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Scientific question to be answered:

…I collide two large objects that are 
accelerated at ultra-relativistic energies?
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Not an interesting question to answer!!!
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Not an interesting question to answer!!!

How did the universe evolve after the Big 
Bang? 

Can we generate new states of matter at 
extreme temperatures and densities?

Interesting questions to answer!!!

Fundamental questions in physics
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Eleven unanswered science questions for this century:

What is dark matter? 

What is the nature of dark energy? 

How did the Universe begin and evolve? 

Can we incorporate quantum effects in a general 
gravitational theory? 

What are the neutrino masses and what is their role in 
the evolution of the universe? 

How do Cosmic Accelerators work and what are they 
accelerating? 

Are protons unstable? 

What are the new states of matter at exceedingly high 
density and temperature? 

Are there additional space-time dimensions? 

How were the elements from iron to uranium made? 

Is a new theory of matter and light needed at the 
highest energies?
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The theory of how protons and neutrons form the 
atomic nuclei of the chemical elements is well 

developed. At higher densities, neutrons and protons 
may dissolve into an undifferentiated soup of quarks 

and gluons, which can be probed in heavy-ion 
accelerators. Densities beyond nuclear densities occur 

and can be probed in neutron stars, and still higher 
densities and temperatures existed in the early 

universe.

There is evidence that during its earliest moments the 
universe underwent a tremendous burst of expansion, 

known as inflation, so that the largest objects in the 
universe had their origins in subatomic quantum fuzz. 

The underlying physical cause of this inflation is a 
mystery. In addition, the universe evolved passing 
through the EW and the strong phase transition, 

through a state of extreme conditions which are too of 
a complete mystery.
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Fermi’s notes: 2010 physics discussed in ~1950
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The birth of QCD
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1973: QCD
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Quantum Chromodynamics
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It looks like QED, no?
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Quantum Chromodynamics
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It looks like QED, no?

Well…it’s not!!!



Panos.Christakoglou@nikhef.nl

QCD distinct features
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freedom

Typical hadron size: ~10-15m = 1fm 

Planck’s constant: hbar c ~ 0.2GeV.fm 

200 MeV is the characteristic scale 
of confinement  

the ΛQCD scale
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Strong phase transition

The running coupling constant suggests the possibility of creating a new state of 
QCD matter where quarks and gluons are “free” ➡ the strong phase transition 

This transition can happen at sufficiently large: 

temperature T 

energy density ε 

Which T and ε? 

for massless quarks and gluons the only physical scale in QCD is the confinement scale 
~1 fm 

T ~ 200 MeV 

ε ~ 1 GeV/fm3 

At these scales the strong coupling constant becomes large 

Perturbation theory can not be applied and analytical calculations are notoriously difficult 
to be made 

Confinement is still poorly understood from first principles! 

Better understanding of this non-perturbative domain comes from lattice QCD 
calculations
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Lattice QCD calculations
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Lattice QCD: beyond a critical temperature 
there is a rapid rise in the number of 

degrees of freedom ➡ phase transition to a 
deconfined state of quarks and gluons!!!

Quark-Gluon Plasma (QGP)



Panos.Christakoglou@nikhef.nl

Going back in time: few µsec after the Big-Bang
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Going back in time: few µsec after the Big-Bang
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The strong phase transition can be studied in the lab!!!

16



Panos.Christakoglou@nikhef.nl

From the Big-Bang to the Little-Bangs…

The Quark-Gluon Plasma (QGP):  

a state of matter where the quarks and gluons are the 
relevant degrees of freedom 

existed few µs after the Big-Bang (the universe crossed 
this phase after expanding and cooling down): Studying 
the strong phase transition ➞ study primordial matter 

QCD: Phase transition beyond a critical temperature 
(~170 MeV) and energy density (~0.5 GeV/fm3) ➞ 
accessible in the laboratory ➞ heavy-ion collisions
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T(QGP-transition)~170MeV 
➞ 1012 degrees

T(Sun’s core)~107 degrees

T(QGP-transition) 105xT(Sun’s core)

Can we constrain the equation of state 
and the transport properties of QGP?
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Heavy-ion physics program: scientific goal
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Need to study as many observables as possible as a function of centrality

What are the properties of the QGP? EoS, transport properties (density, viscosity…)
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Centrality in heavy-ion collisions

19
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Defining centrality: impact parameter

