Ql,eens

Saving Energy in Software Development by
Making the Right Choices

By Stefanos Georgiou

4™ of March 2022
Sustainable Software Engineering

Before PhD

Sweden

=
g
£
5
s Finland
Baltic Sea stoniay
Latvia i N
Moscow:
= Magcksa
Lithuania G
Belarus
Ireland @hemnds Poland
®
Lorgon - el Warsaw
Germany E::;
Belgium ! ¥ @
) Czechia - 3
Slovakia Ukraine
Austria Moldova
Hungary
di5hy Romania
Croatia
Serbia
o~ Black Sea
Bulgaria
o
Portugal Magnd istanbulArkara
Tyrrhenian Sea ®
Spain “Noce
Lisbon N Turkey
Syria
Medit Se
Tunisia iediterranean a Lebanon
Gooale Israel

Next to my PhD studies

Singular Logjc"

lllllllll

[nnovation at You

Post Doctoral Fellow at Queen’s University

Spare time

A 33 followers - 14 following - Y 60

Athens University of Economics and Bu...

© Budapest, Hungary
B3 sgeorgiou@aueb.gr

& https://stefanos1316.github.io/my_port...

W @StefanosGeorgil

Highlights
% Arctic Code Vault Contributor
¥ PRO

Organizations

08 &

8,389 contributions in the last year Contribution settings +
Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb
a
Mon]
a
Wed
]

Learn how we count c

J#+* @AUEB-BALab

Activity overview

(] Contributed to
stefanos1316/my_d
stefanos1316/prog
stefanos1316/PhD
and 5 other reposif

, .
YN
- ' YV J
T
I,‘v N
- o . A

= 't A ! o - : =zw' [oy -
. '." o ® . - . L *

oL
AN SR R e e

Agenda

Introduction

Key terms

Existing Challenges

Programming Languages

Inter-Process Communication Technologies
Security Mechanisms

Deep Learning

What are we missing?

Introduction

A4 = (g , y, /
/ : \a
ELEGTRICITY BIlI.‘SI\!LE COMING

C02 EVERY,WHERE

Annualized Total Bitcoin Footprints

Carbon Footprint

Electrical Energy

Electronic Waste

114.06 Mt CO2

’-*-
JA
Comparable to the carbon footprint of
Czech Republic.

204.50 TWh

b:§

Comparable to the power
consumption of Thailand.

32.14 kt
i,

Comparable to the small IT equipment

waste of the Netherlands.

Single Bitcoin Transaction Footprints

Carbon Footprint

Electrical Energy

Electronic Waste

1278.36 kgCO2

f“c
A\
Equivalent to the carbon footprint of

2,833,277 VISA transactions or 213,059
hours of watching Youtube.

2291.94 KWh

:§

Equivalent to the power consumption
of an average U.S. household over
78.56 days.

360.20 grams
PN

Equivalent to the weight of 2.20
iPhones 12 or 0.74 iPads. (Find more
info on e-waste here.)

Reducing
combat CI

energy consum
imate change

ption to

10

Sustainable software development?

12

Energy-efficient vs Run-time-efficient

Computer A B
Energy (in Joules) 30 20

Time (in seconds) 10 20

13

oftware Development Life Cycle for
Energy-Efficiency: Techniques and Tools

Software Development Life Cycle for Energy-Efficiency:
Techniques and Tools

STEFANOS GEORGIQU, Athens University of Economics and Business, Singular Logic S.A.
STAMATIA RIZOU, Singular Logic S.A.
DIOMIDIS SPINELLIS, Athens University of Economics and Business

Motivation: In modern IT systems the increasing demand for computational power is tightly coupled with
ever higher energy consumption. Traditionally, energy efficiency research has focused on reducing energy
consumption at the hardware level. Nevertheless, the software itself provides numerous opportunities for
improving energy efficiency.

