A Large Ion Collider Experiment (ALICE)

D. Caffarri

Postdoc researcher at NIKHEF davide.caffarri@nikhef.nl

A Large lon Collider Experiment (ALICE)

A Large lon Collider Experiment (ALICE)

A Large Ion Collider Experiment (ALICE)

Overall view of the LHC experiments.

Large Hadron Collider * 27 km accelerator at CERN

Large Hadron Collider (LHC)

CERN's Accelerator Complex

$>\mathrm{p}$ (proton) $>$ ion $>$ neutrons $>\overline{\mathrm{p}}$ (antiproton) $>$ electron $\rightarrow+>$ proton/antiproton conversion

Large Hadron Collider

* 27 km accelerator at CERN
* last step of a complex systems of accelerators * peculiar in the world * build step by step in the last 60 years * important know-how and R\&D program
* lot of other physics program in parallel to LHC, exploiting the injection lines

Large Hadron Collider (LHC)

2017 LHC schedule

A Large Ion Collider Experiment

- 145 days of pp physics
- Special physics runs as placeholders
- VdM scans to be scheduled
- MD not yet fixed

- Details about the ramp up phase will follow

A Large Ion Collider Experiment (ALICE)

Large Hadron Collider * 27 km accelerator at CERN

* 7/8 months per year of pp collisions
* ~ 1 month of $\mathrm{Pb}-\mathrm{Pb}$ collisions
* 4 main experiments on the LHC
* ALICE
* ATLAS
* CMS
* LHCb
* 3 more "specialized" experiments

Peculiarity of $\mathrm{Pb}-\mathrm{Pb}$ collisions wrt to pp ?

~ 6/7 particles produced on average per pp collision

~ 1600 particles produced on average per $\mathrm{Pb}-\mathrm{Pb}$ collision (~ 17 particles for p-Pb collision)

Peculiarity of $\mathrm{Pb}-\mathrm{Pb}$ collisions wrt pp ?

* Precise characterization of a state of matter that lasts less than a fm/c ($1 \mathrm{fm} / \mathrm{c} \sim 3 \times 10^{-24}$ seconds)
* This state of matter is partonic (made of quark and gluons), what we measure in the detector are hadrons.

Peculiarity of $\mathrm{Pb}-\mathrm{Pb}$ collisions wrt pp?

* Precise characterization of a state of matter that lasts less than a fm/c ($1 \mathrm{fm} / \mathrm{c} \sim 3 \times 10^{-24}$ seconds)
* This state of matter is partonic (made of quark and gluons), what we measure in the detector are hadrons.
* Main goal of HIC: connect hadronic measurements of each event in their "ensable" to intrinsic properties of this state of matter (density, temperature, viscosity, ...)
* different from pp where we mainly have searches (Higgs, exotica) or SM highprecisions measurements.

Peculiarity of $\mathrm{Pb}-\mathrm{Pb}$ collisions wrt pp?

* Precise characterization of a state of matter that lasts less than a fm/c ($1 \mathrm{fm} / \mathrm{c} \sim 3 \times 10^{-24}$ seconds)
* This state of matter is partonic (made of quark and gluons), what we measure in the detector are hadrons.
* Main goal of HIC: connect hadronic measurements of each event in their "ensable" to intrinsic properties of this state of matter (density, temperature, viscosity, ...)
* different from pp where we mainly have searches (Higgs, exotica) or SM highprecisions measurements.
* Broaden set of measurements to access different properties and build a detailed general picture of the medium:
* Flow measurements
* Jet quenching
* Strangeness enhancement
* Quarkonia suppression

Peculiarity of $\mathrm{Pb}-\mathrm{Pb}$ collisions wrt pp ?

