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Outline

* What is control systems security?

* Motivation: Why should we care?

* Q1: How to conduct a false-data injection attack?

* Q2: How to defend against such attacks?

* Q3: How to do remote estimation under privacy constraints?
* Outlook and conclusions

Information Security

Confidentiality: information is not disclosed to unauthorized individuals
Integrity: information cannot be modified in an unauthorized manner

Availability: information must be available when it is needed

g = = g

[Bishop, 2002]
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Control Systems Security

yi = [2 13] AR0VerSe

= [213] 4
Physical icatiomk = 2 13 Feedback
Confidentiality: information is not disclosed to unauthorized individuals

ye=1213] ¢ PR
Physical 0 icatio — Feedback
Integrity: information cannot be modified in an unauthorized manner

A Adversary!

w=[213] L
Physical Communicatio x Feedback
Plant Network Controller

Availability: information must be available when it is needed

Vulnerabilities in Networked Control Systems
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Why is not IT Security Enough?

* Interfaces between cyber and physical systems cannot be protected
by conventional IT security
* Cf. a physical variable vs its sampled sensor measurement

* Physics can help to detect if data have been manipulated

* Malicious attackers have an intent and can act strategically,
as opposed to system faults or disturbances

* Risk analysis for safety-critical control systems needs to include the
interactions between cyber, physical, and human systems

* Modern security of infrastructure systems requires defense in depth:
multiple layers of security are needed for protection

Actuators

Sensors

Communication
Network

Distributed Controllers

Motivating Applications

Building automation
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Networked Control System under Attack
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[Teixeira et al., Automatica, 2015]
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Model Knowledge
Disruption K={P, 7, D} Disclosure
Resources v Resources
Uk
] k|« ar = g(K, i) | |
—
Attack Policy
Attack policy: Goal of the attack?
Model knowledge: Adversary has some info about plant and controller?
Disclosure resources: Which channels can the adversary listen to?
Disruption resources: Which channels can the adversary manipulate?
[Teixeira et al., Automatilcoa, 2015]
10
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[Teixeira et al., Automatica, 2015; Chong et al.,'ECC, 2019]
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False-data Injection Attack on Quadruple Tank System

2 hacked actuators (uq and u, are disruption resources)
2 healthy sensors (y4 and y;)

Can the controller detect the attack?
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[Teixeira et al., Automatica, 2015]
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False-data Injection Attack on Quadruple Tank System
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[Teixeira et al., 2015]
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Attack Analysis
Transfer function matrix from attack to sensor signals
0.0289 (1.277z+1.182)-10_3
Ga(2) = C(zI = A)7'B = ((1355;&?32)6403 S o )
22—1.754210.7643 2-0.8347
Poles = {0.8076,0.8347,0.9464, 0.9498}
Zeros = {0.8675, 1.0362} = Non-minimum phase system
Applied attack signal (for small €)
0.2281€ T
_ k — _
a(k) = 1.0362 <—0.22816> , Ty = (0 0 0.6521€ 0.68766)
satisfies zero dynamics and is thus masked by system transient:
0=1y(k) = CA*xo + (ga x a)(k), k>0
16
16
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Undetectable Attack on Quadruple Tank System

2 hacked actuators (uq and u, are disruption resources)
2 healthy sensors (y4 and y;)

Can the controller detect the attack?

Not against an adversary with plant model knowledge
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17
[Teixeira et al., Automatica, 2015]
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Undetectable Attacks: General Linear Systems

Consider the linear system y = G,a (the closed-loop control system):
z(k+1) = Az(x) + Ba(k)
y(k) = Cx(k) + Da(k)

Operator: State x(k) € R™ and malicious attack a(k) € R™ unknown.
Measurement y(k) € RP and model 4, B, C, D known

Attacker: Model 4, B, C, D known and can manipulate attack signal a(k) arbitrarily

Definition: Attack signal a is undetectable if there exists an initial state x(0) such that y(k) =0,k >0
[Pasqualetti et al., 2013; Sandberg and Teixeira, 2016]

Remark: Less strict undetectable attacks (y(k) =~ 0) have been proposed in both

deterministic [Teixeira et al., 2015] and stochastic [Bai et al., 2017] settings

18
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Undetectable Zero-Dynamics Attack

Theorem: Attack signal a(k) = zXa,, 0 # a, € C™, z, € C,
is undetectable if and only if there exists x, € C" such that

