Remote Sensing - Deployable Analysis Environment

Power your workflow with HPC

netherlands Science center

Meiert W. Grootes, Utrecht 23-01-2024

SURF

The RS-DAT team

NLeSC:

Team Atlas (Pranav Chandramouli, Meiert Grootes, Ou Ku, Francesco Nattino, Fakareh (Sarah) Alidoost, Yifat Dzigan)

SURF:

Ander Astudillo, Martin Brandt, Natalie Danezi, Robert Griffioen, Annette Langedijk, Raymond Oonk netherlands Science center

"Empowering researchers across all disciplines through advanced research software" The Netherlands eScience Center

National centre / independent foundation since 2012 / NWO & SURF

Let's stay in touch

Check for our open calls

www.eScienceCenter.nl

⋈ info@esciencecenter.nl

L +31 20 460 4770

ence @esa Copernicus

Democratizing Big Data

clid consortium

- Big Data ubiquitous across EO and astronomy (EO/astro sats, imaging surveys, large FOV IFUs, sims)
- Fundamental challenge storage & processing
- Low barrier (local) processing solutions do not scale
- Big data solutions often limited by upfront investment (time/money) and steep learning curve

ESA/Hubble & NASA, ESO/ Lutz Wisotzki et al.

What is RS-DAT?

science center

RS-DAT Components

https://github.com/RS-DAT/JupyterDaskOnSLURM

JupyterDask-ExamplesPublicCollection of examples for RS-DAT JupyterDask deployments

😑 Jupyter Notebook 🛱 0 🐠 Apache-2.0 😵 0 💽 0 🏌 0 Updated 3 hours ago

JupyterDaskOnSLURM Public

```
- Shell ☆ 0 Ф Apache-2.0 😵 0 📀 0 🎝 0 Updated 11 hours ago
```

JupyterDaskOnSRC Public Deploy JupyterHub and Dask on SURF Research Cloud

```
🛑 Jinja 🛱 0 ሳ Apache-2.0 😵 0 ⊙ 4 🎝 0 Updated 15 hours ago
```

Scalable analysis with Jupyter

Using legacy (Docker) containers for HPC

DockerToSingularity Public Examples of converting a docker image to singularity, and execute the singularity image

 \bigcirc Dockerfile $\overleftrightarrow{}$ 0 $\overleftrightarrow{}$ 0 \bigcirc 0 $\vcenter{}$ 0 Updated on 12 Aug

https://github.com/RS-DAT/DockerToSingularity

https://github.com/NLeSC-GO-common-infrastructure/dcachefs

Python interface to dCache

https://github.com/NLeSC-GO-common-infrastructure/stac2dcache

utility functions to manage STAC catalogs (and the underlying data) on dCache.

Data storage and access - dCache

dCache

- Mass storage system supporting heterogenous nodes as single virtual filesystem
- Multiple I/O, incl. HTTP/Webdav
- Powerful system but not fully integrated with (python) analysis workflows

- Python-based, extending Filesystem Spec (fsspec).
- Mainly, one filesystem class following fsspec's API (implementing functions like ls, rm, cat, etc.).
- File like objects to read with other libraries
- Automatic integration with other libraries using fsspec

```
import dcachefs
```

import fsspec

```
with fsspec.open('https://url/to/myfile.tif', 'r') as fr:
    with fsspec.open('dcache://path/to/myfile.tif', 'w') as fw:
    fw.write(fr.read())
```


STAC and STAC2dCache

Spatio-Temporal Asset Catalogue

- Common structure to describe spatio-temporal data.
- Standard way to catalog geospatial data files.
- All about metadata, linked to data.
- STAC ecosystem includes:
 - Specifications (core elements definitions);
 - API;
 - Tools.

