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Error-correcting codes

Let Fq be a finite field. We equip (Fq)n with a weight w (and a
distance δ(x , y) = w(x − y)).

Definition (Error-correcting code)

An error-correcting code C of length n and dimension k is a
subspace of (Fq)n (of dimension k).
The minimal distance d of a code C is the smallest weight of the
non-zero vectors in C.

d := min
x∈C\{0}

{w(x)}

A code is given by either :

a generating matrix G ∈ Fk×n
q whose rows form a basis of C.

a parity-check matrix H ∈ F(n−k)×n
q such that

C = {x ∈ (Fq)n|Hx> = 0}
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Hamming matric codes

Definition (Hamming weight)

The hamming weight of a word x = (x1, ..., xn) is the number of
non-zero coordinates

wh(x) = #{i ∈ [1, n] | xi 6= 0}

Definition (Hamming support)

The support of a word x = (x1, ..., xn) ∈ (Fq)n is the set of indexes
of its non-zero coordinates

Supp(x) = {i ∈ [1, n] | xi 6= 0}
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Rank metric codes

In rank metric, we consider Fqm -linear codes (Fqm is a field
extension of Fq of degree m).

Definition (Rank weight)

An element x = (x1, ..., xn) ∈ (Fqm)n can be unfold against an
Fq-basis of Fqm in a matrix

M(x) =

x1,1 . . . xn,1
...

...
x1,m . . . xn,m

 ∈Mm,n(Fq)

The rank weight of x is defined as the rank of this matrix (which
does not depend on the choice of the basis).

wr (x) = Rank M(x) ∈ [0,min(m, n)]
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Example

Let F8 = F23 and let α such that F8 ' F2[α] = Vect(1, α, α2).

Example

x = (1, α, α2 + 1, α + 1) ∈ F4
8

M(x) =

1 0 1 1
0 1 0 1
0 0 1 0



wr (x) = 3
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Support in rank metric

Definition (Rank support)

The support of a word x = (x1, ..., xn) ∈ (Fqm)n is the subspace of
Fqm generated by its coordinates :

Supp(x) = 〈x1, ..., xn〉Fq ⊂ Fqm

Hamming metric : wh(x) = #(Supp(x))
Rank metric : wr (x) = dim(Supp(x))
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Difficult problems in code-based cryptography

Definition (Syndrome Decoding SD(n, k ,w))

Given a random parity check matrix H ∈Mn−k,n(Fq) and a
syndrome s = He for e an error of Hamming weight wh(e) = w ,
find e.

Definition (Rank Syndrome Decoding RSD(m, n, k ,w))

Given a random parity check matrix H ∈Mn−k,n(Fqm) and a
syndrome s = He for e an error of rank weight wr (e) = w , find e.
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Structuration

To reduce the memory footprint of the public key, we add structure
to the codes.

Definition (Double circulant code)

A double circulant code is a code C[2n, n] which admits a double
circulating matrix as a generating matrix :

G =


a0 a1 . . . an−1 b0 b1 . . . bn−1

an−1 a0
. . . an−2 bn−1 b0

. . . bn−2
...

. . .
. . .

...
...

. . .
. . .

...
a1 a2 . . . a0 b1 b2 . . . b0


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Structuration

Lattices =⇒ Module or Ring structure

Hamming codes =⇒ Quasi-cyclic structure

Rank codes =⇒ Ideal structure
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Difficult problems in a structured context

Definition (Ideal Rank Syndrome Decoding IRSD(m, n, k,w))

Given an ideal random parity check matrix H ∈Mn−k,n(Fq) and a
syndrome s = He for e an error of rank weight w(e) = w , find e.

Problematic with the structure :

Quantum attacks [1]

Potential weaknesses
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To mask or not to mask

No masking With masking

Key sk = e sk = H
pk = (H , y) pk = H ′

where y = He

where H ′ is a masked version
of H (usually H ′ = MHP with
M a random invertible matrix

and P an isometry matrix)

(R)SD (R)SD and disting. problems
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Variations in code-based crypto
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Panorama of code-based cryptography

Hamming metric Rank metric
Structured Unstructured Structured Unstructured

No
masking

HQC RQC

With
masking

BIKE
Classic

McEliece
ROLLO

LEDAcrypt
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Panorama with recent results

Hamming metric Rank metric
Structured Unstructured Structured Unstructured

No
masking

HQC

RQC

Multi-RQC [2] Multi-UR [2]

With
masking

BIKE
Classic

McEliece

ROLLO

LEDAcrypt this work this work
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Low Rank Parity Check Codes

Definition (Homogenous matrix)

An homogeneous matrix of weight d is a full-rank matrix
H = (hij)16i6k

16j6n
∈ Fk×n

qm whose coordinates generate an Fq-subspace

of dimension d :

dim(〈hij〉Fq) = d

Definition (LRPC codes)

An LRPC code of dual weight d is a code C which admits an
homogeneous matrix of small weight d as a parity-check matrix.
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LRPC decoding

Problem (LRPC decoding)

Let E = 〈e1, ..., er 〉 an (unknown) subspace of Fqm of dimension r
and F = 〈f1, ..., fd〉 a (given) subspace of Fqm of dimension d.
Given an LRPC matrix H ∈ F n−k×n and s = He where e ∈ En,
find E.

