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Introduction



High-Frequency Financial Data

� Traditional volatility model focus on daily asset log-returns

rt = ∆ log St .

� Here St for t ∈ N is closing price at end of day t. So rt is

return on an investment buying asset at end of yesterday, and

selling at end of today.

� However, assets such as stocks or foreign exchange are traded

during the day, so price observations are available at times

{ti}nti=0 satisfying

t − 1 < t0 < t1 < . . . < tnt = t.

So St0 is opening price on day t (relevant when market closes,

such as stock exchanges).
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� The nt intraday returns on day t:

rt,i = log(Sti/Sti−1), i = 1, . . . , nt

may be used to estimate variance of daily return

rt =
∑n

i=1 rt,i (assuming zero overnight return).

� Intraday returns contain more information about volatility

than daily returns.

SPY data (fund that follows S&P 500 index) on 2009/02/13
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Millisecond SPY Data
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� Data on all trades and quotes for a particular stock within a

day are collected and sold by commercial parties. An

important example is the TAQ database, which covers stocks

traded on the New York Stock Exchange (NYSE).

� Multiple trades in the same fund against different prices, on

different markets, within the same one-second period.

� Leads to large data files; data processing cannot be done

using e.g. MATLAB with text or Excel files. Substantial data

cleaning is needed before analysing the data.
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Continuous-time Processes



Continuous-time Processes

� Brownian motion {Wt}t≥0 is stochastic process satisfying:
1. W0 = 0;

2. Wt+s −Wt ∼ N(0, s) for t ≥ 0 and s ≥ 0;

3. independent increments;

4. continuous sample paths.

� Main building block for continuous-time processes.

� Continuous but non-differentiable sample paths, of unbounded

variation: with probability one

sup
0≤t0≤...≤tn≤t

n∑
i=1

∣∣Wti −Wti−1

∣∣ = ∞.

� Martingale w.r.t. its own filtration {FW
t }t≥0, with

FW
t = σ({Ws}0≤s≤t):

E (Wt |FW
s ) = Ws , 0 ≤ s ≤ t.
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Itô Processes

� Itô integral is defined as∫ t

0
σsdWs = lim

n→∞

n−1∑
i=0

σti (Wti+1−Wti ),

where:
� volatility {σt}t≥0 is adapted to {Ft}t≥0, and {Wt}t≥0 is

martingale w.r.t. {Ft}t≥0;

� P
[∫ T

0
σ2
t dt < ∞

]
= 1;

� the limit is in L2, with 0 = t0 ≤ . . . ≤ tn = t and

max1≤i≤n |ti − ti−1| → 0.

� Leads to class of Itô processes (Brownian semimartingales):

Xt = X0 +

∫ t

0
µsds +

∫ t

0
σsdWs ,

⇔ dXt = µtdt + σtdWt ,

where drift {µt}t≥0 is adapted to {Ft}t≥0 and integrable.@UvA 8



Example 1

Brownian motion with drift:

dXt = µdt + σdWt .

� Black-Scholes model for log-asset prices (Xt = log St).

� Discrete-time observations {xi = Xi∆t}ni=0 follow Gaussian

random walk with drift:

xi = xi−1 + µ∆t + εi ,

with εi ∼ i.i.d. N(0, σ2∆t).

� Hence normal log-returns ri = ∆xi .
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Example 2

Ornstein-Uhlenbeck (OU) process:

dXt = α(µ− Xt)dt + σdWt , α > 0.

� Displays mean-reversion to µ.

