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Introduction

• Two-dimensional CFT has been around for a long time. In
its modern form, it dates to the classic work of
[Belavin–Polyakov-Zamolodchikov 1984].

• The motivations for the subject are well-known (string
worldsheet, critical phenomena, duality to AdS3 gravity...).

• There are broadly two branches of the subject today:
rational and irrational CFT.

• The former is generally considered well-understood, while
the latter is still quite mysterious – one attempts to bound
its properties using bootstrap arguments (cf. talk of
Nathan Benjamin in the Workshop).

• Without disputing this distinction, today I will present
some perspectives on rational CFT (RCFT) that are
perhaps new, and may shed a different light on it.
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• The partition function of any 2d CFT is:

Z(τ, τ̄) = tr qL0− c
24 q̄L̄0− c

24 , q = e2πiτ

• In an RCFT the partition function takes the form:

Z(τ, τ̄) =
n−1∑
i=0

|χi(τ)|2

where χi(τ) are a set of n generalised characters

χi(q) = tri q
L0− c

24

Here, tri is the trace over holomorphic descendants of the
ith primary under the full chiral algebra.
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• The partition function of any CFT is modular invariant:

Z(γτ, γτ̄) = Z(τ, τ̄), γ ∈ SL(2,Z)

• In RCFT this is true if and only if the characters are
vector-valued modular functions (VVMF):

χi (γτ) =
n−1∑
j=0

Mij(γ)χj(τ), γ ∈ SL(2,Z)

with M †M = 1.
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• Characters have a q-expansion:

χi(q) = q−
c
24

+hi(ai,0 + ai,1q + ai,2q
2 + · · · )

where each ain is a non-negative integer (degeneracy of
states in the i’th module).

• They are holomorphic in the interior of moduli space but
can diverge on the boundary q → 0.

• There exist continuous families of VVMF’s for which the
ai,m are not positive, or integral, or even rational.

• A necessary (but not sufficient) condition for VVMF’s to
describe the characters of a CFT is:

ai,m = non-negative integer ∀ i,m : “admissible character”
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• Classifying RCFT requires two steps.

I. Classify admissible characters.

II. Further classify those which correspond to actual CFT.

• There has been some kind of folklore that most often,
I ≡ II, i.e. each set of admissible characters describes a
unique CFT.

• This is wrong in both ways:

• Most admissible characters do not describe any CFT,

• Some admissible characters describe multiple CFT.

• These facts are exemplified in “meromorphic” CFT’s, but
those are often thought of as outliers in the space of RCFT.

• I will argue that these statements are true more generally,
and also that meromorphic CFT do not outlie at all.
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• Classifying admissible characters is impractical in general,
so we must impose some restrictions (on the chiral algebra,
or c, or the number n of characters, etc).

• Then one can try to classify CFT within the same
restrictions.

• Here are some known complete classifications of CFT with
restrictions:
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• For c < 1, all RCFT’s are classified as Virasoro minimal
models [BPZ 1984, Cappelli-Itzykson-Zuber 1987].

• All RCFT’s whose chiral algebra is SU(2)k, SU(3)k or
SU(N)1 are classified [Knizhnik-Zamolochikov 1984, CIZ 1987,

Itzykson 1988, deGiovanni 1990, Gannon 1992].

• At c = 1 it is conjectured that all theories are given by a
single compact free boson at rational values of R2 [Ginsparg

1988, Dijkgraaf-Verlinde-Verlinde 1988].

• For c = 8, 16, 24, all meromorphic RCFT’s (those having
one primary – the identity) are classified [Goddard-Olive 1984,

Schellekens 1992].

• In particular, Schellekens proposed that there are 71
meromorphic CFT with c = 24. His results have been
rigorously confirmed in the mathematics literature
[Møller-Scheithauer 2021].
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• In this talk I will present the complete classification of
unitary RCFT with two primaries {1,Φ} with Φ real, and
c < 25 [In collaboration with Brandon Rayhaun, to appear].

• There are no restrictions on the chiral algebra or anything
else.

• The result is a set of 121 theories.
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Theories from MLDE and cosets

• The classification of two-character RCFT was initiated in
[Mathur-Mukhi-Sen 1988] where it was proposed to use
Modular Linear Differential Equations (MLDE) to classify
admissible characters.

• The most general such equation is:(
D2
τ + φ2(τ)Dτ + φ4(τ)

)
χ(τ) = 0

where Dτ is a (covariant) derivative with respect to τ .

• This is holomorphic and modular invariant if φ2(τ), φ4(τ)
are holomorphic and modular of weight 2, 4 respectively.

