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Introduction



Conditional Variance Matrix

Consider the random vectors (e.g., daily stock returns)

yt = (y1,t , . . . , yN,t)
′ ∈ RN , t = 1, . . . ,T

such that

E[yt | Ft−1] = 0N , Var[yt | Ft−1] = Ht ∈ RN×N

where

� the sigma-algebra Ft−1 contains information up to time t − 1

� Ht is the conditional (co)variance matrix measurable by Ft−1

� Under stationarity: Σ = EHt = E[yty ′t ] is the unconditional

variance matrix

Harvey (1989, JFE):

. . . The evidence indicates that the conditional covari-

ances do change through time.. . .
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� Conditional variance matrix Ht of vector of asset returns yt is

relevant for:

� Portfolio selection: mean-variance optimisation

(diversification) requires reliable estimate of variance matrix

over the holding period.

� Hedging: trying to eliminate exposure to certain risk factors

requires conditional betas, which are functions of Ht .

� Risk management: Value at Risk of portfolio return w ′yt
depends on variance w ′Htw . If portfolio weights are

time-varying, this requires Ht .

� Today we are interested in the high-dimensional regime with

N ≍ T , although most -if not all- techniques still work for

small N.

� High-dimensional GARCH models often suffer from curse of

dimensionality; some proposals provide a partial solution.
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Catch Up: Univariate GARCH

� Define the marginal variances

hi ,t = Vart−1(yi ,t), i = 1, . . . ,N

where Vart−1(·) is conditional on Ft−1.

� Standard GARCH(1,1) specification for each series:

yi ,t = µi ,t + εi ,t = 0 + h
1/2
i ,t zi ,t ,

hi ,t = (1− αi − βi )σ
2
i + αiε

2
i ,t−1 + βihi ,t−1,

zi ,t ∼ IID(0, 1).

� Then decompose that

Ht = DtQtDt , Dt = diag(h
1/2
1,t , . . . , h

1/2
N,t ),

with

Qt = Vart−1(zt), zt = (z1,t , . . . , zN,t)
′.
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Example: 500 US Stocks from 2015–2019
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Autocorrelation of Squared GARCH(1,1) Residuals

N = 500 US Stocks with: (1) largest market value at the beginning of

2015 (2) a complete daily return history over 2015–2019 (T = 1258)
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High-Dimensional Volatility Models

� Our focus today is to model and estimate Qt

� The marginal GARCH parameters σ2
i , αi , βi can be fitted

series-by-series.

� A trivial property we want to guarantee: Ht and Qt are

positive (semi)-definite

� For practitioners, one may want specification flexible enough

to replicate properties such as

� persistence in volatility and covariation;

� time variation in correlation;

� volatility spill-over effects;

� asymmetries, leverage effects.

� model is closed under linear transformations (taking

portfolios). . .
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The Zoo of Volatility Models



DVEC Model: Bollerslev et al. (1988)

Analogous to univariate GARCH model, the (co)variances may

depend on their own past, and on past squares ε2i ,t−1 and

cross-products εi ,t−1εj ,t−1:

Ht = (I − A− B) ◦ Σ+ A ◦
(
εt−1ε

′
t−1

)
+ B ◦ Ht−1

where ‘◦’ denotes the entrywise product (Hadamard product), and

A,B are symmetric matrices.

� Involves parameters at the order N2 + 2N2.

� Marginal GARCH models: Aii = αi , Bii = βi , Σii = σ2
i

� Qt is the correlation matrix corresponding to Ht

� If taking A and B as scalars (implying that αii = α, βii = β):

Ht = (1− α− β)Σ + αεt−1ε
′
t−1 + βHt−1

# parameters at the order N2 + 2

� RiskMetrics (α+ β = 1): Ht = (1− β)εt−1ε
′
t−1 + βHt−1@UvA 7
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BEKK Model: Engle and Kroner (1995)

BEKK(1,1,K) Model:

Ht = C ∗′C ∗ +
K∑

k=1

A∗′
k εt−1ε

′
t−1A

∗
k +

K∑
k=1

B∗′
k Ht−1B

∗
k ,

C ∗′C ∗ = Σ−
K∑

k=1

A∗′
k ΣA

∗
k −

K∑
k=1

B∗′
k ΣB∗

k

where A∗
k and B∗

k are non-singular N × N matrices, and C ∗ is

N × N upper triangular matrix.

� Guarantee positive definiteness of Ht ;

� Setting A∗
k = diag(ak) and B∗

k = diag(bk) diagonal gives the

DVEC model with

A =
K∑

k=1

aka
′
k , B =

K∑
k=1

bkb
′
k .

# parameters at the order N2 + KN
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Factor GARCH Model: Engle, Ng and Rothschild, 1990

yt =
K∑

k=1

λk fkt + et = Λft + et ,

where {fk,t = w ′
kyt}Kk=1 are independent GARCH processes,

independent of et ∼ IID(0,Ω∗).

