

D. Caffarri Postdoc researcher at NIKHEF <u>davide.caffarri@nikhef.nl</u>

Large Hadron Collider ★ 27 km accelerator at CERN

Large Hadron Collider (LHC)

CERN's Accelerator Complex

Large Hadron Collider * 27 km accelerator at

CERN

* last step of a complex systems of accelerators
* peculiar in the world
* build step by step in the last 60 years
* important know-how and R&D program

 Iot of other physics program in parallel to LHC, exploiting the injection lines

Large Hadron Collider (LHC)

Large Hadron Collider *27 km accelerator at CERN *7/8 months per year of pp collisions ***** ∼1 month of Pb-Pb collisions * 4 main experiments on the LHC * ALICE * ATLAS * CMS* LHCb * 3 more "specialized" experiments

~ 6/7 particles produced on average per pp collision

~ 1600 particles produced on average per Pb-Pb collision (~17 particles for p-Pb collision)

D. Caffarri - NIKHEF - The ALICE Detector

* Precise characterization of a state of matter that lasts less than a fm/c (1 fm/c \sim 3 x 10⁻²⁴ seconds)

* This state of matter is partonic (made of quark and gluons), what we measure in the detector are hadrons.

- * Precise characterization of a state of matter that lasts less than a fm/c (1 fm/c ~ 3 x 10⁻²⁴ seconds)
- * This state of matter is partonic (made of quark and gluons), what we measure in the detector are hadrons.
- * Main goal of HIC: connect hadronic measurements of each event in their "ensable" to intrinsic properties of this state of matter (density, temperature, viscosity, ...)
- * different from pp where we mainly have searches (Higgs, exotica) or SM highprecisions measurements.

- * Precise characterization of a state of matter that lasts less than a fm/c $(1 \text{ fm/c} \sim 3 \times 10^{-24} \text{ seconds})$
- * This state of matter is partonic (made of quark and gluons), what we measure in the detector are hadrons.
- * Main goal of HIC: connect hadronic measurements of each event in their "ensable" to intrinsic properties of this state of matter (density, temperature, viscosity, ...)
- * different from pp where we mainly have searches (Higgs, exotica) or SM highprecisions measurements.
- * Broaden set of measurements to access different properties and build a detailed general picture of the medium:
 - * Flow measurements
 - * Jet quenching
 - Goran's talk * Strangeness enhancement
 - * Quarkonia suppression

* Need to reconstruct particles down to very low momentum.

* Particle Identification information needed to "recognize" different types of particles

* Need to reconstruct particles down to very low momentum.

* Particle Identification information needed to "recognize" different types of particles

* Need to reconstruct particles down to very low momentum.

* Particle Identification information needed to "recognize" different types of particles

Tracking and Particle IDentification

***"Track" a particle** passing trough the detector means:
★ measure its **trajectory** → track length, momentum
★ try to define its **vertex** (where the particle was "born")
★ close to the interaction point → **primary** particles
★ product of a decay or interaction with the material → **secondary** particles

Tracking and Particle IDentification

***"Track" a particle** passing trough the detector means:
* measure its **trajectory** → track length, momentum
* try to define its **vertex** (where the particle was "born")
* close to the interaction point → **primary** particles
* product of a decay or interaction with the material → **secondary** particles

* Identify a track = try to understand which particle was produced.
* How? Using effects that are different for different mass of the particles:
* velocity (Time of flight method)
* different energy loss while passing trough the detector
* different radiation emitted interacting with a specific detector (transition

radiation)

Tracking and Particle IDentification

* "Track" a particle passing trough the detector means:
* measure its trajectory → track length, momentum
* try to define its vertex (where the particle was "born")
* close to the interaction point → primary particles
* product of a decay or interaction with the material → secondary particles

* Identify a track = try to understand which particle was produced.
 * How? Using effects that are different for different mass of the particles:
 * velocity (Time of flight method)

\ast different energy loss while passing trough the detector

* different radiation emitted interacting with a specific detector (transition radiation)

