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Introduction



Nobel Prize Economics 2021

Joshua Angrist and Guido Imbens [Dutch] share half the award

Achievement:
methodological contributions to the analysis of causal

relationships
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A Motivating Example

Imagine a hotel data set containing data about

� Occupancy rates

� Prices
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Hotel Prices
Occupancy Rates

Blue: the average rate per night for a standard double room in Amsterdam;

Red: hotel occupancy rate (in percentage) in the Netherlands
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� Prices are easy to obtain through price comparison sites

� Occupancy rates are typically not made public by hotels

� Estimating the occupancy rates of competitors, based on

publicly available prices, is a prediction problem:

Prices ↑ suggests occupancy rates ↑
� Estimating how occupancy would change if the hotel raised

prices across the board (e.g., +5% in prices in every state of

the world) is a question of causal inference:

Prices ↑ causes occupancy rates ↑?
� Even though prices and occupancy are positively correlated in

a typical dataset, we would not conclude that raising prices

would increase occupancy
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Potential Outcome Model

� Wish to find the causal effect of a treatment/policy variable

D on the outcome variable Y

� Treatment (D = 1) or control (D = 0) groups

� Y
(d)
i is the outcome for individual i when given treatment

d ∈ {1, 0}:

Yi =

Y
(1)
i if Di = 1,

Y
(0)
i if Di = 0,

or Yi = DiY
(1)
i + (1− Di )Y

(0)
i .

� Binary treatment effect for individual i is given by

δi = Y
(1)
i − Y

(0)
i

� Counterfactual : only observe Y
(Di )
i ∈ {Y (1)

i ,Y
(0)
i } but not

both
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The Fundamental Problem of Causal Inference

Table 2.1 in Morgan and Winship (2014)

Group Y (1) Y (0)

Treatment group (D = 1) Observable as Y Counterfactual

Control group (D = 0) Counterfactual Observable as Y

� Impossible to calculate individual-level treatment effects

� Estimate the average treatment effect (ATE)

τ =
1

n

n∑
i=1

τi , τi = Eδi = E
[
Y

(1)
i − Y

(0)
i

]
= EY (1)

i − EY (0)
i

where n denotes the total number of individuals
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A Naive Estimator of the ATE

The difference in mean outcomes between

� the treatment group {i : Di = 1} with n1 =
∑n

i=1Di

participants; and

� the control group {i : Di = 0} with n0 = n − n1 participants:

τ̂ =
1

n1

∑
Di=1

Yi −
1

n0

∑
Di=0

Yi

=
1

n1

∑
Di=1

Y
(1)
i − 1

n0

∑
Di=0

Y
(0)
i

Is this a consistent estimator?
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Even for the favorable case:

� (Y
(1)
i ,Y

(0)
i ,Di ) ∼ (Y (1),Y (0),D) are i.i.d.

� The treatment effect τ ≡ τi ≡ δi ≡ δ is constant

τ̂
P−→ E[Y (1) | D = 1]− E[Y (0) | D = 0]

=E[δ + Y (0)|D = 1]− E[Y (0)|D = 0]

=δ +
{
E[Y (0)|D = 1]− E[Y (0)|D = 0]

}
︸ ︷︷ ︸

bias

� For (Y (1),Y (0)) independent of D: (Y (1),Y (0)) ⊥⊥ D

� . . . the bias vanishes: τ̂
P−→ δ
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Unconfoundedness Assumption

� Confounding factors C influencing both D and Y :

� Example: college education and income both affected by

parents’ income & education, etc.

� Confounding implies that treatment assignment is not random

but (self-)selected based on characteristics.

� Ideally confounders can be represented by features X ∈ Rd .

� Unconfoundedness Assumption:

(Y (1),Y (0)) ⊥⊥ D | X = x , x ∈ X

@UvA 9



Confounder Selection



Structural Equations

If the treatment effect δ = Y
(1)
i − Y

(0)
i is fixed

+ linear model Y
(0)
i = XT

i β + εi =
∑d

j=1 Xi ,jβj + εi

implies that

Yi = δDi +
d∑

j=1

Xi ,jβj + εi , E[εi |Xi ,Di ] = 0︸ ︷︷ ︸
Unconfoundedness

,

where we assume a zero intercept for simplicity.