STAC2dCache

- STAC2dCache extends the I/O functionality of core STAC library (PySTAC) to read/write metadata from/to the dCache storage.
- Provides utility functions to copy data files to/from dCache

```
import stac2dcache
from pystac import Catalog
catalog = Catalog(...)
catalog.add_items(...)
catalog.normalize_and_save(
    'dcache://path/to/catalog'
)
```

```
from stac2dcache.utils import copy_asset, get_asset
```

```
catalog = Catalog.from file('dcache://path/to/catalog.json')
```

```
for asset_key in ('red', 'green', 'blue'):
    copy_asset(catalog, asset_key, update_catalog=True)
```

```
da = get_asset(catalog, 'blue', 'T05VMG')
da.plot()
```

A (Big) Data analysis ecosystem

Pangeo is first and foremost a community of people working collaboratively to develop software and infrastructure to enable Big Data geoscience research.

Some of the products produced by this community include interconnected software package and deployments of this software in cloud and high-performance-computing environments. Such a deployment is sometimes referred to as a Pangeo Environment.

The Astropy Project is a community effort to develop a common core package for Astronomy in Python and foster an ecosystem of interoperable astronomy packages.

Rich data model w/ out-of-core support Interactive analysis and execution Flexible storage

Ξ

Scalable analysis - Jupyter at scale

● ● 🔵 Untitled.ipynb - JupyterLab 🗙 -	+
	·
ightarrow ightarrow m C () localhost:8889/lab/tree/Untit	ed.ipynb
File Edit View Run Kernel Git Tabs	Settings Help
	■ Untitled.ipynb × +
You are not currently in a Git repository. To	
use Git, navigate to a local repository, initialize	$\blacksquare + \% \square \blacksquare C \Rightarrow Code \lor O git$
a repository here, or clone an existing	
repository.	[]:
Open the FileBrowser	
Initialize a Denesitany	Untitled.ipynb - JupyterLab x +
Initialize a Repository	← → C (③ localhost:8889/lab/tree/Untitled.ipynb
Clone a Repository	💭 File Edit View Run Kernel Git Tabs Settings Help
1	MEMORY BY KEY
	NPROCESSING □ + X □ □ > ■ C → Code ∨ ⊙ git
	OCCUPANCY PROFILE
	PROFILE SERVER
	PROGRESS
	SCHEDULER SYSTEM
	WORKERS
	WORKERS CPU TIMESERIES WORKERS DISK
	WORKERS DISK TIMESERIES
	WORKERS MEMORY
	WORKERS MEMORY TIMESERIES
	WORKERS NETWORK
	WORKERS NETWORK TIMESERIES WORKERS TRANSFER BYTES
	WORKERS TRANSFER BYTES
	CLUSTERS C + NEW
	SLURMCluster
	Scheduler Address: tcp://10.0.0.10:40437 Dashboard URL: /proxy/8787/status
	Number of Cores: 0 Memory: 0 B
	Number of Workers: 0
	<> SCALE SHUTDOWN
	Simple 📃 0 🛐 1 🕮 🚸 Python 3 (ipykernel) Idle

- Scale analysis: accustomed interactive workflows, but backed by HPC/Cloud
- Support for PyData/Python ecosystem
- Combine Jupyter server with Dask cluster on HPC/HTC/Cluster/Cloud system
- Fully integrated with storage (dCache)
- Expose Jupyter python ecosystem (lab plugins ...)

Jupyter Dask on Slurm

SURF H*C Infrastructure: Spider (HTC), Snellius (HPC); SLURM scheduler

JupyterD	askOn	SLURM Public	C				
Python	☆ 3	কাঠ Apache-2.0	ۍ م پ	• 4	រោ ០	Updated on Feb 2	

- JupyterLab instance with Dask and Git extensions, scalable Dask cluster, running on SLURM managed HTC/HPC system
- Basic idea
 - Launch JupyterLab server and Dask scheduler as long-running batch job
 - SSH port-forwarding to connect to JupyterLab server
 - Launch workers as short-lived batch jobs (fast thru queue)

Ensure ease of use by abstracting details from user (but configurable if desired)

RS-DAT in practice

- Set up your environment.yaml file and you're good to go locally
- Lauch via command line
- That's it!

