

Real-time data processing for the BlackGEM Array of telescopes

Radboud Universiteit 🧃

Steven Bloemen Project Manager

+ MeerLICHT

- l prototype telescope
- SAAO Sutherland, S-Africa

ROIR

3 telescopes

ESO La Silla, Chili

100 Mpix camera 1 image / minute Sky area 10x full moon per image

PAMP

Main goal: optical counterparts of gravitational wave sources

Detection LIGO/Virgo

+ Consortium & data rights

- All consortium members get access to all data products
- Science working group leaders are appointed in the consortium

BARCELONA

Las Cumbres Observatory

LANETARIUM

Radboud University

KU LEUVEN

THE HEBREW UNIVERSITY OF JERUSALEM

+ Data flow MeerLICHT

Raw data (600 images, 50 GB per night) transmitted to Cape Town via fiber

Processing, storage & databases at IDIA/Ilifu (South African research cloud)

From telescope to fully processed data in < 15 minutes

+ Data flow BlackGEM

Raw data (2000 images, 150 GB per night) transmitted via microwave link and Google fiber

Processing, storage & databases in **Google Cloud**

Runs on slurm cluster in Ilifu (MeerLICHT) and Google Cloud (BlackGEM)

BlackBOX (Paul Vreeswijk) – https://github.com/pmvreeswijk/BlackBOX

- Standard astro-image processing steps (bias, flatfield, gain,...)
- Astrometric calibration based on Gaia DR3 (incl. proper motion)
- Photometric calibration based on Gaia DR3 (low-resolution spectra)

VARIABILITY PIPELINE

- Forced photometry for all Gaia DR3 sources
- $\sim 10^8$ sources per night

TRANSIENT PIPELINE

- Difference imaging (Zogy)
- SourceExtractor search for transients
- ~10 000 candidates per night
- Deep learning real-bogus classification

Example: real transient (supernova)

NEW IMAGE

'OLD' REFERENCE IMAGE

DIFFERENCE IMAGE

Example: artelact

NEW IMAGE

'OLD' REFERENCE IMAGE

DIFFERENCE IMAGE

+ Citizen Science app

Black Hole Finder

BLACK HOLE FINDER

Welcome

Dear Citizen of the Earth!

Welcome to the Black Hole Finder citizen science project. We need you to help us find black holes, especially black holes formed immediately after two small siblings of black holes, called neutron stars merge together in a splash. Gravitational wave detectors will pick up the gravitational wave radiation emitted just prior to this merger alerting us to this event. The merged object quickly collapses to a black hole. In the debris of the merger rare Earth elements such as lodium, Gold and Cerium are formed, all the lodium that is so important for our own life!

<			CLASSIFY		≡
Transient ID: 116946878					
	۲	Real			
	0	Bogus			
	0	Unknown			
			Next		
Τ	ransients t	to Classify remaining: 2	51		

Citizen Science app

Black Hole Finder

BLACK HOLE FINDER

Welcome

Dear Citizen of the Earth!

Welcome to the Black Hole Finder citizen science project. We need you to help us find black holes, especially black holes formed immediately after two small siblings of black holes, called neutron stars merge together in a splash. Gravitational wave detectors will pick up the gravitational wave radiation emitted just prior to this merger alerting us to this event. The merged object quickly collapses to a black hole. In the debris of the merger rare Earth elements such as lodium, Gold and Cerium are formed, all the lodium that is so important for our own life!

<			CLASSIFY		
					NAMES OF A DESCRIPTION OF
	Tran	sient ⁵⁹⁴⁶⁸⁷⁸			
	۲	Real			
	0	Bogus			
	0	Unknown			
	Next				
	Transients	to Classify remaining	y: 251		

Ranking is updated every hour. Last update was 45 minutes ago

Dataspex database for transients

....

- Database developed by Dataspex in MonetDB
- Source matching at based on coordinates, on-the-fly updates of statistics
- Web and Jupyter notebook access

Individual detections

BigQuery database: Forced photometry for all Gaia sources

(Variability) statistics for each source + filter combination

Source_Stats	
Source ID	INTEGER
FILTER	STRING
N	INTEGER
F_AVE	FLOAT
F_VAR	FLOAT
F_MED	FLOAT
F_SKEW	FLOAT
F_IQR	FLOAT
CHI2_RED_W	FLOAT
F_KUR	INTEGER
F_KUR_W	FLOAT
A	INTEGER
A_W	FLOAT

	Detection	า		
	Detection	STRING		
\mathbf{k}	Image_ID)	STRING	
\mathbf{k}	Source_I	D	INTEGER	
	X_POS		FLOAT	
	Y_POS	Y_POS		
	FLAGS_N	MASK	INTEGER	
	BACKGR	OUND	FLOAT	
	MAG_AP	ER_R0P66xFWHM	FLOAT	
	MAG_AP	ER_R1P5xFWHM	FLOAT	
	MAG_AP	ER_R5xFWHM	FLOAT	
	MAGERF	FLOAT		
	MAGERF	FLOAT		
	MAGERF	FLOAT		
	MAG_OP	FLOAT		
	MAGERR_OPT		FLOAT	
	SNR_OPT		FLOAT	
	LIMMAG_OPT		FLOAT	
	FNU_OP	FLOAT		
	FNUERR	FLOAT		
		(
		Source		
		Source_ID	INTEGER	$\left + \right $
		RANDOM_INDEX	INTEGER	

REF EPOCH

RA_ERROR

DEC_ERROR

PHOT_G_MEAN_MAG FLOAT

PARALLAX

RA

DEC

PM

FLOAT

FLOAT

FLOAT

FLOAT

FLOAT

FLOAT

FLOAT

	Image			
+	Image ID	STRING		
	FILENAME	STRING		
	ORIGFILE	STRING		
	ALTITUDE	FLOAT		
	EPOCH	FLOAT		
	RA	FLOAT		
	RA_CNTR	FLOAT		
	DEC	FLOAT		
	DEC_CNTR	FLOAT		
	OBJECT	INTEGER		
	IMAGETYP	STRING		
	FILTER	STRING		
	EXPTIME	FLOAT		
	DATE_OBS	TIMESTAMP		
	MJD_OBS	FLOAT		
	Image			
motadata				
Source list = Gaia DR3 catalogue				

BigQuery database Forced photometry for all Gaia sources

Optimized for retrieval of light curves (flux timeseries)

> 4 billion datapoints 250 million light curves (source+filter combinations) 300 GB of data

 \rightarrow 72 seconds (25h of CPU time)

Cost model: 7 EUR/TB processed

Fast rebuild (e.g. after reprocessing): 1 year of data in <1 day

Currently being tested before roll-out to consortium

Using a commercial cloud environment

PROs

- Flexibility scale up massively for short periods of time
- Fast international networks out-of-thebox
 e.g. 4 Gb/s Ilifu @ Cape Town → NL
- Well built and maintained ecosystem
 Managed services, (web) interfaces, (Python) access libraries, user management tools,...
- Cost effective for our 'lots of data, not a lot of users' scenario
- Very reliable
 High uptime, fast fault resolution

CONs

- Steep learning curve
- Need external consultants to make the most out of it
- Mistakes can be costly need to monitor spending
- Needs a change of mindset compared to own hardware Hard to exhaust resources, easy to exhaust your bank account
- Certainly not suitable for every use case

www.blackgem.org @BlackGEM_Array