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MSS-KSC

Semi-supervised classification:
Uses both unlabeled and labeled data to ob-
tain a better classification model, and better
predictions on unseen test data points.
# classes = # available class labels.
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20 Semi-supervised clustering:
Addresses the problem of exploiting
additional labeled data to adjust the cluster
membership of unlabeled data.
We do not have labeled data points from all
the existing clusters.
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MSS-KSC

Consider training data points

D = {x1, ..., xnu︸ ︷︷ ︸
Unlabeled

(DU )

, xnu+1, .., xn︸ ︷︷ ︸
Labeled

(DL)

},

where {xi}n
i=1 ∈ R

d .

the first nu data points do not have labels whereas the last nL = n − nu points
have been labeled.

assume that there are Q classes: then the label indicator matrix Y ∈ RnL×Q is
defined as follows:

Yij =

{
+1 if the i th point belongs to the j th class
−1 otherwise.
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MSS-KSC

Core

Model

KSC

Label Info

Regularization

Optimal

Model

Primal:
MSS-KSC is formulated as follows: [see1]

min
w(`),b(`),e(`)

1

2

Q∑
`=1

w(`)T
w(`) −

γ1

2

Q∑
`=1

e(`)T
Ve(`) +

γ2

2

Q∑
`=1

(e(`) − c(`))T A(e(`) − c(`))

subject to e(`) = Φw(`) + b(`)1n, ` = 1, . . . ,Q,

Dual:

γ2

(
In −

R1n1T
n

1T
n R1n

)
c(`) = α(`) − R

(
In −

1n1T
n R

1T
n R1n

)
Ωα(`), ` = 1, . . . ,Q.

1Siamak Mehrkanoon et al. “Multiclass semisupervised learning based upon kernel
spectral clustering”. In: IEEE transactions on neural networks and learning systems
26.4 (2014), pp. 720–733.
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MSS-KSC

The bias term becomes:

b(`) = (1/1T
n R1n)(−1T

n γ2c(`) − 1T
n RΩα(`)), ` = 1, . . . ,Q.

Considering the test set Dtest = {x test
i }Ntest

i=1 the score variables of the test points

become:

e(`)
test = Φtest w` + b(`)1Ntest = Ωtestα

(`) + b(`)1Ntest , ` = 1, . . . ,Q,

where Ωtest = Φtest Φ
T .

Realizing low embedding dimension to reveal the existing number of clusters.

Addressing both multi-class semi-supervised classification and clustering.

Existence of model selection scheme and out-of-sample property.
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MSS-KSC

Algorithm 1: Multi-Class Semi-Supervised Classification

Input: Training data set X , labels Z , the tuning parameters {γi}2
i=1, the kernel parameter (if any), the test set

Dtest = {x test
i }Ntest

i=1 and codebook CB = {cq}Q
q=1

Output: Class membership of test data points X test

1 Solve the dual linear system (6) to obtain {α`}Q
`=1 and compute the bias term {b`}Q

`=1 using (7).

2 Estimate the test data projections {e(`)
test}

Q
`=1 using (7).

3 Binarize the test projections and form the encoding matrix E = [sign(e(1)
test ), . . . , sign(e(Q)

test )]Ntest×Q for the

test points (Here e(`)
test = [e(`)

test,1, . . . , e(`)
test,Ntest

]T .)

4 ∀i , assign x test
i to class q∗, where q∗ = argmin

q
dH (e`test,i , cq ) and dH (·, ·) is the Hamming distance.
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MSS-KSC

Algorithm 2: Semi-Supervised Clustering

Input: Training data set X , labels Z , the tuning parameters {γi}2
i=1, the kernel parameter (if any), number of

clusters k , the test setDtest = {x test
i }Ntest

i=1 and number of available class labels i.e. Q

Output: Cluster membership of test data points X test

1 Solve the dual linear system (6) to obtain {α`}Q
`=1 and compute the bias term {b`}Q

`=1 using (7).

2 Binarize the solution matrix S = [sign(α(1)), . . . , sign(α(Q))]M×Q , where α` = [α`
1 , . . . , α

`
M ]T .

