

Outline

- What is control systems security?
- Motivation: Why should we care?
- Q1: How to conduct a false-data injection attack?
- Q2: How to defend against such attacks?
- Q3: How to do remote estimation under privacy constraints?
- Outlook and conclusions

<section-header><section-header>Undetectable Attacks: General Linear SystemsConsider the linear system $y = G_a a$ (the closed-loop control system):x(k + 1) = Ax(x) + Ba(k)
y(k) = Cx(k) + Da(k)Operator: State $x(k) \in \mathbb{R}^n$ and malicious attack $a(k) \in \mathbb{R}^m$ unknown.
Measurement $y(k) \in \mathbb{R}^p$ and model A, B, C, D knownDefinition: State $x(k) \in R^n$ and malicious attack $a(k) \in \mathbb{R}^m$ unknown.
Measurement $y(k) \in \mathbb{R}^p$ and model A, B, C, D knownDefinition: State $x(k) \in R^n$ and malicious attack $a(k) \in R^m$ unknown.
Measurement $y(k) \in \mathbb{R}^p$ and model A, B, C, D knownDefinition: State $x(k) \in R^n$ and malicious attack $a(k) \in R^m$ unknown.
Measurement $y(k) \in \mathbb{R}^p$ and model A, B, C, D knownDefinition: Attack signal a is undetectable if there exists an initial state x(0) such that $y(k) = 0, k \ge 0$

Pasqualetti et al., 2013; Sandberg and Teixeira, 2016]Remark: Less strict undetectable attacks (y(k) ≈ 0) have been proposed in both
deterministic [Teixeira et al., 2015] and stochastic [Bai et al., 2017] settings

