How to open your code when part of it cannot be shared?

Xavier Olive

3rd/4th April 2025

1/15

Over the past 30-ish years...

2/15

Over the past 30-ish years...

- Crowdsourcing: it is possible to collaborate and enrich large-scale databases:
Wikipedia, OpenStreetManp, etc.

- Research and industry leverage capabilities to harness larger amounts of data
- Shift from model-informed science to data-informed science

- In academic papers:

- you expect proofs for theorems
- you expect description of frameworks and models
- for data-based science, you expect ...?

2/15

Background question

Academia: culture of collaboration and transparency, so...

Why don’t you share your code?

3/15

Background question

Academia: culture of collaboration and transparency, so...

Why don’t you share your code?

- | want to share my code, but...

3/15

Background question

Academia: culture of collaboration and transparency, so...

Why don’t you share your code?

- | want to share my code, but...

- | want to share my code, but... it's not clean enough

- | want to share my code, but... the instances for the problem are not open anyway
- | want to share my code, but... part of it is not open

- | want to share my code, but... my employer does not agree

3/15

It ends up in weird situations

Aircraft Fleet Health Monitoring with Anomaly
Detection Techniques

Luis Basora 1**4{, Paloma Bry 1410, Xavier Olive *4({ and Floris Freeman 2

ONERA DTIS, Université de Toulouse, 31055 Toulouse, France; paloma.bry@protonmail.com (P.B.);
xavier.olive@onera.fr (X.O.)

KLM Royal Dutch Airlines, Postbus 7700, 1117 ZL Schiphol, The Netherlands; Floris.Freeman@klm.com
Correspondence: luis.basora@onera.fr

+ Current address: 2 Avenue Edouard Belin, CEDEX 4, 31055 Toulouse, France.

t These authors contributed equally to this work.

Abstract: Predictive maintenance has received considerable attention in the aviation industry where
costs, system availability and reliability are major concerns. In spite of recent advances, effective
health monitoring and prognostics for the scheduling of condition-based maintenance operations is
still very challenging. The increasing availability of maintenance and operational data along with
recent progress made in machine learning has boosted the development of data-driven prognostics
and health management (PHM) models. In this paper, we describe the data workflow in place at
an airline for the maintenance of an aircraft system and highlight the difficulties related to a proper
labelling of the health status of such systems, resulting in a poor suitability of supervised learning
techniques. We focus on investigating the feasibility and the potential of semi-supervised anomaly
detection methods for the health monitoring of a real aircraft system. Proposed methods are evaluated

check for on large volumes of real sensor data from a cooling unit system on a modern wide body aircraft from
updates a major European airline. For the sake of confidentiality, data has been anonymized and only few
Citation: Basora, L. Bry, P; Olive, X.; technical and operational details about the system had been made available. We trained several deep
Freeman, F. Aircraft Fleet Health neural network autoencoder architectures on nominal data and used the anomaly scores to calculate 4115

e Al Phbontion A lanltl fndiantan Damlin acemmant that hink amansaler canman aen ansealabad voith fdamtifad failiman fn

Challenges

- “.butit'’s not clean enough”

Poorly written code is better that non-existent code, e.g. ... (you name it)
- “..but my employer does not agree”:

Let’s look into the reasons first? Maybe there are good ones... (maybe...)

My focus here:

- instances are not open;
- part of the code is not open;
- the code is open, the model is not (BADA)

5/15

Limitations to openness

Practical limitations:

- NDA

- Proprietary concerns
- Legal concerns

- Licence concerns

What do you risk?

- Sometimes, companies do not seem to care (for now)
- NDA breach, disciplinary sanctions
- Legal actions (EUROCONTROL)

6/15

If everything is still closed

Why do you want to publish in the first place?
(Doesn't it “kind of” work on other public instances? Then explain why it really works better on

your problem)

Abstract:

[...] Due to stringent confidentiality protocols, the underlying system remains shrouded in
mystery. Nevertheless, we introduce a cutting-edge LSTM variant designed to predict its elusive
behaviour—with an accuracy of 68% that, we dare say, redefines the benchmark for secretive
systems. The scientific contribution, though cloaked in anonymity, is submitted with the hope
that its merit justifies publication—and perhaps even funds a well-deserved three-week
post-conference sojourn in New Zealand.

