

Verlinde ${ }^{2}$ Symposium

HERMAN

\square

THE NOTORIOUS TRUE STORY OF THE KOAY TWINS

VERLINDE

Alexandre Belin, RCM, Shan-Ming Ruan Gabor Sarosi \& Antony Speranza [arxiv:2111 02429; arxiv:2208.0xxxx]

Entropy

Susskind: Entanglement \wedge is not enough!

- "to understand the rich geometric structures that exist behind the horizon and which are predicted by general relativity."

Susskind: Entanglement ${ }^{\text {^is }}$ not enough!

- "to understand the rich geometric structures that exist behind the horizon and which are predicted by general relativity."
- recall $S_{E E}$ only probes the eigenvalues of the density matrix

$$
\begin{aligned}
S_{E E} & =-\operatorname{Tr}\left[\rho_{A} \log \rho_{A}\right] \\
& =-\sum \lambda_{i} \log \lambda_{i}
\end{aligned}
$$

Susskind: Entanglement ${ }^{\text {^is }}$ not enough!

- "to understand the rich geometric structures that exist behind the horizon and which are predicted by general relativity."

- recall $S_{E E}$ only probes the eigenvalues of the density matrix

$$
\begin{aligned}
S_{E E} & =-\operatorname{Tr}\left[\rho_{A} \log \rho_{A}\right] \\
& =-\sum \lambda_{i} \log \lambda_{i}
\end{aligned}
$$

- would like a new probe which is "sensitive to phases"

$$
\begin{array}{r}
|\mathrm{TFD}\rangle \simeq \sum_{\alpha} e^{-E_{\alpha} /(2 T)<i E_{\alpha}\left(t_{L}+t_{R}\right)} \\
\times\left|E_{\alpha}\right\rangle_{L}\left|E_{\alpha}\right\rangle_{R}
\end{array}
$$

Susskind: Entanglement ${ }^{\text {^is }}$ not enough!

- "to understand the rich geometric structures that exist behind the horizon and which are predicted by general relativity."
- recall $S_{E E}$ only probes the eigenvalues of the density matrix

$$
\begin{aligned}
S_{E E} & =-\operatorname{Tr}\left[\rho_{A} \log \rho_{A}\right] \\
& =-\sum \lambda_{i} \log \lambda_{i}
\end{aligned}
$$

- would like a new probe which is "sensitive to phases"

$$
\begin{array}{r}
|\mathrm{TFD}\rangle \simeq \sum_{\alpha} e^{-E_{\alpha} /(2 T)<i E_{\alpha}\left(t_{L}+t_{R}\right)} \\
\times\left|E_{\alpha}\right\rangle_{L}\left|E_{\alpha}\right\rangle_{R}
\end{array}
$$

Susskind: Entanglement \wedge is not enough!

- "to understand the rich geometric structures that exist behind the horizon and which are predicted by general relativity."
- recall $S_{E E}$ only probes the eigenvalues of the density matrix

$$
\begin{aligned}
S_{E E} & =-\operatorname{Tr}\left[\rho_{A} \log \rho_{A}\right] \\
& =-\sum \lambda_{i} \log \lambda_{i}
\end{aligned}
$$

- would like a new probe which is "sensitive to phases"

$$
\begin{array}{r}
|\mathrm{TFD}\rangle \simeq \sum_{\alpha} e^{-E_{\alpha} /(2 T)<-i E_{\alpha}\left(t_{L}+t_{R}\right)} \\
\times\left|E_{\alpha}\right\rangle_{L}\left|E_{\alpha}\right\rangle_{R}
\end{array}
$$

Complexity:

- computational complexity: how difficult is it to implement a task? eg, how difficult is it to prepare a particular quantum state?

Complexity:

- computational complexity: how difficult is it to implement a task? eg, how difficult is it to prepare a particular quantum state?
- quantum circuit model:

$$
|\psi\rangle=U\left|\psi_{0}\right\rangle
$$

Complexity:

- computational complexity: how difficult is it to implement a task? eg, how difficult is it to prepare a particular quantum state?
- quantum circuit model:

$$
|\psi\rangle=U\left|\psi_{0}\right\rangle
$$

L simple reference state

$$
\text { eg, }|00000 \cdots 0\rangle
$$

Complexity:

- computational complexity: how difficult is it to implement a task? eg, how difficult is it to prepare a particular quantum state?
- quantum circuit model:

$$
\begin{aligned}
& |\psi\rangle=U\left|\psi_{0}\right\rangle \\
& \uparrow \text { unentangled } \\
& \text { simple } 1 \text { reference state } \\
& \text { eg, |00000 ••0 }\rangle
\end{aligned}
$$

Complexity:

- computational complexity: how difficult is it to implement a task? eg, how difficult is it to prepare a particular quantum state?
- quantum circuit model:

Toffoli gate

Phase-shift gate

Hadamard gate

$$
|a\rangle-H \quad-\frac{1}{\sqrt{2}}|0\rangle+\frac{(-1)^{a}}{\sqrt{2}}|1\rangle
$$

Erasure gate

Complexity:

- computational complexity: how difficult is it to implement a task? eg, how difficult is it to prepare a particular quantum state?
- quantum circuit model:

$$
\begin{aligned}
& \qquad|\psi\rangle=U\left|\psi_{0}\right\rangle \\
& \text { unitary operator } \\
& \text { built from set of } \\
& \begin{array}{c}
\text { unentangled } \\
\text { simple gates }
\end{array}
\end{aligned}
$$

Complexity:

- computational complexity: how difficult is it to implement a task? eg, how difficult is it to prepare a particular state?
- quantum circuit model:

simple gates
tolerance: $||\psi\rangle-| \psi\rangle\left._{\text {Target }}\right|^{2} \leq \varepsilon$

Complexity:

- computational complexity: how difficult is it to implement a task? eg, how difficult is it to prepare a particular state?
- quantum circuit model:

simple gates
tolerance: $||\psi\rangle-| \psi\rangle\left._{\text {Target }}\right|^{2} \leq \varepsilon$
- complexity = minimum number of gates required to prepare the desired target state (ie, need to find optimal circuit)

Complexity:

- computational complexity: how difficult is it to implement a task? eg, how difficult is it to prepare a particular state?
- quantum circuit model:

simple gates
tolerance: $||\psi\rangle-| \psi\rangle\left._{\text {Target }}\right|^{2} \leq \varepsilon$
- complexity = minimum number of gates required to prepare the desired target state (ie, need to find optimal circuit)
- does the answer depend on the choices??

