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Plan for Today

1. Feedforward Networks
2. Understanding Neural Networks
3. Convolutional Neural Networks

4. Training Neural Networks
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Feedforward Networks



Why Nonlinear Models: An Example

e Two independent economic variables X = (X1, X3) € {0,1}2
¢ PIXj=1]=PX;=0]=1/2,j=1,2
e XOR regression function u(x) = E[Y|X = x] = 1[x1 # x2]

Consider the linear prediction rule
f(x;0) = Bix1 + Baxa + Bo, 0= (51,52, 50)
We can decompose the population squared risk
E[(f(X;6) = Y)?]
=E[(f(X; 0) — u(X) + pu(X) = Y)?]
=E[(f(X; 0) — u(X))*] + 2E[(F(X; 0) — (X)) E[u(X) — Y[X]]
——————
=p(X)—p(X)=0
+E[(Y — u(X))?].
N————
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Minimizing the first term
E[(f(X;6) — u(X))?]

:i{(ﬁo —0)*+ (Bo+ B — 1)°

+(50+52—1)2+(ﬁ0+ﬁ1+ﬁ2—0)2}

yields the solution (8o, 81, 52) = (1/2,0,0), corresponding to the
ideal linear prediction rule f*(x) = 1/2 # u(x).

We need a nonlinear model to express the XOR function.
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Shallow Feedforward Networks: Regression

Consider functions f : R — R of the following form:

M
f(x) = Z (2) E b()
NG

m=1 “
weight bias
d
1 1 1
zm:(f<a$,,)), agn)— El W()X_,+ b()
= weight bias

where o is some nonlinear activation function such as

ReLU(a) = max{0, a}.

ReLU is called Rectified Linear Unit activation function.
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In matrix form,
(1)
Gl

X1
: 1) _ (1) 1) _ ()
—w® || 40w = (Wm,j)’ p1) — (bm)
0 y
D1 (N [
— elemgtwse
A e (o)
0
Fx) = W@ | | +p@, W@ = (Wf,)n), b2 = (bf)), k=1
1
N
To summarize: for x = (x1,...,xq) ",

f(X) = W(Z)J(W(l)x + b(l)) + b(2)

where o is applied elementwisely.
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Expressing the XOR Function

z = ReLU(x1 ar X2) ZoR— ReLU(xl + X0 — 1)

f(x)=z1—22z
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Shallow Feedforward Networks: Multiple-Output

For K-class classification, we need to estimate a multivariate
regression function after one-hot encoding and softmax
transformation (Lecture 1):

f(x) =0 (W(2>a(w<1>x + bWy + b<2>)
where o outside the brackets denotes the softmax function.

e Add more rows into W) € RKXM 4pd p(2) ¢ RK

e If softmax transformation is not needed (for multiple-output
regression): use o as the identity function instead

e In general, we may also take o as another activation
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An Example Neural Net With K =2 Outputs

. X1

Input Layer 1

Hidden Layer 1 z; 2

Output Layer fi f
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Adding Hidden Layers

Input Layer € R? Hidden Layer € R* Hidden Layer € R? Output Layer € R?

o Input 2O = (x1,...,x4)7, My =d
e h-th Hidden layer for h=1,...,D — 1:

2 = g(a), A = )LD LB ) ¢ RMx M

ouvA e Output layer: f(x) = a-(a(D)), Mp = K. .



Geometric Pyramid Rule: Masters (1993)
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Input Layer € R* Hidden Layer € R Hidden Layer € R Hidden Layer € R* Output Layer € B!

Three hidden layers My = 32, M, = 16, M3 = 8. Works well in empirical
asset pricing; see Gu et al. (2020, RFS).
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https://www.sciencedirect.com/book/9780080514338/practical-neural-network-recipies-in-c-and-and
https://doi.org/10.1093/rfs/hhaa009

Fully-Connected Networks

Hidden layers
Output

A
e o0
S

e Mi=...=Mp_1=M
e Easy to increase depth compared with the geometric pyradmid

rule
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Understanding Neural Networks




Sigmoid VS RelLU Activation

The most traditional choice of activation function for shallow
neural networks is the sigmoid or the hyperbolic tangent function:

B 1

~ 1+exp(—a)
exp(a) — exp(—2)
exp(a) + exp(—a)’

Sigmoid(a)

tanh(a) =

In deep learning with (relatively) large D, however, it is often
better to use the ReLU activation

ReLU(a) = max{0, a}.
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Plotting the Activation Function

(a from -6.1to 6.1)

—
o%+1

= tanh(a)

= max(0, a)

-1.0

Computed by Wolfram|Alpha

The hyperbolic tangent function is a mirror transformation of the
sigmoid via
tanh(a) = 2 x Sigmoid(2a) — 1,
so that it is centered around zero, that is, tanh(0) =0
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Why ReLU Function

The ReLU function enjoys the so-called projection property:
ReLU( ReLU(a) ) = ReLU(a).

