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Course Introduction



ML for Econometrics 2022-2023

Our team:

Yi He Mario Rothfelder Sander Barendse

e Tuesday lectures and Friday tutorials on campus
e Submit pre-class questions by every Thursday noon.

e Computer labs by my colleagues Mario and Sander
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What is Machine Learning ... for Economists?

Athey S. (2018), “The Impact of Machine Learning on

Economics”:
, machine learning is a field that develops algorithms

designed to be applied to datasets, with the main areas
of focus being prediction [regression], classification, and
clustering or grouping tasks.

e Statistical Learning Framework: Week 1

e Deep Learning I: Week 2

e Deep Learning Il + Guest Lecture (Fri 18 Nov): Week 3
e Boosting: Week 4

e Random Forest: Week 5

e Causal inference: Week 6
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https://www.gsb.stanford.edu/faculty-research/publications/impact-machine-learning-economics

ML for Econometrics 2022-2023: Assessment

QUVA

Computer assignments: 20%+20%=40%
Final exam, 2 hours: 60%

Form assignment groups voluntarily until Mon 8 Nov via
Canvas

Max 3 students in each group

On Tue 9 Nov, the remaining students will be randomly
assigned.



Learning Materials

Our main learning materials are in the online reader:
https://machinelearningtheory.org/

More reference materials:

2 N2

EEP LEARNING
BRADLEY EFRON
TREVOR HASTIE

INFERENCE

ALGORITHIS, EVIDENCE, AND DATH'SG:

e Links for free online reading of the reference books on Canvas
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https://machinelearningtheory.org/

Motivating Example: Support
Vector Machines



Optimal Separating Hyperplane

S={Y,Xi:i=1,...,n},
Xi = (X1, Xig)T €R, Vi € {~1,+1}

Figure 19.1 of Efron and Hastie (2016): linear discriminant function f(x) =

w ' x + wp, decision rule C(x) = sign(f(x))
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https://hastie.su.domains/CASI/

Signed Distances

Signed distances from points X; to the decision boundary
{x:wix+w =0,|lw| =1}
are given by:
>0 =C(X)=1
wTXi+wo=1{=0 ontheboundary, i=1,...,n
<0 =C(X;)=-1
Signed distances taking into account the classification errors:
>0 =C(X)=Y;
Yi-(w'X;+wo) =< =0 ontheboundary, i=1,...,n
<0 =CX)#Y;
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Hard-Margin Support Vector Machine

Assuming separability, maximizing the margins gives hard-margin
SVM [Tute Q1]:

maximize M

ool 1.
subject to Yi- (W' Xi+wo) =M v i & T HE 2P P
Beyond Margin subject to Yi(BTX,- Y B)>1Vi
Iwll =1

. in the sense that they give the same decision boundary

{x: W x+ =0} ={x:BTx+ =0}
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Soft-Margin Support Vector Machine

The soft-margin SVM, with some hyperparameter C > 0:

4T
minimize =5 5+
B,50.{61} Zg,

subject to Y,-(BTX,- + 60) > 1-¢; Vi
——
Violating Margins
& >0 Vi
Sending C — oo gives the hard-margin version.
For each /, the constraints are
& >1-Yi(BTX; + Bo)

<& > max{l -, (ﬁ Xi + Bo),0}
£ >0
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Alternative Formulation of Soft-Margin SVM

Minimizing &; for all i gives that

& =max{1-Y, (B Xi + Bo),0}

Plugging in the objective function yields a unconstrained problem:

BREE 2 Tﬂ+czmax{1— 87X+ o), 0}
&i

Dividing the objective function by the constant nC does NOT
change the solution of 3, 5y

m|glm|ze/\BTﬂ+ Zmax{l— (BT X; + Bo), 0}

with A = 51- > 0.
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The objective function

MTB+ = Zmax{l— (BT Xi + Bo),0}
f(Xi:8,o)

1 n

-

= =3 (X B, o), Vi

ATB+ T3 Bl (X, 0), )
where /y is called the hinge loss function given by

tu(f(x),y) = max{1l —y - f(x),0}

and f(x; 8, o) is a candidate linear prediction rule in form of
f(X;Bvﬁo) = BTX"’ ﬁo
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Regularized Estimation

The Lagrange multiplier theorem states that:

L 1 ¢
m|gigg|ze ABT B+ - ;ZH(f_(Xi;ﬁvﬁ())a Yi) (1)

is equivalent to

1 n
minimize — Ly (f(X;; B, Bo), Yi
nimize 35 (70X 6,60), )

subject to BT < b

Empirical Risk

= Regularization

where b = E’B where B is the solution of (1).
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Empirical Risk

The empirical hinge risk (= average hinge loss)
ZeH (Xi: 8 Bo), Yi)

is an estimator of the population hinge risk (= expected hinge loss)

Lp(f) = ELs(f) = E[en(f(X; B, Bo), Y)]
if Y;, X; are i.i.d. observations from the distribution D of Y, X.

e The regularization improves statistical performance: we will
come back to this point later
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SVM: What Does It Estimate?

Now consider a general, not necessarily linear, candidate prediction
rule f : R — R with the hinge risk

Lp(f) =E[lu(f(X),Y)] =E[max{0,1—Y - f(X)}].
The ideal prediction rule f* minimizing this risk function is
f*(x) =sign (E[Y|X = x])
1 P(Y=1X=x)>P(Y=-1X=x)
-1 P(Y=1X=x)<P(Y=-1X=x)
=:CP¥(x)
CBaves is called the Bayes classifier

In other words, the soft-margin SVM is directly estimating the
Bayes classifier CBaYes(x).
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Why Bayes Classifier?

