
Classification

KURT DRIESSENS

DEPARTMENT OF DATA SCIENCE AND KNOWLEDGE ENGINEERING

MAASTRICHT UNIVERSITY

Preparing for the Robot Revolution

Images thanks to https://robohash.org

https://robohash.org/

Classification = Making Predictions

Your turn!!

Nearest Neighbor Classification
“Birds of a feather, flock together.”

Key ingredient: similarity measure … or dissimilarity measure: distance!

Algorithm:

1. Store all examples

2. Classify a new example by copying the class of it’s nearest “neighbor”

Nearest Neighbor Properties
+ Learning is fast

+ No data is lost

+ Distances are tunable through expert knowledge

+ Complexity of the hypothesis rises with number of stored
examples

- Some of the data might be noise

- Computing all distances might be slow

- Distance might be more difficult to get right than expected

Voronoi diagram

Boundaries
aren’t computed.

kNN: k-nearest neighbor
Make the algorithm more robust by using multiple neighbors

E.g.: use voting

Don’t just store, but store smartly
E.g. KD-trees, Ball-Trees

Similarity measures
Distance metrics: measure of dis-similarity

E.g. Manhattan, Euclidean or Ln-norm for numerical attributes

Hamming distance for nominal attributes

€

d(x,y) = δ(xi,yi)
i=1

n

∑

where
δ(xi,yi) = 0 if xi = yi
δ(xi,yi) =1 if xi ≠ yi

Ln(x1,x2) = n

����
#dim�

i=1

|x1,i � x2,i|nA

B

A

B

Distance definition = critical!
E.g. comparing humans

1. 1.85m, 37yrs

2. 1.83m, 35yrs

3. 1.65m, 37yrs

d(1,2) = 2.00…0999975…

d(1,3) = 0.2

d(2,3) = 2.00808…

1. 185cm, 37yrs

2. 183cm, 35yrs

3. 165cm, 37yrs

d(1,2) = 2.8284…

d(1,3) = 20.0997…

d(2,3) = 18.1107…

Normalize feature values
Rescale all dimensions such that the range is equal, e.g. [-1,1] or [0,1]

For [0,1] range:

with mi the minimum and Mi the maximum value for attribute i

€

xi '=
xi −mi

Mi −mi

Curse of dimensionality
Assume a uniformly distributed set of 5000 examples

To capture 5 nearest neighbors we need:
◦ in 1 dim: 0.1% of the range
◦ in 2 dim: = 3.1% of the range
◦ in n dim: 0.1%1/n

€

0.1%

Curse of Dimensionality (2)
With 5000 points in 10 dimensions, each attribute range must be covered approx. 50% to find 5
neighbors …

?

More distances
Cosine distance

◦ Angle between points as seen from the origin: Think ”Looking for nearby stars.”
◦ Less subjected to the curse of dimensionality

For Strings
◦ Levenshtein distance/edit distance
= minimal number of changes to change one word to the other
Allowed edits/changes:

1. delete character
2. insert character
3. change character (not used by some other edit-distances, then counts for 2 edits)

Even more distances

() ()å -º
=

n

i
ii cqCQD

1

2,

Q

C

D(Q,C)

Given two time series:
Q = q1…qn
C = c1…cn

Euclidean

Start and end times are critical!

D(Q,R)

R

Sequence distances (2)
Dynamic Time Warping

Dimensionality reduction

Fixed Time Axis
Sequences are aligned “one to one”.

“Warped” Time Axis
Nonlinear alignments are possible.

edit

distance!

Even more more distances!
Distances exist for:

◦ Sets
◦ Graphs
◦ Trees
◦ …

In the real world: Recommender Systems

� = (
�

|Wij |)�1

Wij =
�

k(Rik � R̄i)(Rjk � R̄j)��
k(Rik � R̄i)2

��
k(Rjk � R̄j)2

R̂ik = R̄i + �
�

Xj�Ni

Wij(Rjk � R̄j)
Avg. rating

of user i can be all
entries or kNN

rating by user jof entry k

Pearson
coefficient

Your turn again!!