P(z0) le] =0

ao

with the Rosenbrock system matrix P(z) = {A EZI g]

[Pasqualetti et al., 2013; Sandberg and Teixeira, 2016]

Model knowledge

Zero-dynamics

Perfect model knowledge is not needed for attacker: O
Extensions to robust zero-dynamics attack, where model knowledge is
replaced by observing plant inputs and outputs [Park et al., 2019]

19

False-data Injection Attack on a Power Network

* Attack applied to power system state estimator by manipulating sensor measurements

* The number of measurements that needs to be manipulated for an undetectable attack
on one targeted state measurement is denoted its security index

* Validated on industrial SCADA testbed

* Cyber attack based on physical information
At least 7 measurements have to ® :

be involved in an undetectable (BeE] T

attack against measurement 33

Sech\rity index oS __F-,_
T T T T O
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[z T
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[Teixeira et al., 2011; Hendrickx et al., 2014] 20
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21
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Coding to Counteract False-data Injection Attacks
Data injection attack w = woe“ is undetectable if z is a plant zero: P(z) = 0
T K —l— P T
Can we introduce coding to render the attack harmless?
[Fang et al., ICCPS, 2019]
22
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Shannon Two-Way Communication Channel

One-way coding for one-way channels

TWO-WAY COMMUNICATION
\ [

| [ CHANNELS
Channel Decoder ’—0
‘ ‘ | CLAUDE E. SHANNON

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
CAMBRIDGE, MASSACHUSETTS

‘ Encoder ‘

1. Introduction

A two-way communication channel is shown schematically in figure 1. Here z,
is an input letter to the channel at terminal 1 and y; an output while z; is an

X Yo

TERMINAL | TERMINAL 2

Fiovme 1

input at terminal 2 and ys the corresponding output. Once each second, say,

new inputs  and 2, may be chosen from corresponding input alphabets and

. pitt into the channel; outputs y, and y, may then be observed. These outputs

Two_way codin g for two-way channels will be related statistically to the inputs and perhaps historically to previous
inputs and outputs if the channel has memory. The problem is to communicate

in both directions through the channel as effectively as possible. Particularly, we

wish to determine what pairs of signalling rates R, and R for the two directions

————————————————— 9 can be approached with arbitrarily small error probabilities.

‘ Encoder ‘
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1 In figure 2
) the two-way channel decomposes into two independent, one-way noiseless binary
\ This work was supported in pact by the U.S. Army (Sigaal Corpe, the U.S. Air Force (Offce
of Scientific Research, Air Research and Development Command), and the U.S. Navy (Offce
1 of Naval Research),
! | [ o
Decoder Encoder T
[ I | J | . Shannon, Berkeley Symp. on Mathematical Statistics and Probabilty, 1961
L o J b -

23
[Fang et al., ICCPS, 2019]
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Data injection attack under one-way coding

Data injection attack is undetectable also under one-way
coding, because unstable zeros cannot be cancelled:

P(s)=pBP(s)a™t

[Fang et al., ICCPS, 2019]

24
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Data injection attack under two-way coding

W

Suppose the attacker knows the plant model P(s) and

performs a data injection attack w = wye?t,Re(z) > 0 i K { a i
I I
| |
i i
| | ]
i d ;
| |

The data injection attack w is detectable under
two-way coding because plant zeros can be moved:
B P(s)—c

~ ad — bc + bP(s) {

P(s)

Remark

* If the attacker knows or learns P(s), a new undetectable
data injection attack w can be performed

* The modified plant P(s) can be designed to have only
stable zeros, so the attack w = wye?t - 0ast - o

» Two-way coding resembles the scattering transformation ‘DFTE - Eﬁ*

used in teleoperated robots [Hokayem & Spong, 2006] oL | e gk L [Fang et al., 2019]
25
Attack decoupling with two-way coding
Definition An attack is decoupled if the transfer function
from attack to plant input/output can be made zero, P
without nullifying the transfer function from reference to
plant input/output
Theorem Suppose P(s) is stabilized by static output feedback controller K (s) =K.
* If c = —1/K, then any attack w = w(t) is decoupled.
* If b = (ad — bc)K, then any attack z = z(t) is decoupled.
Remark
* Decoupling for w should be interpreted in the sense of “almost decoupling,” cf.,
[Weiland and Willems, 1989] notion of “almost disturbance decoupling”
[Fang et al., ICCPS, 2019]
26
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Impossibility Theorem

Theorem w and z cannot be decoupled simultaneously.

