@

Advanced Time Series Econometrics

Week 3: High-dimensional Volatility Models

Yi He
January 17, 2023



Plan for Today

1. Introduction
2. The Zoo of Volatility Models

3. Estimating + Evaluating High-Dimensional Volatility Model
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Introduction



Conditional Variance Matrix

Consider the random vectors (e.g., daily stock returns)

yt:(yl,tw"?yNJ)leRN? t:]-v"'vT
such that

IE[)/t ‘ -7:t—1] = O, Var[)/t ’ ~7:t—1] =H; € RNV*N

where

e the sigma-algebra F;_1 contains information up to time t — 1
e H; is the conditional (co)variance matrix measurable by F;_1

e Under stationarity: ¥ = EH; = E[y;y;] is the unconditional
variance matrix

Harvey (1989, JFE):

... The evidence indicates that the conditional covari-

ances do change through time.. ..
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e Conditional variance matrix H; of vector of asset returns y; is
relevant for:

e Portfolio selection: mean-variance optimisation
(diversification) requires reliable estimate of variance matrix
over the holding period.

e Hedging: trying to eliminate exposure to certain risk factors
requires conditional betas, which are functions of H;.

e Risk management: Value at Risk of portfolio return w'y;
depends on variance w’H;w. If portfolio weights are
time-varying, this requires H;.

e Today we are interested in the high-dimensional regime with
N = T, although most -if not all- techniques still work for

small N.

e High-dimensional GARCH models often suffer from curse of

dimensionality; some proposals provide a partial solution.
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Catch Up: Univariate GARCH

e Define the marginal variances
hi,t = Vart_l(y,"t), I = 1, ey N

where Var;_1(-) is conditional on F;_j.
e Standard GARCH(1,1) specification for each series:

1/2
Yit = Mig+€Eir=0+ h,-/t Zjt,

hip = (1— o —Bi)o? + aigs g + Bihir_1,
ziy ~ 1ID(0,1).
e Then decompose that
He=DeQ:D:, Dy =diag(hyz,....hy2),
with
/

Qr = Vart—l(zt)7 Zy = (Zl,ta . 7ZN,t) .
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Example: 500 US Stocks from 2015-2019

0 0.2 0.4 0.6 0.8 1 104 1073
ARCH o Sample Variance o2 (Log Scale)
Autocorrelation of Squared GARCH(1,1) Residuals

Lag 2

C L et T, Y
0 ‘~¢iﬁ«Q§5§i
10 10
Sample Variance o? (Log Scale)

et i 005t

Lag 1

N = 500 US Stocks with: (1) largest market value at the beginning of
2015 (2) a complete daily return history over 20152019 (T = 1258)
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High-Dimensional Volatility Models

QUVA

e Our focus today is to model and estimate Q

e The marginal GARCH parameters O"-z, «j, Bi can be fitted

series-by-series.

e A trivial property we want to guarantee: H; and Q; are

positive (semi)-definite

e For practitioners, one may want specification flexible enough

to replicate properties such as

persistence in volatility and covariation;

time variation in correlation;

volatility spill-over effects;

asymmetries, leverage effects.

model is closed under linear transformations (taking
portfolios). ..



The Zoo of Volatility Models



DVEC Model: Bollerslev et al. (1988)

Analogous to univariate GARCH model, the (co)variances may
depend on their own past, and on past squares 5,?7t71 and
cross-products €; ¢—1€jt—1:

Hi=(l—A—B)oX+ Ao (z—:t,lsg_l) + BoH; 1
where ‘o’ denotes the entrywise product (Hadamard product), and
A, B are symmetric matrices.
Involves parameters at the order N? + 2N2.
Marginal GARCH models: A; = a;, B = 8;, Lii = 02
Q: is the correlation matrix corresponding to H;

If taking A and B as scalars (implying that aj; = «, B;i = B):
Ht = (1 - — B)Z + Oé5t_1€/t,1 iy BH{-_]_

# parameters at the order N? + 2
RiskMetrics (o + 8 =1): Hy = (1 — B)er—16,_1 + BH-1 7
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https://doi.org/10.1086/261527

BEKK Model: Engle and Kroner (1995)

