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Meta-analytical approaches in systematic reviews of
prognosis studies

Trusted evidence.

Informed decisions.
Better health.
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Reviews of prognosis studies

* Focus on MA of prognostic prediction models

* Everything also applies to MA of diagnostic prediction models
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Numerous prognostic models for same
target population + outcomes

>350 models for predicting cardiovascular disease
>100 models for brain trauma patients
>100 diabetes type 2 models

> 60 models for breast cancer prognosis
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Need for systematic reviews

Abundance of CPMs, with poor understanding of
* The comparative performance of these CPMs
* The consistency of accuracy and predictions across CPMs

* The clinical impact of these CPMs

 Systematicreview and MA validation studies of one or more certain models may
help to identify promising models and evaluate the need for furtherimprovements
of these models.
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Why do we need meta-analysis?

Quantitative synthesis (meta-analysis) may help

* To summarize the predictive performance of a certain CPM across multiple
validation studies

* To evaluate whether a certain CPM yields consistently good performance across
different populations, outcomes, etc.

* To establish boundaries of applicability and generalizability

* To identify possible improvements of CPMs
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Is MA even possible?

* You need multiple validation studies of same model!

* Example: Prognostic prediction models for cardiovascular disease

Top 5 validated models “

Framingham (Wilson 1998) 80
Framingham (Anderson 1991 Am H J) 73
SCORE (Conroy 2003) 63
Framingham (D'Agostino 2008) 44

Framingham (no reference) 32
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Is MA of prediction models even possible?

* Model validation studies are increasingly common!
E.g. Framingham, EuroSCORE, Gall, ...

* Reporting of model validation studies is steadily improving!
E.g. due to reporting guidelines (TRIPOD+AI)

orenaccess  TRIPOD+AI statement: updated guidance for reporting

[ ) Check for pdates clinical prediction models that use regression or machine
learning methods
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RESEARCH METHODS AND REPORTING
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® model performance

CrossMark

ekl Thomas P A Debray,? Johanna A A G Damen,'? Kym | E Snell,? Joie Ensor,? Lotty Hooft,'?
Johannes B Reit

SMMR

Seatistical Methods in Medical Research
o) 1-19
E) The fusthor{s) 2018

A framework for meta-analysis of T
prediction model studies with binary Nepeis and permision:

sagepub.co.ukijournalsPermissions. nay

and time-to-event outcomes DOL 10.1177/096228021 6785504

journals sagepub com/homelsmm

®SAGE

Article

Thomas PA Debray,'” ® Johanna AAG Damen, '+
Richard D Riley,” Kym Snell,” ©® Johannes B Reitsma,'"*
Lotty Hooft,"? Gary S Collins* ® and Karel GM Moons'?



= N Cochrane Methods
N Prognosis

Illustrative example: EuroSCORE

Predicting 30 day mortality after cardiac surgery
* Cardiac surgery in high-risk population
* Need for risk stratification

* Establishrisk profile of cardiac surgical patients using multivariable prediction
models

* Establish prediction model performance




- W Cochrane Methods
N Prognosis

Illustrative example: EuroSCORE

Patient related factors Cardiac related factors

Gender D CCS class 4 angina 8 no “v D
EE ca;:l?:}a'irgir.;gf:r :0( creatinine  |normal (CC =85mljmin) EI LV function [select v |D |
clegrance

Extracardiac arteriopathy * ng D Recent MI ® no % D
Poor mobility * o ] Pulmonary hypertension [no v]o |
Previous cardiac surgery na “ EI Operation related factors

Chronic lung disease * D Urgency ' I:I
Active endocarditis ® no v EI Weight of the intervention 2 ICI
Critical preoperative state 7 D Surgery on thoracic aorta no % D
Diabetes on insulin D

EuroSCORE
T o

T Sl Calculate
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Illustrative example: EuroSCORE

Population Patients undergoing coronary artery bypass grafting
Intervention The (additive) EuroSCORE model

Comparator Not applicable

Qutcome(s) All cause mortality

Timing 30 days, predicted using peri-operative conditions

Setting risk stratification in the assessment of cardiac surgical results
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Quantitative data extraction
and preparation

Trusted evidence.

