
tangram

An open platform for modular, real-time air traffic management research

Xavier Olive Junzi Sun Xiaogang Huang Michel Khalaf

3rd/4th April 2025

1/24



History & Background



ICRAT 2020 – Paper accepted

2/24



Going real-time

Idea of the paper: based on historical Mode S data, we labelled turbulence, assessed the
temporal and spatial consistency in results, compared with SIGMETs, etc.

Informal chat with Bordeaux ACC: “can we try it real-time?”

• Ok… so, let’s try to go real-time, we just need to get the raw data feed, decode it and run
the same algorithm. “Hold my beer…”

• Ok... not really...

We hired a Master student, part-time for one year (2021–2022), to develop a proof of concept.

• Michel Khalaf, learns about aviation, ADS-B, Python, JavaScript, concurrency, distribution,
pyModeS, traffic, web services, etc. and gets a first platform running

3/24



Going real-time

Idea of the paper: based on historical Mode S data, we labelled turbulence, assessed the
temporal and spatial consistency in results, compared with SIGMETs, etc.

Informal chat with Bordeaux ACC: “can we try it real-time?”

• Ok… so, let’s try to go real-time, we just need to get the raw data feed, decode it and run
the same algorithm. “Hold my beer…”

• Ok... not really...

We hired a Master student, part-time for one year (2021–2022), to develop a proof of concept.

• Michel Khalaf, learns about aviation, ADS-B, Python, JavaScript, concurrency, distribution,
pyModeS, traffic, web services, etc. and gets a first platform running

3/24



Going real-time

Idea of the paper: based on historical Mode S data, we labelled turbulence, assessed the
temporal and spatial consistency in results, compared with SIGMETs, etc.

Informal chat with Bordeaux ACC: “can we try it real-time?”

• Ok… so, let’s try to go real-time, we just need to get the raw data feed, decode it and run
the same algorithm. “Hold my beer…”

• Ok... not really...

We hired a Master student, part-time for one year (2021–2022), to develop a proof of concept.

• Michel Khalaf, learns about aviation, ADS-B, Python, JavaScript, concurrency, distribution,
pyModeS, traffic, web services, etc. and gets a first platform running

3/24



Proof of concept

4/24



Experiment on May 6th 2022

“We expect a lot of turbulence today, can we try it now?”

“The proxy server could not handle the request GET /turbulence/stable. Reason: Error reading
from remote server.”

“Please select ‘Disable cache’ in the Network tab of your browser’s developer tools.”

“Ok, it’s working now, but it’s very slow.”

“Let me check the server logs… oh, the CPU is at 100%.”

“So we just phoned the tower in Perpignan, the pilot says there was not much turbulence.”

5/24



Return on experience

ATCOs are ideal “guinea pigs” for your projects: curious, open-minded, tech-savvy and very
happy to help and provide feedback.

We hit serious performance issues when more than one device was connected.

IT was constantly complaining about CPU usage on DMZ servers.
(Why do they have my phone number?)

It is very difficult to take feedback into account when working on real-time data.

6/24



<joke></joke>

Suite à ma présentation de l’avancée de nos travaux, le conseiller du directeur des opérations
de la DSNA a émis l’idée que le sujet était intéressant et qu’il “devrait faire l’objet d’un accord
de partenariat spécifique avec l’ONERA pour cadrer les aspects juridiques et propriété
intellectuelle.”

Following my presentation of our work’s progress, the operations director’s advisor at DSNA
remarked that the topic was interesting and “should be the subject of a specific partnership
agreement with ONERA to address legal and intellectual property issues.”

7/24



Then Michel graduates… (2022)



Another Zoom meeting with Junzi

• “So, what do we do now?”

Lessons learned:

• Maintaining a real-time platform is hard: we don’t have time to do that
• Maybe this was not all about turbulence, but about the platform itself
• We should make it easier to develop and test new ideas
• We don’t have any frontend skills, and low backend competence
• Python is… great, but “ it’s complicated” kind of relationship
• We want to test methods on real-time data, not to develop a platform
• Michel spent most of his time on the platform, not on the method

8/24



Next steps

What do we want?

• FlightRadar24 is a great piece of engineering,
They can show off their ideas, and they do, but we can’t…

• OpenSky Network makes it legal to use the data, also real-time,
but on a low sample rate, and only state vectors

• Getting a legit real-time data feed is not easy, even with OpenSky,
but we have our own antennas/data feed

• We have all the history we need with OpenSky, let’s focus on real-time only History and
real-time are two different jobs

What can we do?

• Write proposals, get funding

9/24



Proposal accepted! (2023)

10/24



Now we have a project, serious
things start (2024)



First impressions after presenting the prototype

First impressions from Junzi and Xavier:

• This prototype is really complicated to explain
• Everything is messy and slow to run

First impressions from Xiaogang (and a bit more):

• I need containers (have you heard of Docker?)
• We need better tools, libraries, framework and technologies
• tangram is a set of components, it should be easy to deploy them on one single container,
or to distribute them over many.