3 Form the codebook CB = {cq}
p
q=1, where cq ∈ {−1, 1}Q , using the k most frequently occurring encodings

from unique rows of solution matrix S.

4 Estimate the test data projections {e(`)
test}

Q
`=1 using (7).

5 Binarize the test projections and form the encoding matrix E = [sign(e(1)
test ), . . . , sign(e(Q)

test )]Ntest×Q for the

test points (Here e`test = [e`test,1, . . . , e`test,Ntest
]T ).

6 ∀i , assign x test
i to class/cluster q∗, where q∗ = argmin

q
dH (e`test,i , cq ) and dH (·, ·) is the Hamming distance.
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MSS-KSC
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MSS-KSC
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MSS-KSC
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MSS-KSC

Table: Average Accuracy for four data sets

Method
Dataset # of CL Dtrain

Labeled/D
train
Unlabeled/D

test MSS-KSC LapSVMp means3vm-iter means3vm-mkl

Wine 3 36/107/35 0.96± 0.02 0.94± 0.03 0.95± 0.02 0.94± 0.07
Iris 3 30/90/30 0.89± 0.08 0.88± 0.05 0.90± 0.03 0.89± 0.01
Zoo 7 21/60/20 0.93± 0.05 0.90± 0.06 0.88± 0.02 0.89± 0.07
Seeds 3 42/126/42 0.90± 0.04 0.89± 0.03 0.88± 0.07 0.89± 0.02

Table: Comparison of KSC and MSS-KSC for image segmentations

D Dval F-measure Variation of information
Image ID Q Du DL Du DL KSC MSS-KSC KSC MSS-KSC

372019 3 500 6 3000 6 0.40 0.44 2.83 2.44
385039 5 500 14 3000 12 0.48 0.48 3.20 3.18
388067 3 500 6 3000 6 0.60 0.74 4.61 4.50

8049 3 500 6 3000 7 0.70 0.75 2.22 2.07

Note: For variation of information the lower the value the better, whereas for F-measure the higher value the better
the segmentation is.
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Fixed-Size MSSKSC (FS-MSS-KSC)

Fixed-Size MSS-KSC (FS-MSSKSC). [see2]

Reduced Kernel Techniques (RD-MSSKSC)

Random Fourier Features (RFF-MSSKSC) [see3]

2Siamak Mehrkanoon and Johan AK Suykens. “Large scale semi-supervised
learning using KSC based model”. In: IEEE International Joint Conference on Neural
Networks (IJCNN). 2014.

3Siamak Mehrkanoon and Johan AK Suykens. “Scalable Semi-supervised kernel
spectral learning using random Fourier features”. In: IEEE Symposium Series on
Computational Intelligence (SSCI). 2016.
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Fixed-Size MSSKSC (FS-MSS-KSC)

Nyström approximation

We work with a subsample (prototype vectors) of size m� n.

The i-th component of the m-dimensional feature map, for any point x ∈ Rd , can
be obtained as follows:

ϕ̂i (x) =
1

λ
(s)
i

m∑
k=1

uki K (xk , x)

where λ(s)
i and ui are eigenvalues and eigenvectors of the kernel matrix Ωm×m.

The explicit m-dimensional feature map ϕ̂ : Rd → R
m for the given point x ∈ Rd :

ϕ̂(x) = [ϕ̂1(x), . . . , ϕ̂m(x)]T
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Fixed-Size MSSKSC (FS-MSS-KSC)

Given m-dimensional approximation to the feature map, i.e.

