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4 Proximal gradient method

Proximal mapping

The prox-operator of a convex function h is defined as

proxh(x) = arg min
u

(h(u) +
1

2
‖u− x‖2).

4.1 Examples of prox-operators

• h(x) = 0: proxh(x) = x.

• Let C be a closed convex set. Let

δC(x) =

{
0 x ∈ C
∞ x /∈ C

the indicator function of C. Then proxδC = PC the projection on C.

• h(x) = ‖x‖1: proxh = T1 where Tλ is the soft-threshold operator

Tλ(x)i =


xi − λ xi ≥ λ
0 −λ ≤ xi ≤ λ
xi + λ xi ≤ −λ.

4.2 Proximal gradient

Now we turn our attention to (unconstrained) optimization problems with more structure. Assume
f(x) = g(x) + h(x) where

• g is convex, differentiable, dom g = Rn

• h convex with inexpensive prox-operator.

The Proximal Gradient method

To minimize f : choose an initial point x0 and repeat

xk+1 = proxηkh(xk − ηk∇g(xk)), k = 0, 1, . . .

where step size ηk > 0 constant or determined by line search.

Remark 1. Proximal-gradient can start at infeasible x0, but for all k > 0 we always have xk ∈
dom f = domh.
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4.2.1 Interpretation I.

x+ = proxηh(x− η∇g(x)).

From definition of prox-operator,

x+ = arg min
u

(ηh(u) +
1

2
‖u− x+ η∇g(x)‖2)

= arg min
u

(h(u) +
1

2η
(‖u− x‖2 + 2η(u− x)T∇g(x) + η2‖∇g(x)‖2)

= arg min
u

(h(u) +
1

2η
‖u− x‖2 + (u− x)T∇g(x))

= arg min
u

(h(u) +
1

2η
‖u− x‖2 + (u− x)T∇g(x) + g(x))

x+ minimizes h(u) plus a simple quadratic approximation of g(u) around x.

4.2.2 Examples of proximal gradient

• Gradient method: Take h(x) = 0. Iterate

x+ = x− η∇g(x)

to solve
min
x
g(x).

• Gradient projection method: Take h(x) = δC(x). Iterate

x+ = PC(x− η∇g(x))

to solve
min
x
{g(x) + δC(x)} = min

x∈C
g(x).

• Proximal method: Take g(x) = 0. Iterate

x+ = proxh(x)

to solve
min
x
h(x).

• Soft-thresholding: Take h(x) = λ‖x‖1. Iterate

x+ = Tλη(x− η∇g(x))

to solve
min
x
{g(x) + λ‖x‖1}. (norm-1 penalized)

4.3 The proximal mapping

The proximal mapping is a key element not only on the proximal gradient method, but also in the
Douglas-Rachford and ADMM methods.
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Proximal mapping

If h convex and closed (has closed epigraph), then

proxh(x) = arg min
u
{h(u) + 1

2‖u− x‖
2}

exist and is unique for all x (i.e. proxh is well defined).

Lemma 1. Let h be convex and closed. Then u = proxh(x) if and only if x− u ∈ ∂h(u).

Proof. Follows from the optimality conditions.

4.3.1 Properties of the proximal mapping

Lemma 2. Let h be convex and closed.

1. Monotonicity of the subgradient:

Let gx ∈ ∂h(x) and gy ∈ ∂h(y). Then (gx − gy)ᵀ(x− y) ≥ 0.

2. proxh is Firmly non - expansive:

(proxh(x)− proxh(y))T (x− y) ≥ ‖proxh(x)− proxh(y)‖2.

3. proxh is non - expansive (1 - Lipschitz continouos)

‖proxh(x)− proxh(y)‖ ≤ ‖x− y‖.

Proof. Exercise

4.3.2 Interpretation of proximal gradient II

Now we give an interpretation of the proximal gradient based on fix-point operators.
To solve the problem min{h(x) + g(x)} is equivalent to find x such that 0 ∈ ∂h(x) + ∇g(x),

or equivalently to find x such that −∇g(x) ∈ ∂h(x). This last equation can be written as (x −
η∇g(x)) − x ∈ ∂(ηh)(x). And by Lemma 1 this is equivalent to x = proxηh(x − η∇g(x)). Lets
define FPG(x) := proxηh(x − η∇g(x)). We need to solve FPG(x) = x, that is to find a fixed-point
of FPG.