BEKK(1,1,K) Model:
K K
Hy=CY"C*+ > Afer e, 1Ap+ > B Hi 1B,
k=1 k=1

K K

CYCr =% - > AITA, - B/iB;
k=1 k=1

where A} and B are non-singular N x N matrices, and C* is

N x N upper triangular matrix.

e Guarantee positive definiteness of Hy;
e Setting A} = diag(ax) and B} = diag(bx) diagonal gives the
DVEC model with

K K
A= aa,, B=> bebl.
k=1 k=1

QUVA
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https://doi.org/10.1017/S0266466600009063

Factor GARCH Model: Engle, Ng and Rothschild, 1990

K
Ye =) Aifue+ e =N+ ey,
k=1

where {f; s = W,’(yt}szl are independent GARCH processes,
independent of e; ~ 11D(0, Q2*).

o Vari_1(fxt) = hir = (1 — ax — Bk)os + akf;it,1 + Brhi,t—1

e The conditional variance

K

Hy =% + Z >\k/\;<(ak(fk27t—1 — %) + Br(WiHe—1wi — 0%))
k=1

e # parameters at the order N> + KN
e Special case of BEKK: Exercise 3
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https://doi.org/10.1016/0304-4076(90)90099-F

GO-GARCH Model

QUVA

Consider the spectral decomposition of unconditional covariance
matrix

Y = PLP
GO-GARCH (Alexander, 2002; van der Weide, 2002; Vrontis,
Dellaportas and Pollitis, 2003):

ye = Ny, Hy = AVN

where A = PLY/2U/ is a non-singular matrix, U is some orthogonal
matrix, and f; is an N-dimensional vector of independent GARCH
processes, with diagonal variance matrix V4, and with unit

unconditional variance.

e Closed under non-singular transformations;
e # parameters at the order N? + N? + N

e If U=1then N2+ N i


https://doi.org/10.1111/1468-0300.00089
https://doi.org/10.1002/jae.688
https://doi.org/10.1111/1368-423X.t01-1-00111
https://doi.org/10.1111/1368-423X.t01-1-00111

CCC Model: Bollerslev (1990)

The constant conditional correlation (CCC) model
He=D;QD:, Dy =diag(hi}%, ... hyp.,).

where Q = E[z:z}] is the covariance/correlation matrix of
‘devolatilized’ residuals z;.

e Positive definite;
e # parameters of order N + N;

e Not closed under linear transformations.
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https://doi.org/10.2307/2109358

DCC Model: Engle (2002)

The dynamic conditional correlation (DCC) model :
He = DR:D:,  D: = diag(hil%...., hyy o),
where R; is a conditional correlation matrix, given by
Re = diag(Q:)"Y/? Q; diag(Q;) /2
t =(1—a—B) +az-_1z_; +BQ1
Here > = EQ:

e Positive definite;

e More flexible than CCC with 2 more parameters («, 3); not
closed under linear transformations;

e Correction proposed by Aielli (2013, JBES): makes little
difference in practice.
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https://doi.org/10.1198/073500102288618487
https://doi.org/10.1080/07350015.2013.771027

GAS Model: Creal, Koopmans and Lucas (2011)

The generalized autoregressive score (GAS) model builds on

the DCC model, with
£ diag(Df)
e vech(Q;)

fr =w+ As;_1+ Bf_1, st = St X V¢, log p(ye|fe; 0)

satisfying

By taking p to be the multivariate t() density, this gives an
automatic model specification that downweighs extreme
observations. In particular,

Q:=(1-B)T +aS:_1Vq,_, log p(yi_1|fi1;0) + BQs_1
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https://doi.org/10.1198/jbes.2011.10070

e Equity returns display leverage effects: large negative shocks
have stronger effect on volatility than large positive shocks.

e One can use asymmetric univariate GARCH models
h,-7t = w; + (Ot,' -+ *y,-]l[a,-,t_l < O])E/Z,t—l + Biht

on the factors ¢; ; = f; + or returns €; + = yi ¢

e Can be included in a DCC model by
Ri=01-a-B)X+az 1z 1+6Q-1+v(ve—1vi 1 —X_),

where v = max(0, —z;) = —1[z; < 0] 0 zx and X_ = E[v;v{].
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Estimating + Evaluating
High-Dimensional Volatility Model