	••	E ~	< >	🕤 🕤	•••)				localhost		5 an		(ÐÔ	+	G
			02-con	ipute-s Jup			O RS-DAT	7/2022-10-10-rs-dat	t-demo: Material for the Rer	note-Sensing Deployabl		🚺 dCac	he View			
0	File	Edit \	View Ru	1 Kernel	Git Tabs	Settings	Help									_
	🖄 La	auncher		×	🖲 02-com	pute-spring-	index.ij • +									°0
	8	+ %		▶ ■	C ++ (Code ~	() git					Ŭ	Python 3 (ip	oykernel)	0	
D			def add	_mean_pla	ant_layer(outdate):										ŧ
				a new lay		dex date o	over plant s	pecies and	add the mean							
			mea	n = mean.	expand_di	ms(plant=		alse).round()							
=																
-			2.4 0	oen the	input cat	alog										
			The inpu	ıt variables	(minimum t	emperature,		1.54	l day length duratio ta we load the cata	n) are extracted from	m the Daymet catal	og, which we hav	e dowloaded	earlier		
		[]:	The inpu as a STA	it variables C catalog ((minimum t (see this not	emperature, ebook). In o		cess to the da			m the Daymet catal	og, which we hav	e dowloaded	earlier		
*		[]:	The inpu as a STA catalog	nt variables C catalog (= pystac	(minimum t (see this not c.Catalog. ding links to	emperature, ebook). In o from_file(the data, th	order to get ac	cess to the da .path) vides all the da	ta we load the cata		-	-		earlier		
			The input as a STA catalog In additi degrees # Extra _item = proj_js	t variables C catalog (= pystac on to provid to the data ct inform next(cat on = _ite	(minimum t (see this not c.Catalog. ding links to aset's coord mation abo talog.get_ em.propert	emperature, ebook). In o from_file(the data, th inate referer ut input (all_items(ies["proj:	rder to get ac (catalog_url e catalog prov nce system (C CRS from met	cess to the da .path) vides all the da RS): cadata	ta we load the cata	log:	-	-		earlier		
			The input as a STA catalog In additi degrees # Extra _item = proj_js crs_lcc # Set L transfc crs	t variables C catalog (= pystac on to provid to the data ct inform next(cat on = _ite = pyproj p CRS con rmer = py	(minimum t (see this not c.Catalog. ding links to aset's coord mation abo talog.get_ em.propert j.CRS.from pverter yproj.Tran 25G:4326", Lcc,	emperature, ebook). In o from_file(the data, th inate referer ut input (all_items(ies["proj:	(catalog_url e catalog prov nce system (C CRS from met ()) projjson"] t(proj_json)	cess to the da .path) vides all the da RS): cadata	ta we load the cata	log:	-	-		earlier	I	

5500 - 35000 5000 -- 30000 4500 25000 azimuth - 20000 -amplit 4000 3500 - 15000 3000 - 10000 2500 - 5000 200 14000 15000 16000 17000 18000 19000 20000 21000 range

Off-the-shelf use of DAT Integration with SARXarray

40000

Simple HTC parallelization of established workflow - orders of magnitude speed

Mean Reflectance Map of Amsterdam

Images processed: 100 Images size: ~500 GB

RS-DAT Runtime: ~10 mins Previous Runtime: ~1 week

RS-DAT off the shelf

RS-DAT off the shelf

- Dask backed image/IFU data processing w/ ndcube
- Large array of (nascent) radio astronomy tooling based on dask; daskms, SKA Fourier transform, etc.
- LSDB & HiPsCat; Dask backed astronomical source catalog (cross-)analysis at PB scale for LSST

- Packages are python ecosystem and dask based
- Require significant compute and storage resources for efficiency
- Should work off-the-bat with RS-DAT.
- We be interested and happy to help/think along

- RS-DAT provides easy to deploy scalable analysis
- Full integration with PyData/Python ecosystem
- Full integration with mass storage dCache
- Fully automated deployment on SURF infrastructure. No further configuration needed. Customized (local) deployments also simple -> DelftBlue
- Work in progress HPC and SURF research cloud integration, ML for RS support, ...
- What do you need? Could you use this?

What would you like/need? Come talk to us! <u>team-atlas@esciencecenter.nl</u>

Let's stay in touch!