There are several methods to find fixed-points. The most common being fix-point iteration. I.e.
take a initial x0 and iterate xk+1 = F (xk). Notice that if the sequence converges, the limit point is
a fix-point of F . There are various properties of F that guarantee the convergence of the fix-point
iteration. The most common being the contracting property.

Contracting property

F : Rn → Rn is contracting if there is ρ < 1 such that ‖F (x)−F (y)‖ ≤ ρ‖x− y‖ for all x and
y.

Theorem 1 (Banach Fixed Point Theorem). Let F be a contraction mapping. Then F admits
a unique fixed-point and the fix-point iteration algorithm always converges to such fixed-point.
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Notice that we can define a similar operator for the gradient method FG(x) := x − ε∇g(x),
and similarly we will define operator for Douglas-Rachford and for ADMM. These operators are
in general not contracting. But they are firmly non-expansive. In the next section we will review
some tools from fixed-point theory that will allow us to show that the fix-point method convergence
under this weaker assumption. Also we will develop tools to analyse convergence rates.
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5 Fix-point operators

Many iterative algorithms in optimization can be interpreted as fix-point iteration, which is used
to solve fix point equations. Namely, let F : Rn → Rn be a continuous operator and let x0 ∈ Rn
be given. Define iteratively the sequence xk+1 = F (xk) for k ≥ 0, and assume xk converges to x̂.
We have then,

F (x̂) = F ( lim
k→∞

xk) = lim
k→∞

F (xk) = lim
k→∞

xk+1 = x̂,

i.e. x̂ is a fixed-point of F . We would use FF := {x ∈ Rn : x = F (x)} to denote the set of fixed
points of the operator F .

As mentioned in the previous section, some of the algorithms studied in previous sections fall
into this idea.

Optimization methods as Fix-Point operators

The following are examples of optimization-related fix point operators

• FG(x) := x− ε∇g(x) (gradient descend),

• FCG (x) := PC(x− ε∇g(x)) (projected gradient method),

• FProx(x) := prox∇h(x) (proximal method), and

• FPG(x) := prox∇h(x− ε∇g(x)) (proximal gradient method).

Lemma 3. Let g : Rn → R be a given differentiable convex function, let C ⊂ Rn be a closed
convex set and let h : Rn → R be a convex function. We have then

1. FFG
= {x ∈ Rn : ∇g(x) = 0} = arg min g(x),
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2. FFC
G

= {x ∈ C : g(x)T (y − x) ≥ 0 for all y ∈ C} = arg minx∈C g(x), and

3. FFProx
= {x ∈ Rn : 0 ∈ ∂h(x)} = arg minh(x).

4. FFPG
= {x ∈ Rn : 0 ∈ ∇g(x) + ∂h(x)} = arg min g(x) + h(x).

Proof. Exercise.

Remark 2. Notice that the subgradient method is not (in a straightforward sense) a fix-point
iteration algorithm.

We will see later other operators which also have as fixed-points the solution to given opti-
mization problems. Now, we turn our attention to the question of the convergence of fix-point
iteration.

5.1 (Linear) convergence of fix point operators

First, we give conditions for the convergence of fix-point operators (that is the convergence of
fix point iteration for this operators). It is natural to look at the expansiveness of the operator.
Namely to obtain convergence nearby points should be send nearby. Banach’s theorem (Theorem 1)
ensures the convergence of contracting operators. We concentrate then in the class of non-expansive
operators.

Non-expansion

F : Rn → Rn is

• non-expansive if ‖F (x)− F (y)‖ ≤ ‖x− y‖ for all x and y,

• firmly non-expansive if (F (x)− F (y))T (x− y) ≥ ‖F (x)− F (y)‖2.

• α - averaged if F (x) = (1− α)x+ αN(x) where N is non-expansive,

Theorem 2 (characterization of averaged and non-expansive operators). Let F : Rn → Rn.

1. F is firmly non-expansive if and only if it is 1/2-averaged.

2. Let α ∈ (0, 1). If F is α-averaged then for all x, y ∈ Rn we have

‖F (x)− F (y)‖2 + 1−α
α ‖(x− F (x))− (y − F (y))‖2 ≤ ‖x− y‖2.

3. Averaged operators are closed under composition.

Non-expansive operators do not need to be convergent. Consider for instance a rotation. On the
other hand, we have that averaged operators converge (see Thorem 3. That is, damped iteration
of a non-expansive operator will converge (to one of its fixed points).

Lemma 4. Let α ∈ (0, 1). Let F : Rn → Rn be α-averaged. Let x̂ ∈ FF be a fixed-point of F .
Then

1−α
α ‖F (x)− x‖2 + ‖F (x)− x̂‖2 ≤ ‖x− x̂‖2.

