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Epidemic Spreading on Temporal Networks
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Temporal network: the topology of a network changes over time.

Examples: two individuals are connected when they meet face-
to-face (call or collaborate).
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Ambition: Realistic Temporal Network Model
Mechanisms that form temporal networks

Temporal Network Prediction and Interpretation
Intrinsic properties/mechanisms that enable
the prediction

Interpretable Learning Network based Models
Algorithms
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Temporal Network Representation

NN

Representation: aggregated network G,,, in which each link i is
specified by a time series {x;(1), x;(2),..., x;(T)} that encodes the
existence of interaction/contact at each time step.
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Temporal Network predication Problem
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set

G, over [1,T] is known.

L. Zou, X. -X. Zhan, J. Sun, A. Hanjalic and H. Wang, "Temporal Network Prediction and
Interpretation,” in IEEE Transactions on Network Science and Engineering, vol. 9, no. 3,
pp. 1215-1224, 2022



Lasso Regression
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Prediction Quality

[+ Lasso Regression —#®—Random Forest —#— Baseline Model 1 -+ Baseline Model 2

Hypertext 2009 Call

Baboons

Baseline Model 1: x;(t + 1)= x;(t)
Baseline Model 2: x;(t + 1) = x;(t)B;; + ¢;
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Prediction Backbone Network

Mnodes —— M links in the aggregated

network
Fully connected, directed, with self loops and

weight B;;=E[;;] average over training sets

B;;: influence of link i on link j in
determining link j's activity.
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Prediction Backbone Network
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Probability density function of B;;

A link’s activity is influenced more by the activity of # own
than activities of other links. TUDelft



Backbone in Relation to Time Series

Pearson correlation Ry, .(t — 1,t) between {x;(t)};=1, . 7-1 and {xj (t)}
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Correlation BC between B;; and Ryp;(t = 1,0)

Bijand Ry (t —1,t) are postively correlated at each j

Self influence is larger in networks with stronger activity autocorrelation

t=2,3,...,T



Backbone in Relation to Aggregated Network

Links that are close in the aggregated network tend to have
a high influence on each other?

Ly

Ls

L (Gy)

Distance of two links in the aggregated network G,, is the hopcount
between their corresponding nodes in the line graph £ (G,,) of G,,,.

It is also the minimal hopcount between two end
nodes from the two links respectively in G,, plus onel UDelft



Backbone in Relation to Aggregated Network
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Links that are close in the aggregated network tend to
have a high influence on each other



Backbone in Relation to Aggregated Network
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Links (nodes in line graph) that have more shortest paths, tend to
have a higher influence on each other
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Conclusion

A link’s next step activity is mainly influenced by the current
activity of the link itself and of other links that are close to the
link and/or correlated with the link in activity time series.

Learning algorithms capture network properties and

correlation in activity time series, which are usually used
by network-based prediction methods.

L. Zou, X. -X. Zhan, J. Sun, A. Hanjalic and H. Wang, "Temporal Network Prediction and

Interpretation,” in IEEE Transactions on Network Science and Engineering, vol. 9, no. 3,
pp. 1215-1224, 2022



Network based Temporal Network predication
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Learning models : x;(t + 1) = f; {x;(t), x,(t),..., xp,(t)}
Network based models: x;(t +1) = f{G;, Gi_1,..., Gi—1+1}

L. Zou, A. Ceria and H. Wang, "Short- and long-term temporal network prediction
based on network memory”, Applied Network Science 8, 76, 2023.
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Memory in Temporal Networks
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Both decay with time lag A -> time-decaying memory
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Self-driven (SD) model

SD tendency: w;(t + 1) = Y¢=L e "R x. (k)
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static t € [0.5, 5]
~ optimal for all networks

static T or dynamic t for samples of prediction step t+1 TUDelft



Self and Cross-driven (SCD) model

Compute the SD tendency for each link:
wi(t+1) = X§Zi_ 4, e 70 x (k)

Network B7 35 B3 €6
Hospital 0.31 0.07 0.00 0.37
Hypertext2009 0.32 -0.02 0.00 0.32
Workplace 0.32 0.00 0.00 0.28
LH10 032 0821 0.00 041
HighSchool 0.33 0.04 0.00 0.38
PrimarySchool 0.24 048 -0.02 0.54
SFHH 032 003 0.01 0.21

hi(t+1) = Bo+ Biw;(t+ 1) + Bou;(t+ 1) + B3g9;(t+ 1)
w; (t + D= (Jw;(t + DwE + 1) + w, (t + Dw, (t + 1)

averge geometric mean
g;(t + 1) average SD tendency
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Model Comparison

[EECN Il LR Il CDARN Il Markov [JSD [_]SCD [_]SD (L=3, 7=5)]

\

YR A A Y

Hospital Hypertext2009 Workplace LH10 HighSchool PrimarySchool SFHH

CN: sum of common neighbors over previous L snapshots
LR: Lasso Regression

CDARN: Correlated Discrete Auto-Regression Network
SD, SCD: 1=0.5

L = T/2 for all models besides SD (L=3, T = 5)

Williams, O. E., Mazzarisi, P., Lillo, F., Latora, V., "
Phys. Rev. E. 105, 034301 (2022). TUDelft



Long-term Temporal Network Predication
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G,, and number of contacts m(t+1) at each time is known.
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Recursive Long-term Predication
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Derive connection tendency {w;(t + 1)} using any short-term prediction model
Derive G, based on {w;(t + 1)} and m(t + 1)
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Repeated Long-term Predication

0\. ® C\.\‘ 2?2 0?2 L2
\_ t-L+1. t-L+2 ¢ t I t+1 t+2 t+L*

Derive connection tendency {w;(t + 1)} using any short-term prediction model
Derive G',,, based on {w;(t + 1)} and m;(t + 1)
Assume {w;(t + 1)} does not change in the prediction period [t+1, t+L*]
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Predication quality per snapshot
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Recursive and repeated predication perform similarly for SD, SCD

A
Repeated performs better for other models ]
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Predication quality per snapshot
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SD performs roughly the best
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Predication quality per snapshot
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Prediction quality of SD model decays fast in networks with
fast decaying memory.
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Predication quality in aggregated network
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G, (t+ 1,t+L") versus G, (t + 1,t+L")
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Predication quality in inter-event time A

A is the time between two consecutive contacts of a link
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distribution derived from all links (or class of links with similar total
number of contacts
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Conclusion and Discussion

Temporal Network Prediction and Interpretation

Intrinsic properties/mechanisms that facilitate
the prediction

Interpretable Learning | ms)
Algorithms — Network based Models

-]
Susceptible-infected-spreading-based network embedding in static and temporal networks
XX Zhan, Z Li, N Masuda, P Holme, H Wang,

EPJ Data Science 9 (1), 30, 2020.



Conclusion and Discussion

Towards realistic temporal network modeling:
« dynamic processes to model the states of links

« temporal network characterizations to identify key
network properties to validate models

A. Ceria, S. Havlin, A. Hanjalic, H. Wang, Topological-temporal
properties of evolving networks, Journal of Complex Networks, Volume
10, Issue 5, cnac041, (2022)

A. Ceria, H. Wang, Temporal-topological properties of higher-order
evolving networks, Scientific Reports 13, 5885 (2023)

T
%
TUDelft



3
etherlands Organisation TU Delft

for Scientific Research