Φ̂ = [ϕ̂(x1), . . . , ϕ̂(xn)]T ∈ Rn×m

one can rewrite the optimization problem as an unconstrained optimization problem:

min
w(`),b(`)

J(w (`), b(`)) =
1
2

Q∑
`=1

w (`)T
w (`)−

γ1

2

Q∑
`=1

(Φ̂w (`) + b(`)1N
T

)T V (Φ̂w (`) + b(`)1N )+

γ2

2

Q∑
`=1

(c(`) − Φ̂w (`) + b(`)1n)T A(c(`) − Φ̂w (`) + b(`)1n)
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Fixed-Size MSSKSC (FS-MSS-KSC)

The solution is given by: [see4][
w (`)

b(`)

]
=

(
ΦT

e RΦe + I(m+1)

)−1
γ2ΦT

e c(`), ` = 1, . . . ,Q,

The score variables evaluated at the test set Dtest = {xi}ntest
i=1 become:

e(`)
test = Φ̂testw (`) + b(`)1ntest ` = 1, . . . ,Q,

where Φ̂test = [ϕ̂(x1), . . . , ϕ̂(xntest )]T ∈ Rntest×m.

4Siamak Mehrkanoon and Johan AK Suykens. “Large scale semi-supervised
learning using KSC based model”. In: IEEE International Joint Conference on Neural
Networks (IJCNN). 2014.

17 / 56



Outline Semi-Supervised Learning Large Scale Problems Incremental Learning Domain Adaptation Neural-Kernel Model

Fixed-Size MSSKSC (FS-MSS-KSC)

Table: The average test accuracy and computation time of the FS-MSSKSC models [Mehrkanoon & Suykens,
WCCI-IJCNN 2014] on real-life datasets over 10 simulation runs.

Dataset DL
tr DU

tr Dtest Test Accuracy (Training/Test) time (S)

Shuttle 4,000 12,000 11,599 0.993 0.05/0.08
8,000 24,000 11,599 0.995 0.12/0.04

IJCNN 4,000 20,000 28,338 0.935 0.16/0.30
16,000 80,000 28,338 0.955 1.31/0.60

Skin 8,000 40,000 49,011 0.997 0.18/0.29
32,000 160,000 49,011 0.998 1.50/0.76

Cod-rna 8,000 40,000 66,230 0.959 0.27/0.40
32,000 160,000 66,230 0.962 2.26/1.21

Covertype 8,000 40,000 116,202 0.732 0.25/0.85
64,000 320,000 116,202 0.781 7.76/3.09

SUSY 500,000 1,000,000 1,000,000 0.771 2.05/1.61
1,000,000 2,000,000 1,000,000 0.783 5.87/2.61
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I-MSS-KSC

An incremental semi-supervised clustering algorithm (I-MSS-KSC):

Initialize the model using (MSS-KSC)

Read new data points

Provide the labels for some of the data points (Optional)

Predict the cluster membership of arriving data points

Update the model
19 / 56
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I-MSS-KSC

Modes of implementation:

Two possibilities: [see5]

I-MSS-KSC (-): the labels are only provided in the first
stage, i.e. just for obtaining the initial cluster
representatives and the subsequent set of data points do
not have any label information.
I-MSS-KSC (+): the user can also provide the labels for
some of the subsequent set of data points.

5Siamak Mehrkanoon, Oscar Mauricio Agudelo, and Johan AK Suykens.
“Incremental multi-class semi-supervised clustering regularized by Kalman filtering”.
In: Neural Networks (2015).
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I-MSS-KSC
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I-MSS-KSC

Fixed labels in time...
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I-MSS-KSC
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RSP-KCCA

Common assumptions of ML algorithms:

Both training and test data exhibit the same distribution.

Fully labeled training data.

Same feature domains.

Stationary datasets.

However:
Collecting training data in different domains is costly.

Statistical properties evolve in time.

Performance often drops significantly when the model is presented with data
from a new domain.
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RSP-KCCA

Aim:
To transfer source knowledge and adapt it to new target
domains ( with different distribution, feature domains and
dimesntions).

Spam filtering problem.

Cross-domain action recognition, document classification, speech recognition.
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RSP-KCCA

Office dataset

Webcam and DSLR domains

10 classes: Calculator, Headphones, Computer-Keyboard, Computer-Monitor, Coffee mug, and etc.