Estimation of multivariate GARCH models

e The log-(quasi-)likelihood for the model

quasi

ye|Fe1 "~ N(0, He(6))
is given by £(8) = S, £:(8), with

N 1 1 _
&(9) = ) log 27 — 2 log |Ht(9)’ - E%Ht(e) 1)/t-

e For GAS model one may use the likelihood t(~) and include v
as a parameter too

e Depending on N and the specification of H¢(6), the dimension
of the parameter space can be very high

e For (very) small N/T < 100, ML works fine. For specific
models, multi-step approximations to ML have been proposed.

e For large N =< T, ML suffers from overfitting
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Estimating Low-Dimensional GARCH Models

For small N/T < 100, say:

e For GO-GARCH, this is adapted as follows, using y; = Af;,
A= PLY2y:

1. Estimate P and L as eigenvectors and eigenvalues of sample
variance matrix of y;. Hence 3, = L=Y/2P"y,:

2. Maximize the log-likelihood for the model f; = U’s;, over
orthogonal matrices U (if unknown) and univariate GARCH
parameters for f;

3. U may also be estimated from the (cross-) autocorrelations in
5.:5;: Boswijk and van der Weide (2011)

e For DCC, a three-step estimation procedure is:

1. Estimate GARCH models for y;;, and compute z;; := ﬁ;tl/zyt;

2. Estimate Y =EQ, by S= T 1Y, 27

3. Maximize —1 Z;l (log |Re| + Z,R; '2;) over correlation

dynamic parameters.
QUVA 16


https://doi.org/10.1016/j.jeconom.2010.11.011

Example: European Stock Market Indices, 2015-2019

UK Germany

0.05 0.05

0f 0f
0,05 ‘ ‘ ‘ ‘ -0.05 ‘ ‘ ‘ ‘

2015 2016 2017 2018 2019 2020 2015 2016 2017 2018 2019 2020

France Netherlands

0.05 0.05

0j 0 |
-0.05 1

. . . . -0.05 . . . .
2015 2016 2017 2018 2019 2020 2015 2016 2017 2018 2019 2020
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Daily Return On European Stock Market Indices
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Example: Estimated DCC Model

e Univariate GARCH(1,1) models:

UK Germany France Netherlands

o; 0.0078 0.0097 0.0098 0.0096
a; 0.0237 0.0186  0.0050 0.0093
~i 0.2041 0.1935 0.1284 0.2332
Bi 0.8061 0.8376  0.9057 0.8509

e Sample correlation matrix of z;

1.0000 0.7366 0.7423 0.7859
0.7366 1.0000 0.8690 0.8860
0.7423 0.8690 1.0000 0.9063
0.7859 0.8860 0.9063 1.0000

e Correlation dynamics: @ = 0.0683, 3 = 0.8764.
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Estimating Large-Dimensional Covariance Matrix

e Most - if not all - models involve estimating the unconditional
covariance matrix in some sense:

= EHt or Y = EQt

e In general, the sample covariance matrix

TZytyt YY Y=[1,....yrl or

szj = fz Z, Z=Ia,...,zr|

is inconsistent towards ¥ in high dimensions with N < T;
even if one replace z; with z;.

2 = ||vec(S) — vec(Z)|* /> 0.

QUVA 19
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Rotation Equivariant Estimator

o Consider the spectral decomposition of sample covariance
matrix S given by

S= U/\U,, U= [ul,...,uN], = diag()\l,. 5 .,)\N).

e The sample covariance matrix S = S(Y’) = L Y'Y is rotation

equivariant: for all orthogonal matrix W
S(WY’) = ws(y)w’
e The class of rotation equivariant estimator is of the form
Y = UANU, A =diag(dy,...,dy),
where d; are invariant with respect to data rotations.
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Optimal Rotation Equivariant Estimator

The sum of squared errors over all entries
~ 2 ~ 2
Lt I
F F

N
= (di — uTu)® + > (ujTu;)?

i=1 i
————

£50

is minimized with d; = v/Xu; =: d*.