Complexity:

- computational complexity: how difficult is it to implement a task? eg, how difficult is it to prepare a particular state?
- quantum circuit model:

$$
|\psi\rangle=U\left|\psi_{0}\right\rangle
$$

$$
\text { unitary operator } \quad \underbrace{\substack{\text { unentangled } \\ \text { simple }{ }^{\wedge} \text { reference state }}}
$$

$$
\text { built from set of eg, }|00000 \cdots 0\rangle
$$

simple gates

$$
\text { tolerance: }||\psi\rangle-| \psi\rangle \text { Target }\left.\right|^{2} \leq \varepsilon
$$

- complexity = minimum number of gates required to prepare the desired target state (ie, need to find optimal circuit)
- does the answer depend on the choices?? YES!!
go beyond questions like `poly vs exp’

Holographic Complexity: A Tale of Two Dualities

- complexity=volume: evaluate proper volume of extremal codim-one surface connecting Cauchy surfaces in boundary theory (cf holo EE)
(Stanford \& Susskind)

Complexity $=$ Action

- complexity=action: evaluate gravitational action for Wheeler-DeWitt patch = domain of dependence of bulk time slice connecting boundary Cauchy slices in CFT (Brown, Roberts, Swingle, Susskind \& Zhao)

Holographic Complexity: A Tale of Two Dualities

- complexity=volume: evaluate proper volume of extremal codim-one surface connecting Cauchy surfaces in boundary theory (cf holo EE)
(Stanford \& Susskind)

Complexity $=$ Action

- complexity=action: evaluate gravitational action for Wheeler-DeWitt patch = domain of dependence of bulk time slice connecting boundary Cauchy slices in CFT (Brown, Roberts, Swingle, Susskind \& Zhao)

Holographic Complexity: A Tale of Two Dualities

- complexity=volume: evaluate proper volume of extremal codim-one surface connecting Cauchy surfaces in boundary theory (cf holo EE)
(Stanford \& Susskind)

Complexity $=$ Action

- complexity=action: evaluate gravitational action for Wheeler-DeWitt patch = domain of dependence of bulk time slice connecting boundary Cauchy slices in CFT (Brown, Roberts, Swingle, Susskind \& Zhao)

Holographic Complexity: A Tale of Two Dualities

- complexity=volume: evaluate proper volume of extremal codim-one surface connecting Cauchy surfaces in boundary theory (cf holo EE)
(Stanford \& Susskind)

Complexity $=$ Action

- complexity=action: evaluate gravitational action for Wheeler-DeWitt patch = domain of dependence of bulk time slice connecting boundary Cauchy slices in CFT (Brown, Roberts, Swingle, Susskind \& Zhao)
- both of these gravitational "observables" probe the black hole interior (at arbitrarily late times on boundary)

Holographic Complexity: A Tale of Two Dualities

- complexity=volume: evaluate proper volume of extremal codim-one surface connecting Cauchy surfaces in boundary theory (cf holo EE)
(Stanford \& Susskind)

Complexity $=$ Action

- complexity=action: evaluate gravitational action for Wheeler-DeWitt patch = domain of dependence of bulk time slice connecting boundary Cauchy slices in CFT (Brown, Roberts, Swingle, Susskind \& Zhao)
- complexity=volume2.0: evaluate spacetime volume of WDW patch

$$
\mathcal{C}_{\mathrm{V}}^{\prime}(\Sigma)=\frac{V_{\mathrm{WDW}}}{G_{N} \ell^{2}} \quad \text { (Couch, Fischler \& Nguyen) }
$$

Holographic Complexity:

Complexity = Volume

Complexity = Action

WHY COMPLEXITY??

Holographic Complexity:

Complexity = Volume
$\mathcal{C}_{\mathrm{V}}(\Sigma)=\max _{\Sigma=\partial \mathcal{B}}\left[\frac{\mathcal{V}(\mathcal{B})}{G_{N} \ell}\right]$

Complexity $=$ Action

WHY COMPLEXITY??

- connection of complexity=volume to AdS/MERA
- linear growth (at late times)

$$
\left.\frac{d \mathcal{C}_{\mathrm{V}}}{d t}\right|_{t \rightarrow \infty}=\frac{8 \pi}{d-1} M \quad \text { (planar) }\left.\quad \frac{d \mathcal{C}_{\mathrm{A}}}{d t}\right|_{t \rightarrow \infty}=\frac{2 M}{\pi}
$$

- "switchback" effect (information scrambling)

AdS/MERA:

- MERA (Multi-scale Entanglement Renormalization Ansatz) provides efficient tensor network representation of ground-state wave-function in $\mathrm{d}=2$ critical systems
(Vidal; Vidal \& Evenbly)

- has been argued that MERA gives a discrete representation of a time slice in AdS space!

AdS/MERA:

- MERA (Multi-scale Entanglement Renormalization Ansatz) provides efficient tensor network representation of ground-state wave-function in $\mathrm{d}=2$ critical systems
(Vidal; Vidal \& Evenbly)

- has been argued that MERA gives a discrete representation of a time slice in AdS space! \longrightarrow number of gates = geometric volume

Holographic Complexity:

Complexity = Volume
$\mathcal{C}_{\mathrm{V}}(\Sigma)=\max _{\Sigma=\partial \mathcal{B}}\left[\frac{\mathcal{V}(\mathcal{B})}{G_{N} \ell}\right]$

Complexity $=$ Action

WHY COMPLEXITY??

- connection of complexity=volume to AdS/MERA
- linear growth (at late times)

$$
\left.\frac{d \mathcal{C}_{\mathrm{V}}}{d t}\right|_{t \rightarrow \infty}=\frac{8 \pi}{d-1} M \quad \text { (planar) }\left.\quad \frac{d \mathcal{C}_{\mathrm{A}}}{d t}\right|_{t \rightarrow \infty}=\frac{2 M}{\pi}
$$

- "switchback" effect (information scrambling)

Linear Growth (at late times):

- large number of degrees of freedom + Hamiltonian is chaotic \longrightarrow for very long time, growth is linear in time
- rate proportional \# degrees of freedom $K \longrightarrow$ thermal entropy S; make up dimensions with temperature T (complexity extensive)

Linear Growth (at late times):

- large number of degrees of freedom + Hamiltonian is chaotic \longrightarrow for very long time, growth is linear in time
- rate proportional \# degrees of freedom $K \longrightarrow$ thermal entropy S; make up dimensions with temperature T (complexity extensive)

$$
C_{\max } \sim e^{K}
$$

Linear Growth (at late times):

- large number of degrees of freedom + Hamiltonian is chaotic \longrightarrow for very long time, growth is linear in time
- rate proportional \# degrees of freedom $K \longrightarrow$ thermal entropy S; make up dimensions with temperature T (complexity extensive)

Holographic Complexity:

Complexity = Volume
$\mathcal{C}_{\mathrm{V}}(\Sigma)=\max _{\Sigma=\partial \mathcal{B}}\left[\frac{\mathcal{V}(\mathcal{B})}{G_{N} \ell}\right]$

Complexity $=$ Action

WHY COMPLEXITY??

