
object -oriented design (patterns)
and energy consumption

Daniel Feitosa
d.feitosa@rug.nl

(in between the lines)

mailto:d.feitosa@rug.nl

A bit about me

Software Quality

Architecture Code

Image by Pechristener, licensed under CC BY-SA 4.0 2

insights obtained from architectural level
(e.g., decisions) impacting code practices
and processes (e.g., frameworks)

recurrent development challenges that can
be easined by improving architecting
processes and informing decisions

https://creativecommons.org/licenses/by-sa/4.0/deed.en

A bit about me

3

Some topics of interest:

- Technical Debt
- Green Software Engineering
- ML4SE ; SE4ML
- SW-HW co-design (e.g., IoT)

Weapons of choice:

- empirical software engineering
- static and dynamic source code analysis
- mining software repositories

Assistant Professor

Software Engineering and
Architecture Group

www.cs.rug.nl/search/People/
DanielFeitosa

feitosa-daniel.github.io

http://www.cs.rug.nl/search/People/DanielFeitosa
http://www.cs.rug.nl/search/People/DanielFeitosa
https://feitosa-daniel.github.io

Today's menu

Software patterns
Empirical SE
Source code analysis (OO)
Technical debt

Examples
- Energy consumption of GoF instances
- Cost management in multi-service cloud applications 🍲

4

energy consumption 👀

Software Patterns

5

Software Patterns

Proven solutions for recurrent problems

Patterns have

- Problem description
- Solution
- Usage examples
- Forces (reasons to apply a pattern)

6

E. Gamma, R. Helm, R. E. Johnson, and J. Vlissides, Design Patterns: Elements of Reusable Object-Oriented Software. Reading, MA: Addison-Wesley, 1995.
F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal, Pattern-Oriented Software Architecture Volume 1: A System of Patterns, 1st ed. Wiley, 1996.

Patterns impact quality

7

Patterns impact quality

BUT . . .

- A system's design isn't static (e.g., forces change)
- Other design elements (e.g., patterns) may have negative impact
- Some impacts are invisible (or not accounted for)

8

N. B. Harrison and Paris Avgeriou, “ Using Pattern-Based Architecture Reviews to Detect Quality Attribute Issues - an Exploratory Study,” Transactions on Pattern Languages of
Programming III , vol. 7840, pp. 168–194, 2013, doi: 10.1007/978-3-642-38676-3_5.
I. Ozkaya, R. Kazman, and M. Klein, “Quality-Attribute-Based Economic Valuation of Architectural Patterns,” Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA,
techreport CMU/SEI-2007-TR-003, 2007. doi: 10.1184/R1/6582686.V1.
R. Wojcik et al., “Attribute-Driven Design (ADD), Version 2.0,” Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA, techreport CMU/SEI-2006-TR-023, 2006. doi:
10.1184/R1/6572066.v1.

Study

9

Pattern and energy

10

D. Feitosa, L. Cruz, R. Abreu, J. P. Fernandes, M. Couto, and J. Saraiva, “Patterns
and Energy Consumption: Design, Implementation, Studies, and Stories,” in
Software Sustainability, Springer International Publishing, 2021, pp. 89–121.
doi: 10.1007/978-3-030-69970-3_5.

D. Feitosa, R. Alders, A. Ampatzoglou, P. Avgeriou, and E. Y. Nakagawa,
“Investigating the effect of design patterns on energy consumption,” Journal
of Software: Evolution and Process, vol. 29, no. 2, p. e1851, Jan. 2017,
doi: 10.1002/smr.1851.

How do design patterns impact energy efficiency?

Research Question

What is the energetic difference between
a pattern instance and
an alternative (non-pattern) design?

(object-oriented design)

11
E. Gamma, R. Helm, R. E. Johnson, and J. Vlissides, Design Patterns:

Elements of Reusable Object-Oriented Software. Reading, MA: Addison-Wesley, 1995.

