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Introduction



Nobel Prize Economics 2021

Joshua Angrist and Guido Imbens [Dutch] share half the award

Achievement:
methodological contributions to the analysis of causal

relationships
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A Motivating Example

Imagine a hotel data set containing data about

� Occupancy rates

� Prices
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Hotel Prices
Occupancy Rates

Blue: the average rate per night for a standard double room in Amsterdam;

Red: hotel occupancy rate (in percentage) in the Netherlands
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� Prices are easy to obtain through price comparison sites

� Occupancy rates are typically not made public by hotels

� Estimating the occupancy rates of competitors, based on

publicly available prices, is a prediction problem:

Prices ↑ suggests occupancy rates ↑
� Estimating how occupancy would change if the hotel raised

prices across the board (e.g., +5% in prices in every state of

the world) is a question of causal inference:

Prices ↑ causes occupancy rates ↑?
� Even though prices and occupancy are positively correlated in

a typical dataset, we would not conclude that raising prices

would increase occupancy
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Potential Outcome Model

� Wish to find the causal effect of a treatment/policy variable

D on the outcome variable Y

� Treatment (D = 1) or control (D = 0) groups

� Y
(d)
i is the outcome for individual i when given treatment

d ∈ {1, 0}:

Yi =

Y
(1)
i if Di = 1,

Y
(0)
i if Di = 0,

or Yi = DiY
(1)
i + (1− Di )Y

(0)
i .

� Binary treatment effect for individual i is given by

δi = Y
(1)
i − Y

(0)
i

� Counterfactual : only observe Y
(Di )
i ∈ {Y (1)

i ,Y
(0)
i } but not

both
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The Fundamental Problem of Causal Inference

Table 2.1 in Morgan and Winship (2014)

Group Y (1) Y (0)

Treatment group (D = 1) Observable as Y Counterfactual

Control group (D = 0) Counterfactual Observable as Y

� Impossible to calculate individual-level treatment effects

� Estimate the average treatment effect (ATE)

τ =
1

n

n∑
i=1

τi , τi = Eδi = E
[
Y

(1)
i − Y

(0)
i

]
= EY (1)

i − EY (0)
i

where n denotes the total number of individuals
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A Naive Estimator of the ATE

The difference in mean outcomes between

� the treatment group {i : Di = 1} with n1 =
∑n

i=1Di

participants; and

� the control group {i : Di = 0} with n0 = n − n1 participants:

τ̂ =
1

n1

∑
Di=1

Yi −
1

n0

∑
Di=0

Yi

=
1

n1

∑
Di=1

Y
(1)
i − 1

n0

∑
Di=0

Y
(0)
i

Is this a consistent estimator?
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Even for the favorable case:

� (Y
(1)
i ,Y

(0)
i ,Di ) ∼ (Y (1),Y (0),D) are i.i.d.

� The treatment effect τ ≡ τi ≡ δi ≡ δ is constant

τ̂
P−→ E[Y (1) | D = 1]− E[Y (0) | D = 0]

=E[δ + Y (0)|D = 1]− E[Y (0)|D = 0]

=δ +
{
E[Y (0)|D = 1]− E[Y (0)|D = 0]

}
︸ ︷︷ ︸

bias

� For (Y (1),Y (0)) independent of D: (Y (1),Y (0)) ⊥⊥ D

� . . . the bias vanishes: τ̂
P−→ δ
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Unconfoundedness Assumption

� Confounding factors C influencing both D and Y :

� Example: college education and income both affected by

parents’ income & education, etc.

� Confounding implies that treatment assignment is not random

but (self-)selected based on characteristics.

� Ideally confounders can be represented by features X ∈ Rd .

� Unconfoundedness Assumption:

(Y (1),Y (0)) ⊥⊥ D | X = x , x ∈ X
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Confounder Selection



Structural Equations

If the treatment effect δ = Y
(1)
i − Y

(0)
i is fixed

+ linear model Y
(0)
i = XT

i β + εi =
∑d

j=1 Xi ,jβj + εi

implies that

Yi = δDi +
d∑

j=1

Xi ,jβj + εi , E[εi |Xi ,Di ] = 0︸ ︷︷ ︸
Unconfoundedness

,

where we assume a zero intercept for simplicity.

Combining both information on policy Y and treatment DYi = δDi + XT
i β + εi , E[εi |Xi , vi ] = 0

Di = p(Xi ) + vi , E[vi |Xi ] = 0,

where p(x) is called the propensity score function given by

p(x) = E[D|X = x ] = P(D = 1|X = x)
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Linear Model For Treatment Equation

For simplicity, consider an approximate linear probability model

p(Xi ) =
d∑

j=1

Xi ,jγj + ri = XT
i γ + ri

where ri should be negligible (stochastically).

Rewrite the model into a reduced form given byYi = XT
i β̄ + ε̄i

Di = XT
i γ + v̄i ,

where β̄ = δγ + β, ε̄i = δv̄i + εi and v̄i = ri + vi .
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Post-Selection Estimation

� When the dimension of confounders d is high relative to the

sample size (with a large d/n), selecting a small set of the

most useful confounders could be wise for variance reduction

purpose.

� Run the least-squares regression on only the variables selected

� Post-selection estimator is not stable in general, but it can

provide solid inference under sparsity assumption.
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Sparsity Assumption

� If d is small, δ may be estimated by least-squares regression

using the outcome equation:

Yi = δDi + XT
i β + εi

� When d is large, assume that the true support set is however

sparse:

J = {1 ≤ j ≤ d : βj ̸= 0} has size |J | ≪ n

� Only a few confounders are relevant to the population models,

but we do not know which.
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Single Selection Using The Outcome Equation

� Use the LASSO regression minimizing

1

2

n∑
i=1

Yi − δDi −
d∑

j=1

Xi ,jβj

2

+ λ

d∑
j=1

|βj |

where treatment is not penalized

� The confounders should be normalized.

