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how difficult is it to prepare a particular state?

e quantum circuit model:

‘7/)> B U ‘¢O> unentangled
unitary operator —J L simple"reference state

built from set of €8 100000 - --0)
simple gates
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e complexity = minimum number of gates required to prepare
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- does the answer depend on the choices?? YES!! *". - “o0ly v exp’



Holographic Complexity: A Tale of Two Dualities

* complexity=volume: evaluate proper volume of extremal codim-one

surface connecting Cauchy surfaces in boundary theory (cf holo EE)
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* both of these gravitational “observables” probe the black hole
interior (at arbitrarily late times on boundary)
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. or more .
* complexity=volume: evaluate proper volume of extremal codim-one

surface connecting Cauchy surfaces in boundary theory (cf holo EE)
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e complexity=action: evaluate gravitational action for Wheeler-DeWitt
patch = domain of dependence of bulk time slice connecting

boundary Cauchy slices in CFT  (Brown, Roberts, Swingle, Susskind & Zhao)

e complexity=volume?2.0: evaluate spacetime volume of WDW patch
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Holographic Complexity:

Complexity = Volume Complexity = Action
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 connection of complexity=volume to AdS/MERA

* [inear growth (at late times) (d = boundary dimension)
dC 8
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* “switchback” effect (information scrambling)



AdS/MERA:

 MERA (Multi-scale Entanglement Renormalization Ansatz) provides
efficient tensor network representation of ground-state wave-function
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. ] Susskind, Brown, . ..
Linear Growth (at late times):

* large number of degrees of freedom + Hamiltonian is chaotic
> for very long time, growth is linear in time

* rate proportional # degrees of freedom K —— thermal entropy S;
make up dimensions with temperature T (complexity extensive)

“throwing random gates at simple
state rarely produces cancellation”
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* large number of degrees of freedom + Hamiltonian is chaotic
> for very long time, growth is linear in time
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where t{, t,, ..., t,; are in an alternating “zig-zag” order
* complexity X tf — 2nt,

» “switchback effect” is —2n t, due to partial cancellation of forward
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Holographic Complexity:

Complexity = Volume Complexity = Action

 connection of complexity=volume to AdS/MERA J

* [inear growth (at late times) (d = boundary dimension)
dCV 81 dC 2M
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Ambiguities in defining complexity?
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Complexity=Volume Revisited:

e complexity=volume: evaluate proper volume of extremal codim-one

surface connecting Cauchy surfaces in boundary theory (cf holo EE)
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Two steps: 1) find a special surface

2) Evaluate geometric feature of surface

* yields “nice” diffeomorphism invariant observable
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* F, is scalar function of bkgd metric g,,,, and embedding X (o)
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1) find a special surface X :
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1) Observables grow linearly with time at late times:
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where in large T limit, the constant P,, « mass

2) Observables exhibit “switchback effect”, ie, universal time delay in
response to shock waves falling into the dual bIack hoIe
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So what?

1) Observables grow linearly with time at late times:

Tli)m Or,. Sr, (T) ~ Poo T

where in large T limit, the constant P,, « mass

2) Observables exhibit “switchback effect”, ie, universal time delay in
response to shock waves falling into the dual bIack hoIe

(OV+(X) (U ,0) (0V+Q)

W/A\\/

(OV) (U -, O) ( ) (U -, O)
r.t,

* when F, and F, constructed with bkgd curvtures, analysis similar
to extremal volume . . ...



Simple Example: F) = F, = 1+ A L* CypeqgC*0

* profile determined by classical mechanics problem

(] ~ 2(d—1)
7:'2 —+ U(’I") — P,U2 with U(’]") — _f('f')CLZ(’}") (%) |
U(r) where ()= 7 (1-"4) and a() =1+ ()"
A

* turning point:

A~

P2 = U(rmin)

AR




So what?

1) Observables grow linearly with time at late times:

lim OF1,2F2 (T) ~ P T sgr.faces rgach
T—500 critical radius in

where in large T limit, the constant P,, < mass BH interior

2) Observables exhibit “switchback effect”, ie, universal time delay in
response to shock waves falling into the dual black hole

(0.v,+a,) ..o &) 0y Ovate) g

PN T AN e

4
4
%
%
4
%
%
%
%
%

(0,v,) (un.l-an.l.o () (uy-a,,0) (0.v1)

rt,

verify no 6-function curvature contributions

* when F, and F, constructed with bkgd curvtures, analysis similar
to extremal volume . . ...



So what?

1) Observables grow linearly with time at late times:

lim Op, S (7) ~ Poo T Sl-Jr-faces r.eac.h
T—00 critical radius in

where in large T limit, the constant P,, < mass BH interior

2) Observables exhibit “switchback effect”, ie, universal time delay in
response to shock waves falling into the dual bIack hoIe

(0,v,+a,) (U,,0) (Ov+cx)

f"\“\\vf/‘\v/

(OV) (U -, O) ( ) (U -, O)
r.t,

verify no 6-function curvature contributions

* when F, and F, constructed with bkgd curvtures, analysis similar
to extremal volume . . ...

e universality displayed observables suggests that all of them are
equally viable candidates for holographic complexity!!