Heavy ions are not point-like objects

Collisions can create systems with different properties depending on whether they are 
head-on (i.e. large overlap region) or if the nuclei graze each other (i.e. small overlap 
region)

Centrality defined geometrically by the impact parameter b

Distance between the centers of the two nuclei

Perpendicular to the beam axis

Centrality related to the fraction of the geometrical cross-section that overlaps

proportional to πb2/π(2RA)2 

20

2RA

b

2RA

b
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Peripheral collisions: few particles
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b
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Mid-central collisions: more particles
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b
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Central collisions: even more particles
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b
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Measured particle multiplicity in central collisions
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ALICE Collaboration,  Phys. Rev. Lett. 105, 252301 (2010)

~1600 particles in the central region (not the 
whole phase space) in central Pb-Pb collisions!!!
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Particle multiplicity in ALICE @ the LHC
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ALICE Collaboration, Phys. Lett. B754 (2016) 373
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Particle multiplicity in ALICE @ the LHC
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ALICE Collaboration, Phys. Lett. B754 (2016) 373
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Number of participants, spectators, binary collisions

Number of participants (Npart): nucleons 
undergoing at least one collision 

Scale with volume ~2A 

Number of binary collisions (Ncoll): inelastic 
collisions between a nucleon of one nucleus and 
at least one nucleon of the other nucleus 

Scale with AxA1/3=A4/3 

Number of spectators (Nspec): nucleons that do 
not lie in the overlap region and thus fly away 
without interacting

27

Binary collisions 
Number of participants
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Centrality in the experiment

Experimentally neither the impact 
parameter nor the Npart/Nspec can be 
measured 

Have to rely on experimental 
measurements: 

Multiplicity (central or/and forward 
regions) 

Large (small) for central 
(peripheral) collisions 

Zero degree calorimeters (energy 
deposited by spectator nucleons) 

EZDC small (large) for central 
(peripheral) collisions 

Expressed as the percentage of the 
total nuclear interaction cross 
section 

e.g. 5% most central Pb-Pb (or Au-
Au) collisions are the 5% with the 
highest multiplicity
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Heavy-ion physics: SPS (CERN) (~1990)
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Fixed target experiments  
(event display courtesy of NA49)
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Collider experiments  
(event displays courtesy of 

PHENIX and STAR)

Heavy-ion physics: RHIC (BNL) (~2000)
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Heavy-ion physics: LHC (CERN) (2010)
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Experimental setup
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Studying the properties of the QGP

Two main ways to probe the 
QGP properties: 

Through bulk observables 

The vast majority of particles 
are produced with pT < 2 GeV/c 

Hard (rare) probes with pT > 6 
GeV/c 

High pT hadrons 

Jets 

Heavy flavour (e.g. charm-
mesons)
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Studying the properties of the QGP

36

M. Roirdan and W. Zajc, Scientific American 34A May (2006)



Panos.Christakoglou@nikhef.nl

Hard probes: Jet quenching

37
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Jet quenching in a nutshell

Hard process scale: Q >> ΛQCD 

High pT parton with Q ~ pT 

These partons are formed early during the evolution of the system  

They fragment and create jets and high transverse momentum hadrons 

These processes can be calculated in perturbative QCD 

During the propagation through the medium, these objects interact with the medium 
and lose energy either via collisional or radiative energy loss 

Experimental consequence: 

Suppression of high transverse momentum particles 

Attenuation of energy of jets 

Modification of soft particle production

38
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A way of quantifying jet quenching

We need to compare particle 
production 

In the vacuum (pp collisions) 

In the QGP medium (heavy-ion 
collisions)

40

in-medium effects

no in-medium effects
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Jet quenching at the LHC: Pb-Pb and pp spectra
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Jet quenching at the LHC: RAA

42

CMS Collaboration, EPJC 72 (2012) 1945
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Jet quenching at the LHC: RAA for reference probes
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CMS Collaboration, EPJC 72 (2012) 1945
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Bulk observables: Anisotropic flow
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To flow or not to flow?

