CIEM1110-1: FEM, lecture 1.3

Derivation of finite element equations for elastostatics
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The basic ingredients for elastostatics

Equilibrium relation V-o+b=0
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Starting point is the equilibrium equation

The partial differential equation (PDE) we want to solve

V-o+b=0

where
e o and b are a function of coordinates x
e this equation must hold at every point x
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Starting point is the equilibrium equation

The partial differential equation (PDE) we want to solve

V-o+b=0 (or V-D:Vsu+b=0)

where

e o and b are a function of coordinates x

e this equation must hold at every point x

e in 1D this is equivalent to the Poisson equation

e in 2D or 3D, the unknown field u is a vector, different from the Poisson equation

]
TUDelft 4-19



We rewrite the equation in weighted residual form

Premultiply with w and integrate over domain:

V-o+b=0 = /W-(V-0'+b)dQ:0, vV w
Q

where

e w(x) is a (yet unspecified) weight function

e () isthe domain over which we solve the equation

e just like u, the weight function w is a vector field

e if this holds for all possible w (i.e. V w), the two expressions are equivalent
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Now we apply divergence theorem (or Gauss’ theorem)

To get rid of second order derivative of u that is hidden in the term V - o

/w-(V-a'—l—b)dQ:O = —/VSW:GdQ+/W-bdQ—|— w-tdl'=10
Q Q Q

I'n
where
e ['y isthe boundary along which an external traction is applied
e tisthat applied traction
e VPw=1(Vw+ (Vw)")
e actually divergence theorem gives Vw instead of V°w
e the symmetric gradient can be used because of symmetry of o
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Substitution of constitutive and kinematic relation (linear elasticity)

Substitution of & = D : Vu gives

—/sz:a'dQ—l—/w-bdQ+ w-tdl' =0, VYw
Q Q

I'n

= —/VSW:’D:VSudQ+/W-bdQ—|— w-tdl'=0, Vw
Q Q I'n
where
e u(x) isthe displacement field
e the following strain definitionisused e = V3u or &;; = 5 (ui,; + ;)
¢ and the following constitutive relationo =D : ¢
e where D is a fourth order tensor
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This is our weak form, before any discretization

Find the displacement field u € S that satisfies

—/VSW:’D:VSudQ—I—/w-bdQ+ w-tdl'=0, VweV
Q Q

I'n
where
e u(x) isthe displacement field
e S isthe set of functions to which u must belong
e w(x) isthe weight function
e Visthe set of functions to which w must belong
e we have ignored displacement boundary conditions

The same could be obtained directly from virtual work or energy minimization
However, the mathematical procedure presented here also works for other PDEs
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Now we approximate both u and w

Find the displacement field u”" € S" that satisfies
—/szh:D:VSuth+/wh-bdQ+ w' . tdl =0, Yw"eD"
Q Q I'n

where
e the infinite set S has been reduced to finite set S”
e the infinite set V has been reduced to finite set V"

This abstract operation limits the number of degrees of freedom (in S")
and the number of equations (in V")

]
TUDelft 919



We introduce discretization for u” and w”

Find the displacement field u”" € S" that satisfies

—/szh:D:VSuth+/wh-bdQ—|— w' . tdl =0,
Q Q

I'n

given that
u”(x) = Z Ni(x)ai,  w"(x)=> Ni(x)c;,

where

e N, is the shape function associated with node i

e a,; is the nodal displacement vector of node :

e c; is like an amplitude of the weight function (it will drop out)
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We introduce discretization for u” and w”

Find the displacement field u”" € S" that satisfies
—/szh:D:VSuth+/wh-bdQ+ w' . tdl =0, Yw"eD"
Q Q I'n

given that
u”(x) = Z Ni(x)ai,  w"(x)=> Ni(x)c;,

where

e N, is the shape function associated with node i

e a,; is the nodal displacement vector of node :

e c; is like an amplitude of the weight function (it will drop out)

Here the mesh is introduced, shape functions are defined with nodes and elements &= AN
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We prepare to rewrite the discretized weak form in matrix form

We will substitute

u" = Na, w" = Ne¢
falx 3
with (in 2D) A1y
azz
M 0 N o --- N, 0 _ ) ag,
N=1o N~ 0 N, -~ 0 N, a=49 "
and Ana
an
Viu" ~ " = Ba, Viw" ~ Bc R
with
Nl,a: O NQ,a: O e Nn,a: O
B = 0 N1>y 0 Ng,y 0 Nn,y
Nl,y Nl,:c N2,y N2,:I: Tt Nn,y Nn,a:

Here a and c are vectors containing values for all nodes
Vu" is a 2" order tensor, " = Ba the engineering strain vector
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After substitution of these quantities we rewrite the weak form

Find the displacement field u" € S” that satisfies

/sz”:D:VSuhdﬁszh-bdQ+ w' . tdl, vw" e V"
Q Q

I'n

U

Find the nodal displacements a that satisfy

/Q (Bc)'DBadQ = /Q (Nc)"'bdQ + / (Ne)"tdI’, Ve

I'n
where
e we started using Voigt notation: o and £ are now vectors
e D is the material stiffness matrix o = De
e we needed tensor notation for writing the strong form and for divergence theorem
e now the engineering notation becomes more convenient
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Amplitudes a and c can be taken out of the integrals

Find the nodal displacements a that satisfy

/Q (Be)' DBadQ = /Q (Nc)"'bdQ + / (Nc)'tdIl, Ve

I'n

U

Find the nodal displacements a that satisfy

cT/BTDBan:cT/NdeQ+cT NTtdl, Ve
Q Q

I'n

c cancels out and we can write this as a system of equations
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Finally, the system of equations looks like

Find the nodal displacements a that satisfy

cT/BTDBan:cT/NdeQ—|—cT N'tdl, Ve
Q Q

I'n

I
Find a such that;

Ka=f
with

K= / B DB dQ, f= / N'bdQ + Nt dr
Q Q I'n
where
e evaluation of integrals needs to be worked out

e we still need to account for displacement boundary conditions
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We evaluate K and f element by element

For the stiffness matrix;

K = / B'DBdQ =Y / B'DB AN = A B DB. d0
{2 je=1"2° je=1"2°
where
e (). isthe domain of the element
e B. contains only the part of B that is nonzero in the element
e A takes care of putting the element matrix in the right global position

Similarly, for the force vector:

o T
f_A<L NTpd0 +

where

Nt dF>

1—‘N,e

e [I'n. isthe part of the element boundary where external tractions are applied
e I'n.isemptyfor most elements
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Isoparametric mapping is used for integration over elements

-1,1
A mapping from local to global coordinates is introduced: ( )c o (17)

x(§,m) = Ni(§,n)x, y = N(&n)iyi 3

where ¢ and 7 are the natural coordinates of the reference element T—f'?

For a 2D quadrilateral element integration is then performed as:
@ o
1,1 (-1,-1) (1,-1)
B'DBdAN = / B DB d¢ dn

—-1J-1

Qe

where j is the determinant of the Jacobian matrix J:

J— [95,5 y,c‘] _ [Ni,givz' Ni,ﬁyi:|
xﬂ? yﬂ? N’iﬂ?x’i Niﬂ?yi

The Jacobian matrix is also used to evaluate shape function gradients in B:

Ni,m . J—l Ni,§
Niy| N; .y
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The integrals are evaluated with numerical integration

A finite set of integration point is selected:
1 1 np
/ / B'DBjd¢{dn~ ) B'DBjwi
—1J-1 ip=1

where

e B and j are evaluated at the integration point (&;,, 7:p)

e w;, is the integration point weight

e jw,;, is a measure for the area associated with the integration point

Similarly, for the force vector:

1 1 np
/ N'bjdndé ~ )  N'bjwi,
—1J—1

ip=1
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With all this, the PDE is approximated as a system of equations

r

\_

Strong form

V-o+b=0

N\

where

a is the vector with nodal displacements, K the stiffness matrix and f the force vector

K = /BTDB de,
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Weak form

—/VSW:’D:VSudQ+/W-bdQ—|—
Q Q

I'n

w-tdl'=0

r

Discretized form

Ka=f

J

f:/NdeQ+/NTtdF

N\
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With all this, the PDE is approximated as a system of equations

Strong form Weak form [ Discretized form )
% %
V-o+b=0 —/VSW:D:VSudQ+/W-bdQ+ w-tdl'=0 Ka="f
Q Q I'n
where

e a s the vector with nodal displacements, K the stiffness matrix and f the force vector
e displacement BCs are treated by eliminating prescribed values for a
e once ais known, stress and strain fields can be computed
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