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Introduction



Selling A Property: Thought Experiment

Suppose you have a random sample of house prices P; in million
euros such that

X =log P; " N(u,1), i=1,...,n,
with
e a unknown parameter u

e an average log-price X = £ 37 | X; ~ N(y,1/n).

Suppose you are deciding whether to sell a house at a known bid
price Ppig = exp(x) > 0 in million euros based on

f(x; 1) = P(X < x) =P(v/n(X — ) < Vn(x — ) = &(c(x; )
c(xip)
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Unstable Estimator: Toy Example

The unbiased estimator
F(x; X) = 1[X < x].

is unstable in the sense a change in X may cause large changes in
f(x; X):
If there is a small change in X, for instance,

X=05=X=05+5ford >0

then there would be a jump of the predicted value at x = 0.5
regardless the size of 4:

f(0.5;0.5) =1 = f(0.5;0.5+0) =0.

QUVA g



A Stable Estimator: First Thought

Recall that
Fxip) = (c(x;p)),  clxim) = Vn(x — p)
Consider the estimator
f(x; X) = ®(c(x; X)) = b(c(x; p) — Z) = S(=(Z — c(x; ),
where

c(x: X) = v/Alx — X) = v/(x — ) — /A(X — p1)
c(xin) z
Since |®’| is bounded, a small change in X only results in a small

change in f(x; X).

Compare with the unstable estimator

FX)=1[X < x] = 1[Z < c(x; p)] = 1[Z — c(x; p) < 0].
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Smoothing the Indicator Function

The stable estimator smooths the indicator function 1[a < 0] to be
®(-a)
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Solid = 1[a < 0], Dashed = ®(—a)
QUVA 5



uces Variance

variance

squared bias

MSE

0.0 0.0020.0040.006

Variance, Squared Bias and MSE as functions of ¢ = c(x; i)

e Small bias, if any, but substantial variance reduction

How to generate a (more) stable estimator, in general?
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Bootstrap Aggregating



Bagging
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Bagging = Bootstrap aggregating
Draw n* data points randomly with replacement from the
training database

S:{Y,',X,' : i:].,...,n}
Repeat M times to extract the bootstrap data sets
S;:{)/I*’XI* : [.:]_7”‘,7’“}7 m = 1’.'.’M

Fit a base estimator fy,(x) to every bootstrap sample S}, and

output the ensemble estimator

N 1 &
f(x) =1 > fnlx).
m=1

Bagging uses n* = n by default.



Bootstrap Principle
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The original data set S is a random sample from some
population distribution
Conditioning on S, each bootstrap sample S, is a random
sample from the empirical distribution

P(Y*, X" = V., % | S) = % 1<i<n
when Y;, X; are distinct; otherwise sum up the probability
masses at the same point.
0 =151 h(Y;, X;) with mean § = Eh(Y;, X;)
g =1L ST (Y, X*) with conditional mean )
Bootstrap principle: under some regularity conditions

P(\/F*(e*—é)gxw)mp(ﬁ(é—e) gx)

uniformly for x.



Bagging Is Smoothing: Toy Example

e The unstable estimator for the toy example
F(x; X) = 1[X < x]
e By LLN, the bagging estimator

~

M
f(x):%Z]l[_;;gx]zIP’()_(*SX\S), as M — oo,
m=1

where X* is the m-th bootstrap average
e Bootstrap principle:

P(X* <x|S) =P (VA(X" —X) < vi(x—X) | 5)

stable estimator

where ® is the distribution function of v/n(X — i) ~ N(0, 1).
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Random Forest




Unstable Model: Decision Tree

Condition 1

— T

Condition 2 Condition 3

N T

leaf leaf leaf Condition 4

N

leaf leaf

Make predictions at the terminal nodes (leafs)

Interior node = a condition for a single feature X; < 0
Condition TRUE — left child
Condition FALSE — right child