Proof. Follows from Theorem 2.2 by taking y = x̂ = F (y).
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Theorem 3 (Convergence of averaged fix-point operators). Let F : Rn → Rn be an averaged
operator, such that F has fixed points. Given x0 ∈ Rn, let xk+1 = F (xk) for k = 0, 1, . . . . Then,
x∗ = limk→∞ xk exists and F (x∗) = x∗.

Proof. Take any x̂ ∈ FF . By Lemma 4 for all k we have

1−α
α ‖xk − xk−1‖

2 + ‖xk − x̂‖2 ≤ ‖xk−1 − x̂‖2, (1)

and thus ‖xk − x̂‖ ≤ ‖x0 − x̂‖. Therefore, there exists x̄ ∈ Rn such that xkj → x̄ for some
subsequence {xkj : j = 0, 1, . . . } of {xk : k = 0, 1, . . . }. We next show that indeed x̄ ∈ FF and
xk → x̄.

Since xkj → x̄, the continuity of F implies that xkj+1 = F (xkj ) → F (x̄). In addition, by (1)

we have 1−α
α

∑k
j=1 ‖xj − xj−1‖2 ≤ ‖x0 − x̂‖2 − ‖xk − x̂‖2 ≤ ‖x0 − x̂‖2. Thus, ‖xk − xk−1‖ → 0.

Therefore, xkj → x̄ implies xkj+1 → x̄, that is x̄ = F (x̄). Since our argument holds for any x̂ ∈ FF ,
in particular it holds for x̂ = x̄ and so ‖xk − x̄‖ is monotonically decreasing. Since ‖xkj − x̄‖ → 0
it follows that ‖xk − x̄‖ → 0, that is, xk → x̄.

It can also be shown that under the same assumptions of Theorem 3 the rate of convergence
of ‖xk+1 − xk‖ → 0 is O(1/

√
k) [? ] (see also [Theorem 1 in ? ]). As several well-known

optimization algorithms are equivalent to the FPI of averaged operators, by Theorem 3, we obtain
sublinear convergence of all these algorithms. Next we tackle the question of linear convergence.
In Theorem 4 linear convergence for the fix-point iterates is shown when the following error bound
condition holds for a suitable R > 0:

There exists KF > 0 such that

dist(x, {x : F (x) = x}) ≤ R implies dist(x, {x : F (x) = x}) ≤ KF · ‖F (x)− x‖. (2)

Theorem 4 (Error bound implies Linear convergence[van Treek, Pena, Vera, Zuluaga 2024). ] Let
α ∈ (0, 1). Let F : Rn → Rn be a continuous α-averaged operator with fixed-points. Assume the
error bound condition (2) holds for R > 0. Let x0 be given and let xk+1 = F (xk) be for k = 0, 1, . . . .
Then xk → x̄ ∈ FF linearly. In particular,

dist(xk+1,FF ) ≤
(

1− 1−α
2αK2

F

)
dist(xk,FF ) and ‖xk+1 − x̄‖ ≤

(
1− (1−α)2

8α2K4
F

)
‖xk − x̄‖,

Proof. Proof. By Theorem 3, fixed-point iteration of averaged operators converge. Thus, we know
the sequence xk converges to a point x̄ ∈ FF . Let R > 0 be such that the error bound condition (2)
holds. Let k0 be the smallest k ≥ 0 such that dist(xk,FF ) ≤ R. Such k0 exists as xk is converging
to a point in FF . Let

ρ =
(

1− 1−α
αK2

F

) 1
2
, (3)

we show that for all k ≥ k0,
dist(xk+1,FF ) ≤ ρ dist(xk,FF ). (4)

First, notice that for all k ≥ k0 we have dist(xk,FF ) ≤ R as averaged implies non-expansive. Now,
for each k ≥ k0, let x̄k be a solution to infx∈FF

‖xk − x‖. As FF is closed, we have x̄k ∈ FF , and
‖xk − x̄k‖ = dist(xk,FF ).

Fix k ≥ k0. By Lemma 4,

‖xk+1 − x̄k‖2 + 1−α
α ‖xk − xk+1‖2 ≤ ‖xk − x̄k‖2. (5)
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By the error bound condition (2),

‖xk − x̄k‖ = dist(xk,FF ) ≤ KF ‖xk − xk+1‖. (6)

Combining (5) with (6) gives

‖xk+1 − x̄k+1‖2 ≤ ‖xk+1 − x̄k‖2 ≤ ‖xk − x̄k‖2 − 1−α
α ‖xk − xk+1‖2 ≤

(
1− 1−α

αK2
F

)
‖xk − x̄k‖2.