Informed decisions.
Better health.
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Recap: what are validation studies?

* Test a previously developed prediction model into new individuals
— Same population
- Different but related population

* Evaluate the predictive accuracy
— Overall performance
—- Calibration
— Discrimination
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Calibration table - good model?

External validation of EuroSCORE

Expected mortality (%) versus observed in-hospital mortality

Soe [N |bpeced | Observed
0-2 201 1.4 0.5

3-5 309 4.0 1.0
6-8 181 6.8 2.2
>=9 66 10.5 3.0
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Discrimination

* Quantifies the model’s extent to distinguish between events and non-events

* Visualinspection
- Receiving Operating Characteristics (ROC) curve

* Summary statistics
— Concordance (c) index
— Area underthe ROC curve (AUC)
— Discrimination slope
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Quantitative data extraction and preparation

Common problems in data extraction
Selective/inconsistent reporting
Incomplete assessments (e.g. calibration)

Missing estimates of precision (e.g. standard error)

Solutions

C-statistic, O:E ratio and calibration slope can often be derived from reported
information

Several approximations have been proposed to obtain estimates for missing
standard errors
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Quantitative data extraction and preparation

metamisc: Diagnostic and Prognostic Meta-Analysis

Meta-analysis of diagnostic and prognostic modeling studies. Summarize estimates of prognostic factors, diagnostic test accuracy and prediction model
performance. Validate, update and combine published prediction models. Develop new prediction models with data from multiple studies.

Version: 019

Depends: R (= 3.2.0), stats, graphics

Imports: metafor (= 2.0.0), mvtnorm, ellipse Imed plyr, ggplot?
Suggests: runjags. rjags. testthat (= 1.0.2)

Published: 2018-05-13

Author: Thomas Debray [aut, cre]. Valentyn de Jong [aut]
Maintainer: Thomas Debray <thomas debray at gmail com>=
License: GPL-3

URL: http://r-forge r-project.org/projects/metamisc/
NeedsCompilation: no

In views: MetaAnalysis

CRAN checks: metamisc results

Downloads:

Reference manual: metamisc pdf
Package source: metamisc_0.1.9 tar gz

Windows binaries: r-devel: metamise 0.1.9 zip. r-release: metamisc 0.1.9 zip r-oldrel: metamise 0.1.9 zip

0% X binaries: r-release: metamisc_0.1.9.tgz, r-oldrel: metamisc 0.1.9.tgz
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Quantitative data extraction and preparation

Information on case-mix variation

* Mean & standard deviation of key subject characteristics

* Mean & standard deviation of the linear predictor

Information on key study characteristics
* Location

* Standards w.r.t. treatments, patient referral, ...
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Illustrative example: EuroSCORE

Predictive performance of the EuroSCORE

C-statistic
* Summary statistic reported in 20 validations

 SE approximated for 7 studies

O:E

* Relevant information obtained for 21 validations
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Illustrative example:
EuroSCORE

Cochrane Methods
Prognosis

Mesquita 2008
Youn 2007
Bridgewater 2003
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Nashef 2001*
Asimakopoulos 2003
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Yap 2006
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Meta-analysis

Trusted evidence.
Informed decisions.
Better health.
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Fixed or random effects meta-analysis?

Fixed effect meta-analysis
* The model’s true predictive accuracy is the same for all validation studies

* Variation in predictive accuracy only appears due to chance

Random effects meta-analysis
* The model’s true predictive accuracy differs across validation studies

* Variation in predictive accuracy arises from sampling error and between-study
heterogeneity
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Meta-analysis

* Homogeneous model performance often unrealistic

* Validation studies typically differ in design, execution and case-mix variation
* Ignoring heterogeneity leads to an overly precise summary result

* Summary estimates of predictive accuracy have limited usefulness when there is
strong heterogeneity
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Meta-analysis

* Traditional meta-analysis methods approximate within-study variability with a
Normal distribution. This approximation may introduce bias or show other poor
statistical properties when...

