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Introduction



High-Frequency Financial Data

e Traditional volatility model focus on daily asset log-returns
re = Alog S;.

e Here S; for t € N is closing price at end of day t. So r; is
return on an investment buying asset at end of yesterday, and

selling at end of today.

e However, assets such as stocks or foreign exchange are traded
during the day, so price observations are available at times

{ti} 7, satisfying
t—1<t0<t1<...<tnt:t.

So S;, is opening price on day t (relevant when market closes,
such as stock exchanges).
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e The n; intraday returns on day t:

rei = log(St, /St ,), i=1,...,n

may be used to estimate variance of daily return

re = Y iy re; (assuming zero overnight return).

Intraday returns contain more information about volatility
than daily returns.

™)
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SPY data (fund that follows S&P 500 index) on 2009/02/13
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e Data on all trades and quotes for a particular stock within a
day are collected and sold by commercial parties. An
important example is the TAQ database, which covers stocks
traded on the New York Stock Exchange (NYSE).

e Multiple trades in the same fund against different prices, on
different markets, within the same one-second period.

e Leads to large data files; data processing cannot be done
using e.g. MATLAB with text or Excel files. Substantial data
cleaning is needed before analysing the data.
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Continuous-time Processes



Continuous-time Processes

e Brownian motion {W,}:>¢ is stochastic process satisfying:
1. W() =0;
2. Wiyps — Wi ~ N(0,s) for t >0 and s > 0;
3. independent increments;
4. continuous sample paths.
e Main building block for continuous-time processes.
e Continuous but non-differentiable sample paths, of unbounded

variation: with probability one
n

sup > " [Wy, — Wy, | = oo
0<tp<...<tp<t i=1

e Martingale w.r.t. its own filtration {FV1},>¢, with
F¥ = o({Wslozs<e):
EWFM)=W,, 0<s<t
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Brownian motion
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I1to Processes

e |t0 integral is defined as

t n—1
/ USdWS = lim E Ut,‘(Wi‘,'+]_—Wt,')7
0 n—o0 £
i=0
where:

e volatility {o;};>¢ is adapted to {F;}¢>0, and {W;}eso is
martingale w.rt. {Fi}esoi

o P UOT o2dt < oo] = il

e the limitisin L2, with0 =1ty <...<t,=t and
maxi<j<n |t — ti—1| = 0.

e Leads to class of 1td6 processes (Brownian semimartingales):

t t
X, = x0+/ usds—i—/ oedW,,
0 0
54 dXt = /.,Ltdt+0'tth,

OUVA where drift {1 }+>0 is adapted to {F;}+>0 and integrable. 8



Example 1

Brownian motion with drift:
dXt = IU,dt + Uth.

e Black-Scholes model for log-asset prices (X; = log S).

e Discrete-time observations {x; = X,-At},f'zo follow Gaussian
random walk with drift:

Xj = Xj—1 + pAt +¢;,
with &; ~ i.i.d. N(0,02At).

e Hence normal log-returns r; = Ax;.
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Example 2

Ornstein-Uhlenbeck (OU) process:

e Displays mean-reversion to .

e Discrete-time observations {x; = Xia¢}7_, follow Gaussian
AR(1) process:

X = p+ p(xi-1 — p) + i,

with p = e @At and ¢; ~ i.i.d. N(0,02(1 — e2*21) /(2a)).
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1td’s formula

e Ité’s formula: if de_- = /,Ltdt + Utth and Yt = f(t,Xt),

then
dYy = [f'(t, Xe) + 3f"(t, Xt)af} dt + '(t, X;)dX
= [f(t,Xt) + F1(t, Xe)pe + 27(t, Xe)o? | dt
+f'(t, X¢)ordW,
where
F(t.x) = 8f(8tt, x)7 f'(t, x) = Bfél;x)’ f(t,x) = 622(;2’)0

e Example: if dX; = pdt + odW; and S; = exp(X;), then
dSt = (M + %0’2) Stdt -+ Ustth.
Process {St}+>0 is called Geometric Brownian motion.
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Jump-Diffusion Process

QUVA

Poisson process {/;};> is integer-valued stochastic process
with:
1. Nop=0;
2. Nirs — Ny ~ POISSON(As) for t > 0 and s > 0;
3. independent increments.
Jump times {7; f\il defined by N, = N, _ + 1, where
N, = limepy, Ne.
Integral with respect to N; is defined as