• The two independent solutions of an SL(2,Z) invariant
MLDE form a pair of VVMF’s χ0(τ), χ1(τ) under SL(2,Z),
and vice versa.
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• The coefficient functions φ2(τ), φ4(τ) have free parameters
on which the solutions χ0, χ1 will depend.

• They will be admissible only when the parameters take
specific rational values.

• The holomorphic modular bootstrap of [Mathur-Mukhi-Sen

1988] is a programme to scan the parameter space and look
for values that lead to admissible characters.

• All our papers that year were greatly inspired by the works
of [Dijkgraaf-Verlinde-Verlinde 1988, Verlinde 1988].
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• Although the solutions χi are required to be holomorphic,
the coefficient functions φ2, φ4 are generically meromorphic
in the interior of moduli space, with `

6 poles, ` ∈ N ∪ 0.

• Each value of `, called the Wronskian index, leads to an
equation with a different set of free parameters.

• With two characters it can be shown that ` is even:
` = 0, 2, 4, · · · [Naculich 1989].

• For any given ` there is a finite basis of functions of the
Eisenstein series E4, E6 from which φ2, φ4 are built.

• Thus for any fixed `, the differential equation has finitely
many parameters.
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• For ` = 0 we have φ2 = 0 and φ4 = µE4, where E4 is an
Eisenstein series and µ is a real parameter.

• This leads to the “MMS equation”:(
D2
τ + µE4(τ)

)
χ = 0

• We solved this equation and found a finite set of admissible
characters. Remarkably all of them could be associated
with a CFT based on compact simple Kac-Moody algebras
KMr,k or generalisations thereof:

A0, A1,1, A2,1, G2,1, D4,1, F4,1, E6,1, E7,1, E7.5,1, E8,1

• The analogous series for finite-dimensional Lie Algebras
was noted by [Cvitanović 2008, Deligne 1996, Landsberg-Manivel

2006]. This coincidence has not yet been explained.

• The red ones in the above list either have negative fusion
rules [Kawasetsu-IVOA] or more/less than two primaries –
irrelevant for this talk.
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was noted by [Cvitanović 2008, Deligne 1996, Landsberg-Manivel

2006]. This coincidence has not yet been explained.

• The red ones in the above list either have negative fusion
rules [Kawasetsu-IVOA] or more/less than two primaries –
irrelevant for this talk.

12 / 34



• For ` = 0 we have φ2 = 0 and φ4 = µE4, where E4 is an
Eisenstein series and µ is a real parameter.

• This leads to the “MMS equation”:(
D2
τ + µE4(τ)

)
χ = 0

• We solved this equation and found a finite set of admissible
characters. Remarkably all of them could be associated
with a CFT based on compact simple Kac-Moody algebras
KMr,k or generalisations thereof:

A0, A1,1, A2,1, G2,1, D4,1, F4,1, E6,1, E7,1, E7.5,1, E8,1

• The analogous series for finite-dimensional Lie Algebras
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• Thus the solutions with exactly two primaries are:
A1,1, G2,1, F4,1, E7,1 with central charges 1, 14

5 ,
26
5 , 7. This is

a complete classification for ` = 0.

• They lie in the range 0 < c < 8, which will be significant.

• Similarly the ` = 2 MLDE was solved [Naculich 1989,

Hampapura-Mukhi 2016] and there are finitely many
admissible characters in this case.

• In this case, identification with CFT is more difficult. It
was carried out in [Gaberdiel-Hampapura-Mukhi 2016] using a
variant of the coset construction of RCFT’s
[Goddard-Kent-Olive 1984,1985].

• In this variant one considers cosets of meromorphic CFT
M by affine theories KM:

C =
M
KM
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• A meromorphic CFT M has a partition function of the
form:

Z(τ, τ̄) = |χ(τ)|2

For this to be modular-invariant, χ(τ) has to be modular
invariant upto a phase.

• This is only possible if χ is a function of the Klein
j-invariant:

j(q) = q−1 + 744 + 196884q + 21493760q2 + · · ·

• Admissible meromorphic characters exist only at c = 8n for
any positive integer n. We will be interested in the c = 24
case.
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• At c = 24 the most general admissible character is:

χ(τ) = j(τ) +N

where N is an integer ≥ −744.

• However there are just 71 CFT’s [Schellekens 1992].

• These include free bosons on 24 even unimodular lattices
and a finite number of generalisations involving orbifolding.