Combining both information on policy Y and treatment DYi = δDi + XT
i β + εi , E[εi |Xi , vi ] = 0

Di = p(Xi ) + vi , E[vi |Xi ] = 0,

where p(x) is called the propensity score function given by

p(x) = E[D|X = x ] = P(D = 1|X = x)
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Linear Model For Treatment Equation

For simplicity, consider an approximate linear probability model

p(Xi ) =
d∑

j=1

Xi ,jγj + ri = XT
i γ + ri

where ri should be negligible (stochastically).

Rewrite the model into a reduced form given byYi = XT
i β̄ + ε̄i

Di = XT
i γ + v̄i ,

where β̄ = δγ + β, ε̄i = δv̄i + εi and v̄i = ri + vi .
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Post-Selection Estimation

� When the dimension of confounders d is high relative to the

sample size (with a large d/n), selecting a small set of the

most useful confounders could be wise for variance reduction

purpose.

� Run the least-squares regression on only the variables selected

� Post-selection estimator is not stable in general, but it can

provide solid inference under sparsity assumption.
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Sparsity Assumption

� If d is small, δ may be estimated by least-squares regression

using the outcome equation:

Yi = δDi + XT
i β + εi

� When d is large, assume that the true support set is however

sparse:

J = {1 ≤ j ≤ d : βj ̸= 0} has size |J | ≪ n

� Only a few confounders are relevant to the population models,

but we do not know which.
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Single Selection Using The Outcome Equation

� Use the LASSO regression minimizing

1

2

n∑
i=1

Yi − δDi −
d∑

j=1

Xi ,jβj

2

+ λ

d∑
j=1

|βj |

where treatment is not penalized

� The confounders should be normalized.

� LASSO performs model selection: for non-trivial λ > 0

Ĵ = {1 ≤ j ≤ d : β̂j ̸= 0} ≪ n
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Why Post-Selection Estimation?

� Under more regularity conditions and an appropriate choice of

penalty coefficient λ, Belloni and Chernozhukov (2013) show

that with high probability and some constant C

J ⊂ Ĵ , and
∣∣∣Ĵ ∣∣∣ ≤ C |J | ≪ n

� The former implies a correct model selection, and the latter

says our selected model is small (enough)

� LASSO estimator δ̂LASSO often has a non-trivial bias: see, e.g.,

Belloni et al. (2013) for iterative algorithms for choosing λ

� Post-Lasso estimation tends to reduce bias: least-squares

estimator after selection.
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Naive Post Selection Estimator

� Single selection could miss

the variables with true

coefficients “moderately

close to zero” with a

non-trivial chance

� Select more variables: how?
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Double Selection: Belloni et al. (2014)

Recall the reduced formYi = XT
i β̄ + ε̄i

Di = XT
i γ + v̄i ,

� Sparse index sets Ĵ1, Ĵ2 ⊂ {1, . . . , d} from each equation

(using LASSO regression)

� Take a (small) set Ĵ3 that you think is important for ensuring

robustness, if necessary

� The final index set is given by

Ĵ = Ĵ1 ∪ Ĵ2 ∪ Ĵ3

� Least-squares regression after double selection.
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Simulation Example: Belloni et al. (2014)

The post-double-selection estimator δ̂ reduces bias, and its distribution

gets closer to normal for sparse models.
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Debiased Machine Learning



Auxiliary ML Estimator

Consider the partially linear model

Yi = δDi + µ(0)(Xi ) + εi

where µ(0)(x) = E[Y (0)|X = x ] may be non-linear.

Suppose we have a machine learning estimator µ̂(0) from another

auxiliary sample independent of our training set with a learning bias

b(x) = E
[
µ̂(0)(x)

]
− µ(0)(x) ̸≡ 0,

which is not identically zero.

The learning bias can emerge due to the bias-variance tradeoff in

ML estimator.
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Rewrite the model as

Yi − µ̂(0)(Xi ) = δDi + ε̃i , ε̃i = εi + µ(0)(Xi )− µ̂(0)(Xi ).

