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Cooperative Adaptive Cruise Control (CACC)

Movie CACC vs ACC
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Introduction: We live in a hyperconnected world

Connected Vehicles Smart Grid Industrial internet Cooperating Robotics

• Use of advanced communication technologies lead to
novel applications and better control performance
• However, if communication networks are overloaded,

these benefits are lost
I long delays, many packet losses, etc.

Key question: When to exchange data between sensors, controllers and/or actuators s.t.
1. desirable stability and performance properties are guaranteed
2. limitations of implementation resources such as bandwidth, power usage, etc. of

communication networks are incorporated
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Introduction
Control over packet-based communication networks

Actuator SensorPhysical System

Controller

• Time-triggered control: Control tasks executed periodically & triggered by time: tk+1 = tk + h

• Time-triggered paradigm “speaks because it has to say something,”
not because “it has something to say”: Inefficient usage of resources

“Wise men speak because they have something to say,
fools because they have to say something” – Plato ∼ 370 BC

• Event-triggered control: Only speak when there is something to say: feedback in resource usage

Transmission times:

tk+1 = min{t > tk | |y(t)−ŷ(t)| > δ}

Actuator SensorPhysical System

Controller

tk−1 tk tk+1

6

Introduction

Movie inverted pendulum [time-triggered vs event-triggered communication]

• Same performance as 1 [kHz] time-triggered controller at ∼ 1% of transmissions
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• Event-triggered control (ETC): Requirements
• Modelling systems with packet-based communication: hybrid systems
• Event generators:

I Basic schemes (< 2012)
I Challenges
I Advanced schemes (> 2012)
I Focus: Periodic event-triggered control

• Cooperative driving
• Conclusions
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Event-triggered control
Requirements

tk+1 = min{t > tk | |y(t)− ŷ(t)| > δ}

• Quality of Control: Stability, Performance, Robustness

• Resource Utilisation:
I Warning: Zenoness: An infinite number of transmissions in finite time

I Strong non-Zenoness: There is T > 0 s.t. transmission intervals
tk+1 − tk > T for all k ∈ N

I Reduced communication w.r.t. time-triggered control
I Consistency!
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Requirements for CACC

• Vehicle following: Maintain a small ‘headway-time’ (stability property)
• String stability: disturbance attenuation along the vehicle string (L2-gain 6 1)

‖un‖L2 6 ‖un−1‖L2 with ‖un‖L2 =

√∫ ∞
0
‖un(t)‖2dt
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Requirements for CACC

• Vehicle following: Maintain a small ‘headway-time’ (stability property)
• String stability: disturbance attenuation along the vehicle string (L2-gain 6 1)
• Reduced communication to avoid overload (strong non-Zenoness)
• Partial information case: Local triggers not having access to full state of platoon
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Modelling systems with packet-based communication
Hybrid systems

Plant : ẋp = fp(xp, u,w)

y = gp(xp)

Controller: ẋc = fc(xc , ŷ)

u = gc(xc)

• ŷ(tk) = y(tk) at transmission times tk , k ∈ N

• Predictor for ŷ between transmissions: d
dt ŷ = fy (ŷ , u) (= 0 when ZOH)

• Sampling-induced error e = ŷ − y



13

Modelling systems with packet-based communication
Hybrid systems

Plant : ẋp = fp(xp, u,w)

y = gp(xp)

Controller: ẋc = fc(xc , ŷ)

u = gc(xc)

• ŷ(tk) = y(tk) at transmission times tk , k ∈ N

• Predictor for ŷ between transmissions: d
dt ŷ = fy (ŷ , u)

• Sampling-induced error e = ŷ − y

Physical part with x = (xp, xc):

ẋ = f (x , e,w) =

[
fp(xp, gc(xc),w)
fc(xc , gp(xp) + e)

]
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Modelling systems with packet-based communication
Hybrid systems

Plant : ẋp = fp(xp, u,w)

y = gp(xp)

Controller: ẋc = fc(xc , ŷ)

u = gc(xc)

• ŷ(tk) = y(tk) at transmission times tk , k ∈ N

• Predictor for ŷ between transmissions: d
dt ŷ = fy (ŷ , u) (= 0 when ZOH)

• Sampling-induced error e = ŷ − y

Cyber part: (ZOH)

ė = g(x , e,w) := −∂gp
∂xp

fp(xp, gc(xc),w), when t 6= tk

e+ = 0, when t = tk



15

Modelling systems with packet-based communication
Hybrid systems

Plant : ẋp = fp(xp, u,w)

y = gp(xp)

Controller: ẋc = fc(xc , ŷ)

u = gc(xc)

Hybrid system [1]

ẋ = f (x , e,w), when t 6= tk

ė = g(x , e,w), when t 6= tk

e+ = 0, when t = tk

[1] Goebel, Sanfelice, Teel, Hybrid Dynamical Systems, Princeton, 2012.

