

Machine Learning for Econometrics

Lecture 5: Random Forest

Yi He

November 29, 2022

Plan for Today

1. Introduction

2. Bootstrap Aggregating

3. Random Forest

4. Bagging VS Boosting

@UvA 1

Introduction

Selling A Property: Thought Experiment

Suppose you have a random sample of house prices Pi in million

euros such that

Xi = logPi
iid∼ N(µ, 1), i = 1, . . . , n,

with

� a unknown parameter µ

� an average log-price X̄ = 1
n

∑n
i=1 Xi ∼ N(µ, 1/n).

Suppose you are deciding whether to sell a house at a known bid

price Pbid = exp(x) > 0 in million euros based on

f (x ;µ) = P(X̄ ≤ x) = P(
√
n(X̄ − µ) ≤

√
n(x − µ)︸ ︷︷ ︸
c(x ;µ)

) = Φ(c(x ;µ))

@UvA 2

Unstable Estimator: Toy Example

The unbiased estimator

f̃ (x ; X̄) = 1[X̄ ≤ x].

is unstable in the sense a change in X̄ may cause large changes in

f̃ (x ; X̄):

If there is a small change in X̄ , for instance,

X̄ = 0.5 ⇒ X̄ = 0.5 + δ for δ > 0

then there would be a jump of the predicted value at x = 0.5

regardless the size of δ:

f̃ (0.5; 0.5) = 1 ⇒ f̃ (0.5; 0.5 + δ) = 0.

@UvA 3

A Stable Estimator: First Thought

Recall that

f (x ;µ) = Φ(c(x ;µ)), c(x ;µ) =
√
n(x − µ)

Consider the estimator

f (x ; X̄) = Φ(c(x ; X̄)) = Φ(c(x ;µ)− Z) = Φ(−(Z − c(x ;µ))),

where

c(x ; X̄) =
√
n(x − X̄) =

√
n(x − µ)︸ ︷︷ ︸
c(x ;µ)

−
√
n(X̄ − µ)︸ ︷︷ ︸

Z

Since |Φ′| is bounded, a small change in X̄ only results in a small

change in f (x ; X̄).

Compare with the unstable estimator

f̃ (x ; X̄) = 1[X̄ ≤ x] = 1[Z ≤ c(x ;µ)] = 1[Z − c(x ;µ) ≤ 0].

@UvA 4

Smoothing the Indicator Function

The stable estimator smooths the indicator function 1[a ≤ 0] to be

Φ(−a)

Solid = 1[a ≤ 0], Dashed = Φ(−a)
@UvA 5

Smoothing Reduces Variance

Variance, Squared Bias and MSE as functions of c = c(x ;µ)

� Small bias, if any, but substantial variance reduction

How to generate a (more) stable estimator, in general?

@UvA 6

Bootstrap Aggregating

Bagging

� Bagging = Bootstrap aggregating

� Draw n∗ data points randomly with replacement from the

training database

S = {Yi ,Xi : i = 1, . . . , n}

� Repeat M times to extract the bootstrap data sets

S∗
m = {Y ∗

i ,X
∗
i : i = 1, . . . n∗} , m = 1, . . . ,M

� Fit a base estimator fm(x) to every bootstrap sample S∗
m and

output the ensemble estimator

f̂ (x) =
1

M

M∑
m=1

fm(x).

� Bagging uses n∗ = n by default.

@UvA 7

Bootstrap Principle

� The original data set S is a random sample from some

population distribution

� Conditioning on S , each bootstrap sample S∗
m is a random

sample from the empirical distribution

P (Y ∗,X ∗ = Yi ,Xi | S) =
1

n
, 1 ≤ i ≤ n.

when Yi ,Xi are distinct; otherwise sum up the probability

masses at the same point.

� θ̂ = 1
n

∑n
i=1 h(Yi ,Xi) with mean θ = Eh(Yi ,Xi)

� θ∗ = 1
n∗

∑n∗

i=1 h(Y
∗
i ,X

∗
i) with conditional mean θ̂

� Bootstrap principle: under some regularity conditions

P
(√

n∗
(
θ∗ − θ̂

)
≤ x |S

)
≈ P

(√
n
(
θ̂ − θ

)
≤ x

)
uniformly for x .

@UvA 8

Bagging Is Smoothing: Toy Example

� The unstable estimator for the toy example

f̃ (x ; X̄) = 1[X̄ ≤ x]

� By LLN, the bagging estimator

f̂ (x) =
1

M

M∑
m=1

1[X̄ ∗
m ≤ x] ≈ P

(
X̄ ∗ ≤ x | S

)
, as M → ∞,

where X̄ ∗
m is the m-th bootstrap average

� Bootstrap principle:

P
(
X̄ ∗ ≤ x | S

)
=P

(√
n
(
X̄ ∗ − X̄

)
≤

√
n
(
x − X̄

)
| S

)
≈Φ

(√
n
(
x − X̄

))
= f (x ; X̄)︸ ︷︷ ︸

stable estimator

,

where Φ is the distribution function of
√
n(X̄ − µ) ∼ N (0, 1).

