

Machine Learning for Econometrics, 2022

Lecture 2: Deep Learning

Yi He

November 8, 2022

Plan for Today

1. Feedforward Networks

2. Understanding Neural Networks

3. Convolutional Neural Networks

4. Training Neural Networks

@UvA 1

Feedforward Networks

Why Nonlinear Models: An Example

� Two independent economic variables X = (X1,X2) ∈ {0, 1}2

� P[Xj = 1] = P[Xj = 0] = 1/2, j = 1, 2

� XOR regression function µ(x) = E[Y |X = x] = 1[x1 ̸= x2]

Consider the linear prediction rule

f (x ; θ) = β1x1 + β2x2 + β0, θ = (β1, β2, β0)

We can decompose the population squared risk

E[(f (X ; θ)− Y)2]

=E[(f (X ; θ)− µ(X) + µ(X)− Y)2]

=E[(f (X ; θ)− µ(X))2] + 2E[(f (X ; θ)− µ(X))E[µ(X)− Y |X]︸ ︷︷ ︸
=µ(X)−µ(X)=0

]

+ E[(Y − µ(X))2]︸ ︷︷ ︸
not depending on θ

.

@UvA 2

Minimizing the first term

E[(f (X ; θ)− µ(X))2]

=
1

4

{
(β0 − 0)2 + (β0 + β1 − 1)2

+ (β0 + β2 − 1)2 + (β0 + β1 + β2 − 0)2

}

yields the solution (β0, β1, β2) = (1/2, 0, 0), corresponding to the

ideal linear prediction rule f ∗(x) = 1/2 ̸= µ(x).

We need a nonlinear model to express the XOR function.

@UvA 3

Shallow Feedforward Networks: Regression

Consider functions f : Rd → R of the following form:

f (x) =
M∑

m=1

w
(2)
1,m︸︷︷︸

weight

zm + b
(2)
1︸︷︷︸
bias

,

zm = σ
(
a
(1)
m

)
, a

(1)
m =

d∑
j=1

w
(1)
m,j︸︷︷︸

weight

xj + b
(1)
m︸︷︷︸
bias

.

where σ is some nonlinear activation function such as

ReLU(a) = max{0, a}.

ReLU is called Rectified Linear Unit activation function.

@UvA 4

In matrix form,
a
(1)
1
...

a
(1)
M

 = W (1)

x1...
xd

+ b(1), W (1) =
(
w

(1)
m,j

)
, b(1) =

(
b
(1)
m

)

z
(1)
1
...

z
(1)
M

 = σ

a
(1)
1
...

a
(1)
M

 elementwise

=

σ(a

(1)
1)
...

σ(a
(1)
M)

f (x) = W (2)

z
(1)
1
...

z
(1)
M

+ b(2), W (2) =
(
w

(2)
k,m

)
, b(2) =

(
b
(2)
k

)
, k = 1

To summarize: for x = (x1, . . . , xd)
T ,

f (x) = W (2)σ(W (1)x + b(1)) + b(2)

where σ is applied elementwisely.

@UvA 5

Expressing the XOR Function

1 x1 x2

1 z1 = ReLU(x1 + x2) z2 = ReLU(x1 + x2 − 1)

f (x) = z1 − 2z2

@UvA 6

Shallow Feedforward Networks: Multiple-Output

For K -class classification, we need to estimate a multivariate

regression function after one-hot encoding and softmax

transformation (Lecture 1):

f (x) = σ
(
W (2)σ(W (1)x + b(1)) + b(2)

)
where σ outside the brackets denotes the softmax function.

� Add more rows into W (2) ∈ RK×M and b(2) ∈ RK

� If softmax transformation is not needed (for multiple-output

regression): use σ as the identity function instead

� In general, we may also take σ as another activation

@UvA 7

An Example Neural Net With K = 2 Outputs

Input Layer

Hidden Layer

Output Layer

1 x1

1 z1 z2

f1 f2

@UvA 8

Adding Hidden Layers

Input Layer ∈ ℝ² Hidden Layer ∈ ℝ⁴ Hidden Layer ∈ ℝ³ Output Layer ∈ ℝ²

Page 1 of 1

28/09/2020file:///C:/Users/Yi%20He/Dropbox/Yi/UvA-teaching/ML_for_econometrics_secret/slides...

� Input z(0) = (x1, . . . , xd)
T , M0 = d

� h-th Hidden layer for h = 1, . . . ,D − 1:

z(h) = σ(a(h)), a(h) = W (h)z(h−1)+b(h), W (h) ∈ RMh×Mh−1

� Output layer: f (x) = σ(a(D)), MD = K .@UvA 9

Geometric Pyramid Rule: Masters (1993)

Input Layer ∈ ℝ⁵ Hidden Layer ∈ ℝ³² Hidden Layer ∈ ℝ¹⁶ Hidden Layer ∈ ℝ⁸ Output Layer ∈ ℝ¹

Three hidden layers M1 = 32, M2 = 16, M3 = 8. Works well in empirical

asset pricing; see Gu et al. (2020, RFS).