- connection of complexity=volume to AdS/MERA
- linear growth (at late times)

$$
\left.\frac{d \mathcal{C}_{\mathrm{V}}}{d t}\right|_{t \rightarrow \infty}=\frac{8 \pi}{d-1} M \quad \text { (planar) }\left.\quad \frac{d \mathcal{C}_{\mathrm{A}}}{d t}\right|_{t \rightarrow \infty}=\frac{2 M}{\pi}
$$

($\mathrm{d}=$ boundary dimension)

- "switchback effect"

"Switchback effect":

- consider perturbed thermofield double state:
$\left|\Psi\left(t_{\mathrm{L}}, t_{\mathrm{R}}\right)\right\rangle=e^{-i H_{\mathrm{L}} t_{\mathrm{L}}-i H_{\mathrm{R}} t_{\mathrm{R}}} W_{\mathrm{L}}\left(t_{n}\right) \ldots W_{\mathrm{L}}\left(t_{1}\right)\left|\psi_{\mathrm{TFD}}(0)\right\rangle$
where $t_{1}, t_{2}, \ldots, t_{n}$ are in an alternating "zig-zag" order

"Switchback effect":

Stanford, Susskind, . . .

- consider perturbed thermofield double state:
$\left|\Psi\left(t_{\mathrm{L}}, t_{\mathrm{R}}\right)\right\rangle=e^{-i H_{\mathrm{L}} t_{\mathrm{L}}-i H_{\mathrm{R}} t_{\mathrm{R}}} W_{\mathrm{L}}\left(t_{n}\right) \ldots W_{\mathrm{L}}\left(t_{1}\right)\left|\psi_{\mathrm{TFD}}(0)\right\rangle$
where $t_{1}, t_{2}, \ldots, t_{n}$ are in an alternating "zig-zag" order
- complexity $\propto\left|t_{R}-t_{1}\right|+\left|t_{2}-t_{1}\right|+\cdots$

$$
+\left|t_{L}-t_{n}\right|-2 n t_{*}
$$

"Switchback effect":

Stanford, Susskind, . . .

- consider perturbed thermofield double state:
$\left|\Psi\left(t_{\mathrm{L}}, t_{\mathrm{R}}\right)\right\rangle=e^{-i H_{\mathrm{L}} t_{\mathrm{L}}-i H_{\mathrm{R}} t_{\mathrm{R}}} W_{\mathrm{L}}\left(t_{n}\right) \ldots W_{\mathrm{L}}\left(t_{1}\right)\left|\psi_{\mathrm{TFD}}(0)\right\rangle$
where $t_{1}, t_{2}, \ldots, t_{n}$ are in an alternating "zig-zag" order

$$
t_{*}=\frac{1}{2 \pi T} \log \left(N^{2}\right)
$$

"Switchback effect":

Stanford, Susskind, . . .

- consider perturbed thermofield double state:
$\left|\Psi\left(t_{\mathrm{L}}, t_{\mathrm{R}}\right)\right\rangle=e^{-i H_{\mathrm{L}} t_{\mathrm{L}}-i H_{\mathrm{R}} t_{\mathrm{R}}} W_{\mathrm{L}}\left(t_{n}\right) \ldots W_{\mathrm{L}}\left(t_{1}\right)\left|\psi_{\mathrm{TFD}}(0)\right\rangle$
where $t_{1}, t_{2}, \ldots, t_{n}$ are in an alternating "zig-zag" order

$$
t_{*}=\frac{1}{2 \pi T} \log \left(N^{2}\right)
$$

$\cdots e^{-i H t_{4}} W_{\mathrm{L}}(0) e^{i H\left(t_{4}-t_{3}\right)} W_{\mathrm{L}}(0) e^{i H\left(t_{3}-t_{2}\right)} W_{\mathrm{L}}(0) e^{i H t_{2}} \cdots$

"Switchback effect":

Stanford, Susskind, . . .

- consider perturbed thermofield double state:
$\left|\Psi\left(t_{\mathrm{L}}, t_{\mathrm{R}}\right)\right\rangle=e^{-i H_{\mathrm{L}} t_{\mathrm{L}}-i H_{\mathrm{R}} t_{\mathrm{R}}} W_{\mathrm{L}}\left(t_{n}\right) \ldots W_{\mathrm{L}}\left(t_{1}\right)\left|\psi_{\mathrm{TFD}}(0)\right\rangle$
where $t_{1}, t_{2}, \ldots, t_{n}$ are in an alternating "zig-zag" order
- complexity $\propto t_{f}-2 n t_{*}$
\# of folds

$$
\begin{aligned}
& \text { scrambling time: } \\
& t_{*}=\frac{1}{2 \pi T} \log \left(N^{2}\right)
\end{aligned}
$$

without $W_{\mathrm{L}}(0), e^{-i H t_{3}}$ cancels completely with $e^{i H t_{3}}$

$\cdots e^{-i H t_{4}} W_{\mathrm{L}}(0) e^{i H\left(t_{4}-t_{3}\right)}$ VL $\left.^{2}\right) e^{i H\left(t_{3}-t_{2}\right)} W_{\mathrm{L}}(0) e^{i H t_{2}} \cdots$

"Switchback effect":

Stanford, Susskind, . . .

- consider perturbed thermofield double state:
$\left|\Psi\left(t_{\mathrm{L}}, t_{\mathrm{R}}\right)\right\rangle=e^{-i H_{\mathrm{L}} t_{\mathrm{L}}-i H_{\mathrm{R}} t_{\mathrm{R}}} W_{\mathrm{L}}\left(t_{n}\right) \ldots W_{\mathrm{L}}\left(t_{1}\right)\left|\psi_{\mathrm{TFD}}(0)\right\rangle$
where $t_{1}, t_{2}, \ldots, t_{n}$ are in an alternating "zig-zag" order
- complexity $\propto t_{f}-2 n t_{*}$

without $W_{\mathrm{L}}(0), e^{-i H t_{3}}$ cancels completely with $e^{i H t_{3}}$

$\cdots e^{-i H t_{4}} W_{\mathrm{L}}(0) e^{i H\left(t_{4}-t_{3}\right)}$ W $^{(0)} e^{i H\left(t_{3}-t_{2}\right)} W_{\mathrm{L}}(0) e^{i H t_{2}} \cdots$

"Switchback effect":

Stanford, Susskind, . . .

- consider perturbed thermofield double state:
$\left|\Psi\left(t_{\mathrm{L}}, t_{\mathrm{R}}\right)\right\rangle=e^{-i H_{\mathrm{L}} t_{\mathrm{L}}-i H_{\mathrm{R}} t_{\mathrm{R}}} W_{\mathrm{L}}\left(t_{n}\right) \ldots W_{\mathrm{L}}\left(t_{1}\right)\left|\psi_{\mathrm{TFD}}(0)\right\rangle$
where $t_{1}, t_{2}, \ldots, t_{n}$ are in an alternating "zig-zag" order

$\cdots e^{-i H t_{4}} W_{\mathrm{L}}(0) e^{i H\left(t_{4}-t_{3}\right)}$ V $^{(0)} e^{i H\left(t_{3}-t_{2}\right)} W_{\mathrm{L}}(0) e^{i H t_{2}} \cdots$

"Switchback effect":

Stanford, Susskind, . . .

