
CIEM1110-1: FEM, lecture 1.3

Derivation of finite element equations for elastostatics

Frans van der Meer
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Discussion
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The basic ingredients for elastostatics
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Equilibrium relation ∇ · σ + b = 0

∂σxx

∂x
+

∂σxy

∂y
+

∂σxz

∂z
= −bx etc

Constitutive relation σ = D : ε

σxx =
E

(1 + ν)(1− 2ν)
((1− ν)εxx + νεyy + νεzz) etc

Kinematic relation ε = ∇s
u

εxy =
1

2

(

∂ux

∂y
+

∂uy

∂x

)

etc

Geometry and BCs

x

y

Ω

ΓN t



Starting point is the equilibrium equation
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The partial differential equation (PDE) we want to solve

∇ · σ + b = 0

where

• σ and b are a function of coordinates x

• this equation must hold at every point x



Starting point is the equilibrium equation

4-19

The partial differential equation (PDE) we want to solve

∇ · σ + b = 0 (or ∇ ·D :∇su+ b = 0)

where

• σ and b are a function of coordinates x

• this equation must hold at every point x

• in 1D this is equivalent to the Poisson equation

• in 2D or 3D, the unknown field u is a vector, different from the Poisson equation



We rewrite the equation in weighted residual form
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Premultiply with w and integrate over domain:

∇ · σ + b = 0 ⇒

∫

Ω

w · (∇ · σ + b) dΩ = 0, ∀w

where

• w(x) is a (yet unspecified) weight function

• Ω is the domain over which we solve the equation

• just like u, the weight function w is a vector field

• if this holds for all possible w (i.e. ∀w), the two expressions are equivalent



Now we apply divergence theorem (or Gauss’ theorem)
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To get rid of second order derivative of u that is hidden in the term ∇ · σ:
∫

Ω

w · (∇ · σ + b) dΩ = 0 ⇒ −

∫

Ω

∇
s
w :σ dΩ +

∫

Ω

w · b dΩ +

∫

ΓN

w · t dΓ = 0

where

• ΓN is the boundary along which an external traction is applied

• t is that applied traction

• ∇s
w = 1

2

(

∇w + (∇w)T
)

• actually divergence theorem gives ∇w instead of ∇s
w

• the symmetric gradient can be used because of symmetry of σ



Substitution of constitutive and kinematic relation (linear elasticity)
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Substitution of σ = D :∇s
u gives

−

∫

Ω

∇
s
w :σ dΩ +

∫

Ω

w · b dΩ +

∫

ΓN

w · t dΓ = 0, ∀w

⇒ −

∫

Ω

∇
s
w :D :∇s

u dΩ +

∫

Ω

w · b dΩ +

∫

ΓN

w · t dΓ = 0, ∀w

where

• u(x) is the displacement field

• the following strain definition is used ε = ∇s
u or εij = 1

2
(ui,j + uj,i)

• and the following constitutive relation σ = D : ε

• where D is a fourth order tensor



This is our weak form, before any discretization
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Find the displacement field u ∈ S that satisfies

−

∫

Ω

∇
s
w :D :∇s

u dΩ +

∫

Ω

w · b dΩ +

∫

ΓN

w · t dΓ = 0, ∀w ∈ V

where

• u(x) is the displacement field

• S is the set of functions to which u must belong

• w(x) is the weight function

• V is the set of functions to which w must belong

• we have ignored displacement boundary conditions

The same could be obtained directly from virtual work or energy minimization

However, the mathematical procedure presented here also works for other PDEs



Now we approximate both u and w
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Find the displacement field u
h ∈ Sh that satisfies

−

∫

Ω

∇
s
w

h :D :∇s
u
h dΩ +

∫

Ω

w
h
· b dΩ +

∫

ΓN

w
h
· t dΓ = 0, ∀w

h
∈ V

h

where

• the infinite set S has been reduced to finite set Sh

• the infinite set V has been reduced to finite set Vh

This abstract operation limits the number of degrees of freedom (in Sh)

and the number of equations (in Vh)



We introduce discretization for uh and w
h
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Find the displacement field u
h ∈ Sh that satisfies

−

∫

Ω

∇
s
w

h :D :∇s
u
h dΩ +

∫

Ω

w
h
· b dΩ +

∫

ΓN

w
h
· t dΓ = 0, ∀w

h
∈ V

h

given that

u
h(x) =

n
∑

i=1

Ni(x)ai, w
h(x) =

n
∑

i=1

Ni(x)ci,

where

• Ni is the shape function associated with node i

• ai is the nodal displacement vector of node i

• ci is like an amplitude of the weight function (it will drop out)



We introduce discretization for uh and w
h

10-19

Find the displacement field u
h ∈ Sh that satisfies

−

∫

Ω

∇
s
w

h :D :∇s
u
h dΩ +

∫

Ω

w
h
· b dΩ +

∫

ΓN

w
h
· t dΓ = 0, ∀w

h
∈ V

h

given that

u
h(x) =

n
∑

i=1

Ni(x)ai, w
h(x) =

n
∑

i=1

Ni(x)ci,

where

• Ni is the shape function associated with node i

• ai is the nodal displacement vector of node i

• ci is like an amplitude of the weight function (it will drop out)

Here the mesh is introduced, shape functions are defined with nodes and elements



We prepare to rewrite the discretized weak form in matrix form
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We will substitute

u
h = Na, w

h = Nc

with (in 2D)