Bethe-Bloch equation

Bethe-Bloch equation

$$-\left\langle\frac{dE}{dx}\right\rangle = K_{Z}^{2} \frac{1}{A} \frac{1}{\beta^{2}} \left[\frac{1}{2}\ln\frac{2m_{e}c^{2}\beta^{2}\gamma^{2}T_{\max}}{I^{2}} - \beta\frac{2E}{dX} - \beta\frac{\delta(\beta\gamma_{1})}{2}\right] \ln\frac{2m_{e}c^{2}\beta^{2}\gamma^{2}T_{\max}}{I^{2}} - \beta\frac{\delta(\beta\gamma_{1})}{I^{2}} \left[\frac{1}{2}\ln\frac{2m_{e}c^{2}\beta^{2}\gamma^{2}T_{\max}}{I^{2}} - \beta\frac{\delta(\beta\gamma_{1})}{I^{2}}\right] \ln\frac{2m_{e}c^{2}\beta^{2}\gamma^{2}T_{\max}}{I^{2}} - \beta\frac{\delta(\beta\gamma_{1})}{I^{2}} \left[\frac{1}{2}\ln\frac{2m_{e}c^{2}\beta^{2}\gamma^{2}T_{\max}}{I^{2}} - \beta\frac{\delta(\beta\gamma_{1})}{I^{2}}\right] \left[\frac{1}{2}\ln\frac{2m_{e}c^{2}\beta^{2}\gamma^{2}}{I^{2}} - \beta\frac{\delta(\beta\gamma_{1})}{I^{2}}\right] \left[\frac{1}{2}\ln\frac{2m_{e}c^{2}\beta^{2}}{I^{2}} - \beta\frac{\delta(\beta\gamma_{1})}{I^{2}}\right] \left[\frac{1}{2}\ln\frac{2m_{e}c^{2}\beta^{2}}{I^{2}}\right] \left[\frac{1}{2}\ln\frac{2m_{e}c^{2}\beta^{2}}{I^{2}} - \beta\frac{\delta(\beta\gamma_{1})}{I^{2}}\right] \left[\frac{1}{2}\ln\frac{2m_{e}c^{2}\beta^{2}}{I^{2}}\right] \left[\frac{1}{2}\ln\frac{2m_{e}c^{2}\beta^{$$

* charge of the particles traversing the chamber

Tracks of ions in emulsion

Iron Z = 26 Thorium Z = 90

Bethe-Bloch equation

$$-\left\langle\frac{dE}{dx}\right\rangle = Kz^2 \frac{1}{A\beta^2} \left[\frac{1}{2}\ln\frac{2m_ec^2\beta^2\gamma^2 T_{\max}}{\frac{-dE}{dx} \approx Kz^2 \frac{Z}{A}} \frac{-\beta_2^2 - \frac{\delta(\beta\gamma)}{2m_ec^2\beta^2 2y^2}}{I}\right]_{\beta^2 - \frac{\delta}{2} - \frac{C}{Z}} \quad as \quad b$$

* charge of the particles traversing the chamber * in the $1/\beta^2$ regime, <dE/dx> vs p is different for different particle species

CE coordinate systems

Kinematic variables

B=0.5 T $\text{if} \quad m \ll p \Rightarrow E \approx p \Rightarrow \eta \approx y$ $\eta = -\ln\left[\tan\left(\frac{\theta_{\rm CM}}{2}\right)\right]$

Δη is Lorentz invariant under boost along longitudinal axis

emerging particle

About particle reconstruction

* Today I will discuss only detector used to reconstruct charged particles.
 * in particular in ALICE we mainly look at hadrons: π, K, p
 * Neutral and decay particles are usually reconstructed with ad hoc analysis techniques.

About particle reconstruction

* Today I will discuss only detector used to reconstruct charged particles.
 * in particular in ALICE we mainly look at hadrons: π, K, p
 * Neutral and decay particles are usually reconstructed with ad hoc analysis

techniques.

* Two main classes of detector:

* Silicon detectors:

- * ionizing radiation (charged particles) produces free electrons / holes in semiconductor materials.
- * very precise (~10-100µm)
- * quite expensive

About particle reconstruction

* Today I will discuss only detector used to reconstruct charged particles.
 * in particular in ALICE we mainly look at hadrons: π, K, p

* Neutral and decay particles are usually reconstructed with ad hoc analysis techniques.

* Two main classes of detector:

* Silicon detectors:

 * ionizing radiation (charged particles) produces free electrons / holes in semiconductor materials.

- * very precise (~10-100µm)
- * quite expensive

* Gas detectors:

* ionizing radiation (charged particles) produces electrons / ions pairs
 * different "regime" at which they can be operated —> different goals
 * can be used for large scale detector

* different cons to be taken into account depending on the regime they are operated (slow, ion back flow, ...)