- consider perturbed thermofield double state:
$\left|\Psi\left(t_{\mathrm{L}}, t_{\mathrm{R}}\right)\right\rangle=e^{-i H_{\mathrm{L}} t_{\mathrm{L}}-i H_{\mathrm{R}} t_{\mathrm{R}}} W_{\mathrm{L}}\left(t_{n}\right) \ldots W_{\mathrm{L}}\left(t_{1}\right)\left|\psi_{\mathrm{TFD}}(0)\right\rangle$
where $t_{1}, t_{2}, \ldots, t_{n}$ are in an alternating "zig-zag" order
- complexity $\propto t_{f}-2 n t_{*}$

without $W_{\mathrm{L}}(0), e^{-i H t_{3}}$ cancels completely with $e^{i H t_{3}}$

$\Delta t>t_{*}$
$\cdots e^{-i H t_{4}} W_{\mathrm{L}}(0) e^{i H\left(t_{4}-t_{3}\right)} W^{(0)} e^{i H\left(t_{3}-t_{2}\right)} W_{\mathrm{L}}(0) e^{i H t_{2}} \cdots$

"Switchback effect":

Stanford, Susskind, . . .

- consider perturbed thermofield double state:
$\left|\Psi\left(t_{\mathrm{L}}, t_{\mathrm{R}}\right)\right\rangle=e^{-i H_{\mathrm{L}} t_{\mathrm{L}}-i H_{\mathrm{R}} t_{\mathrm{R}}} W_{\mathrm{L}}\left(t_{n}\right) \ldots W_{\mathrm{L}}\left(t_{1}\right)\left|\psi_{\mathrm{TFD}}(0)\right\rangle$
where $t_{1}, t_{2}, \ldots, t_{n}$ are in an alternating "zig-zag" order

without $W_{\mathrm{L}}(0), e^{-i H t_{3}}$ cancels completely with $e^{i H t_{3}}$

$\Delta t>t_{*}$
$\cdots e^{-i H t_{4}} W_{\mathrm{L}}(0) e^{i H\left(t_{4}-t_{3}\right)} W^{(0)} e^{i H\left(t_{3}-t_{2}\right)} W_{\mathrm{L}}(0) e^{i H t_{2}} \cdots$

"Switchback effect":

Stanford, Susskind, . . .

- consider perturbed thermofield double state:
$\left|\Psi\left(t_{\mathrm{L}}, t_{\mathrm{R}}\right)\right\rangle=e^{-i H_{\mathrm{L}} t_{\mathrm{L}}-i H_{\mathrm{R}} t_{\mathrm{R}}} W_{\mathrm{L}}\left(t_{n}\right) \ldots W_{\mathrm{L}}\left(t_{1}\right)\left|\psi_{\mathrm{TFD}}(0)\right\rangle$
where $t_{1}, t_{2}, \ldots, t_{n}$ are in an alternating "zig-zag" order
- complexity $\propto t_{f}-2 n t_{*}$

without $W_{\mathrm{L}}(0), e^{-i H t_{3}}$ cancels completely with $e^{i H t_{3}}$
$\cdots e^{-i H t_{4}} W_{\mathrm{L}}(0) \neq \square=(\square)^{-1}{ }^{\left.-t_{2}\right)} W_{\mathrm{L}}(0) e^{i H t_{2}} \cdots$

"Switchback effect":

Stanford, Susskind, . . .

- consider perturbed thermofield double state:
$\left|\Psi\left(t_{\mathrm{L}}, t_{\mathrm{R}}\right)\right\rangle=e^{-i H_{\mathrm{L}} t_{\mathrm{L}}-i H_{\mathrm{R}} t_{\mathrm{R}}} W_{\mathrm{L}}\left(t_{n}\right) \ldots W_{\mathrm{L}}\left(t_{1}\right)\left|\psi_{\mathrm{TFD}}(0)\right\rangle$
where $t_{1}, t_{2}, \ldots, t_{n}$ are in an alternating "zig-zag" order
- complexity $\propto t_{f}-2 n t_{*}$

without $W_{\mathrm{L}}(0), e^{-i H t_{3}}$ cancels completely with $e^{i H t_{3}}$
$\cdots e^{-i H t_{4}} W_{\mathrm{L}}(0) \neq \square=(\square)^{-1}{ }^{\left.-t_{2}\right)} W_{\mathrm{L}}(0) e^{i H t_{2}} \cdots$

"Switchback effect":

Stanford, Susskind, . . .

- consider perturbed thermofield double state:
$\left|\Psi\left(t_{\mathrm{L}}, t_{\mathrm{R}}\right)\right\rangle=e^{-i H_{\mathrm{L}} t_{\mathrm{L}}-i H_{\mathrm{R}} t_{\mathrm{R}}} W_{\mathrm{L}}\left(t_{n}\right) \ldots W_{\mathrm{L}}\left(t_{1}\right)\left|\psi_{\mathrm{TFD}}(0)\right\rangle$
where $t_{1}, t_{2}, \ldots, t_{n}$ are in an alternating "zig-zag" order

without $W_{\mathrm{L}}(0), e^{-i H t_{3}}$ cancels completely with $e^{i H t_{3}}$
$\cdots e^{-i H t_{4}} W_{\mathrm{L}}(0) \not \square=(\square)^{-1}{ }^{\left.-t_{2}\right)} W_{\mathrm{L}}(0) e^{i H t_{2}} \cdots$

"Switchback effect":

Stanford, Susskind, . . .

- consider perturbed thermofield double state:
$\left|\Psi\left(t_{\mathrm{L}}, t_{\mathrm{R}}\right)\right\rangle=e^{-i H_{\mathrm{L}} t_{\mathrm{L}}-i H_{\mathrm{R}} t_{\mathrm{R}}} W_{\mathrm{L}}\left(t_{n}\right) \ldots W_{\mathrm{L}}\left(t_{1}\right)\left|\psi_{\mathrm{TFD}}(0)\right\rangle$
where $t_{1}, t_{2}, \ldots, t_{n}$ are in an alternating "zig-zag" order
- complexity $\propto t_{f}-2 n t_{*}$

without $W_{\mathrm{L}}(0), e^{-i H t_{3}}$ cancels completely with $e^{i H t_{3}}$ $\int_{3}^{-t_{\mathrm{R}}} \overbrace{t_{1}}^{t_{1}} \int_{t_{3}}^{t_{2}} \int_{t_{5}}^{t_{4}} \int_{t_{0}}^{t_{\mathrm{L}}} \uparrow$
$\cdots e^{-i H t_{4}} W_{\mathrm{L}}(0) \not \square=(\square)^{-1}{ }^{\left.-t_{2}\right)} W_{\mathrm{L}}(0) e^{i H t_{2}} \cdots$

"Switchback effect":

Stanford, Susskind, . . .