State & Strategy

12

Alternative to
State/Strategy

public class Strategy {

 public enum Strategies { Strategy1, Strategy2, Strategy3 };

 private Strategies currentStrategy;

 public void execute (A attribute) {

 switch (currentStrategy) {

 case Strategy1:

 // Implementation of Strategy 1

 break;

 case Strategy2:

 // Implementation of Strategy 2

 break;

 case Strategy3:

 // Implementation of Strategy 3

 break;

 }

 }

 // . . .
13M. Fowler and K. Beck, Refactoring : Improving the

Design of Existing Code, 2nd ed. Addison-Wesley, 2013.

Template Method

14

Alternative to
Template Method

15M. Fowler and K. Beck, Refactoring : Improving the
Design of Existing Code, 2nd ed. Addison-Wesley, 2013.

Before we get to business…

What are the pros and cons of each design solution?

What would you expect w.r.t. energy consumption?

What are your hypotheses?

16

Empirical Study Design

17

Protocol

How to answer the research question?

- What type of empirical study?

- What do we measure and how?

- What are the limitations?

18

What type of study?

We want to compare equivalent artefacts (design to solve a problem)

- The design differs (pattern vs non-pattern)
- Functionality (and everything else) should be the same

19

What type of study?

We want to compare equivalent artefacts (design to solve a problem)

- The design differs (pattern vs non-pattern)
- Functionality (and everything else) should be the same

i.e., experiment where the design are the different treatments

20

What do we measure?

We measure the energy consumed by the two designs…

Under what context?

- Do we create example systems?
- Do we use "real-world" systems?

21

What do we measure?

We measure the energy consumed by the two designs…

Under what context?

- Do we create example systems?
- Do we use "real-world" systems?

22

how?

had been done

What do we measure?

We measure the energy consumed by the two designs…

Under what context?

- "Real-world" (i.e., non-trivial) systems
- Write a test case that uses a pattern instance in a regular scenario

Which patterns?

23

What do we measure?

24

We measure the energy consumed by the two designs…

Under what context?

- "Real-world" (i.e., non-trivial) systems
- Write a test case that uses a pattern instance in a regular scenario

Which patterns?

- Find patterns in the system
- Implement non-pattern equivalents
- Write test that can run either design solution

What do we measure?

25

We measure the energy consumed by the two designs…

Under what context?

- "Real-world" (i.e., non-trivial) systems
- Write a test case that uses a pattern instance in a regular scenario

Which patterns?

- Find patterns in the system
- Implement non-pattern equivalents
- Write test that can run either design solution

why implementing
the non-pattern

solution and not the
other way around?

What do we measure?

26

We measure the energy consumed by the two designs…

Under what context?

- "Real-world" (i.e., non-trivial) systems
- Write a test case that uses a pattern instance in a regular scenario

Which patterns?

- Find patterns in the system
- Implement non-pattern equivalents
- Write test that can run either design solution

mitigate selection bias

the pattern was the
intended solution all

along

Selecting suitable pattern instances

- Used within the application
(e.g., no API features)

- Reachable
(i.e., easy to test to mitigate measurement bias)

- Performing deterministic tasks
(e.g., no IO functionality)

- Not too complex
(i.e., discard exceptionally large instances, e.g., with 20 or more concrete states/strategies)

27

How to measure energy consumption?

What procedure?

Which (type of) tool?

28

How to measure energy consumption?

One measurement
1. Ensure all non-essential applications are closed;
2. Choose a design at random (pattern or non-pattern);
3. Let the computer rest (e.g., 30 seconds);
4. Start energy measurement tools;
5. Run a test case multiple times to produce to measurable energy

draw (depended on test; between 10 and 100 times);
6. Repeat 3–5 for the second design.

Repeat each measurement 100 times to produce reliable results

29

The energy measurement tools

30

The study
in a nutshell

31

Object-Orientation & Energy

32

Let's check those hypotheses

Template Method

33

Process level Method level

energy
consumption
is even

wasting
energy

State/Strategy

34

Process level Method level

All data points together

35

All data points together

36

How do design patterns impact energy efficiency?

Is a monolithic design worth it?

Can I harvest more performance by avoiding OO features?