� Discrete-time observations {xi = Xi∆t}ni=0 follow Gaussian

AR(1) process:

xi = µ+ ρ(xi−1 − µ) + εi ,

with ρ = e−α∆t and εi ∼ i.i.d. N(0, σ2(1− e−2α∆t)/(2α)).
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Itô’s formula

� Itô’s formula: if dXt = µtdt + σtdWt and Yt = f (t,Xt),

then

dYt =
[
ḟ (t,Xt) +

1
2 f

′′(t,Xt)σ
2
t

]
dt + f ′(t,Xt)dXt

=
[
ḟ (t,Xt) + f ′(t,Xt)µt +

1
2 f

′′(t,Xt)σ
2
t

]
dt

+f ′(t,Xt)σtdWt ,

where

ḟ (t, x) =
∂f (t, x)

∂t
, f ′(t, x) =

∂f (t, x)

∂x
, f ′′(t, x) =

∂2f (t, x)

∂x2
.

� Example: if dXt = µdt + σdWt and St = exp(Xt), then

dSt =
(
µ+ 1

2σ
2
)
Stdt + σStdWt .

Process {St}t≥0 is called Geometric Brownian motion.
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Jump-Diffusion Process

� Poisson process {Nt}t≥0 is integer-valued stochastic process

with:
1. N0 = 0;

2. Nt+s − Nt ∼ POISSON(λs) for t ≥ 0 and s ≥ 0;

3. independent increments.

� Jump times {τi}Nt
i=1 defined by Nτi = Nτi− + 1, where

Nτi− = limt↑τi Nt .

� Integral with respect to Nt is defined as∫ t

0
κsdNs =

Nt∑
i=1

κτi =
∑

0<s≤t

Js , Jt = κtdNt .

� Leads to Itô process with jumps, or jump-diffusion:

dXt = µtdt + σtdWt + κtdNt ,

where {µt , σt , κt}t≥0 are predictable (Ft−-measurable).
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Quadratic Variation

� For any semimartingale {Xt}t≥0 (sum of local martingale and

bounded variation process), the quadratic variation process is

QVt = [X ]t =

∫ t

0
(dXs)

2 = plimn→∞

n∑
i=1

(Xti − Xti−1)
2,

where again 0 = t0 ≤ . . . ≤ tn = t and

max1≤i≤n |ti − ti−1| → 0.

� Examples:
� Brownian motion: [W ]t = t.

� Poisson proces: [N]t = Nt .

� Jump-diffusion dXt = µtdt + σtdWt + κtdNt :

[X ]t =

∫ t

0

σ2
s ds +

∑
0<s≤t

J2s ,

or QVt = IVt +
∑

0≤s≤t J
2
s , where IVt =

∫ t

0
σ2
s ds (integrated

variance).@UvA 14
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Realized Volatility

� Assume we have n + 1 intra-day observations {Xt,i}ni=0 on the

log-stock price for day t, where

Xt,i = Xt−1+i/n,

so Xt,n = Xt is closing price for day t.

� Corresponding intra-day log-returns are

rt,i = Xt,i − Xt,i−1, i = 1, . . . , n.

� Time interval is δ = 1/n; could be generalized to varying δi .

� The realized variance is the sample variance of {rt,i}ni=1,

assuming zero mean and expressed as variance of daily return

rt =
∑n

i=1 rt,i :

RVn,t =
n∑

i=1

r2t,i .

� The realized volatility is simply the square root of RVn,t .
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Realized Volatility – Brownian Motion with Drift

� Brownian motion with drift dXt = µdt + σdWt implies

rt,i = µδ+σ(Wti−Wti−1) = µδ+σ
√
δZi , Zi

iid∼ N(0, 1), i = 1, . . . , n.

� Law of large numbers for Z 2
i :

RVn,t =
n∑

i=1

r2t,i = nµ2δ2 + 2µσδ3/2
n∑

i=1

Zi + σ2δ

n∑
i=1

Z 2
i

=
µ2

n
+

2µσ

n
(Wt −Wt−1) + σ2 1

n

n∑
i=1

Z 2
i

p−→ σ2.

Note that mean return µ has negligible effect

� Central limit theorem for Z 2
i − 1:

√
n
(
RVn,t − σ2

)
= σ2 1√

n

n∑
i=1

(Z 2
i − 1)+ op(1)

d−→ N(0, 2σ4).
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Realized Volatility – Jumps

� If log-price is jump diffusion dXt = µtdt + σtdWt + κtdNt ,

then

plimn→∞ RVn,t = QV t
t−1 = IV t

t−1 +
∑

t−1<s≤t

J2s .