Goal: Given that energy efficiency for IT systems is a rising concern, we investigate existing work in the
area of energy-aware software development and identify open research challenges. Our goal is to reveal
limitations, features, and trade-offs regarding energy-performance for software development and provide
insights on existing approaches, tools, and techniques for energy-efficient programming.

Method: We analyze and categorize research work mostly extracted from top-tier conferences and journals
concerning energy efficiency across the software development life cycle phases.

Results: Our analysis shows that related work in this area has focused mainly on the implementation and
verification phases of the software development life cycle. Existing work shows that the use of parallel and
approximate programming, source code analyzers, efficient data structures, coding practices, and specific
programming languages can significantly increase energy efficiency. Moreover, the utilization of energy mon-
itoring tools and benchmarks can provide insights for the software practitioners and raise energy-awareness
during the development phase.

CCS Concepts:*Software and its engineering — Software maintenance tools; Requirements analy-
sis; Software design engineering; Software verification and validation; Extra-functional properties;
Data types and structures; Classes and objects; Software design tradeoffs; Concurrent programming struc-
tures; Patterns; Software implementation planning; *Computing methodologies — Parallel computing
methodologies;

Additional Key Words and Phrases: GreenIT, Energy Efficiency, Energy Optimization, Energy Profiling,
Design Patterns, Parallel Programming, Code Refactoring, Source Code Analysis, Coding Practices, Approx-
imate Programming, Software Development Life Cycle

ACM Reference Format:

Stefanos Georgiou, Stamatia Rizou, Diomidis Spinellis, 2019. Software Development Life Cycle for Energy
Efficiency: Techniques and Tools. ACM Comput. Surv. 1, 1, Article 1 (January 2019), 35 pages.

DOI: 10.1145/3337773

Survey Study: Context

Survey Studies

)

Empirical Evaluation)

Empirical Evaluation of
Code Refactoring

(Tools for Refactoring

Efficiency

(Benchmarks
(Monitoring Tools

SDLC for Energy

Emipirical Evaluation of
Design Patterns

Energy Optimization of
Design Patterns

—(_ Parallel Programming)
—(Approximate Computing)

—(Source Code Analysis)
—(Programming Languages)
—(DataStructures)
—(Coding Practices)

—(_ IPCTechnologies)

15

Survey Study: Research Challenges

RC1. Limited investigation on diverse programming languages.

RC2. Limited investigation on diverse remote Inter-Process
Communication technologies.

RC3. Limited tooling support for finding which data structures
are the most energy-efficient for specific case.

RC4. Selection of configurations and parameters (parallel and
approximate programming).

16

What are your Programming Language
Energy-Delay Product Implications?

What Are Your Programming Language’s Energy-Delay
Implications?

Stefanos Georgiou
Athens University of Economics and Business
sgeorgiou@aueb.gr

Panos Louridas
Athens University of Economics and Business
louridas@aueb.gr

ABSTRACT

Motivation: Even though many studies examine the energy effi-
ciency of hardware and embedded systems, those that investigate
the energy ption of software appli are still hmned
and mostly focused on mobile appli As modern i
become even more complex and heterogeneous a need arises for
methods that can accurately assess their energy consumption.
Goal: Measure the energy ption and run-time per

Iy used pr ing tasks impl, d in different

of

and ex d on a variety of pl. to
help dev elopers to choose appropriate implementation platforms.
Method: Obtain measurements to calculate the Energy Delay Prod-
uct, a weighted function that takes into account a task’s energy
consumption and run-time performance. We perform our tests by
calculating the Energy Delay Product of 25 programming tasks,
found in the Rosetta Code Repository, which are impl d in

Maria Kechagia
Delft University of Technology
mkechagia@tudelft.nl

Diomidis Spinellis
Athens University of Economics and Business
dds@aueb.gr

KEYWORDS

Programming Languages; Energy-Delay-Product; Energy-
Efficiency;

ACM Reference Format:

