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Course plan

» Week 1: Introduction to convexity

» Week 2: More on convex sets

» Week 3: Dual view of convex sets + more on convex functions
» Week 4: Dual view of convex functions

» Week 5: Duality and optimization

» Week 6: Introduction to algorithms, descend methods

» Week 7: Proximal methods, projected gradients

» Weeks 8 - 9: Fix point approach, averaged operators
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Special cones

Convex cones based on a given set:

Conic hull (smallest convex cone containing a given set)

Recession cone (determines directions of unboundedness of a set)

>
>
» Polar cone (dual description of a set)
» Dual cone (dual description of a set)
>

Normal cone (dual descriptions, optimality conditions)
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Polar and dual cones of set S C R”

Polar cone: S°:={x € R":x'y <0Vy e S}

Dual cone: §* := -S°={x€R":x'y >0Vy c S}
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Polar and dual cone properties

For a non-empty set S (so, no convexity or closedness assumed):

5° =cl(5)° = conv(S)° = cone(S)°

Polar Cone Thm: (5°)° = cl(conv(S)) for a non-empty cone S

All above also holds for the dual cone (i.e., if we replace o with x).
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Normal cone

Def: the normal coneof SCR"inxe Sis
Ns(x):={yeR":y"(z—x)<0VzeS}.

That is, the normal cone of S in x is (S — x)°.

Ns(x)={0} if x€int(S); Ns(x) contains at least one half-line otherwise.

Occurs in duality, optimality conditions.
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Hyperplanes

Recall: hyperplane for some 0 #a € R", b e R

H={xe€R":a'x=b} =X+ {x €R":a' x =0} for some x € H

Def: H separates sets S,SCR"ifa'y<b<a'x, VyeSV¥xeS
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Set separation by hyperplane

S, §CR”separab|e EIa;éO b:aly<hb<a'x, VyeSVxeS.
Equiv: Ja:supa'y < |nf alx (%)
yeS§

Properly separable: (*) and 3a#0: inf a'y < supa'x
y€eS x€S

Strictly separable: 3a#0,b:a'y <b<a'x, VyeSVxe S

Strongly separable: 9a # 0 : supa y < |nf alx
Equiv: a'y <a'x, Vy € 5+B(0 £) Vx € 5+B(0.£), for some €>0
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Proper Separation Theorem

Thm: Let S C R” be nonempty and convex, and let X € R”. There is
a hyperplane properly separating X and S if and only if x ¢ ri(S).

Def: hyperplane H := X 4+ {x € R" : a' x = 0} supports set S in

point X if X € cl(S) and mfsa x=a'x(ie,a’lx<a'xV¥xeS).
PSS
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Proof of Proper Separation Theorem
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Separating two sets

Let 5,5 C R” be nonempty, convex, and disjoint.

Thm (separation): There is a hyperplane separating S and S.

Thm (proper s.): There is a hyperplane properly separating S and S

if and only if ri(S) Nri(S) = 0.

Thm_(strict s.): There is a hyperplane strictly separating S and Sif
S — S is closed.

Thm (strong s.): There is a hyperplane strongly separating Sand S
if and only if 0 ¢ cl(S — S).
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Dual description of convex sets

Thm: For S C R”, the set cl(conv(S)) is the intersection of the
closed halfspaces that contain S.

Corollary: If S is closed and convex, S is the intersection of the
closed halfspaces that contain it.
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More info on convex functions

» Popular convex functions
» Convexity preserving operations on functions
» Continuity and closedness

» Differentiable convex functions (for next lecture)
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Some definitions

Consider f : R" — (—o0, x0].

Convexity/continuity/some other property over a set
Def: Let CC SC R”, then f is [property] over S if its restriction to S
defined by [f:S — R, f(x)=f(x) Vx€S] is [property].

Strict convexity
Def: f is strictly convex if f(ax + (1 — a)y) < af(x)+ (1 — a)f(y)
for a € (0,1), x # y.

Strong convexity
Def: f is strongly convex if f — o||x||3 is convex for some o > 0.
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Popular convex functions

n
» Affine functions: a' x + b or 3 Ajjxij + b if x is a matrix
i=1

n
» Norms: /, norm for p > 1: (3 = |x|}/P)P, co-norm: m%lx]x,-];
i=1 i=

spectral norm: pmax(x) = (Amax(x " x))¥/2 if x is a matrix
m
» Sums of squares of polynomials: Y~ (p;(x))?
j=1

n
» Max: max x;

1=

» Log-sum-exp: log(

n
1=

exp(x;))
1
» log-determinant: -log(det(x)) is convex on the set of positive

definite matrices x

15/24



Convexity preserving operations on functions

Consider functions R"” — (—o0, o0]. The following is convex.

vV v v Y

\4

Sum of convex functions, even of infinitely many functions
For convex f: f(Ax + b), Ac R™™ beR"
Conic combination of convex functions

Supremum: sup fi(x), sup f(x,y) if f is convex in x for all y
i€l yYey

Partial inf: im; f(x,y) if Y is convex and f is convex in (x,y)
y€

Integral: [ f(x,y)dy if f is convex in x for all y

veyYy
Composition: f(gi1(x),-..,&n(x)) is convex if f is convex and for
each i =1,...,n at least one of three facts holds: [g; convex, f

non-decreasing in x;]; [g; concave, f non-increasing in x;]; [g; affine]
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Restricting a convex function to a line

Thm: f:R"—(—00, 0] is convex if and only if its restriction to a line
&x,v(t) is convex for any fixed x, v, where g(t):=f(x+tv).
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Types of continuity

Consider a function f:S - R

Def: f is lower semicontinuous in x if f(x) < Iim_jnf f(y),v(y) CS.
y X

Def: f is continuous in x €dom(f) if f(x)= lim f(y),V(y)C dom(f)

y—X

Def: f is Lipshitz-continuous with constant L > 0 if
IIf(x) — f(y)ll2 < L||jx — y||2 for all x,y € dom(f)

18/24



Semicontinuity and closedness

Def: f:S — R is closed if its epigraph epi(f) is a closed set.

Thm: Function f : R” — R is closed if and only if
<= f is lower-semicontinuous
<= level set V, =: {x € R" : v > f(x)} is closed for any v € R
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Continuity and convexity

Thm: f:S—TR proper and convex = f continuous over ri(dom(f)).

Corollary: A convex function R” — R is continuous.
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If there is time: Farkas' lemma as an example of using polar cones
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Farkas’ lemma
Let a1,...,am € R". Then {x € R": ajTXZO Vj=1,...,m} and

cone(ay,...,am) are closed convex cones dual to each other.

Note: Textbook uses aij§0, and so the cones become polar.
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Interpretations of Farkas’ lemma

Let c,a1,...,am € R". Then ¢'x >0 for all x € S, where

S:={x€eR":a/x>0Vj=1,....k a/x=0Vi=k+1,...,m}

if and only if
k m
C:Zajyj—i- Z ajyj for some y € R™, yi,...,yx > 0.
j=1 i=k+1
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Generalized Farkas’ lemma

Let K C R™ be a closed convex cone, ¢ €R” and A € R™ ™, Let the
cone {Ay : y € K*} be closed. Then x'c >0 for all x € S, where

S={xeR":A'xe K}

if and only if
c = Ay for some y € K™.
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