� Barndorff-Nielsen and Shephard (2004) propose to estimate

integrated variance using realized bipower variation

BVn,t =
π

2

n∑
i=2

|rt,i | |rt,i−1| .

Factor π/2 is needed because E [|Zi |] =
√
2/π. Consistent

estimator of IV t
t−1 because probability of two subsequent

jumps is negligible.
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� Alternative approach to estimate integrated variance is

truncation (Äıt-Sahalia and Jacod, 2014):

TRVn =
n∑

i=1

r2t,i1{|rt,i |<an},

where an is threshold converging to 0 at a rate slower than

n−1/2.
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Market microstructure

� In practice log-asset prices are not exact semimartingales,

because of market microstructure (trading mechanisms and

their effect on asset prices).

� Market makers are traders that provide liquidity (willingness

to act as counterparty for others). They charge higher price

when selling an asset (ask price Sa) than when buying same

asset at same time (bid price Sb).

� The bid-ask spread ∆ = Sa − Sb implies that traded price St

may differ from fundamental price S∗
t , e.g. as

St =

{
S∗
t + 1

2∆, if trade is buyer-initiated,

S∗
t − 1

2∆, if trade is seller-initiated.
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� Simple model for microstructure noise is

Yt = log St = Xt + Ut ,

dXt = µtdt + σtdWt ,

where Ut is white noise (or moving-averaging process) with

variance ω2, independent of Xt .

� Implies that RVn,t is not consistent: using

RVn,t =
n∑

i=1

∆Y 2
t,i =

n∑
i=1

∆X 2
t,i+

n∑
i=1

∆U2
t,i+2

n∑
i=1

∆Xt,i∆Ut,i ,

it follows that plimn→∞ n−1RVn,t = 2ω2 = var(∆Ut). So in

the limit, the noise dominates the signal.

� Reason for using, e.g., 20-minute returns in construction of

RV, instead of all available high-frequency data.

� Da and Xiu, 2021: Estimate QVt allowing for moving-average

microstructure noise
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Modeling Realized Volatility



I extract the realized volatility from Dacheng Xiu’s website:

Daily realized volatility of S&P500 index
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ACF of log-realized variance of S&P500 index, 2010/01/01–2023/01/20.

Unit root can be easily rejected.
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Modeling Realized Variance

� Daily (log-)realized variance time series display long memory:

autocorrelations decay slowly, hyperbolically. Yet the time

series does not appear to be I (1).

� Suggests the use of fractionally integrated models:

ϕp(L)(1− L)d logRVt = θq(L)εt

with d ≈ 0.5 in our example.

� Alternative long-memory model is so-called heterogeneous

autoregressive, HAR model (Corsi, 2009):

RVt+1 = β0 + βDRVt + βWRVt−5,t + βMRVt−22,t + εt+1,

where RVt−h,t = h−1(RVt−h+1 + . . .+ RVt)

� . . . or the logHAR model replacing RV with logRV
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Realized Variance In GARCH Models

� Realized variance can also be used as explanatory variable in

GARCH model for daily returns:

rt = µt + εt = µt + h
1/2
t zt ,

ht = ω + αε2t−1 + βht−1 + γRVt−1.

� Estimation typically leads to α̂ ≈ 0, β̂ + γ̂ ≈ 1, and β̂ < 0.8.