• With one exception (the Monster CFT), these theories
correspond to special modular invariant combinations of
Kac-Moody characters for non-simple Lie algebras.
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• As an example, theory #34 in Schellekens’ list has the KM
algebra D7,3A3,1G2,1.

• As an affine theory this has around 200 primaries (and
somewhat fewer characters).

• But there is a single modular invariant linear combination
of the characters that defines the meromorphic theory.

• We can now take the quotient:

M#34

G2,1

to get a two-character theory with algebra D7,3A3,1 and
c = 24− 14

5 = 106
5 .

• These quotients have Wronskian index ` = 2. There are 13
such quotient theories (found by deleting one factor of the
KM algebra), all with 16 < c < 24. They can be shown to
exhaust all two-character CFT with ` = 2.

16 / 34



• As an example, theory #34 in Schellekens’ list has the KM
algebra D7,3A3,1G2,1.

• As an affine theory this has around 200 primaries (and
somewhat fewer characters).

• But there is a single modular invariant linear combination
of the characters that defines the meromorphic theory.

• We can now take the quotient:

M#34

G2,1

to get a two-character theory with algebra D7,3A3,1 and
c = 24− 14

5 = 106
5 .

• These quotients have Wronskian index ` = 2. There are 13
such quotient theories (found by deleting one factor of the
KM algebra), all with 16 < c < 24. They can be shown to
exhaust all two-character CFT with ` = 2.

16 / 34



• As an example, theory #34 in Schellekens’ list has the KM
algebra D7,3A3,1G2,1.

• As an affine theory this has around 200 primaries (and
somewhat fewer characters).

• But there is a single modular invariant linear combination
of the characters that defines the meromorphic theory.

• We can now take the quotient:

M#34

G2,1

to get a two-character theory with algebra D7,3A3,1 and
c = 24− 14

5 = 106
5 .

• These quotients have Wronskian index ` = 2. There are 13
such quotient theories (found by deleting one factor of the
KM algebra), all with 16 < c < 24. They can be shown to
exhaust all two-character CFT with ` = 2.

16 / 34



• As an example, theory #34 in Schellekens’ list has the KM
algebra D7,3A3,1G2,1.

• As an affine theory this has around 200 primaries (and
somewhat fewer characters).

• But there is a single modular invariant linear combination
of the characters that defines the meromorphic theory.

• We can now take the quotient:

M#34

G2,1

to get a two-character theory with algebra D7,3A3,1 and
c = 24− 14

5 = 106
5 .

• These quotients have Wronskian index ` = 2. There are 13
such quotient theories (found by deleting one factor of the
KM algebra), all with 16 < c < 24. They can be shown to
exhaust all two-character CFT with ` = 2.

16 / 34



• As an example, theory #34 in Schellekens’ list has the KM
algebra D7,3A3,1G2,1.

• As an affine theory this has around 200 primaries (and
somewhat fewer characters).

• But there is a single modular invariant linear combination
of the characters that defines the meromorphic theory.

• We can now take the quotient:

M#34

G2,1

to get a two-character theory with algebra D7,3A3,1 and
c = 24− 14

5 = 106
5 .

• These quotients have Wronskian index ` = 2. There are 13
such quotient theories (found by deleting one factor of the
KM algebra), all with 16 < c < 24. They can be shown to
exhaust all two-character CFT with ` = 2.

16 / 34



• Next we notice that tensoring a two-character theory by
the meromorphic theory E8,1 augments ` by 4.

• Thus we easily find four ` = 4 theories with two characters:

E8,1A1,1, E8,1G2,1, E8,1F4,1, E8,1E7,1

and central charges 8 < c < 16.

• Two more theories are obtained as cosets:

D+
16,1

A1,1
,

D+
16,1

G2,1
.

• As Kac-Moody algebras, the commutants are respectively
A1,1D14,1 and B12,1.
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• But there is a puzzle. The central charge of A1,1D14,1 is
15 = 16− 1. However the central charge of B12,1 is
25
2 6= 16− 14

5 leaving a deficit of 7
10 .

• Hence the chiral algebra of
D+

16,1

G2,1
is actually B12,1L 7

10
where

the latter factor is the tricritical Ising model. It is a
2-character extension of the product theory (hence is not
itself a tensor product theory).

• We learn an important lesson: there are 2-character
extensions of direct sums of both Kac-Moody and Virasoro
modules. Many of these appear in our classification.

• Thus we have found 6 two-primary theories with ` = 4.
From MLDE one finds three more admissible characters,
but they have c > 25 so we can ignore them.
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Quasi-characters

• We classified all two-primary CFT with Wronskian index
` = 0, 2, 4 and c < 25. MLDE’s were essential in providing
the admissible characters.