� Vart−1(fk,t) = hk,t = (1− αk − βk)σ
2
k + αk f

2
k,t−1 + βkhk,t−1

� The conditional variance

Ht = Σ+
K∑

k=1

λkλ
′
k(αk(f

2
k,t−1 − σ2

k) + βk(w
′
kHt−1wk − σ2

k))

� # parameters at the order N2 + KN

� Special case of BEKK: Exercise 3
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GO-GARCH Model

Consider the spectral decomposition of unconditional covariance

matrix

Σ = PLP ′

GO-GARCH (Alexander, 2002; van der Weide, 2002; Vrontis,

Dellaportas and Pollitis, 2003):

yt = Λft , Ht = ΛVtΛ
′

where Λ = PL1/2U ′ is a non-singular matrix, U is some orthogonal

matrix, and ft is an N-dimensional vector of independent GARCH

processes, with diagonal variance matrix Vt , and with unit

unconditional variance.

� Closed under non-singular transformations;

� # parameters at the order N2 + N2 + N

� If U = I then N2 + N
@UvA 10
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CCC Model: Bollerslev (1990)

The constant conditional correlation (CCC) model

Ht = DtQDt , Dt = diag(h
1/2
11,t , . . . , h

1/2
NN,t),

where Q = E[ztz ′t ] is the covariance/correlation matrix of

‘devolatilized’ residuals zt .

� Positive definite;

� # parameters of order N2 + N;

� Not closed under linear transformations.
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DCC Model: Engle (2002)

The dynamic conditional correlation (DCC) model :

Ht = DtRtDt , Dt = diag(h
1/2
11,t , . . . , h

1/2
NN,t),

where Rt is a conditional correlation matrix, given by

Rt =diag(Qt)
−1/2Qt diag(Qt)

−1/2

Qt =(1− α− β)Σ + αzt−1z
′
t−1 + βQt−1

Here Σ = EQt

� Positive definite;

� More flexible than CCC with 2 more parameters (α, β); not

closed under linear transformations;

� Correction proposed by Aielli (2013, JBES): makes little

difference in practice.
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GAS Model: Creal, Koopmans and Lucas (2011)

The generalized autoregressive score (GAS) model builds on

the DCC model, with

ft =

(
diag(D2

t )

vech(Qt)

)
satisfying

ft = ω + Ast−1 + Bft−1, st = St ×∇ft log p(yt |ft ; θ)

By taking p to be the multivariate t(ν) density, this gives an

automatic model specification that downweighs extreme

observations. In particular,

Qt = (1− β)Σ + αS̃t−1∇Qt−1 log p(yt−1|ft−1; θ) + βQt−1
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Asymmetry

� Equity returns display leverage effects: large negative shocks

have stronger effect on volatility than large positive shocks.

� One can use asymmetric univariate GARCH models

hi ,t = ωi + (αi + γi1[εi ,t−1 < 0])ε2i ,t−1 + βiht

on the factors εi ,t = fi ,t or returns εi ,t = yi ,t

� Can be included in a DCC model by

Qt = (1−α− β)Σ+αzt−1z
′
t−1 + βQt−1 + γ(vt−1v

′
t−1 −Σ−),

where vt = max(0,−zt) = −1[zt < 0] ◦ zt and Σ− = E[vtv ′t ].

@UvA 14



Estimating + Evaluating

High-Dimensional Volatility Model



Estimation of multivariate GARCH models

� The log-(quasi-)likelihood for the model

yt |Ft−1
quasi∼ N(0,Ht(θ))

is given by ℓ(θ) =
∑T

t=1 ℓt(θ), with

ℓt(θ) = −N

2
log 2π − 1

2
log |Ht(θ)| −

1

2
y ′tHt(θ)

−1yt .

� For GAS model one may use the likelihood t(ν) and include ν

as a parameter too

� Depending on N and the specification of Ht(θ), the dimension

of the parameter space can be very high

� For (very) small N/T < 100, ML works fine. For specific

models, multi-step approximations to ML have been proposed.

� For large N ≍ T , ML suffers from overfitting
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Estimating Low-Dimensional GARCH Models

For small N/T < 100, say:

� For GO-GARCH, this is adapted as follows, using yt = Λft ,

Λ = PL1/2U:
1. Estimate P and L as eigenvectors and eigenvalues of sample

variance matrix of yt . Hence ŝt = L̂−1/2P̂ ′yt ;

2. Maximize the log-likelihood for the model ft = U ′ŝt , over

orthogonal matrices U (if unknown) and univariate GARCH

parameters for fit ;

3. U may also be estimated from the (cross-) autocorrelations in

ŝt ŝ
′
t : Boswijk and van der Weide (2011)

� For DCC, a three-step estimation procedure is:
1. Estimate GARCH models for yit , and compute ẑit := ĥ

−1/2
i,t yt ;

2. Estimate Σ = EQt by S = T−1
∑T

t=1 ẑt ẑ
′
t .