N
/t/ists => k=Y Joy  Jr=redN,.
0 i=1

0<s<t

Leads to Ito process with jumps, or jump-diffusion:
dXt = ,utdt + Utth + thNt,

where {/it, 0, Kt }>0 are predictable (F;_-measurable).
13



Quadratic Variation

e For any semimartingale {X;}+>0 (sum of local martingale and
bounded variation process), the quadratic variation process is

t n
QV: = [X], = /O (AX6)? = plim, e 3 (X — Xe )2,

i=1
where again 0 =ty < ... <t, =t and
maxi<;<n |t,' = t,'_l‘ — 0.
e Examples:
e Brownian motion: [W], = t.
e Poisson proces: [N]; = N;.
e Jump-diffusion dX; = p.dt + o dW; + k¢ dN;:

[X]t:/ s+ 3

0<s<t

or QVe = IVe + Y g, J2, where IV, = [ 02ds (integrated

OUVA variance). 14
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Realized Volatility

e Assume we have n+ 1 intra-day observations {X;;}"_, on the
log-stock price for day t, where

Xti = Xe—1+4i/ns

so X, = Xt is closing price for day t.
e Corresponding intra-day log-returns are

rei = Xt7,' — Xt’,',l, f= 1, 000 gl
e Time interval is § = 1/n; could be generalized to varying ¢;.
e The realized variance is the sample variance of {r; ;}7_,,

assuming zero mean and expressed as variance of daily return

n .
e = i it
n
Z 2
Rth = rt,l"
i=1

e The realized volatility is simply the square root of RV, ;.
@UVA 15



Realized Volatility — Brownian Motion with Drift

e Brownian motion with drift dX; = udt + odW; implies
rei = poto(We—Ws,_|) = pé+ovZ;, Z; ™

e Law of large numbers for Z,-Q:

n n
RVt _er' n,u252—|—2,u053/2zz,-+02522,-2

i=1 i=1
W2 2uo 2 - 2
= n+(Wt—Wt1)+O-lel
£ 0

Note that mean return p has negligible effect
e Central limit theorem for Z-2 = il

Vn (RVy s — o2 —0—72 1) +0,(1) -5 N(0,20%).

QUVA
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Realized Volatility — Jumps

e If log-price is jump diffusion dX; = p:dt + o dW;i + ke dN,
then

plim,_, Rvn,t = Qvtt—l = lvtt—l + Z J52
t—1<s<t

e Barndorff-Nielsen and Shephard (2004) propose to estimate
integrated variance using realized bipower variation

n
™
BVp: = EZ |reil [rei-1l -
i=2

Factor 7/2 is needed because E[|Z;|] = \/2/7. Consistent
estimator of IV} ; because probability of two subsequent
jumps is negligible.
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e Alternative approach to estimate integrated variance is
truncation (Ait-Sahalia and Jacod, 2014):

2
TRVn = Z rt,il{’rt,,-kan}’
S

where a,, is threshold converging to 0 at a rate slower than
—-1/2
n .
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Market microstructure

e In practice log-asset prices are not exact semimartingales,
because of market microstructure (trading mechanisms and
their effect on asset prices).

e Market makers are traders that provide liquidity (willingness
to act as counterparty for others). They charge higher price
when selling an asset (ask price S;) than when buying same
asset at same time (bid price Sp).

e The bid-ask spread A = S, — Sy, implies that traded price S;
may differ from fundamental price S}, e.g. as

S — SF+ %A, if trade is buyer-initiated,
t S — 34, if trade is seller-initiated.
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Simple model for microstructure noise is
Yt = IOg St = Xt + Ut,
dXt = /,Ltdt + O'tth,

where U; is white noise (or moving-averaging process) with
variance w?, independent of X;.

Implies that RV, ; is not consistent: using

n n n n

RVae =Y AYZ =) AXZ+> AUZ 42> AXe AUy,
i=1 i=1 i=1 i=1

it follows that plim,_,. N7 RV, ; = 2w? = var(AU;). So in

the limit, the noise dominates the signal.

Reason for using, e.g., 20-minute returns in construction of

RV, instead of all available high-frequency data.

Da and Xiu, 2021: Estimate QV; allowing for moving-average

microstructure noise
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Modeling Realized Volatility




| extract the realized volatility from Dacheng Xiu's website:

Realized Volatility ¥ 10
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Daily realized volatility of S&P500 index
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https://dachxiu.chicagobooth.edu/#risklab
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ACF of log-realized variance of S&P500 index, 2010/01/01-2023,/01/20.

