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Edge flow

▪ Many real-world flows can be modeled as edge flows

a. Traffic flow on roads

b. Water flow in the water network

c. Foreign currency exchange flow

d. ...

▪ Analysis of edge flow is important for:

a. making real-time decisions related to these edge flows

b. monitoring faults on edge flows

Traffic flow

Water flow

1



Edge flow reconstruction

▪ Edge flow data we obtain is defective because of:

a. noise generated by sensors

b. lack of sensors in each edge

c. a portion of the data is lost

d. ...

▪ Reconstructing edge flow data is meaningful because:

a. it improves the integrity and accuracy of edge flow data

b. it facilitates downstream tasks

c. it helps us get a more accurate information about the edge flow
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How to model edge flows?

▪ We can model these edge flows by the edges in the graphs, but:

a. it only contains nodes and edges

b. graphs only model pair-wise relationships

c. the expressive power of graphs is limited

d. ...

▪ Thus, simplicial complexes can be considered, which:

a. is a higher order network

b. contains nodes, edges, triangles, tetrahedrons...

c. models multi-way relationships

d. has stronger expressive power
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Simplicial complexes

▪ Simplicial complexes is a higher-order networks contains different orders of simplices: 

a. 0-simplices are nodes which can model singel element

b. 1-simplices are edges which can model pair-wise relationships

c. 2-simplices are triangles which can model relationships between 3 elements

d. 3-simplices are tetrahedrons which can model relationships between 4 elements

e. ....

0-simplex              1-simplex                 2-simplex                              3-simplex
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Topology of simplicial complexes

▪ Topology of simplices can be represented by incidence matrices      :

a. : node-to-edge incidence matrix

b. : edge-to-triangle incidence matrix

c. …

▪ For example, the incidence matrices for this simplicial complexes are:
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An example of SC



Topology of simplicial complexes

▪ The whole structure can be represented by Hodge Laplacian matrices :

▪ There are two terms in Hodge Laplacian matrices       :

a. Lower laplacian:                         represents lower adjacencies

b. Upper laplacian:                               represents upper adjacencies

For example: edge (3, 4) and (1, 4) are lower adjacent; edge (3, 4) and (4, 5) are upper adjacent
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An example of SC



Simplicial signals

▪ In topological signal processing (TSP):

a. Signals are defined on nodes, edges, triangles, tetrahedrons…

b. We collect k−signal into the vector

c. Simplicial signals with different orders are coupled 

Graph signals
Simplicial signals
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Simplicial signals

▪ The space of simplicial edge flow signals can be decomposed into three subspaces:

▪ Any simplicial edge flow can be decomposed as:
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Two operators

▪ Curl operator:

a. It is defined as: 

b. It measures the curl of an edge flow

c. Curl-free: the curl is zero at each triangle

▪ Divergence operator:

a. It is defined as:

b. It measures the divergence of an edge flow

c. Divergence-free: the divergence is zero at each nodes
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Problem formulation: Edge flow reconstruction

▪ The regularized optimization problem for edge flow reconstruction:

a. Denoising: When            and is a noisy edge flow

b. Interpolation: When                           is the sampling matrix and    is the edge flow with sampled values

c. is a data-fitting term

d. is the regularizer designed based on prior knowledge
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Simplicial ElasticNet

▪ To regularize edge flow reconstruction problem with simplicial prior:

▪ There are three groups of ElasticNet regularizers:

a. : penalize the divergence

b. : penalize the curl

c. : guarantee the completeness of the problem
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ADMM solution

▪ Iterative steps of four-block ADMM comprise:

Primal updates

Dual updates
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Datasets

▪ Forex:

a. 25 nodes, 300 edges, and 2300 triangles

b. Consider pairwise currency exchanges between 25 different currencies

c. The no-arbitrage condition is

d. it is curl-free

Original rate flow Logarithm rate flow
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Datasets

▪ Lastfm:

a. 657 nodes, 1997 edges, and 1276 triangles

b. Records the process of users switching artists while playing music

c. Switching from artist A to B, add a unit on the edge flow from A to B

d. Divergence-free

▪ Chicago Road network:

a. 546 nodes, 1088 edges and 112 triangles

b. The traffic network of the city Chicago

c. Create divergence-free edge flows
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▪ Take the ADMM denoising results (NMSE) as an example:

a. Both simplicial ElasticNet and trend filtering have obvious denoising effect

ADMM results
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Motivation of unrolling networks

▪ Issues with ADMM:

a. Coefficients of regularizers should be designed in advance based on prior knowledge

b. Prior knowledge is difficult to obtain

c. A large number of iterations, thus causes high computation

▪ Unrolling network:

a. Each iteration of ADMM is mapped into a layer of unrolling networks

b. It replaces some fixed parameters in ADMM by some trainable weights in unrolling networks

c. After the unrolling network is trained, the computation is low
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Simplicial unrolling networks for ElasticNet

▪ The   -update of ADMM can be replaced by:

a. Simplicial convolutional filters with trainable weights replace fixed parameters

b. SCFs help aggregate information from lower and upper neighbors

c. SCFs help avoid the computation of matrix inverse
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Simplicial convolutional filters

▪ Simplicial convolutional filtering operation:

▪ Simplicial convolutional filter [1]:

a. The first term                        gathers information from lower neighbors

b. The second term                        gathers information from upper neighbors

c. and       are the convolution orders
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Simplicial unrolling networks for ElasticNet

▪ The    -update of ADMM can be replaced by:

a. Fixed penalty parameter    are replaced by 3 different trainable weights

b. Fixed regularizers coefficients are replaced by trainable weights
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Simplicial unrolling networks for ElasticNet

▪ The    -update of ADMM can be replaced by:

a. Fixed penalty parameter    are replaced by 3 different trainable weights

The k-th iteration of ADMM is mapped into l-th layer of unrolling networks
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Simplicial unrolling networks vs. ADMM

▪ The denoising result (NMSE) of unrolling networks and ADMM:

a. Overall, unrolling networks perform better than ADMM

b. When SNR is small, unrolling network is better

c. Layers of unrolling network are much less than iterations of ADMM
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Simplicial unrolling networks vs. other neural networks

▪ Other neural networks:

a. MLP [2]: Multilayer perceptrons

b. SNN [3]: Simplicial neural networks 

c. SCNN [4]: Simplicial convolutional neural networks 

d. GUTF [5]: Graph unrolling network for trend filtering

▪ Comments on results (NMSE):

a. Trained in one-shot learning

b. Simplicial unrolling networks perform the best

c. GUTF performs the worst
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Convergence of simplicial unrolling networks

▪ If we check the output at each layer of the unrolling networks:

a. The NMSE and Pearson coefficient converge gradually

b. This is because each layer of unrolling networks can be regarded as an iteration in ADMM
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Conclusion

▪ Simplicial ElasticNet for the edge flow reconstruction

a. Considers both     and     norm

b. Solved by multi-block ADMM

▪ Simplicial unrolling networks

a. Fixed parameters are replaced by learnable weights

b. Simplicial convolutional filters 

▪ Numerical experiments

a. Real-world and artificial datasets

b. Conventional iterative algorithms, non-model-based neural networks and unrolling networks
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