Homogeneous domains (800 dimensional features)
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RSP-KCCA

Learning types:

Unsupervised domain-adaptation
Supervised domain-adaptation
Semi-Supervised domain-adaptation

Domain types:

Homogeneous domains
Xs = Xt (same feature space), but P(Xs) 6= P(Xt)

Heterogeneous domains
Xs 6= Xt , but P(Xs) 6= P(Xt)
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RSP-KCCA

Side Information
Often side information in the form of correspondence instances
(paired instances) are available for either unlabeled or labeled
instances across domains.

D
om

ai
n
1

D
om

ai
n
2
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RSP-KCCA

Let D(1) = { x (1)
1 , ..., x (1)

np︸ ︷︷ ︸
paired and unlabeled

(D(1)
p,ul )

}, and D(2) = { x (2)
1 , ..., x (2)

np︸ ︷︷ ︸
paired and unlabeled

(D(2)
p,ul )

},

denote np training observations of x (1) and x (2) from two domains.

CCA

The objective of CCA is to find basis vectors w (1) and w (2) such that the projected
variables w (1)T x (1) and w (2)T x (2) are maximally correlated:

max
w(1),w(2)

ρ =
w (1)T C12w (1)√

w (1)T C11w (1)

√
w (2)T C22w (2)

where C11, C12 and C22 are the covariance matrices.

CCA measures the linear relationship.
Kernel CCA.
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RSP-KCCA

Primal:
LS-SVM formulation to kernel CCA [see6]

max
w(1),w(2),e,r

µeT r −
γ1

2
eT e −

γ2

2
rT r −

1
2

w (1)T
w (1) −

1
2

w (2)T
w (2)

subject to e = Φ
(1)
c w (1),

r = Φ
(2)
c w (2),

(1)

Dual: [
0 Ω

(2)
c

Ω
(1)
c 0

][
α
β

]
= λ

[
γ1Ω

(1)
c + IN 0
0 γ2Ω

(2)
c + IN

][
α
β

]

6Johan_book.
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RSP-KCCA

Unlabeled + labeled semi-paired data

Assume that we are given two training datasets

D(1) = { x (1)
1 , ..., x (1)

np︸ ︷︷ ︸
paired

(labeled/unlabeled)

(D(1)
p,ul∪D

(1)
p,l )

, x (1)
np+1, .., x

(1)
n1︸ ︷︷ ︸

unpaired
(unlabeled)

(D(1)
up,ul )

, x (1)
np+1, .., x

(1)
N1︸ ︷︷ ︸

unpaired
(labeled)

(D(1)
up,l )

},

and

D(2) = { x (2)
1 , ..., x (2)

np︸ ︷︷ ︸
paired

(labeled/unlabeled)

(D(2)
p,ul∪D

(2)
p,l )

, x (2)
np+1, .., x

(2)
n2︸ ︷︷ ︸

unpaired
(unlabeled)

(D(2)
up,ul )

},
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RSP-KCCA

Setup

Only a small number of paired labeled data points from both domains are
available.

Source dataset is equipped with additional unpaired labeled instances during
training.

Assuming that there are Q classes, the label indicator matrix Y (1) ∈ RnL1
×Q for

the source domain:

Y (1)
ij =

{
+1 if the i-th point belongs to the j-th class
−1 otherwise, (2)

Similarly one can define the label indicator matrix Y (2) ∈ RnL2
×Q for the target

domain.
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RSP-KCCA

Primal:
Regularized Semi-Paired kernel canonical correlation analysis

max
w(1)
`
,w(2)

`
,r`,e`

µ
Q∑
`=1

eT
` Ar` −

1
2

2∑
j=1

Q∑
`=1

w (j)
`

T
w (j)
`

−
1
2

Q∑
`=1

e`T V1e` −
1
2

Q∑
`=1

r`T V2r`

+
γ3

2

Q∑
`=1

eT
` c(1)
` + rT

` c(2)
`

subject to e` = Φ
(1)
c w (1)

` , ` = 1, . . . ,Q,

r` = Φ
(2)
c w (2)

` , ` = 1, . . . ,Q,
(3)

Here:

C(1) = [c(1)
1 , . . . , c(1)

Q ]n1×Q =

[
Y (1)

