## Classification

KURT DRIESSENS

DEPARTMENT OF DATA SCIENCE AND KNOWLEDGE ENGINEERING MAASTRICHT UNIVERSITY

D) Maastricht University

## Classification = Making Predictions



## Your turn!!



## Nearest Neighbor Classification

"Birds of a feather, flock together."

Key ingredient: similarity measure ... or dissimilarity measure: distance!

Algorithm:

1. Store all examples
2. Classify a new example by copying the class of it's nearest "neighbor"

## Nearest Neighbor Properties

+ Learning is fast
+ No data is lost
+ Distances are tunable through expert knowledge
+ Complexity of the hypothesis rises with number of stored examples
- Some of the data might be noise
- Computing all distances might be slow
- Distance might be more difficult to get right than expected



## kNN: k-nearest neighbor

Make the algorithm more robust by using multiple neighbors
E.g.: use voting


## Don’t just store, but store smartly

E.g. KD-trees, Ball-Trees

(b)


## Similarity measures

Distance metrics: measure of dis-similarity
E.g. Manhattan, Euclidean or $\mathrm{L}_{\mathrm{n}}$-norm for numerical attributes


## Distance definition = critical!

E.g. comparing humans

1. $1.85 \mathrm{~m}, 37 \mathrm{yrs}$
2. $1.83 \mathrm{~m}, 35 \mathrm{yrs}$
3. $1.65 \mathrm{~m}, 37 \mathrm{yrs}$

$$
\begin{aligned}
& d(1,2)=2.00 \ldots 0999975 \ldots \\
& d(1,3)=0.2 \\
& d(2,3)=2.00808 \ldots
\end{aligned}
$$

1. $185 \mathrm{~cm}, 37 \mathrm{yrs}$
2. $183 \mathrm{~cm}, 35 \mathrm{yrs}$
3. $165 \mathrm{~cm}, 37 \mathrm{yrs}$

$$
\begin{aligned}
d(1,2) & =2.8284 \ldots \\
d(1,3) & =20.0997 \ldots \\
d(2,3) & =18.1107 \ldots
\end{aligned}
$$

## Normalize feature values

Rescale all dimensions such that the range is equal, e.g. $[-1,1]$ or $[0,1]$

```
For [0,1] range:
```

with $m_{i}$ the minimum and $M_{i}$ the maximum value for attribute $i$

$$
x_{i}^{\prime}=\frac{x_{i}-m_{i}}{M_{i}-m_{i}}
$$

## Curse of dimensionality

Assume a uniformly distributed set of 5000 examples
To capture 5 nearest neighbors we need:

- in $1 \mathrm{dim}: 0.1 \%$ of the range
- in 2 dim: $\sqrt{0.1 \%}=3.1 \%$ of the range
- in $n$ dim: $0.1 \%^{1 / n}$



## Curse of Dimensionality (2)

With 5000 points in 10 dimensions, each attribute range must be covered approx. ? $\%$ to find 5 neighbors ...


## More distances

## Cosine distance

- Angle between points as seen from the origin: Think "Looking for nearby stars."
- Less subjected to the curse of dimensionality


## For Strings

- Levenshtein distance/edit distance
= minimal number of changes to change one word to the other
Allowed edits/changes:

1. delete character
2. insert character
3. change character (not used by some other edit-distances, then counts for 2 edits)

## Even more distances

Given two time series:

$$
\begin{aligned}
& Q=q_{1} \ldots q_{n} \\
& C=c_{1} \ldots c_{n}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Euclidean } \\
& D(Q, C) \equiv \sqrt{\sum_{i=1}^{n}\left(q_{i}-c_{i}\right)^{2}}
\end{aligned}
$$

Start and end times are critical!


## Sequence distances (2)

Dynamic Time Warping


Fixed Time Axis
Sequences are aligned "one to one".


Nonlinear alignments are possible.

## Dimensionality reduction



## Even more more distances!



## In the real world: Recommender Systems




$$
\begin{aligned}
& \alpha=\left(\sum\left|W_{i j}\right|\right)^{-1}
\end{aligned}
$$

## Your turn again!!



## Decision trees (and rules)

Idea: use properties to select which example a prediction holds for.
E.g.

1. if (color = yellow) then friendly

Decision Rule

Decision Tree

## Decision tree algorithms



## Information Entropy



$$
\text { Entropy }=-\sum_{i} p_{i} \log _{2}\left(p_{i}\right)
$$

Other possibilities, e.g. Gini index

## The completeness of trees



Trees can represent any concept<br>- Every example can be its own leaf<br>- No generalization<br>Possibility of "overfitting"<br>$=$ Adapting the model too much to the<br>training data, so that it does<br>not generalize to unseen data

## Over-fitting



## Pruning



In large trees, some branches can overfit the training data

## Pre-pruning

Set a minimum for the number of examples needed to split a leaf node to stop learning early

## Post-pruning

After learning, use a "validation" set to prune away those parts of the tree that are too detailed

## Linear regression?

Cast binary classification problem as a regression problem?