Regressing Yi − µ̂(0)(Xi ) on Di gives the least-squares estimator

δ̂ =
(∑

D2
i

)−1 (∑
Di (Yi − µ̂(0)(Xi ))

)
=
(∑

D2
i

)−1 (∑
Di (Yi − µ(0)(Xi ))

)
+
(∑

D2
i

)−1

∑Di (µ
(0)(Xi )− µ̂(0)(Xi )︸ ︷︷ ︸
‘prediction error’ e(Xi )

)


=δ +

(∑
D2
i

)−1 (∑
Diεi

)
︸ ︷︷ ︸

variance component

+
(∑

D2
i

)−1 (∑
Die(Xi )

)
︸ ︷︷ ︸

bias component

because

E[Die(Xi )] = E[Di · E[e(Xi ) | S ]] = E[ Di︸︷︷︸
p(Xi )+vi

·b(Xi )] ̸= 0
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Endogeneity and IV Regression

Yi − µ̂(0)(Xi ) = δDi + ε̃i , ε̃i = εi + µ(0)(Xi )− µ̂(0)(Xi ).

The learning bias issue is the endogeneity issue :

E[Di ε̃i ] = E[Dib(Xi )] ̸= 0.

because both Di and b(Xi ) depend on Xi .

� Using the decomposition

Di = p(Xi ) + vi , E[vi |Xi ] = 0

� If vi were observable, it is a valid instrument for Di asE[viDi ] ̸= 0

E[vi ε̃i ] = 0
⇒ δ =

E[vi
(
Yi − µ̂(0)(Xi )

)
]

E[viDi ]

=
E[vi

(
Yi − µ̂(0)(Xi )

)
]

E[v2i ]
[Tute Ex4]
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Debiased/Double ML: Chernozhukov et al. (2018)

One may estimate δ using the ratio of the sample averages

� Split into independent folds with index sets I and I∁

� Learn both the regression function µ(0)(·) and propensity

score functions p(·) on the auxiliary sample I∁.

� Instrumental regression in sample I:

δ̂ =

(∑
i∈I

v̂iDi

)−1∑
i∈I

v̂i (Yi−µ̂(0)(Xi )), where v̂i = Di−p̂(Xi ).

or

δ̂ =

(∑
i∈I

v̂2i

)−1∑
i∈I

v̂i (Yi − µ̂(0)(Xi ))

� Optional: swap I and I∁ and average the estimates
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Simulation Example: Chernozhukov et al. (2018)

Conventional ML Debiased ML

� µ(0)(x) and p(x) are learned by using random forests

� DML estimator has a smaller bias
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Remark

� Due to the time constraint, today we cannot cover all

machine learning methods in causal inference

� . . . such as the causal forest proposed Wager and Athey

(2018) and the neural network approach in Farrell et al.

(2021) based on influence functions

� You can find more explanations and details in our online

reader.

� You will also learn more during the tutorial session.

@UvA 24



References i

Belloni, A. and Chernozhukov, V., 2013. Least squares after model selection in

high-dimensional sparse models. Bernoulli, 19, 521–547.

Belloni, A., Chernozhukov, V. and Hansen, C., 2013. Inference for

high-dimensional sparse econometric models. In Advances in Economics and

Econometrics: Tenth World Congress. Vol. 3, edited by Daron Acemoglu,

Manuel Arellano, and Eddie Dekel, 245–295. Cambridge, UK: Cambridge

University Press.

Belloni, A., Chernozhukov, V. and Hansen, C., 2014. Inference on treatment

effects after selection among high-dimensional controls. The Review of

Economic Studies, 81, 608–650.

Chernozhukov, V., Chetverikov, D., Demirer, M., Duflo, E., Hansen, C., Newey,

W. and Robins, J., 2018. Double/debiased machine learning for treatment

and structural parameters. The Econometrics Journal, 21, C1–C68.

@UvA



References ii

Farrell, M.H., Liang, T. and Misra, S., 2021. Deep neural networks for

estimation and inference. Econometrica, 89, 181–213.

Wager, S. and Athey, S., 2018. Estimation and inference of heterogeneous

treatment effects using random forests. Journal of the American Statistical

Association, 113, 1228–1242.

Morgan, S.L. and Winship, C., 2014. Counterfactuals and Causal Inference

(2nd Ed.). Cambridge University Press.

@UvA


	Introduction
	Confounder Selection
	Debiased Machine Learning
	Appendix

