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Classification = Making Predictions




Your turn!!




Nearest Neighbor Classification

“Birds of a feather, flock together.”

Key ingredient: similarity measure ... or dissimilarity measure: distance!

Algorithm:
1. Store all examples

2. Classify a new example by copying the class of it’s nearest “neighbor”



Nearest Neighbor Properties

+ Learning is fast

+ No data is lost

Voronoi diagram
+ Distances are tunable through expert knowledge &

+ Complexity of the hypothesis rises with number of stored
examples

- Some of the data might be noise
- Computing all distances might be slow
- Distance might be more difficult to get right than expected

Boundaries
aren’t computed.




KNN: k-nearest neighbor

Make the algorithm more robust by using multiple neighbors

E.g.: use voting A
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Don’t just store, but store smartly

E.g. KD-trees, Ball-Trees




Similarity measures

Distance metrics: measure of dis-similarity
E.g. Manhattan, Euclidean or L,-norm for numerical attributes

e

1=1
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d(x,y) = \/Eé(xi’yi)

where

Hamming distance for nominal attributes

o(x,,y)=01ifx, =y,
o(x,,y,)=1ifx, =y,



Distance definition = critical!

E.g. comparing humans

1. 1.85m, 37yrs 1. 185cm, 37yrs
2. 1.83m, 35yrs 2. 183cm, 35yrs
3. 1.65m, 37yrs 3.  165cm, 37yrs
d(1,2) = 2.00...0999975... d(1,2) =2.8284...

d(1,3)=0.2 d(1,3) =20.0997...
d(2,3) = 2.00808... d(2,3) =18.1107...



Normalize feature values

Rescale all dimensions such that the range is equal, e.g. [-1,1] or [0,1]

For [0,1] range:
with m; the minimum and M; the maximum value for attribute i

X; — M,

l

X, =
M. —m,



Curse of dimensionality

Assume a uniformly distributed set of 5000 examples

To capture 5 nearest neighbors we need:
° in1dim: 0.1% of the range
> in 2 dim: v0.1% = 3.1% of the range

° in ndim: 0.1%Yn




Curse of Dimensionality (2)

With 5000 points in 10 dimensions, each attribute range must be covered approx.| ?|% to find 5
neighbors ...
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More distances

Cosine distance
> Angle between points as seen from the origin: Think "Looking for nearby stars.”

° Less subjected to the curse of dimensionality

For Strings
> Levenshtein distance/edit distance
= minimal number of changes to change one word to the other
Allowed edits/changes:
1. delete character
2. insert character
3. change character (not used by some other edit-distances, then counts for 2 edits)



Even more distances

Given two time series:

Q ={d;i---dp
C=c;...C,

Euclidean

DO.C)= |[$lo-c)

i=l1
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Start and end times are critical! %

D(Q,R)




Sequence distances (2)

Dynamic Time Warping

Fixed Time Axis ”Wa rped” Time AXIS
Sequences are aligned “one to one”. Nonlinear alignments are possible.

Dimensionality reduction
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Even more more distances!

Distances exist for:
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° Graphs
° Trees [ H
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In the real world: Recommender Systems
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Your turn again!!




Decision trees (and rules)

Idea: use properties to select which example a prediction holds for.

E.g.
1. if (color = yellow) then friendly Decision Rule

2. color

other . .
VGMR Decision Tree

friendly friendly hostile



Decision tree algorithms
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Information Entropy

//\\ Entropy = — sz-lagz (i)

/ \
/ \

Other possibilities, e.g. Gini index

0.25 0.5 0.75



The completeness of trees

Trees can represent any concept

: : > Every example can be its own leaf
| l > No generalization
i |
| | T Possibility of “overfitting”
| |
: : - = Adapting the model too much to the
L 0 L
) M —: training data, so that it does
| |
I | | not generalize to unseen data
|| :
|| -




Over-fitting
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On unseen data

Training time
(model complexity)



Pruning

In large trees, some branches can overfit the
training data

Pre-pruning

Set a minimum for the number of examples
needed to split a leaf node to stop learning early

Post-pruning

After learning, use a “validation” set to prune
away those parts of the tree that are too

detailed



Linear regression?

