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Abstract. In this talk, we discuss perspectives on the deployment of artificial in-
telligence technologies as decision support systems in high-stakes scenarios, such
as national defense. We will present a project proposed to the US Department of
Defense (DoD) that asks questions regarding the benefits of perceiving AI as a tool
or as teammate in light of trust and the teamness of human-AI systems.
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1. Background

1.1. People and Decision Support Systems

Decision support systems (DSSs) are critical components of the U.S. Department of De-
fense (DoD)’s multi-domain operations (MDO) in warfare [1]. However, the adoption
of faulty DSS recommendations can have unintended effects that can be lethal or catas-
trophic. An infamous example is from 2004, when US military personnel failed to veto
automated engagements made by the Patriot missile system, ultimately causing the frat-
ricide of British and American pilots [2]. Thus, for ethical and legal motivations, keeping
humans in the decision-making loop remains the status quo in the design of DSSs for
high-stakes domains such as national security, defense, and warfare [3].

DSSs have traditionally supplemented human cognitive capabilities with computer-
ized information processing efficiencies to improve decision-making quality and speed
[4]. Initial applications from the 1970s-1990s were largely tools that collated and pre-
sented information to support human decision-making, such as in military housing occu-
pancy assignment, officer manpower planning, and aircraft design compendiums [5, 6].
In the 2000s, DSS design philosophy shifted towards prosthetic functionalities that rec-
ommended decisions and actions altogether [2, 4]. The hyperactive acceleration and de-
mocratization of machine and deep learning methods in recent years have introduced ar-
tificially intelligent DSSs (AI-DSS; [7]) that are capable of processing highly complex
information and executing actions autonomously, often at the cost of transparency and
explainability [8]. An example of an AI-DSS central to the DoD’s MDO roadmap in-
cludes the navigation and engagement mechanisms of unmanned combat vehicles [9,10].
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People typically occupy supervisory roles over DSSs to perform checks and bal-
ances, especially over high-stakes decision domains [11]. However, AI-DSSs can be
found in contexts that require rapid decision-making, in which human supervision over
AI-recommended decisions may result in suboptimal system performance. Consider au-
tomated border control gates at airports, for example, where AI-DSSs are used to verify
if a traveler’s identification document matches their identity [12]. Under human supervi-
sory control setups, each face matching task is first performed by the AI-DSS to generate
a recommended decision (e.g., “identity verified” or “needs further verification”) for a
border security agent’s final approval. But with automated face matching capabilities al-
ready at par with or surpassing human accuracy in most circumstances [13], it is unclear
whether the presence of human supervisors truly increases the accuracy of automated
border control systems. Furthermore, people and AI have different sets of strengths and
weaknesses in face matching, likely resulting from differences in how each process facial
images [14]. Border control agents may thus fail to distinguish their own face-matching
performance relative to that of their AI counterpart as they make a final face-matching
decision. This is likely also the case for other high-stakes domains in which human
decision-making speed and accuracy tend to lag behind AI capabilities.

Nevertheless, it has been argued that people remain vital even where the presence
of a human supervisor may not significantly improve system performance [15]. The
presence of people helps satisfy legal and ethical considerations in automated decision-
making settings [16], particularly in critical situations that require human supervisors to
innovate non-algorithmic solutions [2, 15, 17]. Note, however, that people’s abilities to
effectively monitor and intervene in automated decisions in such instances are subject
to numerous cognitive biases and limitations. For example, people often become com-
placent in the presence of AI, resulting in the ineffectual detection of errors or irregu-
larities in AI outputs [18]. People are also prone towards automation bias, or the hu-
man tendency to blindly adopt an automation-recommended decision even while faced
with evidence that the recommendation is faulty [19]. These cognitive phenomena have
been linked to various inappropriate uses of DSSs, such as overreliance on automated
decisions, aversion to algorithm-heavy decision processes, and the relegation of human
operators to passive decision-making roles [20, 21].

1.2. AI-DSSs as Human-AI Teams

The inherent limitations of human decision-making—both at the individual level as peo-
ple perform decision-making tasks, as well as the interaction level as people consider
decisions recommended by DSS counterparts—raise questions about the role of people
in the high-stakes domains wherein AI-DSSs are likely to be found. For instance, can
the involvement of people strengthen decision recommendations made by AI-DSSs? In
2005, amateur chess players interacting with AI-DSSs in so-called “centaur” teams suc-
cessfully defeated grandmaster-level individuals and AI algorithms to demonstrate that
this may be true in some instances [22]. How is it that collaborations between non-expert
human decision-makers and expertly-trained AI algorithms can result in even greater
performance than the AI algorithms performing alone?

