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Course plan

I Week 1: Introduction to convexity

I Week 2: More on convex sets

I Week 3: Dual view of convex sets + more on convex functions

I Week 4: Dual view of convex functions

I Week 5: Duality and optimization

I Week 6: Introduction to algorithms, descend methods

I Week 7: Proximal methods, projected gradients

I Weeks 8 - 9: Fix point approach, averaged operators
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Special cones

Convex cones based on a given set:

I Conic hull (smallest convex cone containing a given set)

I Recession cone (determines directions of unboundedness of a set)

I Polar cone (dual description of a set)

I Dual cone (dual description of a set)

I Normal cone (dual descriptions, optimality conditions)
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Polar and dual cones of set S ⊆ Rn

Polar cone: S◦ := {x ∈ Rn : x>y ≤ 0 ∀y ∈ S}

Dual cone: S∗ := −S◦ = {x ∈ Rn : x>y ≥ 0 ∀y ∈ S}

4 / 24



Polar and dual cone properties

For a non-empty set S (so, no convexity or closedness assumed):

S◦ = cl(S)◦ = conv(S)◦ = cone(S)◦

Polar Cone Thm: (S◦)◦ = cl(conv(S)) for a non-empty cone S

All above also holds for the dual cone (i.e., if we replace ◦ with ∗).
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Normal cone

Def: the normal cone of S ⊆ Rn in x ∈ S is

NS(x) := {y ∈ Rn : y>(z − x) ≤ 0 ∀z ∈ S}.

That is, the normal cone of S in x is (S − x)◦.

NS(x)={0} if x∈int(S);NS(x) contains at least one half-line otherwise.

Occurs in duality, optimality conditions.
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Hyperplanes

Recall: hyperplane for some 0 6= a ∈ Rn, b ∈ R

H := {x ∈ Rn : a>x = b} = x̄ + {x ∈ Rn : a>x = 0} for some x̄ ∈ H

Def: H separates sets S , S̄ ⊆ Rn if a>y ≤ b ≤ a>x , ∀y ∈ S̄ ∀x ∈ S
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Set separation by hyperplane

S , S̄ ⊆ Rn separable: ∃a 6= 0, b : a>y ≤ b ≤ a>x , ∀y ∈ S̄ ∀x ∈ S .
Equiv: ∃a : sup

y∈S̄
a>y ≤ inf

x∈S
a>x (*)

Properly separable: (*) and ∃a 6= 0 : inf
y∈S̄

a>y < sup
x∈S

a>x

Strictly separable: ∃a 6= 0, b : a>y < b < a>x , ∀y ∈ S̄ ∀x ∈ S

Strongly separable: ∃a 6= 0 : sup
y∈S̄

a>y < inf
x∈S

a>x

Equiv: a>y ≤ a>x , ∀y ∈ S̄+B(0, ε) ∀x ∈ S+B(0, ε), for some ε>0
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Proper Separation Theorem

Thm: Let S ⊆ Rn be nonempty and convex, and let x̄ ∈ Rn. There is
a hyperplane properly separating x̄ and S if and only if x /∈ ri(S).

Def: hyperplane H := x̄ + {x ∈ Rn : a>x = 0} supports set S in
point x̄ if x̄ ∈ cl(S) and inf

x∈S
a>x = a>x̄ (i .e., a>x̄ ≤ a>x ∀x ∈ S).

9 / 24



Proof of Proper Separation Theorem
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Separating two sets

Let S , S̄ ⊆ Rn be nonempty, convex, and disjoint.

Thm (separation): There is a hyperplane separating S and S̄ .

Thm (proper s.): There is a hyperplane properly separating S and S̄
if and only if ri(S) ∩ ri(S̄) = ∅.

Thm (strict s.): There is a hyperplane strictly separating S and S̄ if
S − S̄ is closed.

Thm (strong s.): There is a hyperplane strongly separating S and S̄
if and only if 0 /∈ cl(S − S̄).
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Dual description of convex sets

Thm: For S ⊆ Rn, the set cl(conv(S)) is the intersection of the
closed halfspaces that contain S .

Corollary: If S is closed and convex, S is the intersection of the
closed halfspaces that contain it.
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More info on convex functions

I Popular convex functions

I Convexity preserving operations on functions

I Continuity and closedness

I Differentiable convex functions (for next lecture)
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Some definitions

Consider f : Rn → (−∞,∞].