0nu1 ×Q

]

C(2) = [c(2)
1 , . . . , c(2)

Q ]n2×Q =

[
Y (2)

0nu2 ×Q

]

A =

[
Inp×np 0np×n2−np

0N1−np×np 0N1−np×n2−np

]

V1 = γ1P1 + (1− γ1)L1 and
V2 = γ2P2 + (1− γ2)L2 where P2 is defined
as previously and P1 is defined as follows:

P1 =

[
Inp×np 0np×N1−np

0N1−np×np 0N1−np×N1−np

]

seea for more details.

aSiamak Mehrkanoon and Johan AK Suykens. “Regularized Semipaired Kernel
CCA for Domain Adaptation”. In: IEEE Transactions on Neural Networks and Learning
Systems (2017). 33 / 56
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RSP-KCCA

Dual: [
V1Ω

(1)
c + IN1 −µAΩ

(2)
c

−µAT Ω
(1)
c V2Ω

(2)
c + In2

][
α`
β`

]
= γ3

[
c(1)
`

c(2)
`

]
, ` = 1, . . . ,Q, (4)

α`, β` are Lagrange multiplier vectors.

Ω
(1)
c and Ω

(2)
c are the centered kernel matrices.
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RSP-KCCA

The score variables for the training dataset of the source and target domains can be
expressed as follows: z`e = Φ

(1)
c w (1)

` = Ω
(1)
c α` ` = 1, . . . ,Q,

z`r = Φ
(2)
c w (2)

` = Ω
(2)
c β` ` = 1, . . . ,Q.

Here, Ω
(1)
c and Ω

(2)
c are the centered kernel matrix calculated as

Ω
(1)
c = M(1)

c Ω(1)M(1)
c

Ω
(2)
c = M(2)

c Ω(2)M(2)
c

with centering matrix

M(1)
c = IN1 −

1
N1

1N1 1T
N1

and M(2)
c = In2 −

1
n2

1n2 1T
n2

.
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RSP-KCCA

Synthetic example
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RSP-KCCA

Multiple Features Dataset
It contains ten classes, (0− 9), of handwritten digits

200 images per class, thus for a total of 2000 images.

six different types of features (heterogeneous features)

Table: Comparing the average test accuracy of the proposed RSP-KCCA model with those of mSDA model.

mSDA RSP-KCCA
Source domain fac fou kar mor pix zer fac fou kar mor pix zer

fac 0.9601 0.1840 0.2453 0.3000 0.6217 0.3743 0.9560 0.7683 0.8987 0.6510 0.9233 0.7190
fou 0.6597 0.7953 0.3350 0.3003 0.6123 0.4147 0.8573 0.7993 0.8520 0.6360 0.7853 0.7860
kar 0.6457 0.3170 0.9440 0.2810 0.5483 0.3487 0.9270 0.7780 0.9454 0.6583 0.9540 0.7947
mor 0.5410 0.4083 0.2420 0.6976 0.5167 0.3230 0.7503 0.6857 0.8290 0.7344 0.7920 0.7347
pix 0.6243 0.1733 0.3480 0.2313 0.9644 0.3823 0.9503 0.7817 0.9177 0.6253 0.9590 0.7773
zer 0.6920 0.2697 0.2333 0.2943 0.5770 0.8031 0.8400 0.7837 0.8040 0.6340 0.8773 0.8063
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ANN vs. Kernel Model

ϕ(.)

space X

Feature space on X

set of constraints

Target space

wTϕ(.)

RKHS

Gaussian process (probabilistic setting)

LSSVM (optimization setting)
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ANN vs. Kernel Model

ANNs

X

W

f (·)

The nonlinear activation function is
applied on the weighted sum of the
given input instance.

Nonlinear in W.

Kernel

X

W

Φ̂(·)

Weighted sum of the projected
sample.

Linear in the W.