Proposition ([3])

There exists a polynomial algorithm RSR which, on input H and
s = He, returns E .
The Decoding Failure Rate of RSR is bounded from above by :

qrd−(n−k)−1 + q−(d−1)(m−rd−r)
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Application of LRPC to cryptography

Definition (Key generation)

Let U = (A|B) an ideal LRPC matrix of weight d and size k × 2k .{
pk = H = (I |A−1B)
sk = U

Definition (Encaps)

Choose an error support E of dimension r . Pick a random error e in
En and send ciphertext c = He. The shared secret is Hash(E ).

Definition (Decaps)

Compute s = Ac = Ue and use RSR algorithm to find E .
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ROLLO-I parameters

Instance pk size ct size Security DFR

ROLLO-I-128 696 696 128 2−28

ROLLO-I-192 958 958 192 2−34

ROLLO-I-256 1371 1371 256 2−33

Figure: Parameters for ROLLO-I. Sizes are in bytes and security is
expressed in bits.
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ROLLO-II parameters

Instance pk size ct size Security DFR

ROLLO-II-128 1941 2089 128 2−134

ROLLO-II-192 2341 2469 192 2−130

ROLLO-II-256 2559 2687 256 2−136

Figure: Parameters for ROLLO-II. Sizes are in bytes and security is
expressed in bits.
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Idea

Definition (Key generation)

Let U = (A|B) an LRPC matrix of weight d .{
pk = H = (I |A−1B)
sk = U

Definition (Encaps)

Choose an error support E of dimension r . Pick ` random errors e i

in En for 1 ≤ i ≤ ` and send ciphertexts c i = He i . The shared
secret is Hash(E ).

Definition (Decaps)

Compute s i = Ac i = Ue i and use RSR algorithm with multiple
syndromes to find E .
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New failure probability

The LRPC decoding algorithm has now several syndromes 1 as inputs

s i = Ue i

Proposition

The Decoding Failure Rate of algorithm RSR with multiple
syndromes is bounded from above by :

(n − k)qrd−(n−k)` + q−(d−1)(m−rd−r)

1. can also be seen as decoding an interleaved LRPC code [4]
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Parameters with an ideal structure

Instance pk size ct size Security DFR

ROLLO-II-128 1, 941 2, 089 128 2−134

ROLLO-II-192 2, 341 2, 469 192 2−130

ROLLO-II-256 2, 559 2, 687 256 2−136

Figure: Parameters for ROLLO-II. Sizes are in bytes and security is
expressed in bits.

⇓

Instance pk size ct size Security DFR

ILRPC-MS-128 488 1, 951 128 2−126

ILRPC-MS-192 846 3, 384 192 2−198

Figure: Parameters for ILRPC-MS. Sizes are in bytes and security is
expressed in bits.
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Parameters without an ideal structure

Instance pk size ct size Security DFR

LRPC-MS-128 4, 083 3, 122 128 2−126

LRPC-MS-192 7, 663 5, 474 192 2−190

Figure: Parameters for LRPC-MS. Sizes are in bytes and security is
expressed in bits.
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Comparison to other KEMs

Instance 128 bits 192 bits
LRPC-MS 7,205 12,445
Loong.CCAKEM-III [5] 18,522 N/A
FrodoKEM 19,336 31,376
Loidreau cryptosystem [6] 36,300 N/A
Classic McEliece 261,248 524,348

Figure: Comparison of sizes of unstructured post-quantum KEMs. The
sizes represent the sum of public key and ciphertext expressed in bytes.

Instance 128 bits 192 bits
ILRPC-MS 2,439 4,230
BIKE 3,113 6,197
ROLLO-II 4,030 4,810
HQC 6,730 13,548

Figure: Comparison of sizes of structured code-based KEMs. The sizes
represent the sum of public key and ciphertext expressed in bytes.
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Specificity to rank metric

Sending errors with the same support is less efficient in
Hamming metric

Additional information given by multiple syndromes can be
specifically leveraged by LRPC decoding algorithm
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IND-CPA proof

Definition (LRPC indistinguishability)

Given a matrix H ∈ F(n−k)×k
qm , distinguish whether the code C with

the parity-check matrix (I n−k |H) is a random code or an LRPC
code of weight d .

Definition (Rank Support Learning RSL(m, n, k,w , `) [7])

Given a random parity check matrix H ∈Mn−k,n(Fq) and `
syndromes s i = He i for e i errors of same support E a subspace of
dimension w , find E .
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Conclusion

New rank metric based cryptosystem with competitive
parameters and no ideal structure

Probabilistic result on the support of the product of two
random matrices

Additional idea to make m down by 10 %

The approach can generalize to RQC but is less efficient in that
case [2]
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Thank you for your attention !
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