Activating many times does not change the signal, which can pass
through several layers without change:

ReLU(ReLU(...ReLU(a))) = ReLU(a).

k times

In contrast, applying the sigmoid function too many times through
layers loses the signal:

Sigmoid(Sigmoid(. . . Sigmoid(a))) — 0.659..., as k — co.

k times
The limit is a constant, making the input irrelevant.
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Universal Approximation

For any sufficiently smooth function © on a compact set with

finitely many discontinuities,. . .

there exists a ReLU feedforward network f that can approximate it
arbitrarily well if the width M and depth D are sufficiently large.

e The universal approximation property, however, does not tell
precisely how many hidden units are required.

e Generally speaking, there is a trade-off between M and D:
allowing large D may reduce the number of hidden units
needed for approximations dramatically
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How Deep Should It Be?

e In finance applications, the depth D is usually between 3 and
6 for monthly equity data

e In theory, the depth D should grow slowly to infinity with the
sample size n at the order of log(n), for instance. Even with
14 million observations in AlexNet, for example, the depth D
should be only a multiple of log(10°) ~ 14.
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Convolutional Neural Networks




Imaging Price Trends: OHLC Chart
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OHLC Chart with Volume Bar and 20-day Moving Average Line
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Jiang, Kelly and Xiu (2022+): OHLC Image

[[ B) a) e) - » 9) 9J B]J

[ @, 9’ e, . > @J @J @]J

[ B, a) 8) » 8) BJ B]J

vy

[ e, 255, @, ..., o, @, @],

[ @, 255, o, ..., ®©, o, o],
—~ [ e,255 e, ..., @, 255, @]

An Example 20-day OHLC Image (64x 60): 255=white, 0=black

We can represent grayscale image as matrix
V={V;:i=1,....,I,j=1,...,J}
where Vi ; indicates the grayscale of a pixel at the location (i, j).
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https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3756587

Flattening

QUVA

Vectorizing V vyields a I x J dimensional vector
vec(V) = (Va1,..., Vi1, Vi, Vig, oo, Vag, o Vi) T,

This process converting multiple grids into a vector is called
flattening in machine learning.

Inputting the flattened feature vector to a neural network
ignores the spatial structure of the original matrices

Use a convolutional neural network (CNN) to incorporate
spatial information
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Convolution Layer

. Output Channel 1
Input Image (6x6) Filter 1 (3x3) p

0 0 765 765
------ 0 0 765765

Output Channel 2
0 0 0 0
~—____0 0 0 O
765 765|510/ 255

765 765 510 255

Outputs for K = 2 filters

e The kernels are shared by all the subimages
e The kernels are weight parameters to be trained
ouvA e Feature maps Zx = 0(Ax + wxp), k=1,...,K

0 510‘

0
0 0 255 255
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Max Pooling

Output Channel 1 Max-Pooling
0 0 765 765
0 0 765 765 0 765
0 0*fs10[510 0 510
0 o0 |2s52855————""
Output Channel 2
0 0 0 0
0 0 0 0 0 o

765 ?55‘| 510255

765 765|510 255

e Flattening the feature maps {Zy : k =1,...,K} directly
yields too noisy (and too many) inputs

e Pooling = Replacing non-overlapping divisions of the feature

QUVA
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24@48x48

24@16x16

1@64x64 ]

D:f :

Convolution Max-Pool Dense

e Flatten the feature maps after pooling
e ... and then input to an ordinary neural network
e Usually these new layers will be fully connected and called
the dense layers
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Training Neural Networks




Weight Decay

We can parameterize the neural nets by
f(x;0) = f(x; w,b)
where

e the vector w collects all the weights
e the vector b collects the biases.

By measuring the model complexity by C(6) = 3 |w||?, the
penalized method (Lecture 1) minimizes
A
Ls(f) + 5wl A>0
where Lg is the empirical risk function.

Use squared loss for regression and cross-entropy for classification
tasks (with one-hot encoded target)
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Gradient Descent

Starting with an initial value (w(0), b(0)), the batch gradient
descent algorithm updates the parameters for each step t:

_ [w(t)
b(t)

w(t+1)
b(t+1)

] —n-g(w(t), b(t)), n>0,

where g is the gradient function given by

To be continued next week.
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