Decision trees (and rules)
Idea: use properties to select which example a prediction holds for.

E.g.

1. if (color = yellow) then friendly

2. color

friendly friendly hostile

Decision Rule

Decision Treeredyellow other

Decision tree algorithms

Before: 40% 60%

0% 100%67% 33%

After:

blue green

Information Entropy

Other possibilities, e.g. Gini index

Entropy = �
X

i

pilog2(pi)
<latexit sha1_base64="hUDjM+9A27ANOixOeVnDDhKHvlQ=">AAACCnicbZDLSgMxFIYz9VbrbdSlm2gR6sIyUwTdCEURXFawF2iHIZNm2tBMMiQZYRi6duOruHGhiFufwJ1vY9rOQlt/OPDxn3NIzh/EjCrtON9WYWl5ZXWtuF7a2Nza3rF391pKJBKTJhZMyE6AFGGUk6ammpFOLAmKAkbaweh60m8/EKmo4Pc6jYkXoQGnIcVIG8u3D2+4liJO4SU8hT2VRD6FsSkmBn6tYujEt8tO1ZkKLoKbQxnkavj2V68vcBIRrjFDSnVdJ9ZehqSmmJFxqZcoEiM8QgPSNchRRJSXTU8Zw2Pj9GEopCmu4dT9vZGhSKk0CsxkhPRQzfcm5n+9bqLDCy+jPE404Xj2UJgwqAWc5AL7VBKsWWoAYUnNXyEeIomwNumVTAju/MmL0KpVXcN3Z+X6VR5HERyAI1ABLjgHdXALGqAJMHgEz+AVvFlP1ov1bn3MRgtWvrMP/sj6/AG4Ppj9</latexit><latexit sha1_base64="hUDjM+9A27ANOixOeVnDDhKHvlQ=">AAACCnicbZDLSgMxFIYz9VbrbdSlm2gR6sIyUwTdCEURXFawF2iHIZNm2tBMMiQZYRi6duOruHGhiFufwJ1vY9rOQlt/OPDxn3NIzh/EjCrtON9WYWl5ZXWtuF7a2Nza3rF391pKJBKTJhZMyE6AFGGUk6ammpFOLAmKAkbaweh60m8/EKmo4Pc6jYkXoQGnIcVIG8u3D2+4liJO4SU8hT2VRD6FsSkmBn6tYujEt8tO1ZkKLoKbQxnkavj2V68vcBIRrjFDSnVdJ9ZehqSmmJFxqZcoEiM8QgPSNchRRJSXTU8Zw2Pj9GEopCmu4dT9vZGhSKk0CsxkhPRQzfcm5n+9bqLDCy+jPE404Xj2UJgwqAWc5AL7VBKsWWoAYUnNXyEeIomwNumVTAju/MmL0KpVXcN3Z+X6VR5HERyAI1ABLjgHdXALGqAJMHgEz+AVvFlP1ov1bn3MRgtWvrMP/sj6/AG4Ppj9</latexit><latexit sha1_base64="hUDjM+9A27ANOixOeVnDDhKHvlQ=">AAACCnicbZDLSgMxFIYz9VbrbdSlm2gR6sIyUwTdCEURXFawF2iHIZNm2tBMMiQZYRi6duOruHGhiFufwJ1vY9rOQlt/OPDxn3NIzh/EjCrtON9WYWl5ZXWtuF7a2Nza3rF391pKJBKTJhZMyE6AFGGUk6ammpFOLAmKAkbaweh60m8/EKmo4Pc6jYkXoQGnIcVIG8u3D2+4liJO4SU8hT2VRD6FsSkmBn6tYujEt8tO1ZkKLoKbQxnkavj2V68vcBIRrjFDSnVdJ9ZehqSmmJFxqZcoEiM8QgPSNchRRJSXTU8Zw2Pj9GEopCmu4dT9vZGhSKk0CsxkhPRQzfcm5n+9bqLDCy+jPE404Xj2UJgwqAWc5AL7VBKsWWoAYUnNXyEeIomwNumVTAju/MmL0KpVXcN3Z+X6VR5HERyAI1ABLjgHdXALGqAJMHgEz+AVvFlP1ov1bn3MRgtWvrMP/sj6/AG4Ppj9</latexit><latexit sha1_base64="hUDjM+9A27ANOixOeVnDDhKHvlQ=">AAACCnicbZDLSgMxFIYz9VbrbdSlm2gR6sIyUwTdCEURXFawF2iHIZNm2tBMMiQZYRi6duOruHGhiFufwJ1vY9rOQlt/OPDxn3NIzh/EjCrtON9WYWl5ZXWtuF7a2Nza3rF391pKJBKTJhZMyE6AFGGUk6ammpFOLAmKAkbaweh60m8/EKmo4Pc6jYkXoQGnIcVIG8u3D2+4liJO4SU8hT2VRD6FsSkmBn6tYujEt8tO1ZkKLoKbQxnkavj2V68vcBIRrjFDSnVdJ9ZehqSmmJFxqZcoEiM8QgPSNchRRJSXTU8Zw2Pj9GEopCmu4dT9vZGhSKk0CsxkhPRQzfcm5n+9bqLDCy+jPE404Xj2UJgwqAWc5AL7VBKsWWoAYUnNXyEeIomwNumVTAju/MmL0KpVXcN3Z+X6VR5HERyAI1ABLjgHdXALGqAJMHgEz+AVvFlP1ov1bn3MRgtWvrMP/sj6/AG4Ppj9</latexit>