Stefanos Georgiou, Maria Kechagia, Panos Louridas, and Diomidis Spinellis.
2018. What Are Your Programming Language's Energy-Delay Implications?.
In MSR "18: MSR '18: 15th International Conference on Mining Software Repos-
2018, Gothenburg, S %
‘doi.org/10.1145/3196398.3196414

itories , May 28
11 pages. https:

1 INTRODUCTION

Nowadays, energy consumption! mattes more than ever before—
given that modern software applications should be able to run on
devices with particular characteristics (e.g., regarding their main
memory and processor). Although hardware design and utilization

14 programming languages and run on three different computer
platforms, a server, a laptop, dnd an embedded system.

Compiled are outperforming the
interpreted ones for most, but not for all tasks. C, C#, and JavaScript
are oa verage the best permrmmg compiled, semi-compiled, and
for the Energy Delay Product,
and Rust appears to be well-placed for 1/0

such as file handling. We also find that a good behavmur energy-

wise, can be the result of clever optimizations and design choices

in gly unexpected p

CCS CONCEPTS

« Hardware — Power estimation and optimization; « Soft-
ware and its engineering — Software libraries and repositories;
Software design tradeoffs;

is undoubtedly a key factor affecting energy consumption, there is

much evidence that software can also significantly influence the
energy usage of computer platforms [7, 16, 18].

Today, software practitioners can select from a large pool of pro-
gramming languages to develop software applications and systems.
Each of these programming languages comes with a number of
features and characteristics that can affect the energy consumption
and run-time performance of programming tasks implemented in
such languages. With the advent of cloud computing, data centers,
and mobile platforms, the same programming tasks can run on
distinct platforms consuming energy in different ways. In this con-
text, there is limited work available that examines the energy and
performance implications of particular | ing tasks that are
written in different languages and run on different platforms.

In this paper, we measure the Energy Delay Product (epp), a
weighted function of the energy consumption and run-time perfor-
mance product, for a sample of commonly u«ed progmmmmg tasks.
We do this to identify which prog g pl

tinnc (i ¢ prosramming tasks develoned in mmrnhr nrosramming

17

Motivation

C#Rust
Jaua

\lils‘ualBasic.NE'l')

ift
ngk: ‘..i.;

18

Energy Delay Product

EDP= ExTY

= ==
I
wn =

—
\

19

Research Questions

= T
.
-
. A \;\n . 2
P ¥

v s
- = Sy e

Y i~ RQ1: Which programming languages are the most

‘ \J',' e EDP efficient and inefficient for particular tasks?

RQ2: Which type of programming languages are, on
average, more EDP efficient and inefficient for each
of our selected platforms?

RQ3: How much does the EDP of each programming
language differ among the selected platforms?

20

Programming Languages

* Monthly index rating based on languages
popularity
Data retrieved from 25 search engines

TIOBE . using search query

SOFTWARE Programming Languages criteria:
THE SOFTWARE QUALITY COMPANY 1 At Ieast’ 5000 hltS on GOog|e

2. Turing complete
3. Wikipedia page

21

Selected Programming Languages

Categories Programming Compilers & Interpreters
Languages Embedded Laptop Server
Compiled C 6.3.0 6.4.1 6.4.1
C++ 6.3.0 6.4.1 6.4.1
Go 1.4.3 1.7.6 1.7.6
Rust 1.20.0 1.18.0 1.21.0
Swift 3.1.1 3.0.2 3.0.2
Semi-Compiled C# 4.6.2 4.6.2 4.6.2
VB.NET 46.2 46.2 46.2
Java 1.8.0 1.8.0 1.8.0
Interpreted JavaScript 9.0.4 8.9.3 8.9.3
Perl 5.24 1 5.241 5.24 1
PHP 5.6.30 7.0.25 7.0.25
Python 2.7.23 2.7.13 2.7.13
R 3.3.3 3.4.2 3.4.2
Ruby 242 241 241