By taking square roots in both sides we obtain (4). By (3) we obtain ρ ≤ 1 − 1−α
2αK2

F
and the first

part of the statement follows.
If FF is a singleton, then x̄k = x̄ for all k, and (4) implies that ‖xk+1 − x̄‖ ≤ ρ‖xk − x̄‖. So,

xk → x̄ linearly with rate ρ. Otherwise, note that by (4), for any k, j = 1, 2, . . .

‖x̄k+j+1 − x̄k+j‖ ≤ ‖x̄k+j+1 − xk+j‖+ ‖xk+j − x̄k+j‖ ≤ 2‖xk+j − x̄k+j‖ ≤ 2ρj+1‖xk − x̄k‖.

In addition, x̄k → x̄, since xk → x̄ and ‖xk − x̄k‖ → 0. Thus,

‖xk+1 − x̄‖ ≤ ‖xk+1 − x̄k+1‖+
∞∑
j=1

‖x̄k+j+1 − x̄k+j‖

≤

(
ρ+ 2

∞∑
j=1

ρj+1

)
‖xk − x̄k‖ ≤ ρ(1+ρ)

1−ρ ‖xk − x̄k‖. (7)

Therefore, combining (5), (6) and (7), we find that

‖xk+1 − x̄‖2 ≤ ‖xk − x̄‖2 − 1−α
α ‖xk − xk+1‖2 ≤ ‖xk − x̄‖2 − 1−α

αK2
F
‖xk − x̄k‖2

≤ ‖xk − x̄‖2 − (1−α)(1−ρ)
αρ(1+ρ)K2

F
‖xk+1 − x̄‖2.

Equivalently,

‖xk+1 − x̄‖ ≤
(

1 + (1−α)(1−ρ)
α(1+ρ)ρK2

F

)− 1
2 ‖xk − x̄‖.

To finish the proof we simplify the above expression. Let u = 1−α
αK2

F
. By (3) we have u = 1− ρ2 and

thus
(

1 + (1−α)(1−ρ)
α(1+ρ)ρK2

F

)− 1
2

=
(

1 + (1−ρ)2
ρ

)− 1
2
.

Using (1−ρ)2
ρ ≥ (1− ρ)2 ≥ u2

4 and (1 + θ)−
1
2 ≤ 1− 1

4θ, for any θ ∈ (0, 1) we obtain(
1 + (1−α)(1−ρ)

2αρK2
F

)− 1
2 ≤ 1− (1−α)2

8α2K4
F
.

Theorem 4 allows us to recast the problem of proving and estimating the rate of linear con-
vergence as the problem of computing the constant KF in the generic error bound condition (2).
We will illustrate this in Section 6 by estimating the rate of linear convergence of optimization
algorithms.

By looking closely to the proof of Theorem 4 we can see that we have proven a stronger statement
than the linear convergence of the FPI. We prove that if the error bound condition (2) holds for
R > 0 then the distance to the set of fixed points decreases linearly when F is applied to any point
in {x : dist(x,FF ) ≤ R}. Next, in Lemma 1 we prove the converse of this statement, showing that
the error bound condition is necessary to obtain this form of linear convergence.
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Proposition 1 (Linear convergence implies error bound [van Treek, Pena, Vera, Zuluaga 2024). ]
Let F : Rn → Rn such that FF 6= ∅. Let R > 0 and ρF < 1 be such that

dist(x,FF ) ≤ R implies dist(F (x),FF ) ≤ ρF dist(x,FF ). (8)

Then, the error bound condition (2) holds for R, with constant KF = 1
1−ρF

Proof. Given x ∈ S, let x̄, x̂ ∈ FF such that dist(F (x),FF ) = ‖F (x)−x̂‖ and dist(x,FF ) = ‖x−x̄‖.
By (8),

‖F (x)− x̂‖ ≤ ρF ‖x− x̄‖ ≤ ρF ‖x− x̂‖ ≤ ρF (‖x− F (x)‖+ ‖F (x)− x̂‖).

Reorganizing the terms we obtain the statement.

Theorem 4 and Proposition 1 relate the rate of convergence ρF of the FPI to the error bound
constant KF .