37
(keep the study design in mind)

Technical Debt

38

Have you ever written “poor” code to save time?

What is Technical Debt (TD)?

A collection of design and implementation decisions that solve
problems but make future changes more costly or impossible.

A trade-off between the short-term benefits of "cutting corners" in
software development and the long-term sustainability of a software
system.

39

Based on explanation coined by Cunningham on "The WyCash Portfolio Management
System." OOPSLA92 Experience Report. http://c2.com/doc/oopsla92.html

Z. Li, P. Avgeriou, and P. Liang, “A systematic mapping study on technical debt and
management,” Journal of Systems and Software, vol. 101, no. C, pp. 193–220, 2015

https://doi.org/10.1016/j.jss.2014.12.027

http://c2.com/doc/oopsla92.html
https://doi.org/10.1016/j.jss.2014.12.027

The finance of Technical Debt

40

accumulating debt

time

Co
st

 o
f

ch
an

ge

int
ere

st

interest: the
additional
development effort
required to modify
the software (adding
new features or fixing
bugs)
principal: the effort
required to eliminate
inefficiencies in the
current design or
implementation of a
software system

Ar. Ampatzoglou, Ap. Ampatzoglou, A. Chatzigeorgiou, P. Avgeriou The financial
aspect of managing technical debt: A systematic literature review Information and

Software Technology, 64 (Aug. 2015), pp. 52-73 https://doi.org/10.1016/j.infsof.2015.04.001

https://doi.org/10.1016/j.infsof.2015.04.001

How to find symptoms (and debt)?

41
P. Kruchten, R. L. Nord and I. Ozkaya, "Technical Debt: From Metaphor to Theory and

Practice," in IEEE Software, vol. 29, no. 6, pp. 18-21, 2012.
https://doi.org/10.1109/MS.2012.167

visible visibleinvisible

evolution issues: evolvability quality issues: maintainability

new features
additional functionality

defects
low external quality

Architecture (design)
Architecture Smells
Pattern Violations
Structural Complexity

Code
Low Internal Quality
Code Complexity
Code Smells
Coding Style Violations

Other Development Artifacts
Testing and Documentation Issues

https://doi.org/10.1109/MS.2012.167

Technical Debt timeline

42

identification latency
TD can be unintentional

fixing latencydiscussion

knowing what to do
is just the beginning

occurrence
awareness

decision
remediation

Technical Debt management

43

occurrence
awareness

decision
remediation

identification latency fixing latencydiscussion

tipping point

getting value out of debt suffering from debt

TD as asset
TD as liability

TD as a bridge

Team members often understand
the system at different levels
of abstraction
- managers
- product owner
- scrum master
- technical leader
- developers

But TD can serve as a common
language

44
J. Tan, D. Feitosa, P. Avgeriou, "Do practitioners intentionally self-fix Technical Debt

and why?" in ICSME ’21, pp. 251-262, 2021. https://doi.org/10.1109/ICSME52107.2021.00029

https://doi.org/10.1109/ICSME52107.2021.00029

What is next?

45

Emerging topics

Machine learning code

but you hear about already 😁

Infrastructure as code

cloud orchestration

46

Cloud infrastructure

Cloud orchestrators
(e.g., Terraform, Cloudify)

Control deployment
- flexibility to demand
- cloud-agnostic

Infrastructure as code (IaC)

47

variable "service_image" {
 type = string
 description = "Image ID of the service"
 default = "my_proj-0126dac26fa89b32"
}

variable "instance_type" {
 type = string
 description = "Instance for service"
 default = "t3.micro"
}

variable "geographical_zone" {
 type = string
 description = "Zone for deployment"
 default = "eu-nl"
}

48

Takeaway messages

- Energy consumption should be managed at both design and
code levels.

- Object-oriented features do not imply energetic waste; but must
used with caution (the polymorphic mechanism overhead).

- Technical choices with negative energetic impact are inevitable
(technical debt); monitor and manage it!

- Application code is only software (especially in the cloud era);
infrastructure can also be optimized.

49
d.feitosa@rug.nl

mailto:d.feitosa@rug.nl