- consider perturbed thermofield double state:
$\left|\Psi\left(t_{\mathrm{L}}, t_{\mathrm{R}}\right)\right\rangle=e^{-i H_{\mathrm{L}} t_{\mathrm{L}}-i H_{\mathrm{R}} t_{\mathrm{R}}} W_{\mathrm{L}}\left(t_{n}\right) \ldots W_{\mathrm{L}}\left(t_{1}\right)\left|\psi_{\mathrm{TFD}}(0)\right\rangle$
where $t_{1}, t_{2}, \ldots, t_{n}$ are in an alternating "zig-zag" order
- complexity $\propto t_{f}-2 n t_{*}$

$$
t=t_{3}
$$

$e^{-i H t}$
$e^{i H t_{3}}$
without $W_{\mathrm{L}}(0), e^{-i H t_{3}}$ cancels completely with $e^{i H t_{3}}$
$\left.\cdots e^{-i H t_{4}} W_{\mathrm{L}}(0) \oint \square=(\square)^{-1}-t_{2}\right) W_{\mathrm{L}}(0) e^{i H t_{2}} \cdots$

"Switchback effect":

Stanford, Susskind, . . .

- consider perturbed thermofield double state:
$\left|\Psi\left(t_{\mathrm{L}}, t_{\mathrm{R}}\right)\right\rangle=e^{-i H_{\mathrm{L}} t_{\mathrm{L}}-i H_{\mathrm{R}} t_{\mathrm{R}}} W_{\mathrm{L}}\left(t_{n}\right) \ldots W_{\mathrm{L}}\left(t_{1}\right)\left|\psi_{\mathrm{TFD}}(0)\right\rangle$
where $t_{1}, t_{2}, \ldots, t_{n}$ are in an alternating "zig-zag" order
- complexity $\propto t_{f}-2 n t_{*}$

$$
t=t_{3}
$$

"Switchback effect":

Stanford, Susskind, . . .

- consider perturbed thermofield double state:
$\left|\Psi\left(t_{\mathrm{L}}, t_{\mathrm{R}}\right)\right\rangle=e^{-i H_{\mathrm{L}} t_{\mathrm{L}}-i H_{\mathrm{R}} t_{\mathrm{R}}} W_{\mathrm{L}}\left(t_{n}\right) \ldots W_{\mathrm{L}}\left(t_{1}\right)\left|\psi_{\mathrm{TFD}}(0)\right\rangle$
where $t_{1}, t_{2}, \ldots, t_{n}$ are in an alternating "zig-zag" order
- complexity $\propto t_{f}-2 n t_{*}$

without $W_{\mathrm{L}}(0), e^{-i H t_{3}}$ cancels completely with $e^{i H t_{3}}$

$$
\cdots e^{-i H t_{4}} W_{\mathrm{L}}(0) e^{i H\left(t_{4}-t_{3}\right)} \underline{W_{\mathrm{L}}(0)} e^{i H\left(t_{3}-t_{2}\right)} W_{\mathrm{L}}(0) e^{i H t_{2}} \cdots
$$

with simple $W_{\mathrm{L}}(0)$ (only affects few qubits), still get partial cancellation

"Switchback effect":

Stanford, Susskind, . . .

- consider perturbed thermofield double state:
$\left|\Psi\left(t_{\mathrm{L}}, t_{\mathrm{R}}\right)\right\rangle=e^{-i H_{\mathrm{L}} t_{\mathrm{L}}-i H_{\mathrm{R}} t_{\mathrm{R}}} W_{\mathrm{L}}\left(t_{n}\right) \ldots W_{\mathrm{L}}\left(t_{1}\right)\left|\psi_{\mathrm{TFD}}(0)\right\rangle$
where $t_{1}, t_{2}, \ldots, t_{n}$ are in an alternating "zig-zag" order

without $W_{\mathrm{L}}(0), e^{-i H t_{3}}$ cancels completely with $e^{i H t_{3}}$

$$
\cdots e^{-i H t_{4}} W_{\mathrm{L}}(0) e^{i H\left(t_{4}-t_{3}\right)} \underline{W_{\mathrm{L}}(0)} e^{i H\left(t_{3}-t_{2}\right)} W_{\mathrm{L}}(0) e^{i H t_{2}} \cdots
$$

with simple $W_{\mathrm{L}}(0)$ (only affects few qubits), still get partial cancellation

"Switchback effect":

Stanford, Susskind, . . .

- consider perturbed thermofield double state:
$\left|\Psi\left(t_{\mathrm{L}}, t_{\mathrm{R}}\right)\right\rangle=e^{-i H_{\mathrm{L}} t_{\mathrm{L}}-i H_{\mathrm{R}} t_{\mathrm{R}}} W_{\mathrm{L}}\left(t_{n}\right) \ldots W_{\mathrm{L}}\left(t_{1}\right)\left|\psi_{\mathrm{TFD}}(0)\right\rangle$
where $t_{1}, t_{2}, \ldots, t_{n}$ are in an alternating "zig-zag" order
- complexity $\propto t_{f}-2 n t_{*}$

without $W_{\mathrm{L}}(0), e^{-i H t_{3}}$ cancels completely with $e^{i H t_{3}}$

$$
\cdots e^{-i H t_{4}} W_{\mathrm{L}}(0) e^{i H\left(t_{4}-t_{3}\right)} \underline{W_{\mathrm{L}}(0)} e^{i H\left(t_{3}-t_{2}\right)} W_{\mathrm{L}}(0) e^{i H t_{2}} \cdots
$$

with simple $W_{\mathrm{L}}(0)$ (only affects few qubits), still get partial cancellation

"Switchback effect":

Stanford, Susskind, . . .

- consider perturbed thermofield double state:
$\left|\Psi\left(t_{\mathrm{L}}, t_{\mathrm{R}}\right)\right\rangle=e^{-i H_{\mathrm{L}} t_{\mathrm{L}}-i H_{\mathrm{R}} t_{\mathrm{R}}} W_{\mathrm{L}}\left(t_{n}\right) \ldots W_{\mathrm{L}}\left(t_{1}\right)\left|\psi_{\mathrm{TFD}}(0)\right\rangle$
where $t_{1}, t_{2}, \ldots, t_{n}$ are in an alternating "zig-zag" order
- complexity $\propto t_{f}-2 n t_{*}$

without $W_{\mathrm{L}}(0), e^{-i H t_{3}}$ cancels completely with $e^{i H t_{3}}$
$\cdots e^{-i H t_{4}} W_{\mathrm{L}}(0) e^{i H\left(t_{4}-t_{3}\right)} \underline{W_{\mathrm{L}}(0)} e^{i H\left(t_{3}-t_{2}\right)} W_{\mathrm{L}}(0) e^{i H t_{2}} \cdots$
with simple $W_{\mathrm{L}}(0)$ (only affects few qubits), still get partial cancellation