N =

[

N1 0 N2 0 · · · Nn 0
0 N1 0 N2 · · · 0 Nn

]

a =











































a1x

a1y

a2x

a2y

...
anx

any











































and

∇
s
u
h
≃ ε

h = Ba, ∇
s
w

h
≃ Bc

with

B =





N1,x 0 N2,x 0 · · · Nn,x 0
0 N1,y 0 N2,y · · · 0 Nn,y

N1,y N1,x N2,y N2,x · · · Nn,y Nn,x





Here a and c are vectors containing values for all nodes

∇s
u
h is a 2nd order tensor, εh = Ba the engineering strain vector



After substitution of these quantities we rewrite the weak form
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Find the displacement field u
h ∈ Sh that satisfies

∫

Ω

∇
s
w

h :D :∇s
u
h dΩ =

∫

Ω

w
h
· b dΩ +

∫

ΓN

w
h
· t dΓ, ∀w

h
∈ V

h

⇓

Find the nodal displacements a that satisfy
∫

Ω

(Bc)TDBa dΩ =

∫

Ω

(Nc)Tb dΩ +

∫

ΓN

(Nc)T t dΓ, ∀c

where

• we started using Voigt notation: σ and ε are now vectors

• D is the material stiffness matrix σ = Dε

• we needed tensor notation for writing the strong form and for divergence theorem

• now the engineering notation becomes more convenient



Amplitudes a and c can be taken out of the integrals
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Find the nodal displacements a that satisfy
∫

Ω

(Bc)TDBa dΩ =

∫

Ω

(Nc)Tb dΩ +

∫

ΓN

(Nc)T t dΓ, ∀c

⇓

Find the nodal displacements a that satisfy

c
T

∫

Ω

B
T
DB dΩa = c

T

∫

Ω

N
T
b dΩ + c

T

∫

ΓN

N
T
t dΓ, ∀c

c cancels out and we can write this as a system of equations



Finally, the system of equations looks like
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Find the nodal displacements a that satisfy

c
T

∫

Ω

B
T
DB dΩa = c

T

∫

Ω

N
T
b dΩ + c

T

∫

ΓN

N
T
t dΓ, ∀c

⇓

Find a such that:

Ka = f

with

K =

∫

Ω

B
T
DB dΩ, f =

∫

Ω

N
T
b dΩ +

∫

ΓN

N
T
t dΓ

where

• evaluation of integrals needs to be worked out

• we still need to account for displacement boundary conditions



We evaluate K and f element by element
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For the stiffness matrix:

K =

∫

Ω

B
T
DB dΩ =

ne
∑

ie=1

∫

Ωe

B
T
DB dΩ =

ne

A
ie=1

∫

Ωe

B
T
e DBe dΩ

where

• Ωe is the domain of the element

• Be contains only the part of B that is nonzero in the element

• A takes care of putting the element matrix in the right global position

Similarly, for the force vector:

f =

ne

A
ie=1

(

∫

Ωe

N
T
e b dΩ +

∫

ΓN,e

N
T
e t dΓ

)

where

• ΓN,e is the part of the element boundary where external tractions are applied

• ΓN,e is empty for most elements



Isoparametric mapping is used for integration over elements
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A mapping from local to global coordinates is introduced:

ξ

η

(-1,-1) (1,-1)

(1,1)(-1,1)

x(ξ, η) = Ni(ξ, η)xi, y = N(ξ, η)iyi

where ξ and η are the natural coordinates of the reference element

For a 2D quadrilateral element integration is then performed as:

∫

Ωe

B
T
DB dΩ =

∫

1

−1

∫

1

−1

B
T
DBj dξ dη

where j is the determinant of the Jacobian matrix J:

J =

[

x,ξ y,ξ
x,η y,η

]

=

[

Ni,ξxi Ni,ξyi
Ni,ηxi Ni,ηyi

]

The Jacobian matrix is also used to evaluate shape function gradients in B:
{

Ni,x

Ni,y

}

= J
−1

{

Ni,ξ

Ni,η

}



The integrals are evaluated with numerical integration
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A finite set of integration point is selected:

∫

1

−1

∫

1

−1

B
T
DBj dξ dη ≈

np
∑

ip=1

B
T
DBjwip

where

• B and j are evaluated at the integration point (ξip, ηip)

• wip is the integration point weight

• jwip is a measure for the area associated with the integration point

Similarly, for the force vector:

∫

1

−1

∫

1

−1

N
T
bj dη dξ ≈

np
∑

ip=1

N
T
bjwip



With all this, the PDE is approximated as a system of equations
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Strong form

∇ · σ + b = 0

Weak form

−

∫

Ω

∇
s
w :D :∇s

u dΩ +

∫

Ω

w · b dΩ +

∫

ΓN

w · t dΓ = 0

Discretized form

Ka = f

where

• a is the vector with nodal displacements, K the stiffness matrix and f the force vector

K =

∫

B
T
DB dΩ, f =

∫

N
T
b dΩ +

∫

N
T
t dΓ



With all this, the PDE is approximated as a system of equations

18-19

Strong form

∇ · σ + b = 0

Weak form

−

∫

Ω

∇
s
w :D :∇s

u dΩ +

∫

Ω

w · b dΩ +

∫

ΓN

w · t dΓ = 0

Discretized form

Ka = f

where

• a is the vector with nodal displacements, K the stiffness matrix and f the force vector

• displacement BCs are treated by eliminating prescribed values for a

• once a is known, stress and strain fields can be computed



Discussion
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