22

Rosetta Code Repository

Create account Log in

Search » Q

ROSETTACODE.ORG

Community ~ Explore ~

Main page Discussion View source History

I'm working on modernizing Rosetta Code's infrastructure. Starting with communications. Please accept this time-limited open invite to
RC's Slack.. --Michael Mol (talk) 20:59, 30 May 2020 (UTC)

Rosetta Code

Rosetta Code is a programming chrestomathy site. The idea is to present solutions to the same task in as many different languages as possible, to demonstrate how
languages are similar and different, and to aid a person with a grounding in one approach to a problem in learning another. Rosetta Code currently has 1,083 tasks, 226 draft
tasks, and is aware of 813 languages, though we do not (and cannot) have solutions to every task in every language.

23

Data Set

Categories

Tasks

Arithmetic
Compression
Concurrent

Data structures

File handling
Recursion

Regular Expression
Sorting algorithms
String manipulation

Object-Oriented

Functional

exponentiation-operator and numerical-integration
huffman-coding and [zw-compression
concurrency-computing and synchronous-concurrency
array-concatenation and json

file-input-output

Factorial, ackermann-function and palindrome-detection
regular expression

selection, insertion, merge, bubble, and quick
url-encoding/decoding

inheritance single/multiple, class, and call-an-object-method

function-composition

24

Experimental Platform

25

Execution Process

Power

ROSGEB' :

plug

(| |

Code
Repo

BASH

Computer
Node

Watts
Up? Pro

3b

scripts

5

1

A

Meter

In

terface

Utility

3

26

Questions

1. Drawback of using a hardware or software-based energy
profiler?
2. Which factors can affect our experiment setup?

27

Programming Languages

Go-

CHt

C#

JavaScript

Rust -

VB.Net

PHP

Python

Ruby

Swift

Perl

Java

%

Energy Delay Product: Weight 3 (Performance Efficiency)

75980743

695 7.64

) o b G e % % % 4,) [%,
%, %, 9@$ 6%2 %, ’Z% % % %, %8, %, % e % % égb %,
%, % %, % % % b & T 0 %, % O
Q’Q % A 0 0’0_ @@ 2

28

0T

l’
L]

|

L
¢
¢
ot

\

¢

:

|

W

|i

L

¢

O
<
o
o

29

'JU0D-"YDJUAS
9|buis-"uayul
‘Rnw-usyul
o/1-e1y
uuewJuaye
uos/

x263.
uewyny
|elo3oey
9pOodUd-|n
uouasul
Aese
awoJpuljed
uondd|Ss
sosse|d
9|qqnqg
‘Bajul--winu
321nb
*dwod-"2u0d
"jesado-dxa
abisw
"yvw-fqo
9pod3ap-|4n
*1dwod-mz|
‘dwod-"ouny

RQ1. Which programming languages are the most EDP efficient

and inefficient for particular tasks?

Task categories

Most
efficient/inefficient

Arithmetic
Compression
Concurrent
File Handling

Regular
Expressions

Sorting

Functional

C/R, VB.NET
C/VB.NET, Java
C/VB.NET, Perl

Rust/VB.NET

JavaScript/Java

Go/Swift, R

C++/Swift, Perl

30

RQ2. Which types of programming languages are, on average, more
EDP efficient and inefficient for each of the selected platforms?

Rank Embedded Laptop Server
1 C C C
2 C++ Go Go
3 Go C++ C++
4 Rust JavaScript C#
5 JavaScript Rust JavaScript
6 C# C# Rust
7 VB.NET VB.NET VB.NET
8 PHP PHP PHP
9 Ruby Ruby Python
10 Python Swift Ruby
11 Perl Python Swift
12 Java Perl Perl
13 Swift Java Java

R R R

—
N

RQ3. How much does the EDP of each programming language differ
among the selected platforms?

* Hypothesis HO: A programming language s average EDP, does not have
a statistically important difference between the measurement platforms.

In some cases, there is a significant difference between the
average EDP in embedded and laptop platforms.