"Switchback effect":

- consider perturbed thermofield double state:
$\left|\Psi\left(t_{\mathrm{L}}, t_{\mathrm{R}}\right)\right\rangle=e^{-i H_{\mathrm{L}} t_{\mathrm{L}}-i H_{\mathrm{R}} t_{\mathrm{R}}} W_{\mathrm{L}}\left(t_{n}\right) \ldots W_{\mathrm{L}}\left(t_{1}\right)\left|\psi_{\mathrm{TFD}}(0)\right\rangle$
where $t_{1}, t_{2}, \ldots, t_{n}$ are in an alternating "zig-zag" order
- complexity $\propto t_{f}-2 n t_{*}$
- "switchback effect" is $-2 n t_{*}$ due to partial cancellation of forward and backward evolutions along the time folds

"Switchback effect":

- consider perturbed thermofield double state:
$\left|\Psi\left(t_{\mathrm{L}}, t_{\mathrm{R}}\right)\right\rangle=e^{-i H_{\mathrm{L}} t_{\mathrm{L}}-i H_{\mathrm{R}} t_{\mathrm{R}}} W_{\mathrm{L}}\left(t_{n}\right) \ldots W_{\mathrm{L}}\left(t_{1}\right)\left|\psi_{\mathrm{TFD}}(0)\right\rangle$
where $t_{1}, t_{2}, \ldots, t_{n}$ are in an alternating "zig-zag" order
- complexity $\propto t_{f}-2 n t_{*}$
- "switchback effect" is $-2 n t_{*}$ due to partial cancellation of forward and backward evolutions along the time folds
- reproduce this behaviour by probing black hole with shock waves

Holographic Complexity:

Complexity = Volume
$\mathcal{C}_{\mathrm{V}}(\Sigma)=\max _{\Sigma=\partial \mathcal{B}}\left[\frac{\mathcal{V}(\mathcal{B})}{G_{N} \ell}\right]$

Complexity $=$ Action

WHY COMPLEXITY??

- connection of complexity=volume to AdS/MERA
- linear growth (at late times)

$$
\left.\frac{d \mathcal{C}_{\mathrm{V}}}{d t}\right|_{t \rightarrow \infty}=\frac{8 \pi}{d-1} M \quad \text { (planar) }\left.\quad \frac{d \mathcal{C}_{\mathrm{A}}}{d t}\right|_{t \rightarrow \infty}=\frac{2 M}{\pi}
$$

- "switchback effect" (probe black holes with shock waves)

Holographic Complexity:

Complexity = Volume

WHY Volume

or Action
or Spacetime Volume???

Complexity $=$ Action

Complexity = Volume2.0

Holographic Complexity:

Complexity = Volume

WHY Volume
 or Action
 or Spacetime Volume???

Ambiguities in defining complexity?

Complexity $=$ Action

Complexity = Volume2.0

Complexity=Volume Revisited:

- complexity=volume: evaluate proper volume of extremal codim-one surface connecting Cauchy surfaces in boundary theory (cf holo EE)
(Stanford \& Susskind)

$$
\mathcal{C}_{\mathrm{V}}(\Sigma)=\max _{\Sigma=\partial \mathcal{B}}\left[\frac{\mathcal{V}(\mathcal{B})}{G_{N} \ell}\right]
$$

Complexity=Volume Revisited:

- complexity=volume: evaluate proper volume of extremal codim-one surface connecting Cauchy surfaces in boundary theory (cf holo EE)
(Stanford \& Susskind)

$$
\mathcal{C}_{\mathrm{V}}(\Sigma)=\max _{\Sigma=\partial \mathcal{B}}\left[\frac{\mathcal{V}(\mathcal{B})}{G_{N} \ell}\right]
$$

Two steps: 1) find a special surface

Complexity=Volume Revisited:

- complexity=volume: evaluate proper volume of extremal codim-one surface connecting Cauchy surfaces in boundary theory (cf holo EE)
(Stanford \& Susskind)

$$
\mathcal{C}_{\mathrm{V}}(\Sigma)=\max _{\Sigma=\partial \mathcal{B}}\left[\frac{\mathcal{V}(\mathcal{B})}{G_{N} \ell}\right]
$$

Two steps: 1) find a special surface
2) Evaluate geometric feature of surface

Complexity=Volume Revisited:

- complexity=volume: evaluate proper volume of extremal codim-one surface connecting Cauchy surfaces in boundary theory (cf holo EE)
(Stanford \& Susskind)

$$
\mathcal{C}_{\mathrm{V}}(\Sigma)=\max _{\Sigma=\partial \mathcal{B}}\left[\frac{\mathcal{V}(\mathcal{B})}{G_{N} \ell}\right]
$$

Two steps: 1) find a special surface
2) Evaluate geometric feature of surface

- yields "nice" diffeomorphism invariant observable

Belin, RCM, Ruan, Sarosi \& Speranza (2111.02429)

Generalize two step procedure:

1) find a special surface Σ :

$$
\delta_{X}\left(\int_{\Sigma} d^{d} \sigma \sqrt{h} F_{2}\left(g_{\mu \nu} ; X^{\mu}\right)\right)=0
$$

- F_{2} is scalar function of bkgd metric $g_{\mu \nu}$ and embedding $X^{\mu}(\sigma)$

Generalize two step procedure:

1) find a special surface Σ :

$$
\delta_{X}\left(\int_{\Sigma} d^{d} \sigma \sqrt{h} F_{2}\left(g_{\mu \nu} ; X^{\mu}\right)\right)=0
$$

- F_{2} is scalar function of bkgd metric $g_{\mu \nu}$ and embedding $X^{\mu}(\sigma)$

2) evaluate geometric feature of surface:

$$
O_{F_{1}, \Sigma_{F_{2}}}\left(\Sigma_{C F T}\right)=\frac{1}{G_{N} L} \int_{\Sigma_{F_{2}}} d^{d} \sigma \sqrt{h} F_{1}\left(g_{\mu \nu} ; X^{\mu}\right)
$$

- F_{1} is scalar function of bkgd metric $g_{\mu \nu}$ and embedding $X^{\mu}(\sigma)$

Generalize two step procedure:

1) find a special surface Σ :

$$
\delta_{X}\left(\int_{\Sigma} d^{d} \sigma \sqrt{h} F_{2}\left(g_{\mu \nu} ; X^{\mu}\right)\right)=0
$$

- F_{2} is scalar function of bkgd metric $g_{\mu \nu}$ and embedding $X^{\mu}(\sigma)$

2) evaluate geometric feature of surface:

$$
O_{F_{1}, \Sigma_{F_{2}}}\left(\Sigma_{C F T}\right)=\frac{1}{G_{N} L} \int_{\Sigma_{F_{2}}} d^{d} \sigma \sqrt{h} F_{1}\left(g_{\mu \nu} ; X^{\mu}\right)
$$