Corollary 1 (Error-bound condition and linear convergence bounds [van Treek, Pena, Vera, Zu-
luaga 2024). ] Let α ∈ (0, 1). Let F : Rn → Rn be a continuous α-averaged operator with FF 6= ∅.
Let R > 0 and define ρ̃F ∈ [0, 1] and K̃F ∈ R ∪ {∞} as

ρ̃F = sup
x

dist(F (x),FF )

dist(x,FF )
and K̃F = sup

x

dist(x, {x : F (x) = x})
‖F (x)− x‖

,

the tightest constants such that linear convergence result (8), respectively the error-bound condi-
tion (2) hold. We have the following equivalent relations,

1− 1

K̃F

≤ ρ̃F ≤ 1− 1− α
2αK̃2

F

,

and √
1− α

2α(1− ρ̃F )
≤ K̃F ≤

1

1− ρ̃F
.
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6 Convergence of optimization methods

Here we apply the results of previous sections to show the convergence of different optimization
methods. Notice that the gradient method, the projected gradient method and the proximal method
are all particular cases of the proximal gradient. thus we only need to analyse the proximal gradient.

An important class of functions for us is the family of continuous piecewise linear-quadratic
(PLQ) functions. A closed convex function is PLQ if there exists a finite polyhedral partition of its
domain such that in each of the parts the function is quadratic. Notice that indicator of polyhedral
sets, quadratic functions and piece-wise linear functions are PLQ. Also, the class of PLQ functions
is closed under sums and under composition with piecewise linear functions. Optimization of PLQ
functions encompasses several important optimization models such as linear optimization, (convex)
quadratic optimization, least squares, and some of its variations such as LASSO, elastic net, and
support vector machines (SVM).

Lemma 5. Let f be a closed convex continuous PLQ function. Then

1. proxf is piece-wise linear.

2. If f is differentiable, ∇f is piece-wise linear.

Proof. Exercise.

6.1 Convergence of the proximal gradient method

We concentrate now on the proximal gradient method, by analysing the operator FPG(x) :=
proxηh(x− η∇g(x)).

Assumption 1. In this section we assume f(x) = g(x) + h(x) where

• optimal value f∗ = inf f(x) is finite and attained at x∗

• h is closed and convex

• g is convex, differentiable, dom g = Rn

• ∇g is L-Lipschitz continuous, with L > 0:

‖∇g(x)−∇g(y)‖ ≤ L‖x− y‖ for all x, y ∈ dom g

• 0 < η ≤ 1/L.

Lemma 6. Under Assumption 1,

1. (∇g(x)−∇g(y))T (x− y) ≥ 1
L‖∇g(x)−∇g(y)‖2 for all x, y ∈ dom g

2. I − η∇g is 1/2-averaged

3. proxh is 1/2-averaged.

Proof. part 1 is equivalent to the L-Lipschitz continuity. Parts 2 is left as exercise. Part 3 follows
by combining Lemma 2 and Theorem 2.

Proposition 2. Under Assumption 1, The proximal gradient operator FPG is 3/4-averaged.
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Proof. By Lemma 6 is enough to show that the composition of two 1/2-averaged operators is
3/4-averaged. This is left as an exercise.

Corollary 2. Under Assumption 1, the proximal gradient method converges to a minimizer of f .
Moreover, if g and h are PLQ then the convergence is R-linear.

Proof. From Proposition 2 FPG is 3/4-averaged. The statement follows by Theorems 3 and 4.

6.2 Douglas Rachford

As second example we consider the Douglas-Rachford algorithm. Given h and g closed convex
functions, let FDR : Rn → Rn be defined by FDR(w) = w + proxh(2 proxg(w)− w)− proxg(w) for
all w ∈ Rn.

Assumption 2. In this section we assume f(x) = g(x) + h(x) where

• optimal value f∗ = inf f(x) is finite and attained at x∗

• h and g closed and convex.

First, we do some rewriting. By Lemma 2 the prox operator is firmly non-expansive. By
Theorem 2 we obtain that Rh defined by Rh(x) = 2 proxh(x)− x is non-expansive. Notice that we
can write then FDR(w) = 1

2(w +Rh(Rg(w))), which is a 1/2-averaged operator.

Corollary 3. Assume 2. Let w0 ∈ Rn. Let wk+1 = FDR(wk) for all k ≥ 0. Then wk → w̄ ∈ FFDR
.

And g(wk)→ x̄ = g(w̄), where x̄ ∈ arg min f(x). Moreover, if g and h are PLQ then the convergence
is linear.

Proof. Follows by Theorems 3 and 4. The details are left as an exercise.
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