Parameterization is key: tangram should work on Linux, should work on MacOS, should work at
home, should work at the office, should make IT happy, should work on the cloud, work on the
train, work on the plane, work at the beach, work on the Moon, etc.

11/24



Technologies used

• Backend remains based on/documented for Python:
• FastAPI for the REST API
• Redis (pub/sub framework) passes messages between components

• Frontend is based on Javascript (Vite, Vue.js)

• Podman (≈ Docker) for containerization

• Configuration through .env files (environment variables)

• Just for task automation (≈ Makefile)

• Rust for performance-critical components 1

Finding the right architecture has been an iterative process, it takes time, and it’s not over

1Do not over-engineer: Rust is great, but prototyping in Python is much easier

12/24



Overall structure (core components)

Web browser
[http://localhost:1234]

jet1090
decode Mode S messages

channel
Interface with pub/sub

system
system information

planes
all the state vectors

trajectory
data points for a single aircraft

cool plugin

Redis pub/sub

decode messages from TCP/UDP, Websocket, RTL-SDR

core components for tangram

any other plugin component

no storage here, only message passing

also adapts to the Leaflet bounding box,
filters, etc.
rewriting to Rust in progress...

tangram
REST API for various endpoints

frontend
vite.js framework with Vue components

App.vue (main component)

LeftSideBar.vue
TopNavBar.vue

AircraftCount.vue
AircraftTooltip.vue
AirportSearch.vue
FlightInfo.vue
Chart.vue
CityPair.vue
AwesomePlugin.vue

Figure 1: diagram

13/24



Backend: jet1090

• jet1090 takes the best of dump1090 and pyModeS (in Rust)
• decodes real-time ADS-B and Mode S data decoding.
• Input: raw data from antennas (TCP, UDP, Websocket, TCP over ssh, RTL-SDR, etc.)
• Output: decoded data (JSON) on stdout, table view, REST API, Redis pub/sub
• https://github.com/xoolive/rs1090, documentation: https://mode-s.org/jet1090

14/24

https://github.com/xoolive/rs1090
https://mode-s.org/jet1090


Backend: Redis

• Redis is a fast, open-source, in-memory key-value data store for use as a database, cache,
message broker, and queue.

• Here, Redis is used as a pub/sub framework to pass messages between components.

Components may:

• send messages with a topic on a Redis channel;
• subscribe to specific topics and receive messages matching it.

15/24



Backend: channel

• channel makes the interface between the Redis pub/sub and the browser.
• On the browser side, channel serves as a Websocket server.
• https://github.com/emctoo/channel

The main idea behind Websockets is to maintain a persistent, bidirectional connection between
client and server: real-time data exchange with minimal overhead (esp., no query mechanism).

Rule of thumb: if you need to query something regularly, it may be preferable to switch to a
Websocket based mechanism.

16/24

https://github.com/emctoo/channel


Backend: tangram

• tangram provides a simple RestAPI end point, based on FastAPI

• For example, it serves the full trajectories for a single aircraft,
useful on the map and for the plot charts.

17/24



Frontend: Vue components

Vue components are reusable self-contained pieces of user interface:

• a <template> section with HTML and placeholders,
• a <script> section with Javascript,
• a <style> is CSS (can be scoped)

<template>
<div class="component">

<h1>{{ title }}</h1>
</div>

</template>

<script>
export default {

name: "HelloWorldComponent",
data() {

return {
title: "Hello Vue!",

};
},

};
</script>

18/24



Frontend: a Vite/Vue based framework

The general architecture is described in App.vue:

• web pages are made of components;

In tangram:

• we distinguish core components (regular Vue files);
• and plugin components
(can be added, replaced, overridden and placed outside the tangram codebase)

• Variables can be passed between components through a “store”
from the state management library Pinia https://pinia.vuejs.org/

19/24

https://pinia.vuejs.org/


Demonstration and live coding



Overview

20/24



SIGMET

Extension:

Query an external service for current SIGMET and display them on the map.

Steps:

• Build a backend service to produce the proper structure and serve through tangram
• Write a Vue component to display the SIGMETs on the map

21/24



Highlight aircraft

Extension:

Highlight aircraft tracked by more than four sensors (useful for multilateration)

Steps:

• Listen to messages on Redis, maintain a structure counting sensors tracking each aircraft
• Publish the results on Redis
• Write a Javascript component to store the state of each aircraft
• Write a new CSS for highlighted aircraft

22/24



Contrails

Extension:

Highlight pieces of trajectory creating contrails according to the Schmidt–Appelman criterion

Steps:

• Get a trajectory from the backend
• Get meteo data from fastmeteo
• Compute the Schmidt–Appelman criterion
• Write a new Vue component to display the contrails

23/24



Conclusion



Key take-aways

Feedback is welcome

Contributions are open

(“Limited”) support can be offered

Warning:

• tangram is still in alpha
• documentation is still very preliminary

24/24


	History & Background
	Then Michel graduates… (2022)
	Now we have a project, serious things start (2024)
	Demonstration and live coding
	Conclusion