• However for ` ≥ 6 one cannot implement the bootstrap via
MLDE’s – they have too many parameters.

• A complete classification of all admissible characters with
` ≥ 6 was found by a different method in [Chandra-Mukhi

2018], using works of mathematicians [Kaneko, Zagier,

Kunitomo, Sakai 1998-2013].

• The first result is that all admissible characters with
` = 6N are linear combinations of solutions of the original
` = 0 MMS equation, having integral but not always
positive coefficients.

• We called these quasi-characters. Let’s look at an example:
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• A1 series of quasi-characters with ` = 0:

c = 6n+ 1, h = 2n+1
4 , n ∈ Z

• For n = 0, 1 we get the (admissible) characters of A1,1, E7,1.
In the former case the identity character is:

χ0 = q−
1
24 (1 + 3q + 4q2 + 7q3 + 13q4 + · · · )

• But for all n 6= 0, 1 one gets quasi-characters. For example,
for n = 4 the identity character is:

χ0 = q−
25
24 (1−245q+142640q2 +18615395q3 +837384535q4 + · · · )

and all higher coefficients are positive integers.

• Quasi-characters cannot directly describe a CFT: a
degeneracy of −245 is not physically sensible.

20 / 34



• A1 series of quasi-characters with ` = 0:

c = 6n+ 1, h = 2n+1
4 , n ∈ Z

• For n = 0, 1 we get the (admissible) characters of A1,1, E7,1.
In the former case the identity character is:

χ0 = q−
1
24 (1 + 3q + 4q2 + 7q3 + 13q4 + · · · )

• But for all n 6= 0, 1 one gets quasi-characters. For example,
for n = 4 the identity character is:

χ0 = q−
25
24 (1−245q+142640q2 +18615395q3 +837384535q4 + · · · )

and all higher coefficients are positive integers.

• Quasi-characters cannot directly describe a CFT: a
degeneracy of −245 is not physically sensible.

20 / 34



• A1 series of quasi-characters with ` = 0:

c = 6n+ 1, h = 2n+1
4 , n ∈ Z

• For n = 0, 1 we get the (admissible) characters of A1,1, E7,1.
In the former case the identity character is:

χ0 = q−
1
24 (1 + 3q + 4q2 + 7q3 + 13q4 + · · · )

• But for all n 6= 0, 1 one gets quasi-characters. For example,
for n = 4 the identity character is:

χ0 = q−
25
24 (1−245q+142640q2 +18615395q3 +837384535q4 + · · · )

and all higher coefficients are positive integers.

• Quasi-characters cannot directly describe a CFT: a
degeneracy of −245 is not physically sensible.

20 / 34



• A1 series of quasi-characters with ` = 0:

c = 6n+ 1, h = 2n+1
4 , n ∈ Z

• For n = 0, 1 we get the (admissible) characters of A1,1, E7,1.
In the former case the identity character is:

χ0 = q−
1
24 (1 + 3q + 4q2 + 7q3 + 13q4 + · · · )

• But for all n 6= 0, 1 one gets quasi-characters. For example,
for n = 4 the identity character is:

χ0 = q−
25
24 (1−245q+142640q2 +18615395q3 +837384535q4 + · · · )

and all higher coefficients are positive integers.

• Quasi-characters cannot directly describe a CFT: a
degeneracy of −245 is not physically sensible.

20 / 34



• Now the modular transformations of the quasi-characters
are known, and they are periodic under n→ n+ 4
(c→ c+ 24).

• So we can add the n = 0 and n = 4 quasi-characters and
still get a VVMF:

χi = Nχn=0
i + χn=4

i

= q−
25
24 (1 + (N − 245)q + (3N + 142640)q2 + · · · )

• The sum is an admissible character for all N ≥ 245. It has
(c, h) = (25, 5

4). From the Riemann-Roch theorem on the
Wronskian we have:

` =
c

2
− 6h+ 1 = 6
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• If we add more quasi-characters, we generate all admissible
characters for all ` = 6N .

• One can similarly find quasi-characters with Wronskian
index = 2, 4. Their linear combinations give, respectively,
the admissible characters for ` = 6N + 2, 6N + 4.

• In this way, all admissible two-characters sets are
generated.

• For three or more characters there are only partial results
[Mukhi-Poddar-Singh 2020].
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• For ` = 0, the two relevant series of quasi-characters for us
are:

c = 6n+ 1, c = 2(6n+1)
5 , n 6= 4 mod 5

• The first series contains A1,1, E7,1 with c = 1, 7 while the
second contains G2,1, F4,1 with c = 14

5 ,
26
5 . The rest are

quasi-characters.