The Bayes classifier CB2¢5(x) minimizes the probability of making
classification mistakes:

minigmize P(g(X)#Y) = minigmize E[lo-1(g(X), Y)]

over the class of classifier g : RY — {—1,+1}, where

boa(y,y) =1y # y]

is called the zero-one loss function.

QUVA 15



Remark: Linear Rule Is Not Enough

Recall that the soft-margin SVM is directly estimating the Bayes
classifier CB2¢s(x) € {—1,1}, which is nonlinear. However, the
standard soft-margin SVM uses only linear prediction rules

f(x) = B x + fo.

That’s why we need to use the kernel tricks (not to be discussed)

to generate a richer space
F={f:f(x Za K(x,x;)}

where K € K is a kernel function so we can approximate C5#¢5(x)
with || CBes(x) — f
some f* € F.

x)H,C < € for a (arbitrarily) small € > 0 for
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Regularization: Variance Reduction

Recall that we only optimize the empirical risk over a smaller
subset in SVM given by

H={f(x)=BTx+Bo € F: Bl < b}
and our estimator is given by

f = argmin Ls(f).
feH

The motivation is to reduce variance of f due to the randomness
of Y;, X;, which increases in general with the worst estimation error
of the risk function:

sup [Ls(f) — Lp(f)| 1 as™H 1.
feH
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Regularization: Bias Variance Tradeoff

However, shrinking the space H restricts our choices of candidate
prediction rules. The best population risk we can reach is only

inf Lp(f
o, o)

so the bias

inf Lp(f)— inf Lp(f .
inf Lp(f) = inf_ Lo(f) T asH |

In practice, we need to trade-off bias and variance by tuning the
hyperparameter A\ (and hence b) properly.
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Beyond SVM: Statistical Learning
Framework




Statistical Learning Problems

Target variable Y € ), d features X € X C R¢

Before observing Y

We make a prediction f(X) with some prediction rule f : X — Y

After observing Y: We quantify the predictive loss by
U(f(X),Y)

where £ : )Y x Y — [0,00) is some loss function specified by the
user. A larger loss implies a worse prediction performance, and the

loss remains non-negative such that

UF(X),Y) > Y,Y)=0.

Our goal is to find the ideal prediction rule that minimizes the

population risk function given by

T Lp(f) = E[((f(X),Y)], feF. 19



Ideal Prediction Rule

e The regression function
u(x) =E[Y | X =

is ideal for the (half) squared loss function

N 1. 5
Uy,y) = 5 1y — vl

e The Bayes classifier

CB¥S(x) = argmax P(Y =Cx | X = x)
Ch,1<k<K

is ideal for the zero-one loss ¢y.; among classifiers and hinge
loss ¢/ among all real-valued functions as discussed before.
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Empirical Risk Minimization

Given a random sample
S={Y,Xi:i=1,...,n},
the empirical risk function is equal to the average loss given by
1
Ls(f) = - ge(f(x,-), Y:), feF.
The empirical risk minimization (ERM) paradigm solves the

optimization problem:

minimize Lg(f)

subject to f € ?—[‘ = Regularization

How to choose H C F?
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Penalized Method

e Parameterize f = f(x; 0) € H with parameters 6 € ©
e Measure model complexity with some criterion function C(6)

e Choose H with a limited complexity such that
H={f(+0)eF:C(O)<b, 6c0O}.
This is equivalent to minimize the penalized empirical risk function
minimize Ls(f) + A - C(0)

where A = A\(b) is a tuning parameter.
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Unifying Classification and
Regression




One-Hot Encoding

e Classification algorithms generate discrete outputs but
regression algorithms generate continuous outputs.
e There is a strong connection between these two tasks:
CBa¥es(x) = argmax P(Y =Ci | X = x)
M—— C,1<k<K

classification

=argmax E[L1[Y =C«] | X = x]
Cr, I<k<K

regression
e (Y . Y(K))is the one-hot encoding of Y with
YK = 1[Y = C4].
e We can estimate the multivariate regression function

p(x) = (1 (%), - (%)), pw(x) = E[YH) | X = x]
using regression algorithms, and then construct the Bayes
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Softmax Function

e However, the regression function for one-hot encoded target
must satisfy the axioms of probability:

K
u(x)EPk:{yE(O,l)K:Zykzl}, Vx € X.
k=1

e Re-parameterize the candidate regression function
f(x) = (A(x),..., fk(x)) € Pk jointly by

fl(X) al(x)

f)=1 @ |=a| = o(a(x))
fi (x) ak(x)
o(a):

o@=| : | o)==

Eszl exp(aj)'

a(a)K

CUA o Note that a(x) € R¥ but set ax(x) = 0 for identification. 24



Cross Entropy
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Note that (Y1), ..., Y(K)) € Py is a distribution
Candidate regression function (fi(x),...,fx(x)) € Pk is
another distribution

The cross-entropy loss function ¢cg : Pk x Pk — [0, 00)
given by

Cce(f(x Z —Yk - log fir(x)

measures the ‘distance’ between these two distributions
Relax the definition to allow for yx € {0,1} in algorithms
We can show that the true regression function u(x) for the
one-hot encoded target is the ideal prediction rule.

It is more specialized than the Euclidean distance induced by

the squared loss

(7 (), ) = 5 1)~ P 2



Unified View of Regression and Classification
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After one-hot encoding, a classification task translates into a
regression task.

One may use soft-max transformation to enforce the axioms
of probability, and the cross-entropy loss instead of the
squared loss to estimate the multivariate regression function.

Therefore, other ML methods in this course are primarily for
regression tasks but apply to classification tasks.

The main differences are their choices of candidate prediction
rules, loss function, and regularization procedures.
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