The completeness of trees
Trees can represent any concept

◦ Every example can be its own leaf
◦ No generalization

Possibility of “overfitting”

= Adapting the model too much to the

training data, so that it does

not generalize to unseen data

Over-fitting

Perfo
rm

ance

Training time
(model complexity)

On training data

On unseen data

Pruning
In large trees, some branches can overfit the
training data

Pre-pruning

Set a minimum for the number of examples
needed to split a leaf node to stop learning early

Post-pruning

After learning, use a “validation” set to prune
away those parts of the tree that are too
detailed

Linear regression?
Cast binary classification problem as a regression problem?

◦ Negative examples get y = 0
◦ Positive examples get y = 1
◦ Predict positive when hq(x) > 0.5

Antenna SizeAntenna Size

Malignant ?

(Yes) 1

(No) 0

LOGISTIC regression!
hq(x) should only predict values from [0;1]

Sigmoid: Logistic function

g(z) =
1

1 + e�z

Probability that y = 1

h�(x) = g(�T x) =
1

1 + e��T x
= p(y = 1|x; �)

How about multi-class problems?
k copies of “one-vs-all”

x1

x2

Class 1:
Class 2:
Class 3:

x1

x2

x1

x2

x1

x2

predict

In one go: Softmax Regression
Turn y(i) into

and h(x(i)) into

y(i) =

2

6664

p(y(i) = 1|x(i), ✓)
p(y(i) = 2|x(i), ✓)

...
p(y(i) = k|x(i), ✓)

3

7775

h✓(x
(i)) =

1
Pk

j=1 e
✓T
j x(i)

2

66664

e✓
T
1 x(i)

e✓
T
2 x(i)

...

e✓
T
3 x(i)

3

77775

Overfitting again…
Also here overfitting can happen

J(�) =

"
� 1

m

mX

i=1

y(i)log(h�(x
(i))) + (1� y(i))log(1� h�(x

(i)))

#
+

⇥

2m

nX

j=1

�2j

Punish the use of large weights …
… because they represent steep model changes
… and thus complex decision boundaries!

Your turn again!!