NiK

Studying the properties of the QGP

* Two main ways to probe the QGP properties:
* Through bulk observables
- The vast majority of particles are produced with $\mathrm{p}_{\mathrm{T}}<2 \mathrm{GeV} / \mathrm{c}$
$\star \quad$ Hard (rare) probes with $\mathrm{p}_{\mathrm{T}}>6$ GeV/c
- High p_{T} hadrons
- Jets
- Heavy flavour (e.g. charmmesons)
* Low-momentum particles
* down to 150 MeV * vast majority of particles produced
* Particle Identification * look for different behaviors for different particle species.
* Need to reconstruct particles down to very low momentum.
* Particle Identification information needed to "recognize" different types of particles

A Large Ion Collider Experiment (ALICE)

* Need to reconstruct particles down to very low momentum.
* Particle Identification information needed to "recognize" different types of particles

A Large Ion Collider Experiment (ALICE)

* Need to reconstruct particles down to very low momentum.
* Particle Identification information needed to "recognize" different types of particles
* Complex
detector formed of 19 sub-detectors.
* Cutting edge technologies and trigger algorithms have been (or are being) developed.

Tracking and Particle IDentification

*"Track" a particle passing trough the detector means:

* measure its trajectory \rightarrow track length, momentum
* try to define its vertex (where the particle was "born")
* close to the interaction point \rightarrow primary particles
* product of a decay or interaction with the material \rightarrow secondary particles

Tracking and Particle IDentification

*"Track" a particle passing trough the detector means:

* measure its trajectory \rightarrow track length, momentum
* try to define its vertex (where the particle was "born")
* close to the interaction point \rightarrow primary particles
* product of a decay or interaction with the material \rightarrow secondary particles
* Identify a track = try to understand which particle was produced.
* How? Using effects that are different for different mass of the particles:
* velocity (Time of flight method)
* different energy loss while passing trough the detector
* different radiation emitted interacting with a specific detector (transition radiation)

Tracking and Particle IDentification

* "Track" a particle passing trough the detector means:
* measure its trajectory \rightarrow track length, momentum
* try to define its vertex (where the particle was "born")
* close to the interaction point \rightarrow primary particles
* product of a decay or interaction with the material \rightarrow secondary particles
* Identify a track = try to understand which particle was produced.
* How? Using effects that are different for different mass of the particles: * velocity (Time of flight method)
* different energy loss while passing trough the detector
* different radiation emitted interacting with a specific detector (transition radiation)

Bethe-Bloch equation

$$
-\left\langle\frac{d E}{d x}\right\rangle=K z^{2} \frac{Z}{A} \frac{1}{\beta^{2}}\left[\frac{1}{2} \ln \frac{2 m_{e} c^{2} \beta^{2} \gamma^{2} T_{\max }}{I^{2}}-\beta^{2}-\frac{\delta(\beta \gamma)}{2}\right]
$$

Bethe-Bloch equation

$$
-\left\langle\frac{d E}{d x}\right\rangle=1 z^{2} \frac{Z}{A} \frac{1}{\beta^{2}}\left[\frac{1}{2} \ln \frac{2 m_{e} c^{2} \beta^{2} \gamma^{2} T_{\max }}{I^{2}}-\beta^{2}-\frac{\delta(\beta \gamma)}{2}\right]
$$

* charge of the particles traversing the chamber

Tracks of ions in emulsion

Bethe-Bloch equation

$$
-\left\langle\frac{d E}{d x}\right\rangle=K z^{2} \xlongequal{ }\left(\frac{1}{\beta^{2}}\right)\left[\frac{1}{2} \ln \frac{2 m_{e} c^{2} \beta^{2} \gamma^{2} T_{\max }}{I^{2}}-\beta^{2}-\frac{\delta(\beta \gamma)}{2}\right]
$$

* charge of the particles traversing the chamber
* in the $1 / \beta^{2}$ regime, $<\mathrm{dE} / \mathrm{dx}>\mathrm{vs} \mathrm{p}$ is different for different particle species

Kinematic variables

transverse momentum

$$
p_{\mathrm{T}}=p \sin \left(\theta_{\mathrm{CM}}\right)
$$

rapidity relative to the beam axis i.e.
longitudinal angle of

$$
y=\frac{1}{2} \ln \frac{E+p_{z} c}{E-p_{z} c}
$$ emerging particle

About particle reconstruction

* Today I will discuss only detector used to reconstruct charged particles. * in particular in ALICE we mainly look at hadrons: $\pi, \mathrm{K}, \mathrm{p}$
* Neutral and decay particles are usually reconstructed with ad hoc analysis techniques.