- Negative examples get $y=0$
- Positive examples get $y=1$
- Predict positive when $h_{\theta}(x)>0.5$



## LOGISTIC regression!

$h_{\theta}(x)$ should only predict values from $[0 ; 1]$

$$
h_{\theta}(\mathbf{x})=g\left(\theta^{T} \mathbf{x}\right)=\frac{1}{1+e^{-\theta^{T} \mathbf{x}}}=p(y=1 \mid \mathbf{x} ; \theta)
$$

Sigmoid: Logistic function

$$
g(z)=\frac{1}{1+e^{-z}}
$$



## How about multi-class problems?



Class 1: $\Delta^{\mathrm{x}_{1}}$
Class 2: $\square$
Class 3: $\times$


$$
h_{\theta}^{(i)}(x)=P(y=i \mid x ; \theta)
$$

## predict

$\max _{i} h_{\theta}^{(i)}(x)$

## In one go: Softmax Regression

Turn $y^{(i)}$ into

$$
\begin{aligned}
& \text { to } \\
& \mathbf{y}^{(i)}=\left[\begin{array}{c}
p\left(y^{(i)}=1 \mid x^{(i)}, \theta\right) \\
p\left(y^{(i)}=2 \mid x^{(i)}, \theta\right) \\
\vdots \\
p\left(y^{(i)}=k \mid x^{(i)}, \theta\right)
\end{array}\right]
\end{aligned} \begin{gathered}
\theta=\left[\begin{array}{c}
-\theta_{T}^{T}-\theta_{2}^{2} \\
-\theta_{k}^{T}
\end{array}\right] \\
\mathbf{h}_{\theta}\left(x^{(i)}\right)=\frac{1}{\sum_{j=1}^{k} e^{\theta_{j}^{T} x^{(i)}}}\left[\begin{array}{c}
e^{\theta_{1}^{T} x^{(i)}} \\
e^{\theta_{2}^{T} x^{(i)}} \\
\vdots \\
e^{\theta_{k}^{T} x^{(i)}}
\end{array}\right]
\end{gathered}
$$

## Overfitting again...

Also here overfitting can happen

$$
J(\theta)=\left[-\frac{1}{m} \sum_{i=1}^{m} y^{(i)} \log \left(h_{\theta}\left(x^{(i)}\right)\right)+\left(1-y^{(i)}\right) \log \left(1-h_{\theta}\left(x^{(i)}\right)\right)\right] \frac{\lambda}{2 m} \sum_{j=1}^{n} \theta_{j}^{2}
$$

Punish the use of large weights.
... because they represent steep model changes
... and thus complex decision boundaries!

## Your turn again!!



## Support vector machines

Popular, "go-to" ML approach

- many successes, e.g., using Radial Basis Function kernel Usable in similar situations as neural networks

Important concepts:

- Finding a "maximal margin" separation
- Transformation into high dimensional space



## Linear SVMs

Idea:


Find hyperplane that discriminates + from -
"margin" should be maximal

- margin = distance of hyperplane to closest points
- solution is unique, and determined by just a few points ("support vectors")


## Same goal, easier to compute:



$$
\begin{aligned}
& \min _{w, b}\|w\| \\
& \text { s.t. } \quad y^{(i)}\left(w^{T} x^{(i)}+b\right) \geq 1
\end{aligned}
$$



Convex optimization problem

- works as well as logistic regression
- only satisfiable for linearly separable data


Maastricht University

## SVM Model

$$
h(x)=\sum_{i} \mu_{i} y^{\left(s_{i}\right)}\left(x^{\left(s_{i}\right)}\right)^{T} x+\frac{1}{|S|} \sum_{i}\left(y^{\left(s_{i}\right)}-\sum_{j} \mu_{j} y^{\left(s_{j}\right)}\left(x^{\left.\left.\left(s_{j}\right)\right)^{T} x^{\left(s_{i}\right)}\right)}\right.\right.
$$

... only depends on the independent part of the learning data $\mathbf{x}$ as part of a so called inner-product!!

Even the function to optimize: $-\frac{1}{2} \sum_{i} \sum_{j} \mu_{i} \mu_{j} y^{(i)} y^{(j)}\left(x^{(i)}\right)^{T} x^{(j)}+\sum_{k} \mu_{k}$

## Adding dimensions



## Example transformations

E.g.: learning quadratic decision surfaces in 2D:

- map $x_{1}, x_{2}$ to space with dimensions

$$
x_{1}, x_{2}, x_{1} x_{2}, x_{1}^{2}, x_{2}^{2}
$$

- learn "hyperplane" $a x_{1}+b x_{2}+c x_{1} x_{2}+d x_{1}^{2}+e x_{2}^{2}+f=0$
- in original space this is a quadratic form

You can do this and use logistic regression!!

- This is almost standard practice when using logistic regression ..


## Kernel trick

Transformation can be done implicitly .

