Sponge-based Authenticated Encryption: Security against Quantum Attackers

Christian Janson and Patrick Struck

PQCrypto 2022

Motivation

Asymmetric Cryptography

- Shor's algorithm breaks many underlying hardness assumptions
 - Post-quantum cryptography (lattices, codes, multivariate, hash, isogenies)
- Grover's algorithm provides speed-up for finding collisions
 - Double the output length of hash functions

- Grover's algorithm provides speed-up for brute-force search of the key space
 - Double the key length
- [BSS22] shows that better attacks are possible
 - Analyzing security is important

Sponge-based Authenticated Encryption

- SLAE: Sponge-based leakage-resilient authenticated encryption scheme [DJS19]
 - Designed to resist side-channel leakage
 - Design is closely related to/inspired by ISAP [DEMMU17]
 - Entirely based on T-Sponges, i.e., ρ is a random function

The FGHF' Construction

Construction follows the Encrypt-then-MAC paradigm

Pseudorandom generator

Vector hash function

Fixed-input-length function

Sponge-based Encryption SLENC

Sponge-based MAC SLMAC

Security of SLAE against Quantum Attackers

Post-Quantum/Q1 Security

- Offline oracles: transformation ρ
- Online oracles: challenger provided oracles

Quantum/Q2 Security

- Only consider SLENC
- Several security notions
 - INDqCPA [BZ13]
 - qINDqCPA [GHS16,MS16]

Post-Quantum/Q1 Security of SLAE

- Leakage-resilient security of SLAE reduces to the leakage-resilient security of the underlying components
- Post-quantum security of SLAE also reduces to the post-quantum security of the underlying components

Post-Quantum/Q1 Security

- Post-quantum security of the pseudorandom function:
 - O2H Lemma

$$Adv^{PRF}(A) \le \frac{q_F^2 + q_F}{2^{n+1}} + 2q \sqrt{\frac{2^{\nu}}{2^n}}$$

- Post-quantum security of the pseudorandom generator:
 - O2H Lemma

$$Adv^{PRG}(A) \le \frac{2lq}{\sqrt{2^c}}$$

- Post-quantum security of the hash function:
 - [CGHSU18]

$$Adv^{CR}(A) \leq \sqrt{\epsilon_1} + l\epsilon_2 + \epsilon_3$$

where
$$\epsilon_1 \leq (q+1)^2 2^{-c+4}$$
, $\epsilon_2 \leq q^3 \left(\frac{\delta' + 324}{2^{c-1}}\right) + 7\delta \sqrt{\frac{3(q+4)^3}{2^c}}$, $\epsilon_3 \leq q^3 \left(\frac{\delta' + 324}{2^{w+1}}\right) + 7\delta \sqrt{\frac{3(q+4)^3}{2^{w+2}}}$

Quantum/Q2 Security

- Several notions [BZ13,GHS16,MS16]
- All consider the randomness (the nonce) to be classical
 - Challenger measures the nonce and rejects a query if a nonce repeats
 - For classical nonces this is equivalent to nonce-respecting adversaries

INDqCPA Security

- Boneh and Zhandry [BZ13]
- Encryption oracles
 - Quantum access to the CPA oracle
 - Classical access to the IND oracle

INDqCPA Security of SLENC

INDqCPA Security of SLENC

- SLENC is a stream cipher
 - $Enc(K, N, M) = f(K, N) \oplus M$
- [ATTU16] shows that INDCPA (Q1) security implies INDqCPA (Q2) security for stream ciphers
 - Keystream only depends on the key and the nonce, hence it is classical

qINDqCPA Security of SLENC

• Two security notions

qINDqCPA Security of SLENC

- SLENC is insecure due to being a stream cipher
 - Generic attack [GHS16]
 - "Quasi-length-preserving" encryption

• If
$$b = 0$$
: $|C\rangle = |+\rangle$

• If
$$b = 1$$
: $|C\rangle = |R\rangle$, for some random R

qINDqCPA Security of SLENC

- SLENC is insecure due to being a stream cipher
 - Attack given in [CEV20]
- If b = 0 (no permutation applied):
 - Hadamard+Measurement yields x and y s.t. par(x) = par(y) with probability 1
- If b = 1 (permutation applied):
 - Hadamard+Measurement yields x and y s.t. par(x) = par(y) with probability $^{1}/_{2}$

Summary/Open Problems

- Security analysis of SLAE against quantum attackers
 - Post-quantum/Q1 security
 - Quantum/Q2 security
- Extend the results to ISAP
 - P-Sponge instead of a T-Sponge
- Post-quantum security + side-channel leakage

Thank You!

patrick.struck@ur.de ePrint 2022/139