Unit root can be easily rejected.
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Modeling Realized Variance

e Daily (log-)realized variance time series display long memory:
autocorrelations decay slowly, hyperbolically. Yet the time
series does not appear to be /(1).

e Suggests the use of fractionally integrated models:
dp(L)(1 — L) log RV; = ,(L)e:

with d /= 0.5 in our example.
e Alternative long-memory model is so-called heterogeneous
autoregressive, HAR model (Corsi, 2009):

RVii1 = Bo + BoRV: + BwRVi_s+ + BmMRVi—22t + €141,

where RV;_p ¢ = hY(RVi_pi1+ ...+ RVy)
e ... or the logHAR model replacing RV with log RV

QUVA 23



Realized Variance In GARCH Models

e Realized variance can also be used as explanatory variable in
GARCH model for daily returns:

1/2
re = Mt+€t:Mt+ht/ Zt,
hy = wHoaeg? {4+ Bh1+vRV: 1.

e Estimation typically leads to @ ~ 0, B+7 ~ 1, and 3 < 0.8.
So RV;_1 is much more informative than £2_; for forecasting
daily volatility, and h; reacts relatively quickly to news.
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Multi-step volatility forecasting requires an additional
equation for RV;. Example is the realized GARCH model
(Hansen, Huang and Shek, 2012):

hy = w+ Bhi_1+YRV;_1,
RV: = 8o+ 01he + 62zt + 03(22 — 1) + uy,

where u; is an error term and dpz; + d3(z2 — 1) reflects the
leverage effect.

25



Forecasting Realized Volatility




Paye (2012)

log RV = a + p1log RVi_1 + p2log RV + ' Xe—1 + ¢

e Daily return on S&P 500 index rather than intraday data

e X; includes a set of macroeconomic variables

e In-sample: some variables are useful

e Qut-of-sample: "It is more difficult to find evidence that
forecasts exploiting macroeconomic variables outperform a
univariate benchmark out-of-sample."

o Asymmetry: “Predictive power associated with
macroeconomic variables appears to concentrate around the

onset of recessions.”
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https://doi.org/10.1016/j.jfineco.2012.06.005

Bucci (2020)
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Also use daily data rather than intraday data

The NARX (Nonlinear AutoRegressive with eXogenous
inputs) model could outperform traditional time series model

log RVy = f (log RV;—_1, ..., log RVi_g, Xt) + €t

Fit £ by using neural networks: to be discussed later

In particular, including X; improves prediction MSE
substantially

LSTM neural networks works similarly: not to be discussed

27



Christensen K., Siggaard M., Veliyev B. (2022)

QUVA

RV based on intraday data

In general, consider the regression model
RV: = f(Zt-1,B) + ¢

where Z;_1 is a set of lagged economic variables, including
the variables used by (log)HAR

Parametric Models: Regularized linear regression using Ridge,
LASSO or elastic-net regression

f(Zt—l) = fo + Zé—lﬁ

Non-parametric Models: bagging (random forest), boosting,
neural network, assuming f is a (nonlinear) smooth function

Low-dimensional setting: a few variables with small p/n

28



Elastic Net Regression

n

1 , 1
g e o = XiB) 4 L~ 181G + 191
where

P P
1815 =82 18l,=>_18il
j=1 j=1

Take Yt = RVt and Xt = Zt—].-
e o =1 gives LASSO, o = 0 gives ridge, in general for
0 < o <1 there is also variable selection

Ridge regression often outperforms LASSO in economic
forecasting: same in CSV2022
Elastic net works similarly as Ridge in CSV2022

Variable selection does not help forecasting here, perhaps

QUvA because the population model is dense rather than sparse. 29



Regression Stump

Target Y € R and features X = (X1,...,Xp)

X; <0

/N

(4] (&)

e Make predictions at the terminal nodes (leafs)

e root node = a condition for a single feature

e Condition TRUE — left child

e Condition FALSE — right child

e Given j and 6, minimizing the mean squared error gives the
optimal predictions

Gl = E[YP(J < 9], C = E[Y’){, > 9]

@UVA In practice, use the sample averages. 30



Least-Squares Boosting

e Initialize F(O(x) with zero or a constant F(9(x) = Y the

sample average of the target values.
e For m=1 to M do:
1. Calculate the residuals Y; = Y; — Fm=1(X;)
2. Fit a base to the residuals:

L1 o ~(m—1)\2
fr = argmin — (f Xi —ym ) .
e ; (Xi) =Y
3. Set f, =n- £} € G. Accumulate the base learners:
Fm) = p(m=1) ¢ — plm=1) 4 p. fr
e Output f(x) = FIM)(x).

