Convex Analysis for Optimization

Olga Kuryatnikova (Erasmus University Rotterdam) kuryatnikova@ese.eur.nl

September-October 2024 Lecture 3

Course plan

- ► Week 1: Introduction to convexity
- ▶ Week 2: More on convex sets
- ▶ Week 3: Dual view of convex sets + more on convex functions
- ▶ Week 4: Dual view of convex functions
- ▶ Week 5: Duality and optimization
- ▶ Week 6: Introduction to algorithms, descend methods
- ▶ Week 7: Proximal methods, projected gradients
- ▶ Weeks 8 9: Fix point approach, averaged operators

Special cones

Convex cones based on a given set:

- ► Conic hull (smallest convex cone containing a given set)
- Recession cone (determines directions of unboundedness of a set)
- ► Polar cone (dual description of a set)
- Dual cone (dual description of a set)
- Normal cone (dual descriptions, optimality conditions)

Polar and dual cones of set $S \subseteq \mathbb{R}^n$

Polar cone: $S^{\circ} := \{x \in \mathbb{R}^n : x^{\top}y \leq 0 \ \forall y \in S\}$

Dual cone: $S^* := -S^\circ = \{x \in \mathbb{R}^n : x^\top y \ge 0 \ \forall y \in S\}$

Polar and dual cone properties

For a non-empty set S (so, no convexity or closedness assumed):

$$S^{\circ} = \operatorname{cl}(S)^{\circ} = \operatorname{conv}(S)^{\circ} = \operatorname{cone}(S)^{\circ}$$

Polar Cone Thm: $(S^{\circ})^{\circ} = \operatorname{cl}(\operatorname{conv}(S))$ for a non-empty cone S

All above also holds for the dual cone (i.e., if we replace \circ with *).

Normal cone

Def: the normal cone of $S \subseteq \mathbb{R}^n$ in $x \in S$ is

$$N_S(x) := \{ y \in \mathbb{R}^n : y^\top (z - x) \le 0 \ \forall z \in S \}.$$

That is, the normal cone of S in x is $(S - x)^{\circ}$.

 $N_S(x) = \{0\}$ if $x \in \text{int}(S)$; $N_S(x)$ contains at least one half-line otherwise.

Occurs in duality, optimality conditions.

Hyperplanes

Recall: hyperplane for some $0 \neq a \in \mathbb{R}^n, \ b \in \mathbb{R}$

$$H := \{ x \in \mathbb{R}^n : a^{\top} x = b \} = \bar{x} + \{ x \in \mathbb{R}^n : a^{\top} x = 0 \} \text{ for some } \bar{x} \in H$$

Def: H separates sets $S, \bar{S} \subseteq \mathbb{R}^n$ if $a^\top y \leq b \leq a^\top x, \ \forall y \in \bar{S} \ \forall x \in S$

Set separation by hyperplane

$$S, \bar{S} \subseteq \mathbb{R}^n$$
 separable: $\exists a \neq 0, b : a^\top y \leq b \leq a^\top x, \ \forall y \in \bar{S} \ \forall x \in S$. Equiv: $\exists a : \sup_{y \in \bar{S}} a^\top y \leq \inf_{x \in S} a^\top x$ (*)

Properly separable: (*) and
$$\exists a \neq 0$$
: $\inf_{y \in \bar{S}} a^{\top} y < \sup_{x \in S} a^{\top} x$

Strictly separable: $\exists a \neq 0, b : a^{\top}y < b < a^{\top}x, \ \forall y \in \overline{S} \ \forall x \in S$

Strongly separable:
$$\exists a \neq 0$$
: $\sup_{y \in \bar{S}} a^\top y < \inf_{x \in S} a^\top x$
Equiv: $a^\top y \leq a^\top x$, $\forall y \in \bar{S} + B(0, \varepsilon) \ \forall x \in S + B(0, \varepsilon)$, for some $\varepsilon > 0$

Proper Separation Theorem

Thm: Let $S \subseteq \mathbb{R}^n$ be nonempty and convex, and let $\bar{x} \in \mathbb{R}^n$. There is a hyperplane *properly* separating \bar{x} and S if and only if $x \notin ri(S)$.

Def: hyperplane $H := \bar{x} + \{x \in \mathbb{R}^n : a^\top x = 0\}$ supports set S in point \bar{x} if $\bar{x} \in \operatorname{cl}(S)$ and $\inf_{x \in S} a^\top x = a^\top \bar{x}$ (i.e., $a^\top \bar{x} \leq a^\top x \ \forall x \in S$).

Proof of Proper Separation Theorem

Separating two sets

Let $S, \bar{S} \subseteq \mathbb{R}^n$ be nonempty, convex, and disjoint.

Thm (separation): There is a hyperplane separating S and \bar{S} .

Thm (proper s.): There is a hyperplane *properly* separating S and \bar{S} if and only if $\mathrm{ri}(S) \cap \mathrm{ri}(\bar{S}) = \emptyset$.

Thm (strict s.): There is a hyperplane *strictly* separating S and \bar{S} if $S-\bar{S}$ is closed.

Thm (strong s.): There is a hyperplane *strongly* separating S and \bar{S} if and only if $0 \notin cl(S - \bar{S})$.

Dual description of convex sets

Thm: For $S \subseteq \mathbb{R}^n$, the set cl(conv(S)) is the intersection of the closed halfspaces that contain S.

Corollary: If S is closed and convex, S is the intersection of the closed halfspaces that contain it.

More info on convex functions

- ► Popular convex functions
- ► Convexity preserving operations on functions
- Continuity and closedness
- ▶ Differentiable convex functions (for next lecture)

Some definitions

Consider $f: \mathbb{R}^n \to (-\infty, \infty]$.