Decision stump is a one-split decision tree
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Bagging with Decision Trees

e Tree estimators are unstable

=

fn(x: {Rr, & }) :Z S1[x € R,]

especially around the boundaries of 7%7

e Grow/fit a decision tree fy,(x) to every bootstrap sample S},
and then aggregate

e Regression: predicted value is the average across the trees

o Classification: regression problems with one-hot encoder
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CART Algorithm

e Generate a (random) pool of candidate splits with
{(j(b)7a(b)) b - ]'7 ttt B}?

where the j(®) € {1,...,d} is a feature index, a(P) € (0,1) is
a probability threshold level

e For each split b, divide the input feature space X C R into
two sub-regions:

XL(b):{XEX:X(b H(b)}and/\’ ={x e X :x p > 00}

where the threshold #(®) is the sample quantile of the j(P)-th
feature at level a(b),
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(

e For each sub-region be), find the subset of target values

VO =gy X, ex® 1<i<n}, 7e{l,R}

e Choose the best split minimizing the total weighted ‘impurity’

PPV + pPy(VP)),

where ¢ is some impurity function and
)

(b) —
2 )]

Py

, T€{L,R}.

e Repeat the split sequentially for every internal node until a
stopping criterion is reached
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Choosing the Impurity Function

Regression trees:

e Sample variance

1 = - 1
2(07) = 5 (Y- Vo= N Y
T Yiey T Yiey
Classification trees:

e Gini index = sum of sample variances over classes

K K
YR = Y $a(V) = 1= 3 (VLY
k=1 k=1
where
YO = (v® =1y, = : Y € V,}
One-Hot Encoder
_ 1 k
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Note that YOH = (\77(1), ey VT(K)) represents a distribution:

O

M=

Yo > o,
k=1

If S_G(k) > 0 for all k, we can also use the Tress entropy

P(Vr) = Lee(YPR, VM) = ZlogY(k y (k)

e entropy is maximum at the uniform distribution
(1/K,...,1/K): the most ‘impure’ case
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Figure 17.1 in Efron and Hastie (2016): An Example Tree
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Forecasting with Decision Trees

e Eventually the terminal nodes partition the entire feature
space
X=U_ R, RrONRpy =0, T #7

e The predicted target value based on the m-th tree T,,:
Tm
flx) =3 e lx € RS,
=il

1
* § *
Cm,T - |R* | \/1 )
m,T Xj* ER,’;,T
Y XrESs,

e Same method applies to the one-hot encoder
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Decorrelating the Trees
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The decision trees share a common training data set S and
thus f,, are dependent

High correlations prevent stabilization

One strategy to ‘decorrelate’ the trees is to allow only a
(small) random subset of features for every split.

For example, each split may use only a subset of v/d features
randomly selected from d features.
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Random Forest on the Spam Data
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Figure 17.2 in Efron and Hastie (2016): Test misclassification error of
random forests as a function of the number of trees. The red curve selects

7 of the 57 features at random as candidates for the split variable.
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Bagging VS Boosting




Random VS Deterministic Weights

The empirical risk function on bootstrap sample
1 n n
= L(F(XF),Y™) ~ ingi7)/l'
7 2o AF. Y7) ~ D wiF(X), )

with exchangeable w; such that (nwi, ..., nw,) follows a
multinomial distribution [Tute Q3].

The empirical risk function at m-th iteration for AdaBoost
> wim (X)), i),
i=1

where Wl-(m)

misclassified by previous bases.

change over m and focus on the data points
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Parallel VS Sequential Optimization

e Random forest grows trees separately

e Boosting requires knowing the previous bases
Number of Base Learners

e Random forest requires as large M as possible: no
bias-variance tradeoff on M

e Boosting forever overfits: early stopping or shrinkage is
necessary

Complexity of Trees

e Large trees in RF: bias-variance tradeoff on trees

e Stumps (or small trees) in Boosting: large bias, small variance
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