— The c-statisticor O:EratioisclosetoOor 1

* Need for transformations!
— Meta-analysis of logit c-statistic
— Meta-analysis of log O:E ratio
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Quantifying heterogeneity

* Prediction interval

» Combines the standard error of the summary estimate with the estimate for
between-study variability

* Typically based on Student’s t distribution
* Provides a range for the potential predictive accuracy in a new validation study

* Ideally calculated from 10 or more validation studies
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Illustrative example: EuroSCORE

Meta-analysis “ 95% ClI 95% P

C-statistic 0.76 - 0.80 0.73-0.83

O:E ratio 19 0.55 0.43 -0.69 0.20 - 1.53
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Investigating heterogeneity
across studies

Trusted evidence.

Informed decisions.
Better health.
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Investigating heterogeneity across studies

Meta-regression to adjust the meta-analysis for study-level variables

* Study characteristics
- Study design, follow-up, ...
- Predictor- and outcome definitions

 Population characteristics
- Distribution of linear predictor orindividual covariates
- Treatment standards (beware of ecological fallacy)
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Illustrative example: EuroSCORE

Adjustment for case-mix variation
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Sensitivity analyses

Trusted evidence.
Informed decisions.
Better health.
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Sensitivity analyses

Evaluate the robustness of drawn conclusions

Influence of low(er) quality validation studies
Influence of key modelling assumptions

* Use of “exact” likelihood models

» Joint pooling of discrimination and calibration
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Illustrative example: EuroSCORE

C-statistic 0.76 - 0.80 0.73-0.83
Low 4 0.80 0.73-0.85 0.66 - 0.89
O:E ratio All 19 0.55 0.43 - 0.69 0.20 - 1.53

Low 3 0.57 0.10-3.33 0.02 -19.15
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Apply your knowledge!

Damen et al. BMC Medicine (2019) 17:109

https/dol.org/10.1186/512916-019-1340-7 BMC MEdlCIrle

RESEARCH ARTICLE Open Access

Performance of the Framingham risk models
and pooled cohort equations for predicting
10-year risk of cardiovascular disease:

a systematic review and meta-analysis

Johanna A. Damen"* @, Romin Pajouheshnia’, Pauline Heus'~, Karel G. M. Moons'~, Johannes B. Reitsma'~,
Rob J. P. M. Scholten'?, Lotty Hooft' and Thomas P. A. Debray'~
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Questions (focus on men only!)

1. Formulate the PICOTS of the review

2. How many studies were included in the systematic review? How many validations were
included in the meta-analysis of the OE ratio of the PCE? Explain the difference.

3. Whatare the pooled estimates of the c-statistic (including Cl and PI) of the 3 models? How
would your interpret these values?

4. What are the pooled estimates of the OE ratio (including Cl and PI) of the 3 models? How
would you interpret these values?

5.  Isthere alot of heterogeneity (i.e. variation) in the meta-analysis of the c-statistic? And the
OE ratio? What could be causing this heterogeneity? Explain your answers.

6.  What would be your advise for using these models in clinical practice?
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PICOTS

Population General population

Index model PCE

Comparator model Framingham Wilson and ATP I

Outcome(s) Coronary heart disease (CHD) or cardiovascular disease (CVD)
Timing 10 year

Setting Primary care and public health
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Heterogeneity?

Huge differences in performance between studies (especially in OE ratio)

Clinical practice?

Broad prediction intervals
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Closing remarks

Trusted evidence.
Informed decisions.
Better health.
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Closing remarks

Many similarities to other types of meta-analysis, however:

» Data extraction more difficult
* Heterogeneity more common

« Summary estimates less meaningful

Need to focus more on
* Quantifying between-study heterogeneity

* Assessing sources of variability in model performance
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Handy tools/papers

Debray TPA et al. Anew framework to enhance the interpretation of external validation
studies of clinical prediction models. J Clin Epidemiol 2015.

Debray TPA et al. A guide to systematic review and meta-analysis of prediction model
performance. BMJ 2017.

Debray TPA et al. A framework for meta-analysis of prediction model studies with binary and
time-to-event outcomes. Stat Methods Med Res 2018.

Snell KIE et al. Multivariate meta-analysis of individual participant data helped externally
validate the performance and implementation of a prediction model. J Clin Epidemiol 2015.

Snell KIE et al. Prediction model performance across multiple studies: which scale to use for
the c-statistic and calibration measures? Stat Met Meth Res 2017.
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