So:

$$
\begin{gathered}
\min _{M} L(M)=-\frac{1}{2} \sum_{i} \sum_{j} \mu_{i} \mu_{j} y^{(i)} y^{(j)} \mathbf{x}^{(i)} \mathbf{x}^{(j)}+\sum_{i} \mu_{i} \\
h(x)=\sum_{i} \mu_{i} y^{\left(s_{i}\right)} \mathbf{x}^{\left(s_{i}\right)} \mathbf{x}+\frac{1}{|S|} \sum_{i}\left(y^{\left(s_{i}\right)}-\sum_{j} \mu_{j} y^{\left(s_{j}\right)} \mathbf{x}^{\left(s_{j}\right)} \mathbf{x}^{\left(s_{i}\right)}\right)
\end{gathered}
$$

- Call the transformation F
- We then need to train on $F(\mathbf{x})$ instead of $\mathbf{x}$
- Define $K(x, y)=F(x) F(y)$
- $K$ is called a kernel function
- choice of $K=$ implicit choice of $F$

$$
h(x)=\sum_{i} \mu_{i} y^{\left(s_{i}\right)} K\left(\mathbf{x}^{\left(s_{i}\right)}, \mathbf{x}\right)+b
$$

## Inner products and non-linearity



$$
\begin{aligned}
<\mathbf{x}, \mathbf{y} & >=\mathbf{x y}=\sum_{i} x_{i} y_{i} \\
& =\|\mathbf{x}\|\|\mathbf{y}\| \cos (\alpha)
\end{aligned}
$$



## Kernel trick

No need to actually compute $\Phi$

$$
<\Phi(\mathbf{x}), \Phi(\mathbf{y})>\equiv K(\mathbf{x}, \mathbf{y})
$$

allows the transformed space to be of much higher dimension than original without computational cost for $\Phi$ to exist, K needs to be symmetrical and positive definite.

## Typical Kernels

Linear Kernel

$$
k(x, y)=x^{T} y+c
$$

Polynomial Kernel

$$
k(x, y)=\left(\alpha x^{T} y+c\right)^{d}
$$



## Typical Kernels (2)

RBF Kernel (Radial Basis Function, a.k.a. Gaussian or Squared Exponential)

$$
k(x, y)=\sigma^{2} \exp \left(-\frac{(x-y)^{2}}{2 l^{2}}\right)
$$



Rational Quadratic Kernel

$$
k(x, y)=\sigma^{2}\left(1+\frac{(x-y)^{2}}{2 \alpha l^{2}}\right)^{-\alpha}
$$

## Stationary kernels



$$
\bullet \circ \bullet
$$

$$
\sigma^{2}\left(1+\frac{(x-y)^{2}}{2 \alpha l^{2}}\right)^{-\alpha}
$$

- $\left.{ }^{\circ}\right)^{2}$ a

Action Zoom In Zoom Out Center Origin Equalize Axes
( $y=\left(1+\frac{(x)^{2}}{2 \cdot 10 \cdot 1}\right)^{-10}$

- $y=\left(1+\frac{(x)^{2}}{2 \cdot 1 \cdot 1}\right)^{-1}$
- $y=\left(1+\frac{(x)^{2}}{2 \cdot 10 \cdot 0.25}\right)^{-10}$




## Typical Kernels (3)

Periodic Kernel

$$
k(x, y)=\sigma^{2} \exp \left(-\frac{2 \sin ^{2}\left(\frac{\pi}{p}|x-y|\right)}{l^{2}}\right)
$$

Local Periodic Kernel

$$
k(x, y)=\sigma^{2} \exp \left(-\frac{2 \sin ^{2}\left(\frac{\pi}{p}|x-y|\right)}{l^{2}}\right) \exp \left(-\frac{(x-y)^{2}}{2 l^{2}}\right)
$$



## More complex kernels

Convolutional Kernels:

- Based on a decomposition of the "data-object"
- And kernels defined on the decomposed parts


## Examples:

- Sets
- Graphs
- Strings



## Designing kernels

Inner product in Euclidean space

$$
\begin{aligned}
& K_{s}(\mathbf{x}, \mathbf{y})=H(\mathbf{x}, \mathbf{y})+G(\mathbf{x}, \mathbf{y}) \quad \approx \text { or } \\
& K_{p}(\mathbf{x}, \mathbf{y})=H(\mathbf{x}, \mathbf{y}) G(\mathbf{x}, \mathbf{y}) \quad \approx \text { and } \\
& K_{d}(\mathbf{x}, \mathbf{y})=(H(\mathbf{x}, \mathbf{y})+l)^{d} \\
& K_{g}(\mathbf{x}, \mathbf{y})=\exp (-\gamma(H(\mathbf{x}, \mathbf{x})-2 H(\mathbf{x}, \mathbf{y})+H(\mathbf{y}, \mathbf{y}))) \\
& K_{n}(\mathbf{x}, \mathbf{y})=\frac{H(\mathbf{x}, \mathbf{y})}{\sqrt{H(\mathbf{x}, \mathbf{x}) \cdot H(\mathbf{y}, \mathbf{y})}}
\end{aligned}
$$

## Thanks for listening!

## Lab: Overfitting and using Weka