Convexity/continuity/some other property over a set
Def: Let C⊆ S⊆ Rn, then f is [property] over S if its restriction to S
defined by [f̂ :S → R, f̂ (x)=f (x) ∀x∈S ] is [property].

Strict convexity
Def: f is strictly convex if f (αx + (1− α)y) < αf (x) + (1− α)f (y)
for α ∈ (0, 1), x 6= y .

Strong convexity
Def: f is strongly convex if f − σ‖x‖2

2 is convex for some σ > 0.
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Popular convex functions

I Affine functions: a>x + b or
n∑

i=1
Aijxij + b if x is a matrix

I Norms: lp norm for p ≥ 1: (
n∑

i=1
= |x |1/p)p, ∞-norm:

n
max
i=1
|xi |;

spectral norm: σmax(x) = (λmax(x>x))1/2 if x is a matrix

I Sums of squares of polynomials:
m∑
j=1

(pj(x))2

I Max:
n

max
i=1

xi

I Log-sum-exp: log(
n∑

i=1
exp(xi ))

I log-determinant: -log(det(x)) is convex on the set of positive
definite matrices x
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Convexity preserving operations on functions

Consider functions Rn → (−∞,∞]. The following is convex.

I Sum of convex functions, even of infinitely many functions

I For convex f : f (Ax + b), A ∈ Rn×m, b ∈ Rn

I Conic combination of convex functions

I Supremum: sup
i∈I

fi (x), sup
y∈Y

f (x , y) if f is convex in x for all y

I Partial inf: inf
y∈Y

f (x , y) if Y is convex and f is convex in (x , y)

I Integral:
∫

y∈Y
f (x , y)dy if f is convex in x for all y

I Composition: f (g1(x), . . . , gn(x)) is convex if f is convex and for
each i = 1, . . . , n at least one of three facts holds: [gi convex, f
non-decreasing in xi ]; [gi concave, f non-increasing in xi ]; [gi affine]
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Restricting a convex function to a line

Thm: f :Rn→(−∞,∞] is convex if and only if its restriction to a line
gx ,v (t) is convex for any fixed x , v , where g(t):=f (x+tv).
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Types of continuity

Consider a function f :S → R

Def: f is lower semicontinuous in x if f (x)≤ lim inf
y→x

f (y),∀(y) ⊂ S .

Def: f is continuous in x ∈dom(f ) if f (x) = lim
y→x

f (y), ∀(y)⊂dom(f )

Def: f is Lipshitz-continuous with constant L > 0 if
‖f (x)− f (y)‖2 ≤ L‖x − y‖2 for all x , y ∈ dom(f )
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Semicontinuity and closedness

Def: f : S → R is closed if its epigraph epi(f ) is a closed set.

Thm: Function f : Rn → R is closed if and only if
⇐⇒ f is lower-semicontinuous
⇐⇒ level set Vγ =: {x ∈ Rn : γ ≥ f (x)} is closed for any γ ∈ R
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Continuity and convexity

Thm: f :S→R proper and convex ⇒ f continuous over ri(dom(f )).

Corollary: A convex function Rn → R is continuous.
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If there is time: Farkas’ lemma as an example of using polar cones
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Farkas’ lemma

Let a1, . . . , am ∈ Rn. Then {x ∈ Rn : a>j x≥0 ∀j = 1, . . . ,m} and
cone(a1, . . . , am) are closed convex cones dual to each other.

Note: Textbook uses a>j x≤0, and so the cones become polar.
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Interpretations of Farkas’ lemma

Let c , a1, . . . , am ∈ Rn. Then c>x ≥ 0 for all x ∈ S , where

S := {x ∈ Rn : a>j x ≥ 0 ∀j = 1, . . . , k , a>i x = 0 ∀i = k + 1, . . . ,m}

if and only if

c =
k∑

j=1

ajyj +
m∑

i=k+1

aiyi for some y ∈ Rm, y1, . . . , yk ≥ 0.
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Generalized Farkas’ lemma

Let K ⊆ Rm be a closed convex cone, c ∈Rn and A ∈ Rn×m. Let the
cone {Ay : y ∈ K ∗} be closed. Then x>c ≥ 0 for all x ∈ S , where

S := {x ∈ Rn : A>x ∈ K}

if and only if
c = Ay for some y ∈ K ∗.
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