45

Courtesy of Mike Lisa
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Courtesy of Mike Lisa
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To flow or not to flow?
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Courtesy of Mike Lisa
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Independent pp collisions
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Courtesy of Mike Lisa
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Independent pp collisions
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Courtesy of Mike Lisa

Superposition of independent pp collisions
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Independent pp collisions
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Courtesy of Mike Lisa

Superposition of independent pp collisions
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Independent pp collisions
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Courtesy of Mike Lisa

Superposition of independent pp collisions Momenta pointing at random directions 
relative to the reaction plane



Panos.Christakoglou@nikhef.nl

Collectivity
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Courtesy of Mike Lisa

Evolution as a bulk system

Pressure gradient higher in-plane i.e. 
pushes bulk out: flow
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Collectivity
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Courtesy of Mike Lisa

Evolution as a bulk system More and faster particles in-plane than out-
of-plane

Pressure gradient higher in-plane i.e. 
pushes bulk out: flow
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Elliptic flow
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Superposition of independent pp collisions
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Elliptic flow
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Superposition of independent pp collisions

Evolution as a bulk system



Panos.Christakoglou@nikhef.nl

Quantifying the azimuthal anisotropy

In non-central collisions the coordinate space configuration is anisotropic (e.g. almond 
shape) 

The initial momentum distribution is isotropic (spherically symmetric) 

The interactions among constituents generate a pressure gradient that transforms the 
initial coordinate space anisotropy into the observed momentum space anisotropy 

Azimuthal anisotropy quantified by a Fourier expansion 

v1: directed flow, v2: elliptic flow, v3: triangular flow, v4: quadrangular flow,... 

Connection to equation of state and to the system’s transport properties (e.g. η/S)

56

S. Voloshin and Y. Zhang, Z. Phys. C70, 665 (1996)
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The “perfect liquid” at RHIC and LHC
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The “perfect liquid” at RHIC and LHC
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η/s = 0

η/s > 0
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The “perfect liquid” at RHIC and LHC
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η/s = 0

η/s > 0
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Elliptic flow @ the LHC
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There are also fluctuations...

61

Initial geometry not described by the (ideal) almond shape 

Fluctuations of the initial energy/pressure distributions lead to “irregular” shapes that 
fluctuate from one event to the other 

Higher order (odd) harmonics develop, each one having its own symmetry plane 

Higher order harmonics more sensitive to the value of η/S 

But initial conditions not known precisely enough (model dependent) 

Data can be described by different combinations of initial conditions and η/S
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And there is even more…: higher harmonics!

62

Due to the low value of η/s, higher harmonics survive at the final state 
Allow the study of initial conditions of heavy-ion collisions for the first time!
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And there is even more…: higher harmonics!

63

Due to the low value of η/s, higher harmonics survive at the final state 
Allow the study of initial conditions of heavy-ion collisions for the first time!

Naghmeh Mohammadi

You knew this was coming…
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Higher harmonic flow: towards the publication
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ALICE physics program extends to smaller systems!!!
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Pb-Pb  
√sNN = 2.76 TeV 
√sNN = 5.02 TeV
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ALICE physics program extends to smaller systems!!!
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Pb-Pb  
√sNN = 2.76 TeV 
√sNN = 5.02 TeV

p-Pb √sNN = 5.02 TeV
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ALICE physics program extends to smaller systems!!!
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pp  
√s = 2.76 TeV  
√s = 5.02 TeV  
√s = 7 TeV 
√s = 8 TeV 
√s = 13 TeV

Pb-Pb  
√sNN = 2.76 TeV 
√sNN = 5.02 TeV

p-Pb √sNN = 5.02 TeV
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(part of) the Nikhef-Utrecht ALICE group
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We are leading the field with a number of interesting physics projects that 
could easily lead to an advanced stage (e.g. publication) 

Feel free to pass by my office @ Nikhef (N328) if you are interested!!!
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Thank you for your attention!
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Backup
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Elliptic flow and how to measure it
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Event plane method Scalar product method

Q-cumulants: 2 and multi-particle correlations

 Uses the length of the Q-vector as 
a weight 

 u: unitary vector of the ith particle 
which is excluded from the Q-vector 
calculation

A. Bilandzic, R. Snellings, S. Voloshin, Phys. Rev. C83, 044913 (2011)

In the absence of non-flow 
and flow fluctuations!!!
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Non-flow effects

Correlations not connected to the common symmetry plane 

resonances, jets, femtoscopic correlations,... 

Suppressed utilizing multi-particle techniques, η-gap analysis (e.g. event plane 
or SP methods with forward detectors), different charge combinations,... 

For a typical Pb-Pb LHC collision at 2.76 TeV, M~400-500 for 30-40% centrality 

vn >> 5% for the 2-particle correlation technique 

vn >> 1% for the 4-particle correlation technique
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Cumulants and fluctuations
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