
This project has received funding from the European Union’s Horizon 2020 Framework Programme for Research and
Innovation under grant agreement no 674875.

Designing image-based control systems considering workload variations*
Sajid Mohamed, Dip Goswami, Twan Basten

*In CDC 2019.

S. Mohamed, et al., “Optimising QoC of multiprocessor IBC systems considering workload variations,” In DSD 2018.

timet t

Image-based Control (IBC) System – an example

3

vehicle on road

desired lateral

deviation 𝑟𝑟(𝑡𝑡)

lateral deviationsteering angle

disturbance

𝑢𝑢(𝑡𝑡) 𝑦𝑦(𝑡𝑡)

𝑑𝑑(𝑡𝑡)

measure states 𝑥𝑥(𝑡𝑡)

Control
Strategies

electronic
control unit

Vision-based lateral control of a vehicle

How to control the inputs 𝒖𝒖(𝒕𝒕) automatically
to make the output 𝒚𝒚(𝒕𝒕) track the given reference 𝒓𝒓(𝒕𝒕)?

Control
performance

Sensing and
processing

Control
computation Actuation

Dynamic system
(continuous time)

Embedded platform (discrete-time)

Camera

state-space model
�̇�𝑥 𝑡𝑡 = 𝐴𝐴𝑥𝑥 𝑡𝑡 + 𝐵𝐵𝑢𝑢 𝑡𝑡
𝑦𝑦 𝑡𝑡 = 𝐶𝐶𝑥𝑥 𝑡𝑡 + 𝐷𝐷𝑢𝑢(𝑡𝑡)

control law
𝑢𝑢 𝑡𝑡 = 𝐾𝐾𝑥𝑥 𝑡𝑡 + 𝐹𝐹𝑟𝑟 𝑡𝑡

IBC system: characteristics
• Sensing delay is relatively long

• applicable for 30 or 1000 frames per second (fps)

• Sensing delay more than frame rate
• dropped camera frames

• Sensing delay is variable
• workload variations

S

h

camera input (30 fps)

AC
τ

Sensing and
processing

Control
computation Actuation

Dynamic system
(continuous time)

Embedded platform (discrete-time)

Camera

IBC system: characteristics

S

h

camera input (30 fps)

AC
τ

Sensing and
processing

Control
computation Actuation

Dynamic system
(continuous time)

Embedded platform (discrete-time)

Camera

How to cope with this long, variable sensing delay
to improve system performance?

QoC

Utilisation Energy

best-case

CS A CS A

100 time (ms)0 200

CS A

Average workload Minimal workload

Workload
distribution

worst-case

Workload Variations

• Execution time of ‘S’ depends on workload variation
• A constant sensor-to-actuator delay τ and sampling period h
 to guarantee system stability

6

τ

Design vs Implementation

7

Control Design
Engineer

Embedded Systems
Engineer

Worst-case workload is
considered for design

Allocates resources for
the worst-case workload

Sensing task: black box Control design: black box

CS A CS A CS A

best-case

CS A CS A

100 time (ms)0 200

CS A

Average workload Minimal workload

Workload
distribution

worst-case

rarely happens

The Design-Implementation Gap

• Controllers designed for worst-case workload rarely happens
• Idle resources for less workload inefficient resource utilisation

idle time

8

best-case

CS A CS A

100 time (ms)0 200

CS A

Average workload Minimal workload

Workload
distribution

worst-case

rarely happens

Bridging the Gap

idle time

9

Can we optimise Quality-of-Control using multiprocessor technology?

Vision-based Lateral Control – Results

10

Yes, Scenario- and Platform-Aware Design (SPADe) approach.

SPADe approach settles faster than worst-case based design

Can we optimise Quality-of-Control using multiprocessor technology?

CS A CS A CS A

CS A CS A CS A

Quality-of-Control (QoC) metrics

• Control performance
• Settling time (ST)

• vision-guided braking
• Mean-square error (MSE)

• 𝑒𝑒 = 1
𝑛𝑛
∑𝑘𝑘=1𝑛𝑛 (𝑥𝑥 𝑘𝑘 − 𝑟𝑟)2

• …

• Control energy/effort
• Power spectral density (PSD)
• Maximum control effort (MCE)
• …

11

Settling time

Scenarios based on workload

PERT distribution, Discrete-time Markov chain

How to identify, model and characterise workload variations for IBC design?

Why platform-aware?

• Model-of-Computation: synchronous dataflow (SDF)

Synchronous dataflow (SDF)

state

d,1 t

dproc1

proc2

d,1 t

d
d

proc1

proc2

• Actor, channel, tokens, rates

Synchronous dataflow (SDF)

state

d,1 t

dproc1

proc2

• Actor, channel, tokens, rates

21

Why platform-aware?