So RVt−1 is much more informative than ε2t−1 for forecasting

daily volatility, and ht reacts relatively quickly to news.
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� Multi-step volatility forecasting requires an additional

equation for RVt . Example is the realized GARCH model

(Hansen, Huang and Shek, 2012):

ht = ω + βht−1 + γRVt−1,

RVt = δ0 + δ1ht + δ2zt + δ3(z
2
t − 1) + ut ,

where ut is an error term and δ2zt + δ3(z
2
t − 1) reflects the

leverage effect.
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Forecasting Realized Volatility



Paye (2012)

logRVt = α+ ρ1 logRVt−1 + ρ2 logRVt−2 + β′Xt−1 + εt

� Daily return on S&P 500 index rather than intraday data

� Xt includes a set of macroeconomic variables

� In-sample: some variables are useful

� Out-of-sample: “It is more difficult to find evidence that

forecasts exploiting macroeconomic variables outperform a

univariate benchmark out-of-sample.”

� Asymmetry: “Predictive power associated with

macroeconomic variables appears to concentrate around the

onset of recessions.”
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Bucci (2020)

� Also use daily data rather than intraday data

� The NARX (Nonlinear AutoRegressive with eXogenous

inputs) model could outperform traditional time series model

logRVt = f (logRVt−1, . . . , logRVt−q,Xt) + εt

� Fit f by using neural networks: to be discussed later

� In particular, including Xt improves prediction MSE

substantially

� LSTM neural networks works similarly: not to be discussed
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Christensen K., Siggaard M., Veliyev B. (2022)

� RV based on intraday data

� In general, consider the regression model

RVt = f (Zt−1;β) + εt

where Zt−1 is a set of lagged economic variables, including

the variables used by (log)HAR

� Parametric Models: Regularized linear regression using Ridge,

LASSO or elastic-net regression

f (Zt−1) = β0 + Z ′
t−1β

� Non-parametric Models: bagging (random forest), boosting,

neural network, assuming f is a (nonlinear) smooth function

� Low-dimensional setting: a few variables with small p/n
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Elastic Net Regression

1

2n

n∑
t=1

(Yt − β0 − X ′
tβ)

2 + λ

[
(1− α)

1

2
∥β∥22 + α ∥β∥1

]
where

∥β∥22 =
p∑

j=1

β2
j , ∥β∥1 =

p∑
j=1

|βj |

� Take Yt = RVt and Xt = Zt−1.

� α = 1 gives LASSO, α = 0 gives ridge, in general for

0 < α ≤ 1 there is also variable selection

� Ridge regression often outperforms LASSO in economic

forecasting: same in CSV2022

� Elastic net works similarly as Ridge in CSV2022

� Variable selection does not help forecasting here, perhaps

because the population model is dense rather than sparse.@UvA 29



Regression Stump

Target Y ∈ R and features X = (X1, . . . ,Xp)
′

Xj < θ

c1 c2

� Make predictions at the terminal nodes (leafs)

� root node = a condition for a single feature

� Condition TRUE → left child

� Condition FALSE → right child

� Given j and θ, minimizing the mean squared error gives the

optimal predictions

c1 = E[Y |Xj < θ], c2 = E[Y |Xj > θ]

In practice, use the sample averages.@UvA 30



Least-Squares Boosting

� Initialize F (0)(x) with zero or a constant F (0)(x) = Ȳ the

sample average of the target values.
� For m = 1 to M do:

1. Calculate the residuals Ỹi = Yi − F (m−1)(Xi )

2. Fit a base to the residuals:

f ∗m = argmin
f∈G

1

2n

n∑
i=1

(
f (Xi )− Ỹ

(m−1)
i

)2

.

3. Set fm = η · f ∗m ∈ G. Accumulate the base learners:

F (m) = F (m−1) + fm = F (m−1) + η · f ∗m

� Output f̂ (x) = F (M)(x).