Tracking Devices. Inner Tracking System

6 layers of Silicon detectors:2 layers of pixels (SPD)2 layers of drift (SDD)2 layers of strips (SSD)

1	
E	
87.2 CI	—SDD
ω	—SSD
:	y z x

Table 3.2 :	Characteristics	of the	six	ITS	layers.
---------------	-----------------	--------	-----	----------------------	---------

Layer	Type	$r (\rm cm)$	$\pm z \ (cm)$	Modules	Active Area per module	Material Budget (X/X_0)
1	pixel	3.9	14.1	80	$12.8 \times 70.7 \text{ mm}^2$	1.14
2	pixel	7.6	14.1	160	$12.8 \times 70.7 \text{ mm}^2$	1.14
3	drift	15.0	22.2	84	$70.17\times75.26~\mathrm{mm^2}$	1.13
4	drift	23.9	29.7	176	$70.17\times75.26~\mathrm{mm^2}$	1.26
5	strip	38.0	43.1	748	$73 \times 40 \text{ mm}^2$	0.83
6	strip	43.0	48.9	950	$73 imes 40 \ \mathrm{mm}^2$	0.86

* High segmentation → efficient track finding in high multiplicity environment.
* Low material budget → tracking down to low-pT, limit multiple scattering.
* High track impact parameter resolution.

* Due to the technologies chosen, ITS allow also PID at low-pT

Tracking Devices. Inner Tracking System

* Separation of particle species from 100 MeV to 500 MeV

 Impact parameter resolution of 60 µm for particles of 1 GeV/c

Tracking Devices. Time Projection Chamber

* Main ALICE tracking device:
* inner radius 80 cm
* outer radius 250 cm
* length 510 cm
* |η| < 0.9

Tracking Devices. Time Projection Chamber

- * Main ALICE tracking device:
 * inner radius 80 cm
 * outer radius 250 cm
 * length 510 cm
 * |n| < 0.9
 - * Ne/CO₂/N₂ gas admixture
 * drift velocity 2.7cm/µs
 * low electron diffusion
 * low radiation length

Tracking Devices. Time Projection Chamber

- * Main ALICE tracking device:
 * inner radius 80 cm
 * outer radius 250 cm
 * length 510 cm
 * |n| < 0.9
 - * Ne/CO₂/N₂ gas admixture
 * drift velocity 2.7cm/µs
 * low electron diffusion
 * low radiation length
 - * Read out planes: MWPC
 * 18 sectors ~ 20° angle
 * up to 159 space points to reconstruct a particle
 - * collected charge \approx mass of the particle

(keV/300 µn 500

600

200

0.016 0.014 0.012 0.012

0.016

0.01

0.008

0.006

0.004

0.002

ALICE

p-Pb, √s_{NN} = 5.02 TeV, lηl<0.8

TPC tracks constrained to vertex TPC+ITS combined tracks TPC+ITS constrained to vertex

0.5

TPC standalone tracks

* Main device to measure trajectory and momentum of particles

$$\frac{\sigma_{p_{\rm T}}}{p_{\rm T}} = p_{\rm T} \ \sigma_{1/p_{\rm T}}$$

* 0.8% precision on the momentum determination for tracks with pT ~1 GeV *1.8% for tracks with pT ~10 GeV

s....=2.76

PID detectors: Time of Flight

- * **Velocity measurement**, that associated to the momentum one, allows to measure the mass of the particle.
- * Gas detector based on **Multigap Resistive Place Chambers** to measure the exact time the particle pass through it.

* Time Of Flight resolution about 85-100 ps

* Good separation of different particles:
 * π/K up to 1.5 GeV/c
 * K/p up to 4 GeV/c

 $m^2 = \frac{p^2}{c^2} \left(\frac{c^2 t^2}{L^2} - 1 \right).$ Cathode pickup electrodes

1.75 1.8 1.85 1.9 1.95

- $* \pi/K$ up to 1.5 GeV/c * K/p up to 4 GeV/c
- * measurement of d, t, ... also possible
- * Good separation of different particles:

exact time the particle pass through it.

the momentum one, allows to measure the.... mass of the particle. 1.75 1.8 1.85 1.9 1.95

PID detectors: Time of Flight

* Gas detector based on Multigap **Resistive Place Chambers** to measure the

***** Time Of Flight resolution about 85-100 ps

* Velocity measurement, that associated too $m^{2} = \frac{p^{2}}{c^{2}} \left(\frac{c^{2}t^{2}}{L^{2}} \frac{0}{c^{2}} 1 \right).$

counts

25000

20000

15000

200

Trigger and centrality detectors

*** V0 detector**

- * Two arrays of plastic scintillators
- * located at z ~340 cm (V0A) and -90 cm (V0C)
 - $*2.8 < \eta < 5.1$ (VOA) $-3.7 < \eta < -1.7$ (VOC)
- * segmented in four rings and eight sectors each
- * Fast detector used for:
 - * triggers (i.e. selecting online "interesting" events)