e Ledoit and Péché (2011): d* ~ 6(\;) for some shrinkage
function 6 for Y/ = ¥£1/2Z7’ for Z with i.i.d. entries

e Ledoit and Wolf (2012): (Consistent) Estimation of §
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https://doi.org/10.1007/s00440-010-0298-3
https://doi.org/10.1214/12-AOS989

Shrunk Eigenvalues

2t s Oracle nonlinear shrinkage formula
// + Nonlinear shrinkage estimator
/ — - — Sample covariance matrix (no shrinkage)
0 . n n
0 5 10 15 20

Sample Eigenvalues Before Shrinkage

A typical simulation result for IID data with N = 100 and T = 300 in
Ledoit and Wolf (2012): 20% of population eigenvalues of X are equal to

1, 40% are equal to 3 and 40% are equal to 10.
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Engle, Ledoit, and Wolf (2019)

e For each asset, fit a univariate GARCH(1,1) model and use
the fitted model to devolatilize the return series.

e Take LW2012's nonlinear shrinkage estimator ‘off the shelf’
and apply them to devolatilized returns Z; to get pa
(inconsistent but ‘optimal’ in terms of squared errors)

e Plugin S and then fit the remaining 2 DCC model parameters

&,B using the composite likelihood method in Pakel et
al.(2021).
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https://doi.org/10.1080/07350015.2017.1345683
https://doi.org/10.1080/07350015.2020.1713795
https://doi.org/10.1080/07350015.2020.1713795

Simulation: Estimating ¥ in DCC model

e Univariate GARCH: 0’,-2 =1, a;=0.05 5;=0.9
e Correlation dynamics: « = 0.05, 5 € {0.3,0.6,0.9}

£=0.3 8=0.6
0
10 100

o ) )

o o o °

>102%p O Q o 0% T, I

o Qo o O o

= o) S =

8 ® g § 8

g = [¢] S

g g 2 g

§ 104} © § gl o° §

g0 o S10°F o =]

w w w

x x x

H 54 5 o
& 65" &

4L O
10°® o 10 o
O Empirical 10°F
X NL Shrinkage
0.5 1 143 0.5 1 143 0.5 1 143
Optimal Shrinakge (Log Scale) Optimal Shrinakge (Log Scale) Optimal Shrinakge (Log Scale)

sox|?
QUVA Improvement 1 — w = 87.0%, 87.3%, 47.6% from left to the right
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Example: 500 US Stocks from 2015-2019

x-S
102 b =i
50 Bitisadiie s i i 0.05
& R aod
g 100
10k
@ ® 150 0
3
= 200
15} T e -0.05
=) 0L shesiimes
2 10 250
u% 300
i.ug.f 0.1
_§ 107 350
< o
%) o0 -0.15
450
102
500 - ;
102 100 102 100 200 300 400 500

Sample Eigenvalues (Log Scale)
Correlation dynamics
e with shrinkage: @ = 0.0417 and 3 = 0.8136

https://youtu.be/SeDwIfykggA
@UA e without shrinkage: & = 0.0413 and 3 = 0.8083 25


https://youtu.be/SeDwJfykgqA

Evaluating High-Dimensional Volatility Model

QUVA

Diagnostic testing are possible (only) in low dimensions: see
Bauwens et al.(2006)

In high dimensions, performance in risk management may be
evaluated by testing implied Value at Risk for portfolio w'y;.
(Joint test of specification of H; and distributional

assumption.)

_ (win)?
W{Ht Wt

... or testing standardized residuals SR via the

regression
SRt = 1 r PSRt_1 + vt

... or checking the excess variance of the implied

minimum-variance portfolio

... or tracking error of a particular portfolio

26
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Exercises

1. Show that the matrix H; defined by the BEKK model is
positive definite.

2. Show that the BEKK model is a special case of the general
VEC model specified by Equation (4) in Bollerslev et
al.(1988), using the property vec(ABC) = (C' ® A)vec(B) for
conformable matrices A, B and C, and the duplication matrix
Dy, defined by vec(A) = Dyvech(A) for a symmetric N x N

matrix A.

3. Show that the factor model is a special case of the BEKK
model.
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