An explanation may be found in the theory that DSS-assisted decisions can be more
meaningfully understood as outcomes of joint cognitive systems that are formed as peo-
ple interact with automation to achieve a common goal [23]. This is akin to how teams



comprising only people interacting with each other have been understood to achieve
team-level decision-making outcomes beyond the sum of individual team member in-
puts [24]. With rapid advancements in AI capabilities, the idea that humans can form
teams with highly autonomous forms of automation to perform similar feats has recently
gained traction [25], though not without controversy (cf. [26, 27]). Current definitions of
human-AI teams stipulate that people and AI teammates must interact while perform-
ing unique but interdependent tasks towards common goals [25]. However, we posit
with [28] that when interdependent interactions between people and AI result in emer-
gent cognitive phenomena that cannot be broken down into individual member contri-
butions, “teamness” is exhibited and interactions must also be considered at the system
level—regardless of whether the system fits traditional definitions of teaming.

Considering AI-DSSs and the cognitive outputs of their interactions with people in
light of human-AI teaming is particularly relevant in light of design guidelines that rec-
ommend providing AI-embedded systems with human-like characteristics for the pur-
pose of being perceived, trusted, or interacted with anthropomorphically—or further still,
to be accepted as a teammate (e.g., [29–31]). Arguments in [26] refute the claim that AI
should be treated in systems design as human-like agents, and provide justification for
instead framing AI-DSSs as tools or “supertools”. However, the proliferation of AI prod-
ucts and interfaces like the Amazon Echo and ChatGPT that can interact with people in
humanlike manners have been observed to increase people’s propensity towards person-
ifying and socializing with certain types of AI as though they were teammates [32]—a
trend that is only projected to grow with the rise of generative AI algorithms [33]. The-
ories of AI teammate-likeness (e.g., [34]) support the idea that such features may make
people more likely to engage with AI counterparts in ways that support effective team
cognitive processes [28]. However, there is also evidence that people might still interact
with highly autonomous AI-DSSs as though they were interacting with another person
but without perceiving it as if it were human or a teammate. For instance, people may
withhold criticism, use verbal politeness cues (“please”, “excuse me”, etc.), or talk about
an AI using gendered language, yet retrospectively view it simply as an inanimate ob-
ject [35–38]. These interactive behaviors and expectations not only relate to the team-
like performance of human-AI teams, but also to sociocognitive phenomena that drive
human interactions with AI-DSSs, particularly trust [39].

1.3. Trust in AI-DSSs

Trust has been related to biased decision-making in DSSs, stemming from mismatches
between human expectations about the performance of automated decision-making sys-
tems versus the actual levels thereof [4, 40]. In human supervisory control settings, trust
has been defined as a person’s willingness to rely on automation as an aid to achieve
specific goals [40]. The relationship between human trust in automation and automation
performance has thus been a focal point of interest in the design of semi-autonomous or
autonomous technology [20, 40, 41].

The decision-making demands of the contexts in which AI-DSS “centaurs” and
other human-AI teaming settings are likely to be found make it such that people may
not necessarily be able to effectively monitor and veto all decisions recommended (and
in some cases, automatically executed) by their AI counterparts [42]. Thus, interactions
with AI-DSSs can be characterized by a heightened sense of vulnerability, making trust



central to maintaining effective system interactions in the long run [41]. It has been noted
that people are increasingly taking on the role of collaborators rather than supervisors
when teaming with advanced AI that is capable of adaptively interacting with them [43].
In such cases, people may demonstrate higher propensities to adopt relational trusting
expectations and behaviors as they interact with AI [41]. Trust in AI-DSSs may therefore
manifest and be measured not only in how people may respond to AI recommendations,
but also in how they respond to lateral exchanges with AI. This is in contrast with how
trust in automation has been largely measured through unidirectional perceptual or be-
havioral measures, such as reflective questionnaires that ask people how they perceive
it (e.g., [44, 45]) and observational metrics on how people adopt AI-recommended de-
cisions (i.e., compliance) or rely on automation to perform actions in the absence of
indications that interventions are needed [46]. Techniques to measure trust in recipro-
cal human-AI team relationships have been proposed (e.g., distributed dynamic team
trust; [47]). However, these typically rely on network metrics that limit their applicability
to human-AI dyadic contexts in which most human-DSS interactions presumably take
place [43].

This proposed project addresses several important questions in light of the current
state of trust and team conceptualizations for AI-DSSs: how important is it for AI-DSS
to be viewed as a teammate? Is it desirable for AI-DSS to be perceived as teammate-like,
considering the cognitive biases surrounding trust that already plague human decision-
making in traditional DSS contexts? Are teammate-like perceptions of AI-DSS necessary
to harness the benefits of emergent team cognitive processing?

2. Research Questions

In this proposed research, we ask three questions that partially address how people import
human social expectations surrounding trust into human-AI decision-making contexts
where the AI may be interacted with or considered as a teammate. The proposed project
aims to answer the following questions:

1. Do people evaluate the trustworthiness of an AI agent differently depending on
whether they are prompted to consider it as a teammate or a tool?

2. Do patterns of human-AI decision-making interactions over time correlate with
trustworthiness perceptions? Do these patterns and correlations change depending
on whether people are prompted to consider AI-DSS as a teammate or a tool?

3. How does an AI agent’s teammate-likeness and perceived trustworthiness affect
the teamness of human-AI decision-making interactions?
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