0-5%

20000

* centrality and event plane determination

ALICE Pb-Pb Vs_{NN} = 2.76 TeV

Data

Trigger and Gentrality detectors

*** T0 detector**

- * Two arrays of Cherenkov counters
- * located at z ~350 cm (T0A) and -70 cm (T0C)
- * Detector used for:
 - * triggers (i.e. selecting online "internation"
 - * measurement of the particle arriv * important to measure interaction

Others: Muons and Electrons

* Muons

* in ALICE only in the forward rapidity with an ad hoc spectrometer

Others: Muons and Electrons

* Muons

- * in ALICE only in the forward rapidity with an ad hoc spectrometer
 - **∗** -4 < η < -2.5
- * 1 hadron absorber (to stop pions and kaons)
- * 1 dipole magnet 3Tm
- * 5 tracking chambers
- * 2 trigger chambers
- * mainly used to reconstruct muons from charm and beauty decays

Others: Muons and Electrons

* Muons

* in ALICE only in the forward rapidity with an ad hoc spectrometer

- **∗** -4 < η < -2.5
- * 1 hadron absorber (to stop pions and kaons)
- * 1 dipole magnet 3Tm
- * 5 tracking chambers
- * 2 trigger chambers

* mainly used to reconstruct muons from charm and beauty decays

*** Electrons**

* like all other hadrons, reconstructed only in the central barrel $|\eta| < 0.9$

* Transition Radiation Detector (separate e from π , intermediate pT)

* Electro Magnetic CALoremeter (electrons deposit their entire energy in the calorimeter)

Summary

* ALICE is the dedicated heavy ions experiment at CERN
* Mainly designed for low-pT particles and Particle Identification
* 19 sub-detectors with different scopes constitute the full experiment.

Back up slides

D. Caffarri - NIKHEF - The ALICE Detector

D. Caffarri - NIKHEF - The ALICE Detector

EMCAL: Pb scintillator sampling calorimeter $|\eta| < 0.7, 1.4 < \varphi < \pi$ $\Delta \eta = \Delta \varphi \approx 0.014$ Cluster E_T > 300 MeV

TRD

TRD: six layers of radiator and drift chamber.

TR produced when particles (γ >10³) traverse many interfaces of two media of different dielectric constants composing the radiator.

On average, for each electron with a momentum above 1 GeV/c, one TR photon (energy range: 1–30 keV) is absorbed and converted in the high-Z gas mixture (Xe-CO₂) in each layer of the detector.

- The collisions geometry (i.e. the impact parameter b) determines the number of nucleons that participate in the collisions (N_{part})
- * Each nucleon can interact with many different nucleons and have multiple collisions (N_{coll})

* Ex - pPb collisions:the proton hits on average 6.9nucleons of the Pb nucleus

- \ast How determine N_{part} and N_{coll}? Glauber model
 - * Nucleons travel in straight lines
 - * Collisions don't alter the nucleons trajectory, only energy
 - * No quantum-mechanical interference
 - Interaction probability for two nucleons is given by the nucleon nucleon (pp) cross section.

D. Caffarri - NIKHEF - The ALICE Detector

 $\rightarrow < N_{coll} > = 6.9 + - 0.6$

*Inputs to the Glauber model: * Distribution of the nucleons in the nuclei:

* measured by e-ion scatterings experiments
 * parametrized by Woods-Saxon distribution

***Inputs** to the Glauber model:

- * Distribution of the nucleons in the nuclei:
 - * measured by e-ion scatterings experiments
 - * parametrized by Woods-Saxon distribution

*** Nucleon-nucleon cross-section**

* measured in pp collisions or from extrapolation

* Nucleon-nucleon cross-section * measured in pp collisions or from extrapolation

* **Output** of the Glauber model:

* multiplicity is inversely proportional to the impact parameter

* knowing the multiplicity of the event we know the impact parameter (and N_{part}, N_{coll})

Centrality Measurement

*Inputs to the Glauber model:

- * Distribution of the nucleons in the nuclei:
 - * measured by e-ion scatterings experiments
 - * parametrized by Woods-Saxon distribution

*** Multiplicity distribution:**

- * peak: most peripheral, background contamination
 * Plateau mid control
- * Plateau: mid-central
- * Edge: most-central, shape is a product of intrinsic fluctuations and detector acceptance/ resolution

\ast Fit of the multiplicity distribution:

- * Number of ancestor fN_{part} + (1-f) N_{coll}
- * Each ancestor emits particles according to negative binomial distribution (P_{µ,k})

***** Slice in % of the hadronic cross section

* for each class, possible to extract $<\!\!N_{part}\!\!>$ and $<\!\!N_{coll}\!\!>$ form the fit