3. Maximize − 1
2

∑T
t=1

(
log |Rt |+ ẑ ′tR

−1
t ẑt

)
over correlation

dynamic parameters.
@UvA 16
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Example: European Stock Market Indices, 2015–2019
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Example: Estimated DCC Model

� Univariate GARCH(1,1) models:

UK Germany France Netherlands

σ̂i 0.0078 0.0097 0.0098 0.0096

α̂i 0.0237 0.0186 0.0050 0.0093

γ̂i 0.2041 0.1935 0.1284 0.2332

β̂i 0.8061 0.8376 0.9057 0.8509

� Sample correlation matrix of ẑt

S =


1.0000 0.7366 0.7423 0.7859

0.7366 1.0000 0.8690 0.8860

0.7423 0.8690 1.0000 0.9063

0.7859 0.8860 0.9063 1.0000


� Correlation dynamics: α̂ = 0.0683, β̂ = 0.8764.
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Estimating Large-Dimensional Covariance Matrix

� Most - if not all - models involve estimating the unconditional

covariance matrix in some sense:

Σ = EHt or Σ = EQt

� In general, the sample covariance matrix

S =
1

T

T∑
t=1

yty
′
t =

1

T
Y ′Y , Y = [y1, . . . , yT ]

′ or

S =
1

T

T∑
t=1

ẑt ẑ
T
t =

1

n
Ẑ ′Ẑ , Z = [ẑ1, . . . , ẑT ]

′

is inconsistent towards Σ in high dimensions with N ≍ T ;

even if one replace ẑt with zt .

� In particular, ∥S − Σ∥2F = ∥vec(S)− vec(Σ)∥2 ̸ P−→ 0.
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Rotation Equivariant Estimator

� Consider the spectral decomposition of sample covariance

matrix S given by

S = UΛU ′, U = [u1, . . . , uN ], Λ = diag(λ1, . . . , λN).

� The sample covariance matrix S = S(Y ′) = 1
T Y ′Y is rotation

equivariant: for all orthogonal matrix W

S(WY ′) = WS(Y )W ′

� The class of rotation equivariant estimator is of the form

Σ̂ = UΛ̂U ′, Λ̂ = diag(d1, . . . , dN),

where di are invariant with respect to data rotations.
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Optimal Rotation Equivariant Estimator

The sum of squared errors over all entries∥∥∥Σ̂− Σ
∥∥∥2
F
=
∥∥∥Λ̂− U ′ΣU

∥∥∥2
F

=
N∑
i=1

(di − u′iΣui )
2 +

∑
i ̸=j

(u′iΣuj)
2

︸ ︷︷ ︸
̸
P−→0

is minimized with di = u′iΣui =: d∗
i .

� Ledoit and Péché (2011): d∗
i ≈ δ(λi ) for some shrinkage

function δ for Y ′ = Σ1/2Z ′ for Z with i.i.d. entries

� Ledoit and Wolf (2012): (Consistent) Estimation of δ
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A typical simulation result for IID data with N = 100 and T = 300 in

Ledoit and Wolf (2012): 20% of population eigenvalues of Σ are equal to

1, 40% are equal to 3 and 40% are equal to 10.
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Engle, Ledoit, and Wolf (2019)

� For each asset, fit a univariate GARCH(1,1) model and use

the fitted model to devolatilize the return series.

� Take LW2012’s nonlinear shrinkage estimator ‘off the shelf’

and apply them to devolatilized returns ẑt to get Σ̂

(inconsistent but ‘optimal’ in terms of squared errors)

� Plug in Σ̂ and then fit the remaining 2 DCC model parameters

α̂, β̂ using the composite likelihood method in Pakel et

al.(2021).
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Simulation: Estimating Σ in DCC model

� Univariate GARCH: σ2
i = 1, αi = 0.05, βi = 0.9

� Correlation dynamics: α = 0.05, β ∈ {0.3, 0.6, 0.9}
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Example: 500 US Stocks from 2015–2019
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Correlation dynamics

� with shrinkage: α̂ = 0.0417 and β̂ = 0.8136

https://youtu.be/SeDwJfykgqA

� without shrinkage: α̂ = 0.0413 and β̂ = 0.8083@UvA 25
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Evaluating High-Dimensional Volatility Model

� Diagnostic testing are possible (only) in low dimensions: see

Bauwens et al.(2006)

� In high dimensions, performance in risk management may be

evaluated by testing implied Value at Risk for portfolio w ′yt .

(Joint test of specification of Ht and distributional

assumption.)

� . . . or testing standardized residuals srt =
(w ′

t yt)
2

w ′
tHtwt

via the

regression

srt = µ+ ρsrt−1 + νt

� . . . or checking the excess variance of the implied

minimum-variance portfolio

� . . . or tracking error of a particular portfolio
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Exercises

1. Show that the matrix Ht defined by the BEKK model is

positive definite.

2. Show that the BEKK model is a special case of the general

VEC model specified by Equation (4) in Bollerslev et

al.(1988), using the property vec(ABC ) = (C ′ ⊗ A)vec(B) for

conformable matrices A, B and C , and the duplication matrix

DN , defined by vec(A) = DNvech(A) for a symmetric N × N

matrix A.

3. Show that the factor model is a special case of the BEKK

model.
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