32

Takeaways

Power Watts
plug Up? Pro

/ *

Computer ” Raspberry Pi ol oid Developers Blog
Node 3b w

scripts

-
I iemavacon Android Developer Story: Vietnamese games developer Divmob finds
more users with localized pricing on Google Play

Posted by Liy Sheringnam, Google lsy team

Meter = s espl
Interface srcmve ncluding he popuargame. e o war.
Utilit

o
Energy Delay Product: Weight 3 (Performance Efficiency) s - o
® .
.
n
©
g
& L
H
3
2
35 <
2
£
§
g s 36 3 S0 9% 4k sE sw W sa 1 ¢
< ~ .
A m..;
, .
m.m.ww [. o v i .
G am am 93 5w oew e s em sm s dagéggﬁg&%ggg%gg@ggggo- %.E
EEST55ESLERE6EES6ERREgREs
i sunv.1l‘nln.uﬂ [.. [T 8cuEEalT538g5 gcgES EZEGY
Y03 TLEa¢ T2T g [T =] £ 5
v T - . - . o ;222 TG oc cT8=] e
o 4, % 4, %, % 4, ., “ % n G %9 P JdzLlag .Y E w= £L X 306
o % S, e R a%’x‘% n, e, T T, M %, SN5° g5 3 g 5 8 ££¢
% % Y % % %, " % EY = oo €< =

Energy-Delay Investigation of Remote Inter-Process Communication

Technologies
Stefanos Georgiou?, Diomidis Spinellis®

“Department of Management Science and Technology, Athens University of Economics and Business. Patision 76, Athina 10434

ARTICLE INFO ABSTRACT

Keywonds Most modern information technology devices use the Internet for creating, reading. updating, and
nergy Efficiency deleting shared data through remote inter-process communication (1PC). To evaluate the energy

Programming Languages of rc gics and the g run-time we per-

Remote Inter-Process Communication formed an empirical study on popular IPC systems implemented in Go, Java, JavaSeript. Python, PHP.

System Calls Ruby, and C#. We performed our experiments on computer platforms equipped with Intel and ARM

processors. We obscrved that JavaScript and Go implementations of gRPC offer the lowest energy
consumption and execution time. Furthermore, by analysing their system call traces, we found that
incfficient use of system calls can contribute to increased energy consumption and poor execution

time,

1. Introduction

The energy consumption,’ for the IT-related products, is
an evergrowing matter that has caught the attention of aca-
demic researchers and industry. This is primarily due to the
IT-related energy consumption is esti-
mated to reach 15% of the world’s total by 2020 [42]. En-
ronmental impact is another major concern, as IT’s total
greenhouse gas emissions are expected to reach 2.3% by the
same year [11]. Energy consumption of IT systems is partic-
ularly important in two areas. First, the data centres, one of

increasing costs,

the vital contributors of IT sector’s global energy consump-
tion and greenhouse gas emissions. These are housing large

number of server nodes communicating with clients through
energy remote i P S ication (IPC)
tec Second, the bl field of 10T, where
low energy performance is critical, has multiple embedded
devices connected with hyper-physical systems to exchange,
share, and transmit data. To this end, providing sustainable
solutions, by reducing energy consumption, to ensure data
centres’ and I0T infrastructures environmental sustainability

and business growth is of paramount importance.
Researchers have carried out studies on different aspects
and granularity of software artifacts to investigate the en-
ergy consumption of data structures [32, 12, 27, 28, 44],
different programming languages [26, 3, 35, 18], multi-
threaded applications [31. 29, 30], and coding practices [41,
19, 37, 39, 33]. In terms of remote IPC technologies, prior
work [13, 8, 7, 22, 23] focused on investigating the energy
consumption and run-time performance of smart phones and
embedded systems on Java implementations for remote IPC
such as RPC, REST, SOAP, and WebSockets. However, 1PC