Convexity/continuity/some other property over a set

Def: Let $C \subseteq S \subseteq \mathbb{R}^n$, then f is [property] over S if its restriction to S defined by $[\hat{f}:S \to \overline{\mathbb{R}}, \hat{f}(x)=f(x) \ \forall x \in S]$ is [property].

Strict convexity

Def: f is strictly convex if $f(\alpha x + (1 - \alpha)y) < \alpha f(x) + (1 - \alpha)f(y)$ for $\alpha \in (0, 1)$, $x \neq y$.

Strong convexity

Def: f is strongly convex if $f - \sigma ||x||_2^2$ is convex for some $\sigma > 0$.

Popular convex functions

- ► Affine functions: $a^{\top}x + b$ or $\sum_{i=1}^{n} A_{ij}x_{ij} + b$ if x is a matrix
- Norms: I_p norm for $p \ge 1$: $(\sum_{i=1}^n = |x|^{1/p})^p$, ∞ -norm: $\max_{i=1}^n |x_i|$; spectral norm: $\sigma_{\max}(x) = (\lambda_{\max}(x^\top x))^{1/2}$ if x is a matrix
- ▶ Sums of squares of polynomials: $\sum_{j=1}^{m} (p_j(x))^2$
- ► Log-sum-exp: $\log(\sum_{i=1}^{n} \exp(x_i))$
- ▶ log-determinant: $-\log(\det(x))$ is convex on the set of positive definite matrices x

Convexity preserving operations on functions

Consider functions $\mathbb{R}^n \to (-\infty, \infty]$. The following is convex.

- ▶ Sum of convex functions, even of infinitely many functions
- ▶ For convex f: f(Ax + b), $A \in \mathbb{R}^{n \times m}$, $b \in \mathbb{R}^n$
- ► Conic combination of convex functions
- ▶ Supremum: $\sup_{i \in I} f_i(x)$, $\sup_{y \in Y} f(x, y)$ if f is convex in x for all y
- ▶ Partial inf: $\inf_{y \in Y} f(x, y)$ if Y is convex and f is convex in (x, y)
- ▶ Integral: $\int_{y \in Y} f(x, y) dy$ if f is convex in x for all y
- ▶ Composition: $f(g_1(x), ..., g_n(x))$ is convex if f is convex and for each i = 1, ..., n at least one of three facts holds: $[g_i \text{ convex}, f \text{ non-decreasing in } x_i]$; $[g_i \text{ concave}, f \text{ non-increasing in } x_i]$; $[g_i \text{ affine}]$

Restricting a convex function to a line

Thm: $f:\mathbb{R}^n \to (-\infty, \infty]$ is convex if and only if its restriction to a line $g_{x,v}(t)$ is convex for any fixed x, v, where g(t):=f(x+tv).

Types of continuity

Consider a function $f:S \to \overline{\mathbb{R}}$

Def: f is lower semicontinuous in x if $f(x) \le \liminf_{y \to x} f(y), \forall (y) \subset S$.

Def: f is continuous in $x \in dom(f)$ if $f(x) = \lim_{y \to x} f(y), \forall (y) \subset dom(f)$

Def: f is Lipshitz-continuous with constant L > 0 if $||f(x) - f(y)||_2 \le L||x - y||_2$ for all $x, y \in \text{dom}(f)$

Semicontinuity and closedness

Def: $f: S \to \overline{\mathbb{R}}$ is closed if its epigraph $\operatorname{epi}(f)$ is a closed set.

Thm: Function $f: \mathbb{R}^n \to \overline{\mathbb{R}}$ is closed if and only if

 \iff f is lower-semicontinuous

 \iff level set $V_{\gamma} =: \{x \in \mathbb{R}^n : \gamma \geq f(x)\}$ is closed for any $\gamma \in \mathbb{R}$

Continuity and convexity

Thm: $f: S \to \overline{\mathbb{R}}$ proper and convex $\Rightarrow f$ continuous over ri(dom(f)).

Corollary: A convex function $\mathbb{R}^n \to \mathbb{R}$ is continuous.

Farkas' lemma

Let $a_1, \ldots, a_m \in \mathbb{R}^n$. Then $\{x \in \mathbb{R}^n : a_j^\top x \ge 0 \ \forall j = 1, \ldots, m\}$ and cone (a_1, \ldots, a_m) are closed convex cones dual to each other.

Note: Textbook uses $a_i^{\top} x \le 0$, and so the cones become polar.

Interpretations of Farkas' lemma

Let $c, a_1, \ldots, a_m \in \mathbb{R}^n$. Then $c^\top x \geq 0$ for all $x \in S$, where

$$S := \{ x \in \mathbb{R}^n : a_j^\top x \ge 0 \ \forall j = 1, \dots, k, \ a_i^\top x = 0 \ \forall i = k+1, \dots, m \}$$

if and only if

$$c = \sum_{i=1}^k a_i y_i + \sum_{i=k+1}^m a_i y_i \text{ for some } y \in \mathbb{R}^m, \ y_1, \dots, y_k \ge 0.$$

Generalized Farkas' lemma

Let $K \subseteq \mathbb{R}^m$ be a closed convex cone, $c \in \mathbb{R}^n$ and $A \in \mathbb{R}^{n \times m}$. Let the cone $\{Ay : y \in K^*\}$ be closed. Then $x^\top c \ge 0$ for all $x \in S$, where

$$S := \{ x \in \mathbb{R}^n : A^\top x \in \mathbf{K} \}$$

if and only if

$$c = Ay$$
 for some $y \in K^*$.