Cast binary classification problem as a regression problem?
° Negative examplesget y=0

> Positive examplesget y=1
> Predict positive when hg(x) > 0.5
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LOGISTIC regression!

ho(x) should only predict values from [0;1] 1 Probability that V=1

he(x) = (0" x) = e ply = 1]x;6)

Sigmoid: Logistic function




How about multi-class problems?
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In one go: Softmax Regression

Turn y() into

y() =

and h(x) into

'p(y(i) — 1@(73)’9)'
p(y(i) _ 2‘33(’&'), )

\

Py = k|2, 0)_

hg (ZC(Z)) —




Overfitting again...

Also here overfitting can happen

/’ ~\\
1 < . . . .
J(O) = |=— > yMlog(he(x)) + (1 = y*)log(1 = hy (™)) ¢2m292
1=1

Punish the use of large weights ...
... because they represent steep model changes
... and thus complex decision boundaries!



Your turn again!!




Support vector machines

Popular, “go-to” ML approach
° many successes, e.g., using Radial Basis Function kernel

Usable in similar situations as neural networks

Important concepts:
> Finding a "maximal margin" separation
> Transformation into high dimensional space




Linear SVMs

|dea:

Find hyperplane that discriminates + from -
"margin" should be maximal

> margin = distance of hyperplane to closest points
° solution is unique, and determined by just a few points (“support vectors”)



Same goal, easier to compute:

minimal functional l minimal w
margin

Convex optimization problem y- A
> works as well as logistic regression - \

> only satisfiable for linearly separable data




SVM Model

... only depends on the independent part of the learning data x as part of a so called inner-product!!

Even the function to optimize: — 5 > . > _ Mzij( )y(J) (:E(‘: 1225
) 7 k



Adding dimensions .

L




Example transformations

E.g.: learning quadratic decision surfaces in 2D:
° map Xq,X, to space with dimensions

X1, X2, X1X2, X12, X2

> learn “hyperplane” ax;+bx,+cx;x,+dx;2+ex,2+f=0
° in original space this is a quadratic form

You can do this and use logistic regression!!
> This is almost standard practice when using logistic regression ..



Kernel trick

Transformation can be done implicitly ...

min L(M Z Z i y(’)y(’.+ E Wi
() e )-

o Call the transformation F
° We then need to train on F(x) instead of x

> Define K(x,y) = F(x) F(y)

o Kis called a kernel function h(x) — Z //L’Ly(SZ)K(X(Sz)7 X) _|_ b

> choice of K = implicit choice of F



Inner products and non-linearity

Similarity
measure

<X,y >=Xy =) Ty
)

= |[x[] [ly[l cos(a)




Kernel trick

No need to actually compute ¢

<P(x),P(y) >=K(x,y)

> allows the transformed space to be of much higher dimension than original without computational cost

> for P to exist, K needs to be symmetrical and positive definite.




Typical Kernels

Linear Kernel

k(z,y) =a'y+c
Polynomial Kernel

k(z,y) = (ax’y + )

Non-stationary kernels




Typical Kernels (2)

RBF Kernel (Radial Basis Function, a.k.a. Gaussian or Squared Exponential)

k(z,y) = o2exp ( (= 2_13)2)

Rational Quadratic Kernel

k(z,y) =o0” (1 I (wz;lyéy)—a

Stationary kernels

A
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Typical Kernels (3)

Periodic Kernel | f\ N
k(z,y) = oexp (— 282%2(%‘x _ y)) os \ / \

12

Local Periodic Kernel

Kz, y) = oPeap (28"”%%;”3"))@@ (-2 f\ / \ i
VIVAV

Stationary kernels



More complex kernels

Convolutional Kernels:
> Based on a decomposition of the “data-object”

> And kernels defined on the decomposed parts

Examples:
> Sets

° Graphs
o Strings

o)




Google: “The Kernel Cookbook”

by David Duvenaud

Designing kernels

Inner product in Euclidean space

Y):H(X,Y)'FG(X,}’) ~ or
y)=H(x,y)G(x,y) ~ and
y) = (H(x,y)+1)*
y)
y)




Thanks for listening!




Lab: Overfitting and using Weka
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