¥ sgeorgiouauet.gr (S. Georgiou): ddsgaueb.gr (D. Spinellis)
ORCID(s):

have not been i in terms of energy
consumption and run-time performance for different pro-
ing language impl i

In this work, we research computer platforms equipped
with Intel and ARM processors using three different 1pC
technologies available in Java, JavaScript, Go, Python, PHP,
Ruby, and C#. We try to identify which programming lan-
guage and IPC technology implementations offer the best en-
ergy and run-time performance when invoking remote pro-

cedures. Furthermore, we focus on po
behind our results to help software developers, specifically

ting out the reasons

those concerned with IPC library development, build more
energy and run-time performance-efficient implementations.
To accomplish this, we perform an empirical study on

the selected computer systems on sev
ming that offer impl

1 popular program-
ions of three well
known remote IPC technologies and investigate their energy
and run-time performance cost. Our results highlight the ef-
ficiency of different implementations and libraries. We also

examine whether the energy consumption of IPC technolo-
gies is proportional to the run-time performance or the sys
tems’ resource usage.
Results reveal that JavaScript and Go implementations of
gRPC offer the most energy-efficient and best run-time per-
forman i among the idered IPC tech-
nologies, while Ruby, PHP, Python, Java, and C# perform
most inefficiently, for the most cases. We also found that the
energy consumption and run-time performance is not pro-
portional for all the i 1PC gy
tions. Besides, from the extracted system call traces, we
were able to name certain misuse cases of computer re-

sources that can contribute to higher energy demands and
lower run-time performance.

This work is oreanised a< follows Section 3 nresents onr

Energy-Delay Investigation of Remote Inter
Process Communication (IPC)Technologies

34

Motivation

The Internet in Real Time
e Like 267 | Share g =~

By the time you finish reading this sentence, there will have been 219,000 new Facebook
posts, 22,800 new tweets, 7,000 apps downloaded, and about $9,000 worth of items sold
on Amazon... depending on your reading speed, of course. Now that the Internet is widely
available, just one second of global online activity is jam-packed full of events, from
communication with others to data storage to entertainment options galore.

For example, in the amount of time you've been on this page, this is how much data has
already passed through the Internet.

4,104,000

GIGABYTES OF DATA

Research Questions

RQ1. Which IPC technology implementation
offers the most energy and run-time performance
efficient results?

. RQ2. What are the reasons that make certain
IPC technologies more energy and run-time

- .

- performance efficient?

RQ3. Is the energy consumption of the IPC

technologies proportional to their run-time
‘ performance or resource usage?

36

Subject Systems

Categories Programming Compiler and Interpreter Versions
Languages
ARM Processor Intel Processor
Compiled Go 1.9.4 1.94
Semi-Compiled Java 1.8.0 1.8.0
C# 4.8.0 4.8.0
Interpreted JavaScript 10.4.0 10.4.0
Python 2.7.14 2.7.14
PHP 7.2.12 7.2.12
Ruby 2.5.3p 2.5.3p

37

Execution Process
[— Code | [— Code |

_ Watts _ Watts
Client Node Up? Pro Client Node m— Up? Pro
Cable

Ethernet Micro Ethernet Micro
Connection USB Connection USB
SSH SSH
------------------- » . SETELTETEETETPEREERY .
' Raspberry Pi ' Raspberry Pi
Server Node RUEHY Server Node RUEHY
____________________ 3b 3b
SCP SCP

Server Profiling Server Profjling
Code scripts Code scripts

38

RQ1. Which IPC technology implementation offers the most energy
and run-time performance-efficient results?

2000

W
ul
o

1750

[
u
o
(=}
Y]
(=}
o

N
ul
o

Intel’'s Platform Measurements ARM'’s Platform Measurements
1250

ﬂi‘aﬁ! JAn.

JavaScript and Go are the programming languages offering the most energy
and run-time performance efficient library implementations for the Intel and ARM
platforms. In addition, for almost all programming language implementations, we
found that gRPC is the IPC technology having the most efficient results.