About particle reconstruction

* Today I will discuss only detector used to reconstruct charged particles. * in particular in ALICE we mainly look at hadrons: π, K, p
* Neutral and decay particles are usually reconstructed with ad hoc analysis techniques.
* Two main classes of detector:
* Silicon detectors:
* ionizing radiation (charged particles) produces free electrons / holes in semiconductor materials.
* very precise ($\sim 10-100 \mu \mathrm{~m}$)
* quite expensive

About particle reconstruction

* Today I will discuss only detector used to reconstruct charged particles. * in particular in ALICE we mainly look at hadrons: $\pi, \mathrm{K}, \mathrm{p}$
* Neutral and decay particles are usually reconstructed with ad hoc analysis techniques.
* Two main classes of detector:
* Silicon detectors:
* ionizing radiation (charged particles) produces free electrons / holes in semiconductor materials.
* very precise ($\sim 10-100 \mu \mathrm{~m}$)
* quite expensive
* Gas detectors:
* ionizing radiation (charged particles) produces electrons / ions pairs * different "regime" at which they can be operated \longrightarrow different goals * can be used for large scale detector
* different cons to be taken into account depending on the regime they are operated (slow, ion back flow, ...)

Tracking Devices. Inner Tracking System

6 layers of Silicon detectors:
2 layers of pixels (SPD)
2 layers of drift (SDD)
2 layers of strips (SSD)

Table 3.2: Characteristics of the six ITS layers.

Layer	Type	$r(\mathrm{~cm})$	$\pm z(\mathrm{~cm})$	Modules	Active Area per module	Material Budget $\left(X / X_{0}\right)$
1	pixel	3.9	14.1	80	$12.8 \times 70.7 \mathrm{~mm}^{2}$	1.14
2	pixel	7.6	14.1	160	$12.8 \times 70.7 \mathrm{~mm}^{2}$	1.14
3	drift	15.0	22.2	84	$70.17 \times 75.26 \mathrm{~mm}^{2}$	1.13
4	drift	23.9	29.7	176	$70.17 \times 75.26 \mathrm{~mm}^{2}$	1.26
5	strip	38.0	43.1	748	$73 \times 40 \mathrm{~mm}^{2}$	0.83
6	strip	43.0	48.9	950	$73 \times 40 \mathrm{~mm}^{2}$	0.86

* High segmentation \rightarrow efficient track finding in high multiplicity environment.
* Low material budget \rightarrow tracking down to low-pT, limit multiple scattering.
* High track impact parameter resolution.
* Due to the technologies chosen, ITS allow also PID at low-pT

Tracking Devices. Inner Tracking System

* Separation of particle species from 100 MeV to 500 MeV
* Impact parameter resolution of 60 $\mu \mathrm{m}$ for particles of $1 \mathrm{GeV} / \mathrm{c}$

Tracking Devices. Time Projection Chamber

* Main ALICE tracking device:
* inner radius 80 cm
* outer radius 250 cm
* length 510 cm
* $|\eta|<0.9$

Tracking Devices. Time Projection Chamber

* Main ALICE tracking device:
* inner radius 80 cm
* outer radius 250 cm
* length 510 cm
* $|\eta|<0.9$
* $\mathrm{Ne} / \mathrm{CO}_{2} / \mathrm{N}_{2}$ gas admixture * drift velocity $2.7 \mathrm{~cm} / \mu \mathrm{s}$ * low electron diffusion * low radiation length

outer TPC wall

Tracking Devices. Time Projection Chamber

* Main ALICE tracking device: * inner radius 80 cm
* outer radius 250 cm
* length 510 cm
* $|\eta|<0.9$
* $\mathrm{Ne} / \mathrm{CO}_{2} / \mathrm{N}_{2}$ gas admixture * drift velocity $2.7 \mathrm{~cm} / \mu \mathrm{s}$ * Iow electron diffusion * low radiation length
* Read out planes: MWPC
* 18 sectors $\sim 20^{\circ}$ angle
* up to 159 space points to reconstruct a particle
* collected charge \approx mass of the particle

