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Abstract. When humans and software agents collaborate on taking decisions to-
gether in hybrid teams, they typically share knowledge and goals based on their in-
dividual intentions. Goals can be modelled as the effects that are caused by events
or actions taken. In order to decide and plan which actions to take, it is necessary
to understand which actions or events cause the intended effects. In other words,
we consider causal inferencing in a reverse way: instead of asking whether certain
actions or events indeed cause corresponding effects, we consider establishing and
using a causal model for determining the appropriate cause or causes, such that the
causal chain results in the desired and intended outcomes. For example, your goal
can be to arrive at a destination at a given time. By reasoning back which actions
are required to get you there, piece by piece, a causal path can be constructed to
determine the departure time and modes of traffic along the route. Due to shared
intentions and causal models, humans and agents can mutually trust each other re-
garding their actions and outcomes.

Keywords. causality, trust, human-centric AI, collaborative decision making,
hybrid teams, agents, human-agent collaboration, theory of mind, search, planning,
urban AI, sustainability

1. Introduction

The aim to empower humans by using systems with artificial intelligence, where the AI
systems can be trusted [1, 2], leads to a dilemma: intelligent systems are characterised by
a high degree of autonomy, which is required for delegating tasks to intelligently behav-
ing AI systems (agency). However, we also want to control and understand autonomous
agents in order to trust them. Similarly, for human-agent collaboration it is necessary that
the parties understand each other. We want to use the complementary capabilities of in-
dividual humans and agents to improve hybrid decision-making. Therefore, we propose
to use shared epistemic and causal models for achieving shared goals with a Theory of
Mind (ToM) to resolve conflicts of interest. As a result, humans and agents can trust each
other, even when they disagree in their goals and preferred solutions.
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(a) Structural Causal Model (SCM)

U = {X ,Y}

V = {Z}

F = { fZ : Z = 2X +3Y}

(b) Structural Equation Model (SEM)

Figure 1. Causal Models

2. Motivation

When humans and agents share goals to collaborate in hybrid teams [3, 4, 5], they typi-
cally share knowledge based on their individual beliefs and intentions [6, 7]. Each human
and agent has its own points of view (POV), reflected by the beliefs (individual ”knowl-
edge” and experience) and intentions that guide its behaviour. By negotiating about the
individual intentions, they can formulate a shared goal that they want to achieve together
by making use of each others’ complementary capabilities and knowledge. A shared goal
can be seen and modelled as a potential outcome, i.e. an effect, that is caused by one or
more interventions (actions or events). Consequently, in order to decide and plan which
actions to take, it is necessary to understand which actions or events cause the intended
effects, related to the shared goal. Structural Causal Models (SCM) or Structural Equa-
tion Models (SEM) [8] represent such understanding of casual relationships as graphs
(SCM) and sets of equations (SEM), as shown in figure 1.

Both representations are useful for different purposes. SCMs support the human un-
derstanding and explanations, while SEMs are more suitable for representing causality in
combination with logical expressions. The latter enables the possibility to communicate
about causal models and intentions formally and concisely among agents.

Shared causal models increase trust among team members, because they help to ex-
plain to each other why certain actions are to be taken. They can explain the relationships
between causes and effects. Delegation without reason or motivation is not trustworthy
(unless the authority or reputation of the delegator is very high). This enables users to
better understand the rationale and have greater confidence in others making a fair and
unbiased decision.

There are several important aspects by which causality can improve the trustworthi-
ness of AI systems (Causality for Trust, C4T). Besides precision and accuracy, which are
fundamental to trustworthiness in AI, they are [9, 10, 11, 12]:

• Transparency & Interpretability. The reasoning behind decisions is explainable
and easily understood by humans. Causal models provide the reasons for predic-
tions and causal explanations help to build a correct mental model of the problem.

• Reproducibility. The ability to repeat experiments and get the same results in-
creases the trustworthiness and accuracy of scientific output.

• Fairness. Causal AI can remove bias because it understands how variables are
interconnected and dependent on each other. Understanding causal relationships
between sensitive input variables (such as gender or race) and predicted outcomes
is important for assessing biased behaviour. Counterfactual fairness is achieved
when the output is identical for each sensitive input variable.
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• Robustness. Causal models can avoid the brittleness of most machine learning
systems, due to spurious correlations. They can handle data that is not independent
and identically distributed (IID) or out of distribution (OOD), because they can
discern between relevant and irrelevant data and variables [13, 14].

• Privacy. The robustness of causal models helps in preventing privacy attacks, be-
cause weaknesses of trained models cannot easily be exploited, for example in
federated learning.

• Safety & Accountability (Auditing). Regulations for safe-guarding AI systems for
use in critical applications and domains demand impact assessment (IA) to pre-
vent from algorithmic and data-driven harm by finding potential negative effects
before (large-scale) deployment. Causal models that represent dependencies be-
tween system design and impact can be used to assess and mitigate corresponding
risks by identifying which system elements are responsible for undesired effects.