N
o
o

[
ul
o

Energy consumption (in Joules)

[y
o
o

Energy consumption (in Joules)

ul
o

o
o

Client-gRPC
Client-RPC
Client-Rest
Server-gRPC
Server-RPC
Server-Rest
Client-gRPC
Client-RPC
Client-Rest
Server-gRPC
Server-RPC
Server-Rest

39

RQ2. What are the reasons that make certain IPC technologies more
energy and run-time performance-efficient?

gRPC client gRPC server
C# C#

Go Go

Java Java

JS]S

PHP PHP

Python Python

Ruby Ruby
- 2 : : : g ° s 3 : : g
System over total CPU time percentage - System over total CPU time percentage -

Our analysis shows the frugal opening, connecting, closing, accepting, and
shutting down connections can impact the energy consumption and run-time
performance of the IPC technologies. The usage of writev system call appears in

the most efficient implementations.

What are the system calls?

User applications

GNU C Library (glibc)

GNU/

LINUX) System Call Interface

KERNEL e

SPACE

Architecture-Dependent Kernel Code

Hardware platform

RQ3. Is the energy consumption of the IPC technologies
proportional to their run-time performance or resource

usage?

We found that there is a positive moderate and very strong monotonic correlation
between the energy consumption and run-time performance of the Intel and ARM
platforms, respectively. Also, we found a weak and very weak monotonic
relationship between our energy measurements and resource usage. Therefore,
none of the collected resource usage measurements can be used to justify the
energy consumption results in terms of IPC technologies.

42

Takeaways

2000
1750
1500
1250
1000

750

50

o

Energy consumption (in Joules

25

o

=
N
o
o

1000

800

600

400

200

Energy Consumption (in Joules)

o

-@igﬁ

(&} (&} ks O (&) k7
e & ¢ & & £
£ & 5 & g g
k2] S % e 7} nE)
O 3 w [}
) °
.
.
.
5 # °
L]
» .
: . L]
L L :
L
= $.
0 10 20 30 40 50 60 70 80

Run-Time Performance (in seconds)

gRPC client
C#

Go
Java
]S
PHP

Python
Ruby

T
o

(S,
o
o
o

D
o
o
o

= N w
o o o
o o o
o o o

Energy Consumption (in Joules)

o

t t T T
[=) (=] [=]
~N ? O [*<]

System over total CPU time percentage

Maximum Resident Set Size (in MBs)

o %
°% o . s
% ® 9y % . .) ®e
0 100 200 300 400 500

100

43

Energy-Efficient Computing in a Secure
Environment

Energy-Efficient Computing in a Secure Environment

STEFANOS GEORGIOU, Athens University of Economics and Business, Greece
DIMITRIS MITROPOULOS, Athens University of Economics and Business, Greece
DIOMIDIS SPINELLIS, Athens University of Economics and Business, Greece

An operating system (0s) typically includes numerous security mechanisms that protect the confidentiality, integrity, and
availability of its data and services. However, such safeguards may impact energy consumption and encumber the run-time
performance of applications running on a system. We present a large scale study, where we investigate how the various
security mechanisms affect energy and run-time performance cost at the os-level. We focus on well-known mechanisms

luding encrypted Is, memory zeroing, GCC safeguards, and cPU vulnerability patches against
critical vulnerabilities, such as Meltdown. To do so, we utilise 128 benchmarks of different application types found under the
well-established Phoronix test suite. Our findings suggest that security mechanisms lead to an increased energy consumption
and significantly degrade the run-time performance of various applications including web servers, databases systems, kernel

operations, and disk usage. Notably, when we disabled the various security mechanisms, real-world applications such
as Apuche and Redis, indicated important energy (from 18% to 41%) and run-time performance (from 23% to 45%) gains.

lly, we examined the correlation between energy consumption and performance. Our findings showed that the two
are not alw: ys related. Overall, our results suggest that administrators should consider disabling such security mechanisms
when a computer system runs inside a secure environment to benefit from energy and run-time performance gains.