Tracking Devices. Time Projection Chamber

* Main device to measure trajectory and momentum of particles

$$
\frac{\sigma_{p_{\mathrm{T}}}}{p_{\mathrm{T}}}=p_{\mathrm{T}} \sigma_{1 / p_{\mathrm{T}}}
$$

* 0.8\% precision on the momentum determination for tracks with $\mathrm{pT} \sim 1 \mathrm{GeV}$ * 1.8% for tracks with $\mathrm{pT} \sim 10 \mathrm{GeV}$

* Energy deposited by particles while traversing the TPC is different for different particle masses
* Good separation of particles*:
* π / K up to $0.7 \mathrm{GeV} / \mathrm{c}$
* K/p out to $1.1 \mathrm{GeV} / \mathrm{c}$
(*) can be use with other ad hoc techniques for high momentum particles

PID detectors: Time of Flight

* Velocity measurement, that associated to the momentum one, allows to measure the mass of the particle.
* Gas detector based on Multigap

Resistive Place Chambers to measure the exact time the particle pass through it.

$$
m^{2}=\frac{p^{2}}{c^{2}}\left(\frac{c^{2} t^{2}}{L^{2}}-1\right) .
$$

* Time Of Flight resolution about 85-100 ps
* Good separation of different particles:
* π / K up to $1.5 \mathrm{GeV} / \mathrm{c}$
* K/p up to $4 \mathrm{GeV} / \mathrm{c}$

PID detectors: Time of Flight

* Velocity measurement, that associated to the momentum one, allows to measure the mass of the particle.
* Gas detector based on Multigap

Resistive Place Chambers to measure the exact time the particle pass through it.

* Time Of Flight resolution about 85-100 ps
* Good separation of different particles:
* π / K up to $1.5 \mathrm{GeV} / \mathrm{c}$
* K/p up to $4 \mathrm{GeV} / \mathrm{c}$
* measurement of $\mathrm{d}, \mathrm{t}, \ldots$ also possible

Trigger and centrality detectors

* V0 detector

* Two arrays of plastic scintillators
* located at $z \sim 340 \mathrm{~cm}$ (VOA) and -90 cm (VOC)
* $2.8<\eta<5.1$ (VOA) $-3.7<\eta<-1.7$ (VOC)
* segmented in four rings and eight sectors each
* Fast detector used for:
* triggers (i.e. selecting online "interesting" events)
* centrality and event plane determination

Trigger and centrality detectors

* TO detector
* Two arrays of Cherenkov counters
* located at $z \sim 350 \mathrm{~cm}$ (TOA) and -70 cm (TOC)
* Detector used for:

T0 prototype.

* triggers (i.e. selecting online "interesting" events)
* measurement of the particle arrival time at TOA, TOC.
* important to measure interaction time (for TOF!)

Others: Muons and Electrons

* Muons

* in ALICE only in the forward rapidity with an ad hoc spectrometer

Others: Muons and Electrons

* Muons

* in ALICE only in the forward rapidity with an ad hoc spectrometer * $-4<\eta<-2.5$
* 1 hadron absorber (to stop pions and kaons)
* 1 dipole magnet 3Tm
* 5 tracking chambers
* 2 trigger chambers
* mainly used to reconstruct muons from charm and beauty decays

Others: Muons and Electrons

* Muons

* in ALICE only in the forward rapidity with an ad hoc spectrometer * $-4<\eta<-2.5$
* 1 hadron absorber (to stop pions and kaons)
* 1 dipole magnet 3Tm
* 5 tracking chambers
* 2 trigger chambers
* mainly used to reconstruct muons from charm and beauty decays

* Electrons

* like all other hadrons, reconstructed only in the central barrel $|\eta|<0.9$
* Transition Radiation Detector (separate e from π, intermediate pT)
* Electro Magnetic CALoremeter (electrons deposit their entire energy in the calorimeter)

Summary

* ALICE is the dedicated heavy ions experiment at CERN * Mainly designed for low-pT particles and Particle Identification
* 19 sub-detectors with different scopes constitute the full experiment.