The hyperparameter i € (0, 1) is called ‘learning rate’ or ‘shrinkage
parameter’ to balance the bias and variance. By default we take
the base G as the set of stumps (4 parameters to be fitted).
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Unstable Model: Decision Tree

Condition 1

— T

Condition 2 Condition 3

N T

leaf leaf leaf Condition 4

N

leaf leaf

Make predictions at the terminal nodes (leafs)

Interior node = a condition for a single feature X; < 0
Condition TRUE — left child
Condition FALSE — right child

Decision stump is a one-split decision tree
@UVA 32



Random Forest

e Resample B bootstrap datasets of the same size n from the
raw dataset {Y:, X;:t=1,...,n}
e Generate individual trees using CART algorithm:

T
FE)(x; {RA), &P}) = > el [x € RY)]
=l

For each split, we compare a large pool of candidate features
and thresholds, and then selects the one minimizes the sample
variance allowing making a prediction on the left child and
another on the right child.

e Average over trees to get the final estimator

B

~ 1 ~

) = 5 2 O (R, &0y)
b=1

s C RF uses a random subset of candidate features for each split
\Y



ReLU Neural Network

Starting from 20 = x and for ¢ =1,...,D
a® = w0 4 pO c M (O = W(a(f)%

where we apply oy : R — R element-wisely with o/(a) = max{0, a}
for £ < D but op(x) = x. Fit parameters by least-squares method.

QUVA 34

Example: Mo = 15, Ml = 4, M2 = 2, M3 = 1, D=3



CSV2022: One-Day-Ahead Prediction

e logHAR outperforms HAR

e With Only HAR terms: no (substantial) improvement with
ML relative to logHAR.

e With all variables: no (substantial) improvement with ML

relative to logHAR.
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CSV2002: One-Month-Ahead Prediction

With all variables:

Table 7 One-month-ahead relative MSE and Diebold-Mariano test for dataset Mar.

HAR HAR-X LogHAR LevHAR SHAR HARQ RR LA EN ALA P-LA | BG RF GB NN} NNJ° NN} NNI° NN} NNI® NN} NNJ|

LogHAR 1.169 1.402 - 1438 1430 1672 1212 1470 1.203 1.476 1.459 [0.703 0.690 0.938 0.913 0.905 0.941 0.906 0.894 0.903 1.013 1.072
BG 1693 2149 1512 2211 2179 2618 1855 2.296 1.842 2311 2276 | - 0988 1.337 1326 1.305 1.340 1.302 1.305 1315 1.495 1.601]

e All non-parametric estimators (bagging, RF, Boosting, NN)
tend to outperform the linear estimators (including
Ridge/LASSO/ElasticNet)

e The non-parametric estimators are all comparable: not

surprising as they are estimating the same population
regression function

o Make sense as the linear models are likely to be mis-specified,
and the ML estimators benefit from the non-linearity
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Estimating Large-Dimensional
Integrated Covariance Matrix




Inconsistency of RCV Estimator

Recall the univariate RV estimator

n
E 2
RVn,t = rt7l'
i=1

The high-dimensional analogy for p-asset is
ZRCV Zrt,rt,, rei € RP

Zheng and Li (2011): Even in very favorable cases dX; = v;dW,
X: € RP, v+ € R and W, is a standard p-dimensional Brownian
motion with independent components, ZECV is not consistent

when p =< n.

e Lam, Feng and Hu (2017) provides a non-linear shrinkage

estimator; see also Lam and Qian (Working paper)
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http://dx.doi.org/10.1214/11-AOS939
https://doi.org/10.1093/biomet/asx021
https://stats.lse.ac.uk/lam/LICOVcomp4.pdf

NER-TSRVM 4.0
TSRVM 141.7
NER-MSRVM 4.0
MSRVM 137.5
NER-mMSRVM 4.2
mMSRVM 157.8
NER-KRPVM 4.0
KRPVM 137.5
NER-KRVM 3.9
KRVM 140.6
NER-PRPVM 3.9
PRPVM 125.2
NER-PRVM 3.8
PRVM 128.1

Lam and Qian (Working paper) proposed a non-parametric eigenvalue reg-
ularization (NER) method for different RCV estimators. Here shows the
annualized out-of-sample standard deviation of the minimum variance port-

folio constructed using 15-minute data on 73 US stocks.

QUVA
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Exercises

1. Consider the mean-zero OU process dX; = —aX:dt + odW,.
Use Itd's formula to show that Y; = e®tX; satisfies
dY: = e**adW,, and use this to obtain the solution
Xe = e %X + [y e (t=S)ad W,

2. Suppose that we calculate RV, ; for a deterministic,
continuous and bounded volatility process o; in
Xe = Xo + fot osdWs. Prove, for this case, consistency and
asymptotic normality of RV, ;.

3. Let Y; = X;i + Us, where X; = Xp + o W; (constant volatility),
and U; ~i.i.d. N(0,w?), independent of X;. Derive the
autocovariance function {7 }«>o of the intra-day returns
rei = Ye—14i/n — Yi—1+4(i—1)/n» and show that it implies that
{rei} is an MA(1) process with negative MA parameter.

Next, show that vy + 271 = o24.
QUVA 39
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