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Image-based Control (IBC) System – an example 
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How to control the inputs 𝒖𝒖(𝒕𝒕) automatically
to make the output 𝒚𝒚(𝒕𝒕) track the given reference 𝒓𝒓(𝒕𝒕)?
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IBC system: characteristics
• Sensing delay is relatively long

• applicable for 30 or 1000 frames per second (fps)

• Sensing delay more than frame rate
• dropped camera frames

• Sensing delay is variable
• workload variations
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How to cope with this long, variable sensing delay 
to improve system performance?
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Workload Variations

• Execution time of ‘S’ depends on workload variation
• A constant sensor-to-actuator delay τ and sampling period h
 to guarantee system stability
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Design vs Implementation
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Sensing task: black box Control design: black box
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The Design-Implementation Gap

• Controllers designed for worst-case workload  rarely happens
• Idle resources for less workload  inefficient resource utilisation

idle time

8



best-case

CS A CS A

100 time (ms)0 200

CS A

Average workload Minimal workload

Workload 
distribution

worst-case

rarely happens

Bridging the Gap

idle time
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Can we optimise Quality-of-Control using multiprocessor technology?



Vision-based Lateral Control – Results
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Yes, Scenario- and Platform-Aware Design (SPADe) approach.

SPADe approach settles faster than worst-case based design

Can we optimise Quality-of-Control using multiprocessor technology?
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Quality-of-Control (QoC) metrics

• Control performance
• Settling time (ST)

• vision-guided braking
• Mean-square error (MSE)

• 𝑒𝑒 = 1
𝑛𝑛
∑𝑘𝑘=1𝑛𝑛 (𝑥𝑥 𝑘𝑘 − 𝑟𝑟)2

• …

• Control energy/effort
• Power spectral density (PSD)
• Maximum control effort (MCE)
• …
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Scenarios based on workload

PERT distribution, Discrete-time Markov chain

How to identify, model and characterise workload variations for IBC design?



Why platform-aware?

• Model-of-Computation: synchronous dataflow (SDF)



Synchronous dataflow (SDF)
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Why platform-aware?
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Workload scenarios
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Pipelining and/or parallelization
• Throughput of the dataflow graph = sampling period
• Latency of the dataflow graph = sensor-to-actuator delay



Scenario- and Platform-Aware Design flow
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SPADe approach
1. Identify, model, and characterise workload 

(scenario) variations
• PERT distribution 
• Discrete-time Markov chain

2. Find optimal mappings for a given platform 
allocation
• SDF3 flow

3. Identify system scenarios
• Implementation constraints

4. Design a controller
• LQR with worst-case sampling period
• Switched linear control (SLC) system
• Markovian jump linear system (MJS)
• Pipelined controller
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Scenario identification
• Based on workload

• Based on choice of mapping and choice of pipelining and/or parallelization
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Control Design
• LQR control
• Switched linear control (SLC)

• Identify system scenarios (from e.g. PERT distribution)
• Prove stability (common/switched quadratic Lyapunov function)
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Control Design
• Markovian jump linear system (MJS)

• Model workload variations as discrete-time Markov chain
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Design guidelines
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Conclusion
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How to cope with long image sensing delay?
• SPADe approach

• Considering workload variations is beneficial

• Pipelining

• Parallelization

Future work: 
• Develop I2C tool based on SPADe approach

• Inputs: application and platform model, requirements 
and constraints

• Output: System configurations and controller code
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