- F_{1} is scalar function of bkgd metric $g_{\mu \nu}$ and embedding $X^{\mu}(\sigma)$
- yields "nice" diffeomorphism invariant observable

Generalize two step procedure:

1) find a special surface Σ :

$$
\delta_{X}\left(\int_{\Sigma} d^{d} \sigma \sqrt{h} F_{2}\left(g_{\mu \nu} ; X^{\mu}\right)\right)=0
$$

- F_{2} is scalar function of bkgd metric $g_{\mu \nu}$ and embedding $X^{\mu}(\sigma)$

2) evaluate geometric feature of surface:

$$
O_{F_{1}, \Sigma_{F_{2}}}\left(\Sigma_{C F T}\right)=\frac{1}{G_{N} L} \int_{\Sigma_{F_{2}}} d^{d} \sigma \sqrt{h} F_{1}\left(g_{\mu \nu} ; X^{\mu}\right)
$$

- F_{1} is scalar function of bkgd metric $g_{\mu \nu}$ and embedding $X^{\mu}(\sigma)$
- yields "nice" diffeomorphism invariant observable

So what?

So what?

1) Observables grow linearly with time at late times:

$$
\lim _{\tau \rightarrow \infty} O_{F_{1}, \Sigma_{F_{2}}}(\tau) \sim P_{\infty} \tau
$$

where in large T limit, the constant $P_{\infty} \propto$ mass
2) Observables exhibit "switchback effect", ie, universal time delay in response to shock waves falling into the dual black hole

So what?

1) Observables grow linearly with time at late times:

$$
\lim _{\tau \rightarrow \infty} O_{F_{1}, \Sigma_{F_{2}}}(\tau) \sim P_{\infty} \tau
$$

where in large T limit, the constant $P_{\infty} \propto$ mass
2) Observables exhibit "switchback effect", ie, universal time delay in response to shock waves falling into the dual black hole

- when F_{1} and F_{2} constructed with bkgd curvtures, analysis similar to extremal volume

Simple Example: $\quad F_{1}=F_{2}=1+\lambda L^{4} C_{a b c d} C^{a b c d}$

- profile determined by classical mechanics problem

$$
\begin{gathered}
\dot{r}^{2}+\widetilde{U}(r)=P_{v}^{2} \quad \text { with } \quad \widetilde{U}(r)=-f(r) a^{2}(r)\left(\frac{r}{L}\right)^{2(d-1)} \\
\tilde{U}(r) \quad \text { where } \quad f(r)=\frac{r^{2}}{L^{2}}\left(1-\frac{r_{h}^{d}}{r^{d}}\right) \text { and } a(r)=1+\tilde{\lambda}\left(\frac{r_{h}}{r}\right)^{2 d}
\end{gathered}
$$

So what?

1) Observables grow linearly with time at late times:

$$
\lim _{\tau \rightarrow \infty} O_{F_{1}, \Sigma_{F_{2}}}(\tau) \sim P_{\infty} \tau
$$

where in large T limit, the constant $P_{\infty} \propto$ mass
surfaces reach
critical radius in

BH interior
2) Observables exhibit "switchback effect", ie, universal time delay in response to shock waves falling into the dual black hole

- when F_{1} and F_{2} constructed with bkgd curvtures, analysis similar to extremal volume.....

So what?

1) Observables grow linearly with time at late times:

$$
\lim _{\tau \rightarrow \infty} O_{F_{1}, \Sigma_{F_{2}}}(\tau) \sim P_{\infty} \tau
$$

where in large T limit, the constant $P_{\infty} \propto$ mass
surfaces reach critical radius in

BH interior
2) Observables exhibit "switchback effect", ie, universal time delay in response to shock waves falling into the dual black hole

- when F_{1} and F_{2} constructed with bkgd curvtures, analysis similar to extremal volume.....
- universality displayed observables suggests that all of them are equally viable candidates for holographic complexity!!

What about extensions of CA and CV2.0?

- complexity=action: evaluate gravitational action for Wheeler-DeWitt patch = domain of dependence of bulk time slice connecting boundary Cauchy slices in CFT (Brown, Roberts, Swingle, Susskind \& Zhao)
- complexity=volume2.0: evaluate spacetime volume of WDW patch
(Couch, Fischler \& Nguyen)

$$
\begin{aligned}
\mathcal{C}_{\mathrm{A}}(\Sigma)= & \frac{I_{\mathrm{WDW}}}{\pi \hbar} \\
& \mathcal{C}_{\mathrm{V}}^{\prime}(\Sigma)=\frac{V_{\mathrm{WDW}}}{G_{N} \ell^{2}}
\end{aligned}
$$

- no extremization procedure implemented; surfaces bounding volume (ie, codimension-zero region) are light sheets

What about extensions of CA and CV2.0?

- complexity=action: evaluate gravitational action for Wheeler-DeWitt patch = domain of dependence of bulk time slice connecting boundary Cauchy slices in CFT (Brown, Roberts, Swingle, Susskind \& Zhao)
- complexity=volume2.0: evaluate spacetime volume of WDW patch
(Couch, Fischler \& Nguyen)

$$
\begin{aligned}
\mathcal{C}_{\mathrm{A}}(\Sigma)= & \frac{I_{\mathrm{WDW}}}{\pi \hbar} \\
& \mathcal{C}_{\mathrm{V}}^{\prime}(\Sigma)=\frac{V_{\mathrm{WDW}}}{G_{N} \ell^{2}}
\end{aligned}
$$

Two steps: 1) find a special surfaces bounding codim.-0 region

What about extensions of CA and CV2.0?

- complexity=action: evaluate gravitational action for Wheeler-DeWitt patch = domain of dependence of bulk time slice connecting boundary Cauchy slices in CFT (Brown, Roberts, Swingle, Susskind \& Zhao)
- complexity=volume2.0: evaluate spacetime volume of WDW patch (Couch, Fischler \& Nguyen)

$$
\begin{aligned}
\mathcal{C}_{\mathrm{A}}(\Sigma)= & \frac{I_{\mathrm{WDW}}}{\pi \hbar} \\
& \mathcal{C}_{\mathrm{V}}^{\prime}(\Sigma)=\frac{V_{\mathrm{WDW}}}{G_{N} \ell^{2}}
\end{aligned}
$$

Two steps: 1) find a special surfaces bounding codim.-0 region
2) Evaluate geometric feature of codim.-O region
(\& bounding surfaces)

- yields "nice" diffeomorphism invariant observable

Generalized procedure for codim.-O observables:

1) find a bounding surfaces $\Sigma_{ \pm}$:

$$
\begin{gathered}
\delta_{\left\{X_{+}, X_{-}\right\}}\left(\int_{\Sigma_{+}} d^{d} \sigma \sqrt{h} F_{4}\left(g_{\mu \nu} ; X_{+}^{\mu}\right)+\int_{\Sigma_{-}} d^{d} \sigma \sqrt{h} F_{5}\left(g_{\mu \nu} ; X_{-}^{\mu}\right)\right. \\
\left.+\int_{\mathcal{M}} d^{d+1} \sigma \sqrt{-g} F_{6}\left(g_{\mu \nu}\right)\right)=0
\end{gathered}
$$

- F_{4} and F_{5} are scalar functions of bkgd metric $g_{\mu \nu}$ and embeddings $X_{ \pm}^{\mu}(\sigma)$ respectively, while F_{6} is scalar function of bkgd metric $g_{\mu \nu}$

Generalized procedure for codim.-O observables:

1) find a bounding surfaces $\Sigma_{ \pm}$:

$$
\begin{gathered}
\delta_{\left\{X_{+}, X_{-}\right\}}\left(\int_{\Sigma_{+}} d^{d} \sigma \sqrt{h} F_{4}\left(g_{\mu \nu} ; X_{+}^{\mu}\right)+\int_{\Sigma_{-}} d^{d} \sigma \sqrt{h} F_{5}\left(g_{\mu \nu} ; X_{-}^{\mu}\right)\right. \\
\left.+\int_{\mathcal{M}} d^{d+1} \sigma \sqrt{-g} F_{6}\left(g_{\mu \nu}\right)\right)=0
\end{gathered}
$$

- F_{4} and F_{5} are scalar functions of bkgd metric $g_{\mu \nu}$ and embeddings $X_{ \pm}^{\mu}(\sigma)$ respectively, while F_{6} is scalar function of bkgd metric $g_{\mu \nu}$

2) Evaluate geometric feature of corresponding region:

$$
\begin{gathered}
O\left(\Sigma_{C F T}\right)=\frac{1}{G_{N} L} \int_{\Sigma_{+}} d^{d} \sigma \sqrt{h} F_{1}\left(g_{\mu \nu} ; X_{+}^{\mu}\right) \\
+\frac{1}{G_{N} L} \int_{\Sigma_{-}} d^{d} \sigma \sqrt{h} F_{2}\left(g_{\mu \nu} ; X_{-}^{\mu}\right)+\frac{1}{G_{N} L^{2}} \int_{\mathcal{M}} d^{d+1} \sigma \sqrt{-g} F_{3}\left(g_{\mu \nu}\right)
\end{gathered}
$$

- yields "nice" diffeomorphism invariant observable

So what?

1) Observables grow linearly with time at late times:

$$
\lim _{\tau \rightarrow \infty} O(\tau) \sim P_{\infty} \tau
$$

where in large T limit, the constant $P_{\infty} \propto$ mass
2) Observables exhibit "switchback effect", ie, universal time delay in response to shock waves falling into the dual black hole

So what?

1) Observables grow linearly with time at late times:

$$
\lim _{\tau \rightarrow \infty} O(\tau) \sim P_{\infty} \tau
$$

where in large T limit, the constant $P_{\infty} \propto$ mass
2) Observables exhibit "switchback effect", ie, universal time delay in response to shock waves falling into the dual black hole

- universality displayed observables suggests that all of them are equally viable candidates for holographic complexity!!

Simplest Example:

- extremize the functional

$$
O\left(\Sigma_{C F T}\right)=\frac{\alpha_{+}}{G_{N} L} \int_{\Sigma_{+}} d^{d} \sigma \sqrt{h}
$$

$$
+\frac{\alpha_{-}}{G_{N} L} \int_{\Sigma_{-}} d^{d} \sigma \sqrt{h}+\frac{1}{G_{N} L^{2}} \int_{\mathcal{M}} d^{d+1} \sigma \sqrt{-g}
$$

- evaluating the volumes of the bounding surfaces $\Sigma_{ \pm}$weighted by coefficients $\alpha_{ \pm}$, as well as of volume of codim.-0 region \mathcal{M}
- extremal equations yields CMC surfaces (eg, see Witten)

$$
K\left(\Sigma_{+}\right)=\frac{1}{\alpha_{+} L} \quad K\left(\Sigma_{-}\right)=-\frac{1}{\alpha_{-} L}
$$

Simplest Example:

- extremize the functional

$$
O\left(\Sigma_{C F T}\right)=\frac{\alpha_{+}}{G_{N} L} \int_{\Sigma_{+}} d^{d} \sigma \sqrt{h}
$$

$$
+\frac{\alpha_{-}}{G_{N} L} \int_{\Sigma_{-}} d^{d} \sigma \sqrt{h}+\frac{1}{G_{N} L^{2}} \int_{\mathcal{M}} d^{d+1} \sigma \sqrt{-g}
$$

- evaluating the volumes of the bounding surfaces $\Sigma_{ \pm}$weighted by coefficients $\alpha_{ \pm}$, as well as of volume of codim.-0 region \mathcal{M}
- extremal equations yields CMC surfaces (eg, see Witten)

$$
K\left(\Sigma_{+}\right)=\frac{1}{\alpha_{+} L} \quad K\left(\Sigma_{-}\right)=-\frac{1}{\alpha_{-} L}
$$

- in limit $\alpha_{ \pm} \rightarrow 0$, these surfaces become the future/past light sheets
$\longrightarrow \mathcal{M}$ becomes WDW patch!
- evaluate volume (same functional) $\longrightarrow \mathrm{CV} 2.0$
\bullet evaluate action (including bdy terms) $\longrightarrow C A$

Conclusions/Questions/Outlook:

- simple example but "classical mechanics" analysis readily extends to $F_{1}\left(g_{\mu \nu}, \mathcal{R}_{\mu \nu \rho \sigma}, \nabla_{\mu}\right)$ and to observables where $F_{1} \neq F_{2}$
- couplings for curvature invariants should not be too large
- similar behaviour appears to hold for functionals including dependence on extrinsic curvature
- infinite class of holographic observables equally viable candidates for gravitational dual of complexity!!
- can freedom in constructing gravitational observables be related to freedom in constructing complexity model in boundary QFT
- is there something that singles out maximal volume?
- what is role of extremal solutions which are not global maxima and probe very near to singularity?
- further investigation of codimension-zero observables
- add matter contributions to new observables (eg, CA proposal)

Conclusions/Questions/Outlook:

- simple example but "classical mechanics" analysis readily extends to $F_{1}\left(g_{\mu \nu}, \mathcal{R}_{\mu \nu \rho \sigma}, \nabla_{\mu}\right)$ and to observables where $F_{1} \neq F_{2}$
- couplings for curvature invariants should not be too large
- similar behaviour appears to hold for functionals including dependence on extrinsic curvature
- infinite class of holographic observables equally viable candidates for gravitational dual of complexity!!
- can freed freedom i
- is there s
- what is role of extremal solutions which are not global maxima and probe very near to singularity?
- further investigation of codimension-zero observables
- add matter contributions to new observables (eg, CA proposal)