• How to determine {tk}k∈N in order to guarantee stability and performance?

Outline

• Event-triggered control (ETC): Requirements
• Modelling systems with packet-based communication: hybrid systems
• Event generators:

I Basic schemes (< 2012)
I Challenges
I Advanced schemes (> 2012)
I Focus: Periodic event-triggered control

• Consensus (Robotics) and/or Cooperative driving
• Conclusions
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ETC for disturbance / partial information case

⇔ e = y − ŷ

Event generator
Relative |e| > σ|y | [3]
Absolute |e| > δ [1,4-7]
Mixed |e| > σ|y |+ δ [2]

[1] Heemels, Sandee, van den Bosch, Analysis of event-driven controllers for linear systems, IJC 2008
[2] Donkers, Heemels, Output-Based Event-Triggered Control with Guaranteed L∞-gain ..., TAC 2012
[3] Tabuada, Event-triggered real-time scheduling of stabilizing control tasks, TAC 2007
[4] Yook, Tilbury, Soparkar, Trading computation for bandwidth: Reducing communication in distributed control ..., TCST 2002
[5] Miskowicz, Send-on-delta concept: An event-based data-reporting strategy, Sensors 2006
[6] Kofman, Braslavsky, Level crossing sampling in feedback stabilization under data-rate constraints, CDC 2006
[7] Lunze and Lehmann, A state-feedback approach to event-based control, Automatica 2010
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ETC for full (state) information case (no disturbances)

• No disturbance w = 0 and full information y = x

Event generator non-Zenoness
Relative |e| > σ|x | global
Absolute |e| > δ semi-global
Mixed |e| > σ|x |+ δ global

• Strong non-Zeno: there is T > 0 s.t. transmissions intervals tk+1 − tk > T , k ∈ N
• Global: lower bound on transmission intervals holds for all initial states
• Semi-global: lower bound on transmission interval depends on size of initial state

(and goes to zero for large states)
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ETC for full (state) information case (no disturbances)

• No disturbance w = 0 and full information y = x

Event generator non-Zenoness control properties
Relative |e| > σ|x | global asymptotic stability
Absolute |e| > δ semi-global practical stability
Mixed |e| > σ|x |+ δ global practical stability

• Asymptotic stability x(t)→ 0 when t →∞
• Practical stability x(t)→ B(0, ε) when t →∞ with ε > 0
• Analysis can be found in [1,2,3]
• Relative triggering looks promising, but fragile...

[1] Borgers, H., Event-Separation Properties of Event-Triggered Control Systems, TAC 2014
[2] Donkers, H., Output-Based Event-Triggered Control with Guaranteed L∞-gain ..., TAC 2012
[3] Tabuada, Event-triggered real-time scheduling of stabilizing control tasks, TAC 2007
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ETC for disturbance / partial information case

Event generator
Relative |e| > σ|y |
Absolute |e| > δ
Mixed |e| > σ|y |+ δ
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ETC for disturbance / partial information case

Event generator non-Zenoness
Relative |e| > σ|y | X
Absolute |e| > δ semi-global
Mixed |e| > σ|y |+ δ semi-global

• Semi-global: lower bound on transmission interval depends on size of initial state
(and goes to zero for large states)
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ETC for disturbance / partial information case

Event generator non-Zenoness control properties
Relative |e| > σ|y | X X
Absolute |e| > δ semi-global practical stability
Mixed |e| > σ|y |+ δ semi-global practical stability

• Analysis can be found in [1,2]
• Use of absolute thresholds is partial solution

I Semi-global strong non-Zenoness
I No asymptotic stability (x(t) 6→ 0) and no finite L2-gain

‖x‖L2 6 β(|x(0)|) + γ‖w‖L2 with ‖x‖L2 =

√∫ ∞
0
‖x(t)‖2dt

[1] Borgers, H., Event-Separation Properties of Event-Triggered Control Systems, TAC 2014
[2] Donkers, H., Output-Based Event-Triggered Control with Guaranteed L∞-gain ..., TAC 2012
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Challenge for networked systems (with disturbances)

Challenge: What about global strong non-Zeno and GAS (x(t)→ 0) / finite L2-gains ?