� LASSO performs model selection: for non-trivial λ > 0

Ĵ = {1 ≤ j ≤ d : β̂j ̸= 0} ≪ n
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Why Post-Selection Estimation?

� Under more regularity conditions and an appropriate choice of

penalty coefficient λ, Belloni and Chernozhukov (2013) show

that with high probability and some constant C

J ⊂ Ĵ , and
∣∣∣Ĵ ∣∣∣ ≤ C |J | ≪ n

� The former implies a correct model selection, and the latter

says our selected model is small (enough)

� LASSO estimator δ̂LASSO often has a non-trivial bias: see, e.g.,

Belloni et al. (2013) for iterative algorithms for choosing λ

� Post-Lasso estimation tends to reduce bias: least-squares

estimator after selection.

@UvA 15



Naive Post Selection Estimator

� Single selection could miss

the variables with true

coefficients “moderately

close to zero” with a

non-trivial chance

� Select more variables: how?
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Double Selection: Belloni et al. (2014)

Recall the reduced formYi = XT
i β̄ + ε̄i

Di = XT
i γ + v̄i ,

� Sparse index sets Ĵ1, Ĵ2 ⊂ {1, . . . , d} from each equation

(using LASSO regression)

� Take a (small) set Ĵ3 that you think is important for ensuring

robustness, if necessary

� The final index set is given by

Ĵ = Ĵ1 ∪ Ĵ2 ∪ Ĵ3

� Least-squares regression after double selection.
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Simulation Example: Belloni et al. (2014)

The post-double-selection estimator δ̂ reduces bias, and its distribution

gets closer to normal for sparse models.
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Debiased Machine Learning



Auxiliary ML Estimator

Consider the partially linear model

Yi = δDi + µ(0)(Xi ) + εi

where µ(0)(x) = E[Y (0)|X = x ] may be non-linear.

Suppose we have a machine learning estimator µ̂(0) from another

auxiliary sample independent of our training set with a learning bias

b(x) = E
[
µ̂(0)(x)

]
− µ(0)(x) ̸≡ 0,

which is not identically zero.

The learning bias can emerge due to the bias-variance tradeoff in

ML estimator.
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Rewrite the model as

Yi − µ̂(0)(Xi ) = δDi + ε̃i , ε̃i = εi + µ(0)(Xi )− µ̂(0)(Xi ).

Regressing Yi − µ̂(0)(Xi ) on Di gives the least-squares estimator

δ̂ =
(∑

D2
i

)−1 (∑
Di (Yi − µ̂(0)(Xi ))

)
=
(∑

D2
i

)−1 (∑
Di (Yi − µ(0)(Xi ))

)
+
(∑

D2
i

)−1

∑Di (µ
(0)(Xi )− µ̂(0)(Xi )︸ ︷︷ ︸
‘prediction error’ e(Xi )

)


=δ +

(∑
D2
i

)−1 (∑
Diεi

)
︸ ︷︷ ︸

variance component

+
(∑

D2
i

)−1 (∑
Die(Xi )

)
︸ ︷︷ ︸

bias component

because

E[Die(Xi )] = E[Di · E[e(Xi ) | S ]] = E[ Di︸︷︷︸
p(Xi )+vi

·b(Xi )] ̸= 0
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Endogeneity and IV Regression

Yi − µ̂(0)(Xi ) = δDi + ε̃i , ε̃i = εi + µ(0)(Xi )− µ̂(0)(Xi ).

The learning bias issue is the endogeneity issue :

E[Di ε̃i ] = E[Dib(Xi )] ̸= 0.

because both Di and b(Xi ) depend on Xi .

� Using the decomposition

Di = p(Xi ) + vi , E[vi |Xi ] = 0

� If vi were observable, it is a valid instrument for Di asE[viDi ] ̸= 0

E[vi ε̃i ] = 0
⇒ δ =

E[vi
(
Yi − µ̂(0)(Xi )

)
]

E[viDi ]

=
E[vi

(
Yi − µ̂(0)(Xi )

)
]

E[v2i ]
[Tute Ex4]
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Debiased/Double ML: Chernozhukov et al. (2018)

One may estimate δ using the ratio of the sample averages

� Split into independent folds with index sets I and I∁

� Learn both the regression function µ(0)(·) and propensity

score functions p(·) on the auxiliary sample I∁.

� Instrumental regression in sample I:

δ̂ =

(∑
i∈I

v̂iDi

)−1∑
i∈I

v̂i (Yi−µ̂(0)(Xi )), where v̂i = Di−p̂(Xi ).

or

δ̂ =

(∑
i∈I

v̂2i

)−1∑
i∈I

v̂i (Yi − µ̂(0)(Xi ))

� Optional: swap I and I∁ and average the estimates
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Simulation Example: Chernozhukov et al. (2018)

Conventional ML Debiased ML

� µ(0)(x) and p(x) are learned by using random forests

� DML estimator has a smaller bias
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Remark

� Due to the time constraint, today we cannot cover all

machine learning methods in causal inference

� . . . such as the causal forest proposed Wager and Athey

(2018) and the neural network approach in Farrell et al.

(2021) based on influence functions

� You can find more explanations and details in our online

reader.

� You will also learn more during the tutorial session.
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