Remark

* Corresponds to the covert attack proposed in [Smith, IEEE CSM, 2015]:

n

Plant AOF
w L
y ‘:\ﬁo\" CPS model knowledge
u “Qéc\\'
® 201124
Covert Agent 1221-124]
®
Y | Plant Model Covert attack
= Ty I51]
et
Tw | P4, 251 o
u At
Y (] o Eavesdropping
Covert Controller N attack Disclosure resources
o
[26]-[32] Oy 1151, (3311471
Yret d
Ug Replay attack
c [48]-[50]

Ym Disruption resources

27
[Fang et al., ICCPS, 2019]
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Outline
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Noisy information

Environment 1
1

-

Remote Estimation under Privacy Constraints

Can we preserve consumers privacy despite cloud-based online temparature monitoring and other apps?

Power consumption
Information

Smart meter

Estimate of public
information

L4 1
1
J L.It“‘ur_'_'\ Private
Private and public Estimator ¥ ¥ info.
information

Nekouei et al., 2018 29

29

Estimate of public variable

Remote Estimation under Privacy Constraints

Estimate of private variable

Sensor measurement
Private random  Public random
variable variable
Z .
(X,Y)——| sensor Estimator

¥ w - ST - K (7))

m Y: Public random variable, e.g., HVAC data.
m X: Private random variable, e.g., occupancy information.

B Z: sensor measurement, noisy information regarding X and Y.

Objectives:
m Estimate Y reliably.

m Ensure private information cannot be inferred from Y.

m ¥: estimate of ¥ based on Z.

Nekouei et al., 2018 30
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Privacy Metric

Sensor measurement

- Estimate of public variable Estimate of private variable
Public random l v

J using ¥
| ! : m |
(X,Y)——| Sensor Estimator w - O -+ X(V)

X (private variable) takes values in {xi,..., Xn}. Bin1 \ Bini y { v wp. Py, if zeB

Private random

variable variable

Randomized estimator

z
Y (public variable) takes values in {yy,..., Ym}- R 3 i v Y (2)=4 : : B
Ym W.p. Pmla if z€ Bl

Measurement (Z)

Privacy metric is chosen as conditional (discrete) entropy

H[X|Y (Z)} =72Pr(f/ (Z)=y)ZPr(X=z]Y (Z):y)logpr(X=z|Y (Z)=y)
yey

zeX

Captures the ambiguity of X after observing v (2).

Nekouei et al., 2018 31
31
Privacy-aware Estimator Design Problem
minjll{?lze E [L (YY (Z ))] s ozt Sansnrmeasluvemgm Es(,mmo,p...[,‘mnam: Esnmazee::"rf,mvar-ahwe
S e R
H [X ‘Y (Z)] >Hp Randomized estimator
N Yy W.Pp. Pu, if 2€B;
+ Lossfunction L(Y,Y (Z :{ LYY (Z) Y @)=9 : : :
( ( )) 0 Y=Y (2) Ym Wp. Ppy, if 2€B
* Randomization probabilities {Pji} are the optimization variables
* Privacy constraint H [X |Y (Z)] > Ho
* Classical randomized estimator is recovered if privacy constraints are removed
Nekouei et al., 2018 32
32
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Privacy-aware Estimator Design is Convex

ifin

|

SN Pi=1, W

H [X ‘Yp (Z)] >Hp Randomized estimator

minil;lize E [L (Y,Y’ (Z ))] o ot l estmate .,l sl e orai

Yy W.p. Py, if zeB
Theorem The privacy-aware estimator design problem is convex YV (z)=9 : : :
Ym WP Ppy, if z€B

"Proof:”
1 Y#Y (2)

0 Y_Y (2) is linear in {P;}

 Cost function L (Y,Y (Z)) = {

* Privacy constraint is convex (because Kullback-Leibler divergence is convex):