3. Concepts

Causal inference [15, 16] is typically concerned with the resulting effect when a corre-
sponding event (cause) occurs, according to a given causal model, such that the respec-
tive dependency can be verified. Causal inference asks whether an event indeed causes
a certain effect by determining the likelihood that one event was the cause of another.
In contrast to statistical correlations, causal relationships are asymmetrical [17, 18, 19],
i.e. that there is a directed relationship from a cause to an effect, rather than a spurious
co-occurrence of events.

Causal discovery, on the other hand, is concerned with determining whether a
change in one variable (representing a state, action or event) indeed causes a change in
another, in order to distinguish between correlated and causal relationships. Approaches
to make the distinction are interventions, random control trials and counterfactual rea-
soning.

Counterfactuals refer to alternative choices that could have been made in the past
and the corresponding effects that they might have caused.

On the other hand, we want to find the causes (events or actions) that achieve a
given effect. Therefore, we are concerned with counterfactual exploration for the future.
Starting from intended effects (such as individual or collaborative goals) we search for
appropriate causes from which these effects will follow. If we know the causes for our
intended effects, we can plan the actions that will lead to them. Thus, we are interested in
establishing the causal chain that results in the desired and intended outcomes. Therefore,
we are concerned with counterfactual exploration to answer the following questions.
Which effects will result from different alternative choices for actions that we are going
to take now? And which of those effects match with our goals and intentions?

4. Methodology

For collaborative decision-making (CDM), it is essential that each human and agent is
aware of each others’ points of view and understands that others possess mental states
that might differ from one’s own - which is known as a Theory of Mind (ToM). ToM is
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defined as the human cognitive ability to perceive and interpret others in terms of their
mental states, such as beliefs, desires, goals, intentions and emotions, and it is considered
an indispensable requirement of human social life [20, 21, 22, 23, 24].

We distinguish three different ways in which shared causal models involve a The-
ory of Mind. The intentions and causal models are either (1) shared explicitly, (2) ob-
served and anticipated from others’ behaviours or (3) based on expectations of average
behaviour patterns.

Using option (1), each agent knows several causal models and other facts about its
context (beliefs). These models can be shared among agents by negotiating about group
goals and individual intentions [25, 26, 27, 5, 28, 29, 30, 31]. Then, the causal models
can be used in decision-making according to a Theory of Mind. Consequently, groups of
agents share a common goal to collaborate and learn causal models from each other and
cause appropriate interventions to achieve their goals.

In causal inferencing, deliberate and controlled actions are called interventions. In-
terventional distributions are typically written as probabilities P(Y |do(X = x0)), where
Y is the desired effect and the do-operator represents the intervention of deliberately ad-
justing X to the value of x0. Consequently, we need to find x0 in a process that we call
counterfactual exploration.

Counterfactual exploration searches backwards along the paths in a causal model to
find the most probable outcome, as close as possible to Y , by setting X to likely values
and estimating the resulting effects along the causal chain. Efficient causal paths can be
found by searching to satisfy anticipated intentions and group goals. This process makes
use of the backdoor criteria, as described in [32]. Hence, counterfactual exploration is a
complementary method to either causal inference or causal discovery.

By using counterfactual exploration, the desired effects that were established in a
hybrid human-agent team can be achieved with high probability and reliability. The use
of a causal model guarantees that the outcomes are indeed causally related to the inter-
ventions and interpretable. Therefore, humans and agents can trust each other regarding
the right actions to take.

5. Experiment: Talking Buildings

The above-mentioned concepts are explored in a scenario of optimising the energy con-
sumption of users of a multi-tenant building. Besides finding sustainable ways of produc-
ing more energy (out of scope of this project), we must reduce our energy consumption
and use the available energy as efficiently as possible. Therefore, it is crucial to create
awareness and means of control at the points of storage and consumption.

The Talking Buildings project is an applied AI project that involves hybrid interac-
tion in a social urban context. The project aims to find new forms of living, working and
urban rhythms related to energy sustainability and flexibility [33, 34, 35, 36].

Our activities partly focus on operational climate management using real-life data
from actual buildings. This involves activities related to situations inside the building,
such as learning to control the climate system in an efficient way, while maintaining the
level of comfort perceived by its users.

The other part of our work is the study of energy consumption patterns and inter-
actions among buildings. This part involves the development of a computational model
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of interactions in urban energy regulation based on epistemic logic and Theory of Mind
[27, 37, 38]. The setting requires agents to communicate not purely with facts, but also
based on their beliefs and knowledge. The goal is to create an agent-based computational
model of efficient knowledge transfer in a human-AI ecosystem.

6. Conclusions

As outlined above, we use our counterfactual exploration process to find efficient causal
paths that achieve the shared intentions in hybrid teams. The causal relationships are
explainable and transparent to each of the actors involved (both humans and agents),
which leads to the emergence of mutual trust.
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