Support vector machines
Popular, “go-to” ML approach

◦ many successes, e.g., using Radial Basis Function kernel

Usable in similar situations as neural networks

Important concepts:
◦ Finding a "maximal margin" separation
◦ Transformation into high dimensional space

+

+ -

Linear SVMs
Idea:

Find hyperplane that discriminates + from -
"margin" should be maximal
◦ margin = distance of hyperplane to closest points
◦ solution is unique, and determined by just a few points (“support vectors”)

+

+

+ +

+

+

-
-

+

+ -

-

-

-

-
-

-

wx+b = 0

Same goal, easier to compute:

x
-1

+1

minimal wminimal functional
margin

+ + + +
- - - -

+

+
+ +

+

+

+

-
-

-

-

- -

-

Convex optimization problem
◦ works as well as logistic regression
◦ only satisfiable for linearly separable data

s.t. y(i)(wT x(i) + b) � 1

min
w,b

||w||

SVM Model

… only depends on the independent part of the learning data x as part of a so called inner-product!!

Even the function to optimize:

L(M) =
1

2
||w||2 �

X

i

µi(y
(i)(wTx(i) + b)� 1)

= ...

= �1

2

X

i

X

j

µiµjy
(i)y(j)(x(i))Tx(j) +

X

k

µk

Adding dimensions

Example transformations
E.g.: learning quadratic decision surfaces in 2D:

◦ map x1,x2 to space with dimensions
x1, x2, x1x2, x1

2, x2
2

◦ learn “hyperplane” ax1+bx2+cx1x2+dx1
2+ex2

2+f=0
◦ in original space this is a quadratic form

You can do this and use logistic regression!!
◦ This is almost standard practice when using logistic regression ..

Kernel trick
Transformation can be done implicitly ...

So:
◦ Call the transformation F
◦ We then need to train on F(x) instead of x

◦ Define K(x,y) = F(x) F(y)
◦ K is called a kernel function
◦ choice of K = implicit choice of F

h(x) =
�

i

µiy
(si)K(x(si),x) + b

Inner products and non-linearity

< x,y >= xy =
X

i

xiyi

= ||x|| ||y|| cos(↵)||y|| cos(↵)

||x||Similarity
measure

x ! < x,y >

�(x) ! < �(x),�(y) >

Kernel trick
No need to actually compute

◦ allows the transformed space to be of much higher dimension than original without computational cost
◦ for to exist, K needs to be symmetrical and positive definite.

< �(x),�(y) > ⌘ K(x,y)

�

�

Typical Kernels
Linear Kernel

Polynomial Kernel

k(x, y) = xT y + c

k(x, y) = (↵xT y + c)d

Non-stationary kernels

Typical Kernels (2)
RBF Kernel (Radial Basis Function, a.k.a. Gaussian or Squared Exponential)

Rational Quadratic Kernel

Stationary kernels

k(x, y) = �2exp

✓
� (x� y)2

2l2

◆

k(x, y) = �2

✓
1 +

(x� y)2

2↵l2

◆�↵

k(x, y) = �2

✓
1 +

(x� y)2

2↵l2

◆�↵

Typical Kernels (3)
Periodic Kernel

Local Periodic Kernel

Stationary kernels

k(x, y) = �2exp

�
2sin2(⇡p |x� y|)

l2

!

k(x, y) = �2exp

�
2sin2(⇡p |x� y|)

l2

!
exp

✓
� (x� y)2

2l2

◆

More complex kernels
Convolutional Kernels:

◦ Based on a decomposition of the “data-object”
◦ And kernels defined on the decomposed parts

Examples:
◦ Sets
◦ Graphs
◦ Strings
◦ … k(;)

clear

onon
on

on

on

on
on

block
block

block

block

floor

action

clear

on

on

on

on

on
on

block

block

block

block
floor

action

Designing kernels
Inner product in Euclidean space

+

≈ or

≈ and

Google: “The Kernel Cookbook”
by David Duvenaud

Thanks for listening!

Lab: Overfitting and using Weka

Accuracy
100%

75%

50%

25%

Parameter value