Outline

• Event-triggered control (ETC): Requirements
• Modelling systems with packet-based communication: hybrid systems
• Event generators:

I Basic schemes (< 2012)
I Challenges
I Advanced schemes (> 2012)
I Focus: Periodic event-triggered control

• Cooperative driving
• Conclusions



Design for networked systems with disturbances

• Absolute triggering with time-varying threshold [0-2]

tk+1 = min{t > tk | |y(t)− ŷ(t)| > δ(tk)}

• Enforcing minimal inter-event/waiting time [3,6]

tk+1 = min{t > tk+T | |y(t)− ŷ(t)| > σ|y(t)|}

• Periodic Event-Triggered Control (PETC) [2-5]: Events only at kh, k ∈ N

tk+1 = min{t > tk | |y(t)− ŷ(t)| > σ|y(t)| ∧ t = kh, k ∈ N}
−→ Combining the best of two worlds !?

[0] Seyboth, Dimarogonas, Johansson, Control of Multi-Agent Systems via Event-based Communication, IFAC WC 2011
[1] Mazo Jr., Cao, Asynchronous decentralized event-triggered control, Automatica 2013
[2] Postoyan, Tabuada, Nešić, Anta, Framework for the Event-Triggered Stabilization of Nonlinear Systems, TAC15
[3] Heemels, Sandee, van den Bosch, Analysis of event-driven controllers for linear systems, IJC 2008
[4] Heemels, Donkers, Teel, Periodic Event-Triggered Control for Linear Systems, TAC 2013
[5] Henningsson, Johannesson, Cervin, Sporadic event-based control of first-order linear stochastic .., Automatica 2008
[6] Tallapragada, Chopra, Event-triggered decentralized dynamic output .. LTI systems, NECSYS 2012

Outline

• Event-triggered control (ETC): Requirements
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I Challenges
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I Focus: Periodic event-triggered control
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PETC for linear systems
Hybrid system formulation [0]

d
dt x = Apx + Bu + Bww

y = Cx

u = Kŷ

←− ξ =

(
x
ŷ

)

tk+1 = min{t > tk | |y(t)− ŷ(t)| > σ|y(t)| ∧ t = kh, k ∈ N}

d
dt

[
ξ
τ

]
=

[
Aξ + Bw

1

]
, τ ∈ [0, h][

ξ+

τ+

]
=

[
φ(ξ)
0

]
, τ = h

φ(ξ) =

{
J1ξ when ξ>Qξ > 0
J2ξ when ξ>Qξ 6 0

with A :=

[
Ap BK
0 0

]
, B :=

[
Bw

0

]
, J1 :=

[
I 0
C 0

]
, J2 :=

[
I 0
0 I

]
[0] Goebel, Sanfelice, Teel, Hybrid dynamical systems: Modeling, Stability and Robustness, 2012
[1] H., Dullerud, Teel, L2-gain Analysis for a Class of Hybrid Systems with Applications to .. Event-triggered Control.., TAC 2016
[2] H., Donkers, Teel, Periodic Event-Triggered Control for Linear Systems, TAC 2013
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Periodic event-triggered control (PETC)
Discretization

d
dt

[
ξ
τ

]
=

[
Aξ + Bw

1

]
, τ ∈ [0, h][

ξ+

τ+

]
=

[
φ(ξ)
0

]
, τ = h

φ(ξ) =

{
J1ξ when ξ>Qξ > 0
J2ξ when ξ>Qξ 6 0

Discretization at sampling times kh, k ∈ N, with ξk = ξ(kh+), when (w = 0) leads to
discrete-time piecewise linear system:

ξk+1 = φ(eAhξk) =

{
J1e

Ahξk , when ξ>k e
A>hQeAhξk > 0,

J2e
Ahξk , when ξ>k e

A>hQeAhξk 6 0

• LMI-based analysis using piecewise quadratic Lyapunov functions [1,2]
• Also L2-gain analysis based on discrete-time PWL systems [3] (lifting)

[1] Heemels, Donkers, Teel, Periodic Event-Triggered Control for Linear Systems, TAC 2013
[2] Heemels, Donkers, Model-based Periodic Event-Triggered Control for Linear Systems, Automatica 2013
[3] Heemels, Dullerud, Teel, L2-gain Analysis for a Class of Hybrid Systems with Applications to .. Event-triggered Control, TAC 2016
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PETC: Interconnected nonlinear systems

• Asynchronous distributed PETC for nonlinear systems [1]
I Network Ni has sampling times s ij with s ij+1 − s ij 6 Ti

I t ik+1 = min{t > t ik | ‖yi − ŷi‖ > σi‖yi‖ ∧ t = s ij , j ∈ N}

P

C
C

C

C

N

N

N

N

N

P

P

P

P

N

[1] Wang, R. Postoyan, D. Nesic, H., Periodic event-triggered control for nonlinear networked control systems, TAC 2020
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Is ETC better than TTC?
Consistency: [1] Better tradeoff between
• Quality of Control using some performance measure
• Cost of implementation (e.g. average transmission rate)

