1

ℓH(f (Xi ;β, β0),Yi )

where ℓH is called the hinge loss function given by

ℓH(f (x), y) = max{1− y · f (x), 0}

and f (x ;β, β0) is a candidate linear prediction rule in form of

f (x ;β, β0) = βT x + β0

@UvA 11



Regularized Estimation

The Lagrange multiplier theorem states that:

minimize
β,β0

λβTβ +
1

n

n∑
i=1

ℓH(f (Xi ;β, β0),Yi ) (1)

is equivalent to

minimize
β,β0

1

n

n∑
i=1

ℓH(f (Xi ;β, β0),Yi )︸ ︷︷ ︸
Empirical Risk

subject to βTβ ≤ b ⇒ Regularization

where b = β̂′β̂ where β̂ is the solution of (1).
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Empirical Risk

The empirical hinge risk (= average hinge loss)

LS(f ) =
1

n

n∑
i=1

ℓH(f (Xi ;β, β0),Yi )

is an estimator of the population hinge risk (= expected hinge loss)

LD(f ) = ELS(f ) = E [ℓH(f (X ;β, β0),Y )]

if Yi ,Xi are i.i.d. observations from the distribution D of Y ,X .

� The regularization improves statistical performance: we will

come back to this point later
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SVM: What Does It Estimate?

Now consider a general, not necessarily linear, candidate prediction

rule f : Rd → R with the hinge risk

LD(f ) = E [ℓH(f (X ),Y )] = E [max{0, 1− Y · f (X )}] .

The ideal prediction rule f ∗ minimizing this risk function is

f ∗(x) = sign (E[Y |X = x ])

=

1 P(Y = 1|X = x) > P(Y = −1|X = x)

−1 P(Y = 1|X = x) < P(Y = −1|X = x)

=:CBayes(x)

CBayes is called the Bayes classifier

In other words, the soft-margin SVM is directly estimating the

Bayes classifier CBayes(x).
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Why Bayes Classifier?

The Bayes classifier CBayes(x) minimizes the probability of making

classification mistakes:

minimize
g

P(g(X ) ̸= Y ) = minimize
g

E[ℓ0-1(g(X ),Y )]

over the class of classifier g : Rd → {−1,+1}, where

ℓ0-1(ŷ , y) = 1[ŷ ̸= y ]

is called the zero-one loss function.
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Remark: Linear Rule Is Not Enough

Recall that the soft-margin SVM is directly estimating the Bayes

classifier CBayes(x) ∈ {−1, 1}, which is nonlinear. However, the

standard soft-margin SVM uses only linear prediction rules

f (x) = βT x + β0.

That’s why we need to use the kernel tricks (not to be discussed)

to generate a richer space

F = {f : f (x) =
n∑

i=1

αiK (x , xi )},

where K ∈ K is a kernel function so we can approximate CBayes(x)

with
∥∥CBayes(x)− f ∗(x)

∥∥
K < ϵ for a (arbitrarily) small ϵ > 0 for

some f ∗ ∈ F .
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Regularization: Variance Reduction

Recall that we only optimize the empirical risk over a smaller

subset in SVM given by

H = {f (x) = βT x + β0 ∈ F : ∥β∥2 ≤ b}

and our estimator is given by

f̂ = argmin
f ∈H

LS(f ).

The motivation is to reduce variance of f̂ due to the randomness

of Yi ,Xi , which increases in general with the worst estimation error

of the risk function:

sup
f ∈H

|LS(f )− LD(f )| ↑ as H ↑ .
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Regularization: Bias Variance Tradeoff

However, shrinking the space H restricts our choices of candidate

prediction rules. The best population risk we can reach is only

inf
f ∈H

LD(f )

so the bias

inf
f ∈H

LD(f )− inf
f ∈F

LD(f ) ↑ as H ↓ .

In practice, we need to trade-off bias and variance by tuning the

hyperparameter λ (and hence b) properly.
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Beyond SVM: Statistical Learning

Framework



Statistical Learning Problems

Target variable Y ∈ Y, d features X ∈ X ⊂ Rd

Before observing Y :

We make a prediction f (X ) with some prediction rule f : X → Y

After observing Y : We quantify the predictive loss by

ℓ(f (X ),Y )

where ℓ : Y × Y → [0,∞) is some loss function specified by the

user. A larger loss implies a worse prediction performance, and the

loss remains non-negative such that

ℓ(f (X ),Y ) ≥ ℓ(Y ,Y ) = 0.