Capable of learning nonlinear
decision boundaries.
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ANN vs. Kernel Model

I
n
pu

t

H
id
d
en

L
ay
er

O
u
tp
u
t

x
h

y

I
n
pu

t

O
u
tp
u
t

x y

ϕ(·)

P
ro
je
ct
io
n
S
p
ac
e

Implicit feature mapping: the projection space corresponds
to a hidden layer in a neural network with infinite number of
neurons.
The dimension of the explicit feature map corresponds to
the number of hidden units in the hidden layer of a neural
network architecture.
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Deep Neural Kernel Networks

Assuming that an explicit feature map is given, we formulate a two layer hybrid
architecture as follows

h1 = W1x + b1, h2 = ϕ̂(h1), S = W2h2 + b2,

where W1 ∈ Rd1×d and W2 ∈ RQ×d2 are weight matrices and the bias vectors are
denoted by b1 and b2. see7

ϕ̂(.)

F
u
ll
y
C
on

n
ec
te
d

misclassification loss

x
S(x)

F
u
ll
y
C
on

n
ec
te
d

h1(x) h2(x)
Figure: Deep hybrid neural kernel network architecture

7Siamak Mehrkanoon and Johan AK Suykens. “Deep hybrid neural-kernel
networks using random Fourier features”. In: Neurocomputing 298 (2018), pp. 46–54.

41 / 56



Outline Semi-Supervised Learning Large Scale Problems Incremental Learning Domain Adaptation Neural-Kernel Model

Deep Neural Kernel Networks

The formulation of the proposed method is as follows:

min
W1,W2,b1,b2

J(W1,W2, b1, b2) =
1
2

Tr(W1W T
1 ) +

1
2

Tr(W2W T
2 ) +

γ1

n

n∑
i=1

L(xi , yi ).

Here the cross-entropy loss is used.

The stochastic gradient descent algorithm is used to train the model.

The score variable for the test point xtest are computed as follows:

Stest = W2 ϕ̃(W1xtest + b1) + b2

.The final class label for the test point xtest is computed by:

ŷtest = argmax
`=1,...,Q

(Stest)

.
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Deep Neural Kernel Networks

Table: The average accuracy of the proposed deep model and the shallow LS-SVM with implicit and explicit
feature maps on several real-life datasets.

Shallow LS-SVM

Dataset n d Hybrid Deep Model Primal Dual

Australian 690 14 0.85± 0.01 0.81± 0.01 0.83± 0.01

Sonar 208 60 0.75± 0.04 0.69± 0.07 0.70± 0.05

Titanic 2201 3 0.78± 0.01 0.77± 0.02 0.78± 0.01

Monk2 432 6 1.00± 0.00 0.93± 0.05 0.95± 0.02

Balance 625 4 0.96± 0.01 0.93± 0.02 0.94± 0.01

Magic 19,020 10 0.86± 0.04 0.84± 0.01 0.84± 0.01

Covertype 581,012 54 0.85± 0.03 0.78± 0.01 N.A

SUSY 5,000,000 18 0.80± 0.02 0.78± 0.01 N.A

Note: “N.A” stands for Not Applicable due the large size of the dataset.
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Deep Neural Kernel Networks
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Deep Neural Kernel Networks
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Cross-Domain Neural-Kernel Netwroks
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Cross-Domain Neural-Kernel Netwroks
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Cross-Domain Neural-Kernel Netwroks
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Conclusion
Overview of the Multi-Class Semi-Supervised Classification/Clustering algorithm
(MSS-KSC), [IEEE-TNNLS 2015].

Overview of the Fixed-size MSS-KSC for making MSS-KSC applicable for large
scale data, [WCCI-IJCNN 2014].

Overview of the Incremental MSS-KSC model for semi-supervised
classification/clustering of streaming datasets [Neural Networks 2015].

Overview of the Regularized Semi-Paired Kernel Canonical Correlation Analysis
model for Domain Adaptation Problems. [IEEE-TNNLS 2017].

Overview of the neural-kernel networks. [Neurocomputing 2018, Neural
Networks 2019, Pattern Recognition Letters 2019].
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Some other research works: Link
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https://sites.google.com/view/siamak-mehrkanoon/projects
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Thank you for
your attention!
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