Communication Network

ETMController Plant

• LQG setting: Linear continuous-time plant ẋ = Ax + Bu + w

• Performance measure: Vπ := lim supT→∞
1
T E[

∫ T
0 x(t)ᵀQx(t) + u(t)ᵀRu(t)dt]

• PETC controller/scheduler policy π:
checking at sk = kh to transmit (σk = 1) or not (σk = 0)

• Average transmission rate: rπ := 1
h × lim supN→∞

1
N

∑N−1
k=0 E[σk ]

[1] Asadi Khashooei, Antunes, Heemels, A Consistent Threshold-based Policy for Event-triggered Control, IEEE Control Systems Letters 2018
[2] Antunes, Asadi Khashooei, Consistent dynamic event-triggered policies for linear quadratic control, CONES, 2017
[3] Antunes, Heemels, Rollout event-triggered control: Beyond periodic performance, TAC 14
[4] Astrom & Bernhardsson (IFAC WC 1999, CDC 2002)
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Periodic event-triggered control (PETC)
• PETC outperforms time-triggered control in general LQG setting [1]:
Same cost limT→∞

1
T E[

∫ T

0 x(t)ᵀQx(t) + u(t)ᵀRu(t)dt], lower average communication rate:

0 1 2 3 4 5 6 7 8 9 10

r(Hz)
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V
base period
CPETC
periodic policy analytical

[1] Asadi Khashooei, Antunes, H., A Consistent Threshold-based Policy for Event-triggered Control, IEEE Control Systems Letters 2018
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Consistent Event-triggered Control
Theorem: The following control/transmission policy is consistent:
• Model-based control-input generator (CIG) using the linear predictor

Communication Network

ETMController Plant
˙̂x(t) = Ax̂(t) + Bu(t), t 6= sk with σk = 1
x̂(t) = x(t), t = sk with σk = 1
u(t) = Kx̂(t)

• Scheduling policy (ETM):

σk =

{
1, when eᵀkΓek > δ

0, otherwise,

where ek := e(s−k ) = x(s−k )− x̂(s−k ), sk = kh, k ∈ N

• “I know what you know principle”

Asadi Khashooei, Antunes, H., A Consistent Threshold-based Policy for Event-triggered Control, IEEE Control Systems Letters 2018
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Design for networked systems with disturbances

• Periodic Event-Triggered Control (PETC) : Events only at kh, k ∈ N

tk+1 = min{t > tk | |y(t)− ŷ(t)| > σ|y(t)| ∧ t = kh, k ∈ N}

• Enforcing minimal inter-event/waiting time [1,2]

tk+1 = min{t > tk+T | | y(t)− ŷ(t)︸ ︷︷ ︸
e(t)

| > σ|y(t)|}

tk+1 = min{t > tk+T | η(t) 6 0} with local dynamic variable η given by

η̇ ∼
{

Ψ(e, y) > 0, when tk 6 t 6 tk + T

−βη + σ2|y |2 − |e|2, when tk + T 6 t 6 tk+1

“low-pass filtered version of relative trigger σ2|y |2 − |e|2 6 0”
[1] Dolk, Borgers, H., Dynamic event-triggered control with time regularization ..., IEEE Trans. Automatic Control 2017
[2] Dolk, Ploeg, H., Event-triggered Control for String-Stable Vehicle Platooning, IEEE Trans. Intell. Transp. Systems 2017
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Cooperative Adaptive Cruise Control (CACC)

Movie event-triggered and time-triggered CACC [simulations]

Dolk, Ploeg, H., Event-triggered Control for String-Stable Vehicle Platooning, IEEE Trans. Intell. Transp. Systems 2017
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Cooperative Adaptive Cruise Control (CACC)

Movie event-triggered and time-triggered CACC [real-life experiments]

• 75% savings in communication while virtually same performance
Dolk, Ploeg, H., Event-triggered Control for String-Stable Vehicle Platooning, IEEE Trans. Intell. Transp. Systems 2017
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Conclusions
• Event-triggered control can obtain same quality of control with

significant reduction of communication compared to time-triggered control

• Tip of the iceberg: Expanding field, still very much in motion:
I Different system classes: stochastic systems, constrained systems (resource-aware

MPC), discrete-time systems, distributed optimisation, ...
I Different design approaches: delay-system approach, set-based approaches, optimal

control approaches, learning-based approaches, self-triggered control, ...
I Different aspects: quantization, (denial-of-service) attacks, packet losses, delays, etc.

• see www.heemels.tue.nl for preprints on these topics
• Future work: Building complete theory of ETC

I Formal proofs ETC better than time-triggered (study of transmission intervals!)
I Co-design of controller and event generators (for nonlinear systems)
I Unification of the field
I Multi-agent and distributed systems
I Applications
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