Back up slides

ALICE combined hadronic PID

Electron ID

EMCAL E/p measurement

EMCAL: Pb scintillator sampling calorimeter $|n|<0.7,1.4<\phi<\pi$ $\Delta \eta=\Delta \phi \approx 0.014$
Cluster $\mathrm{E}_{\mathrm{T}}>300 \mathrm{MeV}$

TRD

TRD: six layers of radiator and drift chamber.
TR produced when particles ($\gamma>10^{3}$) traverse many interfaces of two media of different dielectric constants composing the radiator.

On average, for each electron with a momentum above $1 \mathrm{GeV} / \mathrm{c}$, one TR photon (energy range: 1-30 keV) is absorbed and converted in the high- Z gas mixture ($\mathrm{Xe}-\mathrm{CO}_{2}$) in each layer of the detector.

Centrality Measurement

* The collisions geometry (i.e. the impact parameter b) determines the number of nucleons that participate in the collisions ($\mathrm{N}_{\text {part }}$)
* Each nucleon can interact with many
 different nucleons and have multiple collisions ($\mathrm{N}_{\text {coll }}$)
* Ex - pPb collisions:
the proton hits on average 6.9
nucleons of the Pb nucleus

$$
\rightarrow\left\langle\mathrm{N}_{\text {coll }}\right\rangle=6.9+/-0.6
$$

* How determine $\mathrm{N}_{\text {part }}$ and $\mathrm{N}_{\text {coll }}$? Glauber model * Nucleons travel in straight lines
* Collisions don't alter the nucleons trajectory, only energy
* No quantum-mechanical interference
* Interaction probability for two nucleons is given by the nucleon - nucleon (pp) cross section.

Centrality Measurement

*Inputs to the Glauber model:

* Distribution of the nucleons in the nuclei:
* measured by e-ion scatterings experiments * parametrized by Woods-Saxon distribution

$$
\rho(r)=\rho_{0} \frac{1}{1+\exp (r-R / a)} \quad \begin{aligned}
& \text { Nuclear } \\
& \text { radius } \mathbf{R}
\end{aligned}
$$

Centrality Measurement

*Inputs to the Glauber model:

* Distribution of the nucleons in the nuclei:
* measured by e-ion scatterings experiments
* parametrized by Woods-Saxon distribution
* Nucleon-nucleon cross-section
* measured in pp collisions or from extrapolation

Centrality Measurement

*Inputs to the Glauber model:

* Distribution of the nucleons in the nuclei:
* measured by e-ion scatterings experiments
* parametrized by Woods-Saxon distribution
* Nucleon-nucleon cross-section * measured in pp collisions or from extrapolation
* Output of the Glauber model:
* multiplicity is inversely proportional to the impact parameter
* knowing the multiplicity of the event we know the impact parameter (and $N_{\text {part, }}, N_{\text {coll }}$)

Centrality Measurement

* Multiplicity distribution:

* peak: most peripheral, background contamination
* Plateau: mid-central
* Edge: most-central, shape is a product of intrinsic fluctuations and detector acceptance/ resolution

* Fit of the multiplicity distribution:
~ \# charged particles
* Number of ancestor $\mathrm{fN}_{\text {part }}+(1-\mathrm{f}) \mathrm{N}_{\text {coll }}$
* Each ancestor emits particles according to negative binomial distribution ($P_{\mu, k}$)
* Slice in \% of the hadronic cross section
* for each class, possible to extract
$<N_{\text {partr }}$ and $<N_{\text {coll }}>$ form the fit