RoID

1

RoIM
RoIP

RoIP
C A

30 fps

RoIP

RoIP

RoIM AC
P1

P0

(h2, τ2)

ACP0 RoIPRoIP RoIM

(h1, τ1)

Sensing and
processing

Control
computation Actuation

Dynamic system
(continuous time)

Embedded platform (discrete-time)

Camera

Workload scenarios

1

RoIM
RoIP

RoIP
RoID C A

1

RoIM
RoIP

RoIP
RoID C A

1

RoIMRoIP

RoIP

RoID C A

2 2

RoIP

30 fps

RoI
P

RoI
P

RoI
P RoIM AC

P1

P0

RoI
P

RoI
P

RoI
P RoIM AC

P1

P0

RoI
P

RoI
P

AC
P1

P0

P2
22

RoI
P

RoI
P

2 2

3 3

RoI
P

RoI
P

(a)

(c)

(b)

(d)

(e) (f)

(h2, τ2)

(h1, τ1)

(h3, τ3)

Pipelining and/or parallelization
• Throughput of the dataflow graph = sampling period
• Latency of the dataflow graph = sensor-to-actuator delay

Scenario- and Platform-Aware Design flow

Application
Model(s)

Platform
Model

Controller
Design

Timing
Analysis

Other
Applications Platform Camera(s)IBC

Application

Mapping
Configurations

Binding +
Scheduling

Controller
Configurations

Reconfiguration
Mechanism

Inputs:
SPADe

Formal
Modelling

Analysis
and

Design

Implementation

Design-Space
Exploration
and Pareto-

Optimisation

HiL Validation

SPADe approach
1. Identify, model, and characterise workload

(scenario) variations
• PERT distribution
• Discrete-time Markov chain

2. Find optimal mappings for a given platform
allocation
• SDF3 flow

3. Identify system scenarios
• Implementation constraints

4. Design a controller
• LQR with worst-case sampling period
• Switched linear control (SLC) system
• Markovian jump linear system (MJS)
• Pipelined controller

20

Application
Model(s)

Platform
Model

Controller
Design

Timing
Analysis

Other
Applications Platform Camera(s)IBC

Application

Mapping
Configurations

Binding +
Scheduling

Controller
Configurations

Reconfiguration
Mechanism

Design-Space
Exploration
and Pareto-

Optimisation

HiL Validation

Scenario identification
• Based on workload

• Based on choice of mapping and choice of pipelining and/or parallelization

AC

P1

P0

RoI
P

RoI
P

RoI
P RoIM AC

P1

P0

RoI
P

RoI
P

(h2, τ2)

S

AC

P1

P0

AC

S1 S2 S3

Control Design
• LQR control
• Switched linear control (SLC)

• Identify system scenarios (from e.g. PERT distribution)
• Prove stability (common/switched quadratic Lyapunov function)

CS A CS A CS A

CS A CS A CS A

Control Design
• Markovian jump linear system (MJS)

• Model workload variations as discrete-time Markov chain

CS A CS A CS A

S2

S1

S3

Design guidelines

24

Conclusion

25

How to cope with long image sensing delay?
• SPADe approach

• Considering workload variations is beneficial

• Pipelining

• Parallelization

Future work:
• Develop I2C tool based on SPADe approach

• Inputs: application and platform model, requirements
and constraints

• Output: System configurations and controller code

Application
Model(s)

Platform
Model

Controller
Design

Timing
Analysis

Other
Applications Platform Camera(s)IBC

Application

Mapping
Configurations

Binding +
Scheduling

Controller
Configurations

Reconfiguration
Mechanism

Design-Space
Exploration
and Pareto-

Optimisation

HiL Validation

S.Mohamed@tue.nl

linkedin.com/in/sajidmohamed

	Slide Number 1
	Slide Number 2
	Image-based Control (IBC) System – an example
	IBC system: characteristics
	IBC system: characteristics
	Workload Variations
	Design vs Implementation
	The Design-Implementation Gap
	Bridging the Gap
	Vision-based Lateral Control – Results
	Quality-of-Control (QoC) metrics
	Scenarios based on workload
	Why platform-aware?
	Synchronous dataflow (SDF)
	Synchronous dataflow (SDF)
	Why platform-aware?
	Workload scenarios
	Pipelining and/or parallelization
	Scenario- and Platform-Aware Design flow
	SPADe approach
	Scenario identification
	Control Design
	Control Design
	Design guidelines
	Conclusion
	Slide Number 26