What about extensions of CA and CV2.0?

e complexity=action: evaluate gravitational action for Wheeler-DeWitt
patch = domain of dependence of bulk time slice connecting

boundary Cauchy slices in CFT

(Brown, Roberts, Swingle, Susskind & Zhao)

e complexity=volume2.0: evaluate spacetime volume of WDW patch

tr—>

el BN

(Couch, Fischler & Nguyen)

iR I
CA(S) = WDW
7 h
Viwwpw
Ci () =
V( ) GNEQ

* no extremization procedure implemented; surfaces bounding
volume (ie, codimension-zero region) are light sheets
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What about extensions of CA and CV2.0?

e complexity=action: evaluate gravitational action for Wheeler-DeWitt
patch = domain of dependence of bulk time slice connecting
boundary Cauchy slices in CFT  (Brown, Roberts, Swingle, Susskind & Zhao)

e complexity=volume2.0: evaluate spacetime volume of WDW patch
(Couch, Fischler & Nguyen)

tr—~> 1 T
L R CA(Z): WDW
7 h
Viwwpw
Ci () =
V( ) GNEQ
/" —“'\~

Two steps: 1) find a special surfaces bounding codim.-0 region

2) Evaluate geometric feature of codim.-0 region
(& bounding surfaces)

* yields “nice” diffeomorphism invariant observable



Generalized procedure for M

codim.-0 observables:
1) find a bounding surfaces X, : A

5{X_|_,X_}(/ ddo'\/E F4(9MV7X$)+/ ddng5 gMVvXM

>0 _

-+ /M d o /=g F6(9W)) =0

* F, and Fy are scalar functions of bkgd metric g, and embeddings
Xf_: (o) respectively, while Fy is scalar function of bkgd metric g,,,,



Generalized procedure for M

< M Htn
codim.-0 observables:
1) find a bounding surfaces X, : A

5{X_|_,X_}(/ ddo'\/E F4(9MV7X$)+/ ddng5 gMVvXM

>0 _

-+ /M d o /=g F6(9W)) =0

* F, and Fy are scalar functions of bkgd metric g, and embeddings
Xf_: (o) respectively, while Fy is scalar function of bkgd metric g,,,,

2) Evaluate geometric feature of corresponding region:

1
O(Scpr) = —— / o VT Fy(gpm: X")

GNL Z—l—
/dd+1a‘v FS(QW)

1
Ao Vh Fy(g,,; X*) +
S

TN

1
Gy L?

* yields “nice” diffeomorphism invariant observable
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So what?

1) Observables grow linearly with time at late times:

hm O(T) ~ I'oo T

T— 00
where in large T limit, the constant P,, &« mass

2) Observables exhibit “switchback effect”, ie, universal time delay in
response to shock waves falling into the dual bIack hoIe

(0,v,+a,) (U,,0) (Ov+a)

2N RN
V//\\\//

(OV)( () (uy-a,,0)

-,
r.t,

e universality displayed observables suggests that all of them are
equally viable candidates for holographic complexity!!



° \_/
Simplest Example: M
tr M _"tr
 extremize the functional "'

O(Scpr) = —7 /E dioc v /A\

Gn L s,

o _ 1
dd h dd—l—l _
+GNL/E_G[+GNL2/M o\/—g

* evaluating the volumes of the bounding surfaces X weighted by
coefficients a, as well as of volume of codim.-0 region M

* extremal equations yields CMC surfaces (eg, see Witten)

K(EH:O“F% KX )=—
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Simplest Example: M
tr M _"tr
 extremize the functional "'

O(Scpr) = —7 /E dioc v /A\

Gn L s,

o _ 1
dd h dd—l—l _
+GNL/E_G[+GNL2/M o\/—g

* evaluating the volumes of the bounding surfaces X weighted by
coefficients a, as well as of volume of codim.-0 region M

* extremal equations yields CMC surfaces (eg, see Witten)

1 1
Feo=o1 KECI=—7

*inlimit a; — 0, these surfaces become the future/past light sheets

—> M becomes WDW patch!

* evaluate volume (same functional) —> CV2.0
* evaluate action (including bdy terms) —> CA



Conclusions/Questions/Outlook:

* simple example but “classical mechanics” analysis readily extends to
Fi(9uv, Ruvpo, Vi) and to observables where F; # F,

 couplings for curvature invariants should not be too large

 similar behaviour appears to hold for functionals including
dependence on extrinsic curvature

* infinite class of holographic observables equally viable candidates
for gravitational dual of complexity!!

 can freedom in constructing gravitational observables be related to
freedom in constructing complexity model in boundary QFT

* is there something that singles out maximal volume?

* what is role of extremal solutions which are not global maxima
and probe very near to singularity?

e further investigation of codimension-zero observables

* add matter contributions to new observables (eg, CA proposal)
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