@UvA 9

Random Forest

Unstable Model: Decision Tree

Condition 1

Condition 2

leaf leaf

Condition 3

leaf Condition 4

leaf leaf

� Make predictions at the terminal nodes (leafs)

� Interior node = a condition for a single feature Xj < θ

� Condition TRUE → left child

� Condition FALSE → right child

� Decision stump is a one-split decision tree
@UvA 10

Bagging with Decision Trees

� Tree estimators are unstable

fm(x ; {R̂τ , ĉτ}) =
T∑

τ=1

ĉτ1[x ∈ R̂τ]

especially around the boundaries of R̂τ

� Grow/fit a decision tree fm(x) to every bootstrap sample S∗
m

and then aggregate

� Regression: predicted value is the average across the trees

� Classification: regression problems with one-hot encoder

@UvA 11

CART Algorithm

� Generate a (random) pool of candidate splits with

{(j (b), α(b)) : b = 1, . . . ,B},

where the j (b) ∈ {1, . . . , d} is a feature index, α(b) ∈ (0, 1) is

a probability threshold level

� For each split b, divide the input feature space X ⊂ Rd into

two sub-regions:

X (b)
L = {x ∈ X : xj(b) < θ(b)} and X (b)

R = {x ∈ X : xj(b) ≥ θ(b)},

where the threshold θ(b) is the sample quantile of the j (b)-th

feature at level α(b).

@UvA 12

� For each sub-region X (b)
τ , find the subset of target values

Y(b)
τ = {Yi : Xi ∈ X (b)

τ , 1 ≤ i ≤ n}, τ ∈ {L,R}

� Choose the best split minimizing the total weighted ‘impurity’

p
(b)
L ψ(Y(b)

L) + p
(b)
R ψ(Y(b)

R),

where ψ is some impurity function and

p(b)τ =
|X (b)

τ |
|X (b)|

, τ ∈ {L,R}.

� Repeat the split sequentially for every internal node until a

stopping criterion is reached

@UvA 13

Choosing the Impurity Function

Regression trees:

� Sample variance

ψ2(Yτ) =
1

|Yτ |
∑
Yi∈Y

(Yi − Ȳτ)
2, Ȳτ =

1

|Yτ |
∑
Yi∈Y

Yi .

Classification trees:

� Gini index = sum of sample variances over classes

ψ(Yτ) =
K∑

k=1

ψ2(Y(k)
τ) = 1−

K∑
k=1

(Ȳ (k)
τ)2

where

Y(k)
τ = {Y (k)

i = 1[Yi = Ck]︸ ︷︷ ︸
One-Hot Encoder

: Yi ∈ Yτ}

Ȳ (k)
τ =

1

|Yτ |
∑
Yi∈Y

Y
(k)
i , k = 1, . . . ,K@UvA 14

Note that Ȳ OH
τ = (Ȳ

(1)
τ , . . . , Ȳ

(K)
τ) represents a distribution:

Ȳ (k)
τ ≥ 0,

K∑
k=1

Ȳ (k)
τ = 1.

If Ȳ
(k)
τ > 0 for all k, we can also use the ���XXXcross entropy

ψ(Yτ) = ℓCE(Ȳ
OH
τ , Ȳ OH

τ) = −
K∑

k=1

log Ȳ (k)
τ · Ȳ (k)

τ

� entropy is maximum at the uniform distribution

(1/K , . . . , 1/K): the most ‘impure’ case

@UvA 15

Figure 17.1 in Efron and Hastie (2016): An Example Tree

@UvA 16

https://hastie.su.domains/CASI/

Forecasting with Decision Trees

� Eventually the terminal nodes partition the entire feature

space

X = ∪T
τ=1Rτ , Rτ ∩Rτ ′ = ∅, τ ̸= τ ′

� The predicted target value based on the m-th tree Tm:

fm(x) =
Tm∑
τ=1

c∗m,τ1[x ∈ R∗
m,τ],

c∗m,τ =
1

|R∗
m,τ |

∑
X∗
i ∈R

∗
m,τ

Y ∗
i ,X

∗
i ∈S

∗
m

Y ∗
i ,

� Same method applies to the one-hot encoder

@UvA 17

Decorrelating the Trees

� The decision trees share a common training data set S and

thus fm are dependent

� High correlations prevent stabilization

� One strategy to ‘decorrelate’ the trees is to allow only a

(small) random subset of features for every split.

� For example, each split may use only a subset of
√
d features

randomly selected from d features.

@UvA 18

Figure 17.2 in Efron and Hastie (2016): Test misclassification error of

random forests as a function of the number of trees. The red curve selects

7 of the 57 features at random as candidates for the split variable.

@UvA 19

https://hastie.su.domains/CASI/

Bagging VS Boosting

Random VS Deterministic Weights

The empirical risk function on bootstrap sample

1

n

n∑
i=1

ℓ(f (X ∗
i),Y

∗
i) ∼

n∑
i=1

wiℓ(f (Xi),Yi)

with exchangeable wi such that (nw1, . . . , nwn) follows a

multinomial distribution [Tute Q3].

The empirical risk function at m-th iteration for AdaBoost

n∑
i=1

w
(m)
i ℓ(f (Xi),Yi),

where w
(m)
i change over m and focus on the data points

misclassified by previous bases.

@UvA 20

More Remarks

Parallel VS Sequential Optimization

� Random forest grows trees separately

� Boosting requires knowing the previous bases

Number of Base Learners

� Random forest requires as large M as possible: no

bias-variance tradeoff on M

� Boosting forever overfits: early stopping or shrinkage is

necessary

Complexity of Trees

� Large trees in RF: bias-variance tradeoff on trees

� Stumps (or small trees) in Boosting: large bias, small variance

@UvA 21

	Introduction
	Bootstrap Aggregating
	Random Forest
	Bagging VS Boosting

