CIEM1110-1: FEM, lecture 3.3

Introduction to nonlinear material models

luri Rocha, Martin Lesueur
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Agenda for today

1. Nonlinear material models — solver interface
2. Anoverview of different strategies for modeling nonlinear materials
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Recap — nonlinear FEM

Discretized form:

/BTadQ:/NdeQ—I— N1t dl
0 Q I'y
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Recap — nonlinear FEM

Discretized form:
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Geometric nonlinearity:
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Recap — nonlinear FEM

Discretized form:

/BTadQ:/NdeQ—I— N1t dl
Q Q I';

Geometric nonlinearity:
B =B (a)

Material nonlinearity:

oo
— =D=D
I (a)
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Load control with a nonlinear material
Require: Nonlinear relation f,;; (a) with K(a) = %
1: Initializen =0,a° =0

2: while n < number of time steps do

3:  Get new external force vector: £’
4 Initialize new solution at old one: a"*! = a”»
5. Compute internal force and stiffness: £ (a®+1), Knt+1(am+!)
6:  Evaluate first residual: r = £77! — £ !
7:  repeat
8: Solve linear system of equations: K" 'Aa =r
o: Update solution: a"*! = a”t! + Aa
10: Compute internal force and stiffness: £ (a”*+1), K" ! (an 1)
11: Evaluate residual: r = 7! — £ !
12: until |r| < tolerance
13: n=n++1
14: end while
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| oad control with a nonlinear material

Require: Nonlinear relation f;,;(a) with K(a) = %

1: Initializen =0,a° =0

2: while n < number of time steps do a

3:  Get new external force vector: £’ - v

4 Initialize new solution at old one: a"*! = a”» © :uBa

5. Compute internal force and stiffness: £ (a®+1), Knt+1(am+!) c—o(e) D= do
6:  Evaluate first residual: r = £77! — £ ! I g
/- Trepeat fint = / BTod) K — / BTDBAQ
8: Solve linear system of equations: K"t'Aa =r 2 2
9: Update solution: a”+! = a"! + Aa I

10: Compute internal force and stiffness: £ (a”*+1), K" ! (an 1)

11: Evaluate residual: r = 7! — £ ! |

12: until |r| < tolerance

13: n=n++1

14: end while
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Linear elasticity (recap)

Constant stiffness, full reversibility E

o <—@—/ \/\/\/—@—> o

In Voigt notation in 3D:

1 — v

— v v 0 0 0

v 1—v v 0 0 0 A
B E v v 1—v 0 0 0
T Q+wi-2p| 0 0 0 EE o0 0
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o = De
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Viscoelasticity

Stiffness is time-dependent E n

o <«—@ - 1—@ o
Fully reversible response, but stiffer if loaded faster VVVVI—]

An integral in time appears, how to handle it?

t
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Hyperelasticity

Analogous to a nonlinear spring Ef(e)

o <—@—/ \/\/\/—@—> o

Popular for modeling large strains
Still fully reversible

Usually derived from a single scalar potential W
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Plasticity
Deformations are split:

e =%+ ¢€P

o —@—/ \N\/\_III—@— o
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Plasticity
Deformations are split:

e =%+ ¢€P

o —@—/ \N\/\_III—@— o

A yield surface defines the plasticity threshold:

flo)=06—0y(K) o
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Plasticity
Deformations are split:

e =%+ ¢€P

o —@—/ \N\/\_III—@— o

A yield surface defines the plasticity threshold:
flo)=0—oy(k) o
Plastic flow occurs when the yield surface is pushed:

f=0,f=0 = ¢ =9m =

. . . p
We now introduce history variables k and &P &
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Damage /
—A— -

Loss of load-carrying area modeled as loss of stiffness

A=(1—-d) A e VAYAAYA o
—VVVV—
—/ VNV —
7
(1—d)F
g g
o= (1—-d)De
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Damage /
—AAAA— -

Loss of load-carrying area modeled as loss of stiffness

A=(1-d)A o VIV o
—— —0—
The damage d evolves according to a loading function:
f(e,k)=€e—k, [f<0,k>0,fk=0
o
A
(1—d)FE
g g
o= (1—-d)De
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Damage /
Loss of load-carrying area modeled as loss of stiffness —V\V\V\V— - ©

A=(1-d)A o VIV o
—— —0—
The damage d evolves according to a loading function:
f(e,k)=€e—k, [f<0,k>0,fk=0
o
and an evolution equation: A
d=d(k) (1—d)E
g g
o= (1—-d)De
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Discontinuous damage L —
Model an actual displacement discontinuity I
Traction-separation through a cohesive zone law |
< atop
Special interface elements are needed [u] = u*P —u* = [N -N] Lbot] = [u] = Nrar
t

Similar to damage, but explicit link to energy dissipation 1

[u]

t=T ([u]) = fil;lt:/NIItdF
r
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Displacement control with a history-dependent material

Require: Nonlinear relation f,;; (a) with K(a) = %

1: Initialize new solution at old one: a1 = a”

2: Update material model: "', D" ™! ey = M (€™ 1)
3: Compute internal force and stiffness: f"* = / Blo"tdQ, K ! = / B'D""'BdQ
Q Q

4: Constrain K"*! so that Aa, =a"™! —a"

5: Evaluate first residual: r = —f1";

6: repeat

7 Solve linear system of equations: K" ™' Aa =r

8: Update solution: a”*! = a”*! + Aa

9: Update material model: o™, D" aepy = M (€™M ap1q)
10:  Compute internal force and stiffness: £ = / Blo"tdQ, K ! = / B'D""'Bdf

Q Q
11:  Evaluate residual: r = — "}

int, f
12: Constrain K”*! so that Aa,. =0

13: until |r| < tolerance
14: Commit material history: agq = apew
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