Our goal is to find the ideal prediction rule that minimizes the

population risk function given by

LD(f ) = E[ℓ(f (X ),Y )], f ∈ F .@UvA 19



Ideal Prediction Rule

� The regression function

µ(x) = E[Y | X = x ]

is ideal for the (half) squared loss function

ℓ(ŷ , y) =
1

2
∥ŷ − y∥2

� The Bayes classifier

CBayes(x) = argmax
Ck ,1≤k≤K

P(Y = Ck | X = x)

is ideal for the zero-one loss ℓ0-1 among classifiers and hinge

loss ℓH among all real-valued functions as discussed before.
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Empirical Risk Minimization

Given a random sample

S = {Yi ,Xi : i = 1, . . . , n} ,

the empirical risk function is equal to the average loss given by

LS(f ) =
1

n

n∑
i=1

ℓ(f (Xi ),Yi ), f ∈ F .

The empirical risk minimization (ERM) paradigm solves the

optimization problem:

minimize LS(f )

subject to f ∈ H ⇒ Regularization

How to choose H ⊂ F?

@UvA 21



Penalized Method

� Parameterize f = f (x ; θ) ∈ H with parameters θ ∈ Θ

� Measure model complexity with some criterion function C (θ)

� Choose H with a limited complexity such that

H = {f (·; θ) ∈ F : C (θ) ≤ b, θ ∈ Θ} .

This is equivalent to minimize the penalized empirical risk function

minimize LS(f ) + λ · C (θ)

where λ = λ(b) is a tuning parameter.
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Unifying Classification and

Regression



One-Hot Encoding

� Classification algorithms generate discrete outputs but

regression algorithms generate continuous outputs.

� There is a strong connection between these two tasks:

CBayes(x)︸ ︷︷ ︸
classification

= argmax
Ck ,1≤k≤K

P(Y = Ck | X = x)

= argmax
Ck ,1≤k≤K

E [1[Y = Ck ] | X = x ]︸ ︷︷ ︸
regression

� (Y (1), . . . ,Y (K)) is the one-hot encoding of Y with

Y (k) = 1[Y = Ck ].
� We can estimate the multivariate regression function

µ(x) = (µ1(x), . . . , µK (x)), µk(x) = E[Y (k) | X = x ]

using regression algorithms, and then construct the Bayes

classifier.@UvA 23



Softmax Function

� However, the regression function for one-hot encoded target

must satisfy the axioms of probability:

µ(x) ∈ Pk =

{
y ∈ (0, 1)K :

K∑
k=1

yk = 1

}
, ∀x ∈ X .

� Re-parameterize the candidate regression function

f (x) = (f1(x), . . . , fK (x)) ∈ Pk jointly by

f (x) =

 f1(x)
...

fK (x)

 = σ

a1(x)
...

aK (x)

 = σ(a(x))

σ(a) =

σ(a)1
...

σ(a)K

 ,σ(a)k =
exp(ak)∑K
j=1 exp(aj)

.

� Note that a(x) ∈ RK but set aK (x) ≡ 0 for identification.@UvA 24



Cross Entropy

� Note that (Y (1), . . . ,Y (K)) ∈ PK is a distribution

� Candidate regression function (f1(x), . . . , fK (x)) ∈ PK is

another distribution

� The cross-entropy loss function ℓCE : PK × PK → [0,∞)

given by

ℓCE(f (x), y) =
K∑

k=1

−yk · log fk(x)

measures the ‘distance’ between these two distributions

� Relax the definition to allow for yk ∈ {0, 1} in algorithms

� We can show that the true regression function µ(x) for the

one-hot encoded target is the ideal prediction rule.

� It is more specialized than the Euclidean distance induced by

the squared loss

ℓ2(f (x), y) =
1

2
∥f (x)− y∥2 .@UvA 25



Unified View of Regression and Classification

� After one-hot encoding, a classification task translates into a

regression task.

� One may use soft-max transformation to enforce the axioms

of probability, and the cross-entropy loss instead of the

squared loss to estimate the multivariate regression function.

� Therefore, other ML methods in this course are primarily for

regression tasks but apply to classification tasks.

� The main differences are their choices of candidate prediction

rules, loss function, and regularization procedures.
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