7/15

If everything is still closed

Why do you want to publish in the first place?
(Doesn't it “kind of” work on other public instances? Then explain why it really works better on

your problem)

Abstract:

[...] Due to stringent confidentiality protocols, the underlying system remains shrouded in
mystery. Nevertheless, we introduce a cutting-edge LSTM variant designed to predict its elusive
behaviour—with an accuracy of 68% that, we dare say, redefines the benchmark for secretive
systems. The scientific contribution, though cloaked in anonymity, is submitted with the hope
that its merit justifies publication—and perhaps even funds a well-deserved three-week
post-conference sojourn in New Zealand.

Thank ChatGPT for the abstract

7/15

Main question (focus of this talk)

How to open software when not everything can be shared?
Can such software still be useful to other people?

Examples are many:

- Data is not strictly open, but the code to access it is
https://github.com/open-aviation/pyopensky (LGPL-3.0)

- The model is closed, but the implementation is open
https://github.com/eurocontrol-bada/pybada (EUPL-1.2)

- Data used for training is closed, but the model seems open
https://github.com/DGAC/Acropole (AGPL-3.0)

8/15

https://github.com/open-aviation/pyopensky
https://github.com/eurocontrol-bada/pybada
https://github.com/DGAC/Acropole

Strategies

Let's go through several of them

1. Use configuration files:

- “Data is not open, but the code to access it is”

- Store tokens, passwords, credentials, specific files, in a file outside the repository
2. Use open alternatives:

- https://openap.dev/ instead of pyBADA
- OpenSky Network datasets instead of FlightRadar24
- Open source datasets instead of proprietary data

3. Use stubs

- “Here is a very naive way to do things, it doesn’t work, but you can implement your own”

9/15

https://openap.dev/

Pattern #1 Configuration files

- GitHub is a major source of password leaks (even with OpenSky Network)
- NEVER put any password in your code, even if you don’t plan to commit it
- Start with a configuration file, support also environment variables (better for Cl):

[globall

username = my_username

password = my_password
- Also support environment variables (better for Cl)

import os
os.getenv('MY_PASSWORD"')

10/15

Pattern #1 Sample code

config.py
>>> from config import username, password

import configparser

config = configparser.ConfigParser()

config.read('config.toml') # use appdirs to place the file in a standard location

def get_config(name: None | str, category: None | str, env: None | str) -> Any:
if (value := config.get(category, name, fallback=None)) is not None:
return value
if (value := os.getenv(env)) is not None:
return value
raise ValueError(f"Cannot find {name} in {category} or ${env}")

def _ getattr_ (name: str) -> Any:

return get_config(name, 'global', f'MY_{name.upper()}")
11/15

Pattern #2 Use alternatives

Learn about the Visitor design pattern (Gang of Four)

class BADA:
def performance(self, df: pd.DataFrame) -> pd.DataFrame:

class OpenAP:
def performance(self, df: pd.DataFrame) -> pd.DataFrame:

def performance(df: pd.DataFrame, model: ?) -> pd.DataFrame:
return model.performance(df)

12/15

Pattern #2 Use alternatives (Protocol)

In Python, you can use the Protocol design pattern (PEP 647)

from typing import Protocol
class PerformanceModel(Protocol):

def performance(self, df: pd.DataFrame) -> pd.DataFrame:

class OpenAP: # or BADA
def performance(self, df: pd.DataFrame) -> pd.DataFrame:
pass

def performance(df: pd.DataFrame, model: PerformanceModel) -> pd.DataFrame:
return model.performance(df)

13/15

Pattern #3 Use stubs

Sometimes, there is no such thing as an open alternative

A stub is a minimal implementation that provides predetermined responses for method calls,
essentially simulating functionality without any additional logic.

class EurocontrolDB:

[...]

def citypair(self, callsign: str) -> tuple[Airport, Airport]:
resp = self.ectl_service.query(callsign).get('response')
if resp is None:
raise ValueError(f"Cannot find {callsign}")
return Airport(resp['departure']), Airport(resp['arrival'])

class StubDB:
def citypair(self, callsign: str) -> tuple[Airport, Airport]:

return Airport('Trifouillis les Oies'), Airport('Hintertupfingen')

14/15

Conclusion

- Open source software is a powerful tool for research
- Sharing code is ehatengirg possible, even when parts are not open

15/15

Conclusion

- Open source software is a powerful tool for research
- Sharing code is ehatengirg possible, even when parts are not open

- Use configuration files to manage sensitive data

- Explore open alternatives or stubs to simulate unavailable components

15/15

Conclusion

- Open source software is a powerful tool for research
- Sharing code is ehatengirg possible, even when parts are not open

- Use configuration files to manage sensitive data
- Explore open alternatives or stubs to simulate unavailable components

- If everything is closed, consider the value of your work and its potential impact

15/15

Questions - Discussion

	Questions · Discussion