The hyperparameter η ∈ (0, 1) is called ‘learning rate’ or ‘shrinkage

parameter’ to balance the bias and variance. By default we take

the base G as the set of stumps (4 parameters to be fitted).
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Unstable Model: Decision Tree

Condition 1

Condition 2

leaf leaf

Condition 3

leaf Condition 4

leaf leaf

� Make predictions at the terminal nodes (leafs)

� Interior node = a condition for a single feature Xj < θ

� Condition TRUE → left child

� Condition FALSE → right child

� Decision stump is a one-split decision tree
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Random Forest

� Resample B bootstrap datasets of the same size n from the

raw dataset {Yt ,Xt : t = 1, . . . , n}
� Generate individual trees using CART algorithm:

f (b)(x ; {R̂(b)
τ , ĉ(b)τ }) =

T∑
τ=1

ĉ(b)τ 1[x ∈ R̂(b)
τ ]

For each split, we compare a large pool of candidate features

and thresholds, and then selects the one minimizes the sample

variance allowing making a prediction on the left child and

another on the right child.

� Average over trees to get the final estimator

f̂ (x) =
1

B

B∑
b=1

f (b)(x ; {R̂(b)
τ , ĉ(b)τ })

� RF uses a random subset of candidate features for each split
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ReLU Neural Network

Starting from z(0) = x and for ℓ = 1, . . . ,D

a(ℓ) = W (ℓ)z(ℓ) + b(ℓ) ∈ RMℓ , z(ℓ) = σℓ(a
(ℓ)),

where we apply σℓ : R → R element-wisely with σℓ(a) = max{0, a}
for ℓ < D but σD(x) = x . Fit parameters by least-squares method.

Example: M0 = 15, M1 = 4, M2 = 2, M3 = 1, D = 3
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CSV2022: One-Day-Ahead Prediction

� logHAR outperforms HAR

� With Only HAR terms: no (substantial) improvement with

ML relative to logHAR.

� With all variables: no (substantial) improvement with ML

relative to logHAR.
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CSV2002: One-Month-Ahead Prediction

With all variables:

� All non-parametric estimators (bagging, RF, Boosting, NN)

tend to outperform the linear estimators (including

Ridge/LASSO/ElasticNet)

� The non-parametric estimators are all comparable: not

surprising as they are estimating the same population

regression function

� Make sense as the linear models are likely to be mis-specified,

and the ML estimators benefit from the non-linearity
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Estimating Large-Dimensional

Integrated Covariance Matrix



Inconsistency of RCV Estimator

Recall the univariate RV estimator

RVn,t =
n∑

i=1

r2t,i

The high-dimensional analogy for p-asset is

ΣRCV
p =

n∑
i=1

rt,i r
′
t,i , rt,i ∈ Rp

Zheng and Li (2011): Even in very favorable cases dXt = γtdWt ,

Xt ∈ Rp, γt ∈ R and Wt is a standard p-dimensional Brownian

motion with independent components, ΣRCV
p is not consistent

when p ≍ n.

� Lam, Feng and Hu (2017) provides a non-linear shrinkage

estimator; see also Lam and Qian (Working paper)
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Lam and Qian (Working paper) proposed a non-parametric eigenvalue reg-

ularization (NER) method for different RCV estimators. Here shows the

annualized out-of-sample standard deviation of the minimum variance port-

folio constructed using 15-minute data on 73 US stocks.
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Exercises

1. Consider the mean-zero OU process dXt = −αXtdt + σdWt .

Use Itô’s formula to show that Yt = eαtXt satisfies

dYt = eαtσdWt , and use this to obtain the solution

Xt = e−αtX0 +
∫ t
0 e−α(t−s)σdWs .

2. Suppose that we calculate RVn,t for a deterministic,

continuous and bounded volatility process σt in

Xt = X0 +
∫ t
0 σsdWs . Prove, for this case, consistency and

asymptotic normality of RVn,t .

3. Let Yt = Xt +Ut , where Xt = X0 + σWt (constant volatility),

and Ut ∼ i.i.d. N(0, ω2), independent of Xt . Derive the

autocovariance function {γk}k≥0 of the intra-day returns

rt,i = Yt−1+i/n − Yt−1+(i−1)/n, and show that it implies that

{rt,i} is an MA(1) process with negative MA parameter.

Next, show that γ0 + 2γ1 = σ2δ.
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