@UvA 10

https://www.sciencedirect.com/book/9780080514338/practical-neural-network-recipies-in-c-and-and
https://doi.org/10.1093/rfs/hhaa009

Fully-Connected Networks

� M1 = . . . = MD−1 = M

� Easy to increase depth compared with the geometric pyradmid

rule

@UvA 11

Understanding Neural Networks

Sigmoid VS ReLU Activation

The most traditional choice of activation function for shallow

neural networks is the sigmoid or the hyperbolic tangent function:

Sigmoid(a) =
1

1 + exp(−a)

tanh(a) =
exp(a)− exp(−a)

exp(a) + exp(−a)
.

In deep learning with (relatively) large D, however, it is often

better to use the ReLU activation

ReLU(a) = max{0, a}.

@UvA 12

Plotting the Activation Function

The hyperbolic tangent function is a mirror transformation of the

sigmoid via

tanh(a) = 2× Sigmoid(2a)− 1,

so that it is centered around zero, that is, tanh(0) = 0

@UvA 13

Why ReLU Function

The ReLU function enjoys the so-called projection property:

ReLU(ReLU(a)) = ReLU(a).

Activating many times does not change the signal, which can pass

through several layers without change:

ReLU(ReLU(. . .ReLU︸ ︷︷ ︸
k times

(a))) = ReLU(a).

In contrast, applying the sigmoid function too many times through

layers loses the signal:

Sigmoid(Sigmoid(. . . Sigmoid︸ ︷︷ ︸
k times

(a))) → 0.659 . . . , as k → ∞.

The limit is a constant, making the input irrelevant.

@UvA 14

Universal Approximation

For any sufficiently smooth function µ on a compact set with

finitely many discontinuities,. . .

there exists a ReLU feedforward network f that can approximate it

arbitrarily well if the width M and depth D are sufficiently large.

� The universal approximation property, however, does not tell

precisely how many hidden units are required.

� Generally speaking, there is a trade-off between M and D:

allowing large D may reduce the number of hidden units

needed for approximations dramatically

@UvA 15

How Deep Should It Be?

� In finance applications, the depth D is usually between 3 and

6 for monthly equity data

� In theory, the depth D should grow slowly to infinity with the

sample size n at the order of log(n), for instance. Even with

1+ million observations in AlexNet, for example, the depth D

should be only a multiple of log(106) ≈ 14.

@UvA 16

Convolutional Neural Networks

Imaging Price Trends: OHLC Chart

OHLC Chart with Volume Bar and 20-day Moving Average Line

@UvA 17

Jiang, Kelly and Xiu (2022+): OHLC Image

⇒

An Example 20-day OHLC Image (64× 60): 255=white, 0=black

We can represent grayscale image as matrix

V = {Vi,j : i = 1, . . . , I, j = 1, . . . , J}

where Vi,j indicates the grayscale of a pixel at the location (i, j).

@UvA 18

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3756587

Flattening

� Vectorizing V yields a I× J dimensional vector

vec(V) = (V1,1, . . . ,VI,1,V1,2, . . . ,VI,2, . . . ,V1,J, . . . ,VI,J)
T ,

� This process converting multiple grids into a vector is called

flattening in machine learning.

� Inputting the flattened feature vector to a neural network

ignores the spatial structure of the original matrices

� Use a convolutional neural network (CNN) to incorporate

spatial information

@UvA 19

Convolution Layer

Outputs for K = 2 filters

� The kernels are shared by all the subimages

� The kernels are weight parameters to be trained

� Feature maps Zk = σ(Ak + wk,0), k = 1, . . . ,K@UvA 20

Max Pooling

� Flattening the feature maps {Zk : k = 1, . . . ,K} directly

yields too noisy (and too many) inputs

� Pooling = Replacing non-overlapping divisions of the feature

maps with their summary statistics (such as maximum)@UvA 21

Dense Layer

� Flatten the feature maps after pooling

� . . . and then input to an ordinary neural network

� Usually these new layers will be fully connected and called

the dense layers

@UvA 22

Training Neural Networks

Weight Decay

We can parameterize the neural nets by

f (x ; θ) = f (x ;w , b)

where

� the vector w collects all the weights

� the vector b collects the biases.

By measuring the model complexity by C (θ) = 1
2 ∥w∥2, the

penalized method (Lecture 1) minimizes

LS(f) +
λ

2
∥w∥2 , λ ≥ 0

where LS is the empirical risk function.

Use squared loss for regression and cross-entropy for classification

tasks (with one-hot encoded target)

@UvA 23

Gradient Descent

Starting with an initial value (w(0), b(0)), the batch gradient

descent algorithm updates the parameters for each step t:[
w(t + 1)

b(t + 1)

]
=

[
w(t)

b(t)

]
− η · g(w(t), b(t)), η > 0,

where g is the gradient function given by

g(w , b)

=

[
∇w (LS(w , b) + λ

2 ∥w∥2)
∇b(LS(w , b) + λ

2 ∥w∥2)

]

=
1

n

n∑
i=1

[
∇w ℓ(f (Xi ;w , b),Yi)

∇bℓ(f (Xi ;w , b),Yi)

]
+ λ

[
w

0

]
.

To be continued next week.

@UvA 24

	Feedforward Networks
	Understanding Neural Networks
	Convolutional Neural Networks
	Training Neural Networks

