Homework 8-9 - CAO 2024

7. Douglas Rachford primal-dual Symmetry Consider the problem

$$\min_{x} \{h(x) + g(x)\}\tag{1}$$

and its Fenchel dual

$$\max_{u} \{-h^*(u) - g^*(-u)\}.$$
 (2)

Recall that the Douglas Rachford operator $F_{DR}(w) = \frac{1}{2}(w + R_h(R_g(w)))$ where the (non-expansive) reflection operator R_h is defined by $R_h(x) = 2 \operatorname{prox}_h(x) - x$. Assume $\mathcal{F}_{F_{DR}}$ is non-empty. Let $\overline{X} := \operatorname{argmin}_x \{h(x) + g(x)\}$ and $\overline{U} := \operatorname{argmax}_u \{-h^*(u) - g^*(-u)\}$.

(a) Show that

$$\overline{X} = \{ \operatorname{prox}_h(\bar{w}) : \bar{w} \in \mathcal{F}_{F_{DR}} \} \text{ and } \overline{U} = \{ \operatorname{prox}_{h^*}(\bar{w}) : \bar{w} \in \mathcal{F}_{F_{DR}} \}$$

(b) Show that

$$\mathcal{F}_{F_{DR}} = \overline{X} + \overline{U}.$$

- (c) Show that $R_f(x) + R_{f^*}(x) = 0$ for any $f \in \Gamma_0$.
- (d) Let F_{DR}^* the D-R operator applied to the dual problem. Show that $F_{DR}^*(w) = F_{DR}(w)$ for all w.
- 8. Tightness of the relation between ρ_F and K_F . Let $F : \mathbb{R}^n \to \mathbb{R}^n$ be a $\frac{1}{2}$ -averaged operator with $\mathcal{F}_F \neq \emptyset$. Define $\tilde{\rho}_F \in [0, 1]$ and $\tilde{K}_F \in \mathbb{R} \cup \{\infty\}$ as

$$\tilde{\rho}_F = \sup_x \frac{\operatorname{dist}(F(x), \mathcal{F}_F)}{\operatorname{dist}(x, \mathcal{F}_F)} \text{ and } \tilde{K}_F = \sup_x \frac{\operatorname{dist}(x, \{x : F(x) = x\})}{\|F(x) - x\|}$$

the tightest constants such that linear convergence, respectively the error-bound condition hold.

(a) Proof corrollary 1 (Sec 5 from the lecture notes) in this case, that is prove that

$$1 - \frac{1}{\tilde{K}_F} \le \tilde{\rho}_F \le 1 - \frac{1}{2\tilde{K}_F^2}.$$
 (3)

- (b) Consider the gradient descend operator $F_G(x) = x \eta \nabla f(x)$. Compute \tilde{K}_{F_G} and $\tilde{\rho}_{F_G}$ when $f(x) = \frac{1}{2} ||x||^2$. Which side of (3) is tight?
- (c) Let $\operatorname{rot}_{\theta} : \mathbb{R}^2 \to \mathbb{R}^2$ be the rotation by the angle θ . Assume θ is fixed. Let $F_{\theta}(x) = \frac{1}{2}(x + \operatorname{rot}_{\theta}(x))$ be the corresponding averaged operator. Compute $\tilde{K}_{F_{\theta}}$ and $\tilde{\rho}_{F_{\theta}}$. Which side of (3) is tight?
- (d) Now consider $F(x) = \frac{1}{2}(x + \operatorname{rot}_{||x||}(x))$. Compute \tilde{K}_F and $\tilde{\rho}_F$. Which side of (3) is tight?

9. Douglas Rachford for quadratic optimization. Let *m* < *n*. Let *H* be an *n*×*n* positive definite matrix. Let *A* ∈ ℝ^{m×n} be a matrix of rank *m* (i.e. *A* has independent rows). And let *b* ∈ ℝ^m. We are interested on using Douglas Rachford to solve the quadratic optimization problem:

$$\min_{x:Ax \le b} \frac{1}{2} x^T H x. \tag{QP}$$

Let $X := \{x : Ax \leq b\} \neq \emptyset$. Notice that problem (QP) can be written as $\min_x g(x) + \delta_X$, where $g : \mathbb{R}^n \to \mathbb{R}$ is defined by $g(x) = \frac{1}{2}x^T Hx$.

In the next problems, express your solution (in simplified form) in terms of H, A and b.

- (a) Compute prox_g and $\operatorname{prox}_{\delta_X}$.
- (b) Write down the Douglas Rachford operator $F_{DR} : \mathbb{R}^n \to \mathbb{R}^n$.
- (c) Find the fixed-points of F_{DR}
- (d) When is F_{DR} averaged? (This implies the Douglas Rachford method converges with rate $O(1/\sqrt{k})$.)
- (e) Give some (natural) condition(s) under which F_{DR} satisfies the error bound condition. This implies linear convergence rate for the Douglas Rachford. Give (a bound on) the rate of convergence.
- 10. Another reflection based algorithm This exercise uses the same notation as exercise 7. Let $R_{hq} : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n \times \mathbb{R}^n$ be defined by $R_{hq}(x, y) = (R_h(y), R_q(x))$.

(a) Show that R is nonexpansive.

Let $F_R(x,y) = \frac{1}{2}((x,y) + R_{hq}(x,y))$. We have then that F_R is averaged.

- (b) What is the relation between \mathcal{F}_{F_R} and $\operatorname{argmin}_x\{h(x) + g(x)\}$?
- (c) Give some (natural) condition(s) under which F_R satisfies the error bound condition. This implies linear convergence when using FPI on F, give (a bound on) the rate of convergence.