H [X ‘Y (Z)] =H[X]-Y Pr(X=2,)D [p‘; (y|X =z;) ‘p? (y)]
i Nekouei et al., 2018 33
33
When Can Perfect Privacy be Achieved?
Perfect privacy corresponds to e e l uuuuuuuuuuuuuuuuuu [ ‘‘‘‘‘‘‘‘‘‘‘ e
) ) variable variable l
Pr (Y (Z)=yi, X = 1»]) =Pr (Y (Z) = yi) Pr(X =z;)Vi,j (lx,y.-%..-m)
Theorem Perfect privacy can be achieved if and only if P; € Null (®)
- p,
P, = 51 is the probabilities associated with choosing ; at bin 1,...,N
L PzN
[ 11 -+ dun i i i
: . Bin index=1 Y. i... i
b= : : o1 =Pr(ZeB| X =z;)—Pr(Z e B) O T
L ¢n1 e (bnN ‘
Nekouei et al., 2018 34
34
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Example: Privacy-aware Estimator

X: occupancy (private) Occupancy Temperature’s measurement Estimate of temperature Estimate of occupancy

» X = 1 = Tenant is at home.

X=0 Tenant is absent. Esti 1 Esti L X(v . ’
- = :w mL of X @) g Ensure the occupancy remains private.
PrX=1)=Pr(X=0)=0.5.
Temperature is equal to the set Temperature is modeled as a
temperature. random variable.

|min ¢ Tmax
| % | / .
& \ H ¥4 e
y i d =
Ts=20C  Temperature (Y) Temperature (Y)
Tenant is present (X=1) Tenant is absent (X=0)

m Z: sensor measurement

Sensor e Z =Y + N ‘_____Measuremenﬁ
measurement noise

Nekouei et al., 2018

using ¥V’
l = l l l m Estimate temperature reliably.
¥ &N

35
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Example: Privacy-aware Estimator

X: occupancy (private) Occupancy  Temperature’s measurement  C>umate of temperature Estimate of occupancy

» X = 1 = Tenantis at home.

using ¥’
l =t l l l m Estimate temperature reliably.
. N

» X = 0 = Tenant is absent. Z Esti Y Esti — XV . ’
w mL of X @) g Ensure the occupancy remains private.
PrX=1)=Pr(X=0)=0.5.
05 T T T T T T 18 x10? T T T T T
N 2 ,
045 Optimal perfect-privacy estimator/ 1o Normalized MSE = & [(y B Y(Zd)) ] = /
minimize E IL (Y. ¥ (Z))I 04 14 Optimal perfect-privacy estimatol
{Pii} —
5,035 w 1.2
Pji>0,Vi = e
= 03 F
D Pi=1. Vi b i
n ©
7 o025 gos
y * 206
02 X
HX[T @] 2 Ho Optimal classical estimator
0.15 (X 0.4 Optimal classical estimator
0.1 02
005 . \ . \ . , ° . , \ \
0 01 02 03 04 05 06 0 01 02 03 04 05 06
Hg (Desired privacy level) Ho (Desired privacy level)

Tradeoff between privacy and accuracy: guaranteed estimation loss in X while not too much MSE excess in ¥

Nekouei et al., 2018

36
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Outlook: Adversarial learning
* models for some automated vehicles * Vulnerable to attacks during training or operation,
are based on deep neural networks e.g., small perturbations to expected images
* Trained from real or simulated data
Offine Maps vava vzl [Eykholt et al., CVPR, 2018] demonstrated attacks on deep
S S learning visual classification algorithms, which then classfied
::::;‘:::ji‘;’; Path Planning Decision Making stop signs with small markers as other road signs
g
8 a
; ))) (((. g Model Physical Dynamics by Sampling 8 8 8 Output er::::?
2 ] from Distribution @) o—* 45

. Environment Vehicle Control sz fo(z)
/ T t Target
sTOPf M sTop
[Brummelen et al., 2018] I\ B Stationary + Drive-By Testing
% i r ‘ !;
4 Nnp T
» . S’T - ISJP
1" - DMaSk o

Perturbed Stop Sign Under
Varying Distances/Angles

Input

How design safe learning schemes for automated vehicles?

38

38
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Conclusions

Growing importance of cyber-secure control systems,
motivated by evolving safety-critical infrastructure

Design tools needed to complement other security measures ™ T

Essential to model adversary objectives and resources

False-data injection attacks and protection / s

Remote estimation under privacy constraints

ensors
Actuators

(ar)= 2~

) 7o)

) \@/)('{ Physical Plant 2
(az — - \ /

e

sens:
51
53)
ag (54)
xj‘\@ P
T T/ ®

Many open problems, including adversarial learning,

cloud-based control, and operations under attack ~  — - R
AN }_I l’—{ /“/
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