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Agenda for today
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1. Nonlinear material models — solver interface

2. An overview of different strategies for modeling nonlinear materials



Recap — nonlinear FEM
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∫
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Geometric nonlinearity:

B = B (a)

Material nonlinearity:

∂σ

∂ε
= D = D (a)



Load control with a nonlinear material
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Require: Nonlinear relation fint(a) with K(a) = ∂fint
∂a

1: Initialize n = 0, a0 = 0

2: while n < number of time steps do

3: Get new external force vector: fn+1
ext

4: Initialize new solution at old one: an+1 = a
n

5: Compute internal force and stiffness: fn+1
int

(an+1), Kn+1(an+1)

6: Evaluate first residual: r = f
n+1
ext − f

n+1
int

7: repeat

8: Solve linear system of equations: Kn+1∆a = r

9: Update solution: an+1 = a
n+1 +∆a

10: Compute internal force and stiffness: fn+1
int

(an+1), Kn+1(an+1)

11: Evaluate residual: r = f
n+1
ext − f

n+1
int

12: until |r| < tolerance

13: n = n+ 1

14: end while



Load control with a nonlinear material
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a

⇓

ε = Ba

⇓

σ = σ (ε) D =
∂σ

∂ε
⇓

fint =

∫

Ω
B

T
σdΩ K =

∫

Ω
B

T
DBdΩ

Require: Nonlinear relation fint(a) with K(a) = ∂fint
∂a

1: Initialize n = 0, a0 = 0

2: while n < number of time steps do

3: Get new external force vector: fn+1
ext

4: Initialize new solution at old one: an+1 = a
n

5: Compute internal force and stiffness: fn+1
int

(an+1), Kn+1(an+1)

6: Evaluate first residual: r = f
n+1
ext − f

n+1
int

7: repeat

8: Solve linear system of equations: Kn+1∆a = r

9: Update solution: an+1 = a
n+1 +∆a

10: Compute internal force and stiffness: fn+1
int

(an+1), Kn+1(an+1)

11: Evaluate residual: r = f
n+1
ext − f

n+1
int

12: until |r| < tolerance

13: n = n+ 1

14: end while



Linear elasticity (recap)
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σ σ

E

σ

ε

E

σ = Dε

Constant stiffness, full reversibility

In Voigt notation in 3D:

D =
E

(1 + ν)(1− 2ν)
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Viscoelasticity

5-13

σ σ

E η

σ

ε

σ = D∞ε+

∫ t

0
Dve

(

t− t̃
) ∂ε

(

t̃
)

∂t̃
dt̃

Stiffness is time-dependent

Fully reversible response, but stiffer if loaded faster

An integral in time appears, how to handle it?



Hyperelasticity
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σ σ

E(ε)

σ

ε

W (ε) ⇒ σ =
∂W

∂ε
⇒

∂σ

∂ε
=

∂2W

∂ε2

Analogous to a nonlinear spring

Popular for modeling large strains

Still fully reversible

Usually derived from a single scalar potential W



Plasticity
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σ σ

E

σ

ε

εp

E

σ = D (ε− ε
p)

Deformations are split:

ε = ε
e + ε

p
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σ σ

E

σ

ε

εp

E

σ = D (ε− ε
p)

Deformations are split:

ε = ε
e + ε

p

A yield surface defines the plasticity threshold:

f (σ) = σ̃ − σy (κ)

Plastic flow occurs when the yield surface is pushed:

f = 0, ḟ = 0 ⇒ ε̇
p = γ̇m

We now introduce history variables κ and ε
p



Damage
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σ σ

ε

σ

σ

ε

(1− d)E

σ = (1− d)Dε

Loss of load-carrying area modeled as loss of stiffness

A = (1− d)A0
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σ σ

ε

σ

σ

ε

(1− d)E

σ = (1− d)Dε

Loss of load-carrying area modeled as loss of stiffness

A = (1− d)A0

The damage d evolves according to a loading function:

f (ε̃, κ) = ε̃− κ, f ≤ 0, κ̇ ≥ 0, f κ̇ = 0

and an evolution equation:

d = d (κ)



Discontinuous damage
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JuK = u
top − u

bot ⇒
[

N −N
]

[

a
top

a
bot

]

⇒ JuK = NΓaΓ

t

JuK

G

t = T (JuK) ⇒ f
Γ
int =

∫

Γ
N

T
ΓtdΓ

Model an actual displacement discontinuity

Traction-separation through a cohesive zone law

Special interface elements are needed

Similar to damage, but explicit link to energy dissipation



Displacement control with a history-dependent material
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Require: Nonlinear relation fint(a) with K(a) = ∂fint
∂a

1: Initialize new solution at old one: an+1 = a
n

2: Update material model: σn+1,Dn+1,αnew = M
(

ε
n+1,αold

)

3: Compute internal force and stiffness: fn+1
int =

∫

Ω

B
T
σ

n+1dΩ, Kn+1 =

∫

Ω

B
T
D

n+1
BdΩ

4: Constrain K
n+1 so that ∆ac = a

n+1 − a
n

5: Evaluate first residual: r = −f
n+1

int,f

6: repeat

7: Solve linear system of equations: Kn+1∆a = r

8: Update solution: an+1 = a
n+1 +∆a

9: Update material model: σn+1,Dn+1,αnew = M
(

ε
n+1,αold

)

10: Compute internal force and stiffness: fn+1
int =

∫

Ω

B
T
σ

n+1dΩ, Kn+1 =

∫

Ω

B
T
D

n+1
BdΩ

11: Evaluate residual: r = −f
n+1

int,f

12: Constrain K
n+1 so that ∆ac = 0

13: until |r| < tolerance

14: Commit material history: αold = αnew
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