• Similarly for ` = 2 the relevant series are:

c = 6n− 1, c = 2(6n−1)
5 , n 6= 1 mod 5

The first series contains c = 24 cosets by A1,1, E7,1, with
c = 23, 17, while the second contains c = 24 cosets by
G2,1, F4,1 with c = 106

5 , 94
5 . The rest are quasi-characters.

• Finally, quasi-characters for ` = 4 are E8,1 times
quasi-characters for ` = 0.
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The complete classification

• Our present task is to classify all unitary two-primary
RCFT with c < 25.

• We previously quoted a relation arising from the
Riemann-Roch theorem:

` =
c

2
− 6h+ 1

• For a unitary theory with positive c, h this implies that:

` <
c

2
+ 1

so for c < 25 we only need to study admissible characters
with ` ≤ 12.

• Using quasi-characters, one finds that at ` = 6, 10, 12 there
are no admissible characters with c < 25. That leaves
` = 0, 2, 4, 8.
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• We have already classified ` = 0, 2, 4 so we now turn to
` = 8.

• Given any admissible character, we know its modular S
and T matrices.

• From these, one can derive the would-be fusion rules using
the Verlinde formula:

Nijk =
∑
m=0,1

SimSjmSkm
S0m

• As first highlighted in [MMS 1988], all admissible characters
do not lead to consistent fusion rules. For example one can
find some for which Nijk is a negative integer.
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• Exchanging the characters and re-identifying the exponents
as: α0 = − c

24 , α1 = − c
24 + h can be seen to restore

positivity of Nijk.

• However this makes h negative if it was previously positive,
and thereby renders the theory non-unitary.

• In this way one rules out many of the admissible characters
– they cannot correspond to CFT.
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• After imposing consistency of fusion rules, we find the
quasi-characters have a total of 12 allowed SL(2,Z)
representations. These correspond to:

` = 0 : A1,1, E7,1, G2,1, F4,1

` = 2 : cosets of c = 24 by A1,1, E7,1, G2,1, F4,1

` = 4 : tensors of E8,1 with A1,1, E7,1, G2,1, F4,1

• We are looking for theories at ` = 8. These have the same
transformations as the ones at ` = 2.

• It follows that every two-primary CFT with ` = 8 is a coset
of a meromorphic theory by one of A1,1, G2,1, F4,1, E7,1.

• The central charges resulting from such cosets are:

17, 94
5 ,

106
5 , 23
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• It thus only remains to compute all possible embeddings.
We already covered the “trivial” ones where a factor in the
numerator is deleted and we get ` = 2.

• Now we must classify all non-trivial embeddings, which
indeed give ` = 8.

• This is a rather complex exercise involving Dynkin and
embedding indices, so I will skip the details.

• We find multiple theories for each of the above values of c,
for a total of 98 theories.
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• In total we find 121 CFT’s with two primaries and c < 25,
and 100 of these are new. Some features:

• Wronskian indices ` = 0, 2, 4, 8 arise.

• Some theories have complete Kac-Moody algebras and
others have incomplete ones together with minimal models,
the latter being one of c = 7

10 ,
4
5 ,

1
2 ⊕

7
10 .

• There are theories with the same c but different conformal
dimension h, and also multiple theories with the same
(c, h). For example we find:

2 theories with (c, h) =
(
106
5 , 85

)
27 theories with (c, h) =

(
106
5 , 35

)
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A close-up of a few entries:

32 / 34



• Since we are aiming for a complete classification, we have
to resolve one last issue: when the Schellekens theory has
multiple copies of the same algebra, it is not clear that
embedding the denominator algebra in different factors is
equivalent.

• This is so if the copies are permuted by outer
automorphisms, but may not be true otherwise.
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Conclusions and Outlook

• Some future directions:

• Some c = 25 theories are known [Chandra-Mukhi 2019] by
embedding in c = 32 lattices theories. It is surely possible
to enlarge this set, though a complete classification may be
intractable (because there are at least 109 even unimodular
lattices in 32d).

• Relation to generalised Hecke operators [Harvey-Wu 2018].

• Relation to penumbral moonshine – relation between
VVMF’s and certain types of finite groups
[Duncan-Harvey-Rayhaun 2021].

• Extension to more than two primaries but still with c < 25.
A lot is known for three characters, as well as two characters
but three primaries. How complete can we make it?

• Relation to 4d N = 2 SCFT.
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Thank you

De allerbeste, Erik en Herman!
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