CCS Concepts: » Hardware — Power and energy; - Security and privacy — Systems security.

Additional Key Words and Phrases:
Gec safeguards, encrypted network communications, memory zeroing, Spectre, Meltdown, MDs;

nergy ion, CPU y patches, secure envi , security mechanism:

ACM Reference Format:
Stefanos Georgiou, Dimitris Mitropoulos, and Diomidis Spinellis. 2020.

cient Computing in a Secure Environment.
ACM Trans. Comput. Syst. 37, 4, Article 111 (June 2020), 29 pages. https://doi.org/10.1145/nnnnnnn.nannnnn

1 INTRODUCTION

The high computational demands and services, offered by the different 11-related products, increase the energy
consumption of the computer systems. The study of energy consumption in computer systems has gained vast
popularity in recent years due to the advent of mobile applications and data centers that are responsible for
more than 10% of the world’s [18, 25, 62]. Therefore, reducing the energy footprint of rr products is of increased
importance.

Unix-like os’s are equipped with various services, background processes, and daemons [59]. Among such
services are the security mechanisms that protect computer systems from attackers trying to exploit potential
vulnerabilities. Such security mechanisms can affect the energy consumption and the run-time performance of a

Authors’ addresses: Stefanos Georgiou. sgeorgiou@aueb.gr. Athens University of Economics and Business, Patision 76, Athens, Greece, 10434;
Dimitris Mitropoulos. dimitro@aueb.gr, Athens University of Economics and Business, Patision 76, Athens, Greece, 10434: Diomidis Spinellis,
dds@aueb. gr. Athens University of Economics and Business, Patision 76, Athens, Greece, 10434,

Motivation

i 4 n N

Research Questions

UNDERSTAND

5 >
; > "

smou:snnus, .
“YOUSHOULD.

RQ1. What are the energy and run-time
performance implications of the investigated
security mechanisms on a computer
system?

RQ2. Is the energy consumption of the
examined security mechanisms proportional
to their run-time performance?

RQ3. How do security mechanisms affect
the energy consumption and the run-time
performance of diverse applications and
utilities?

47

Subject Systems

System Kaby Lake (x86)
Microarchitecture Kaby Lake
Processor/Soc Core i7-7700

Cores x threads 4 x 2

Base Frequency 3.6 GHz

Max Frequency 4.2 GHz

Cache line size 64 B

L1-D/L1-1 Cache 4 x 32 KiB 8-way

L2 cache 4 x 256 KiB 4-way

L3 cache 8 MB 16-way

I-TBL 4-KByte pages, 8-way
D-TBL 1-GB pages, 4-way
L2-TBI 1-MB, 4-way

RAM 16 GB UDIMM, DDR4 2400

. package power plane

‘ ppO0/core power plane (all cores on the package)
. pp1/graphics power plane (client only)

. DRAM power plane (server only)

48

Scenarios

CPU Vulnerability Patches GCC Security Flags HTTP/HTTPS
Stock Stock HTTP
Meltdown Stack Protector HTTPS
Spectre FORTIFY _SOURCE
MDS PIC/PIE
AllOff RELRO

AllOff

49

Data-set

Category Benchmark Suites

Audio Encoding encode-mp3, encode-flac . .

Video En- davild, svt-avi, svt-hevc, svt-vp9, vpxenc, x264, x265, ffmpeg while (get_tlme() -start t< TlME) {
code/Decode create_files();

Code Compila- build-php, build-linux-kernel, build-gcc, build-gdb, build-llvm, build2 } -

tion

File Compression compress-p7zip, compress-bzip2, compress-zstd, compress-xz, Izbench

Database Suite sqlite, redis, rocksdb, cassandra, mcperf, pymongo-insert
aircrack-ng, apache, bloghench, brl-cad, byte, cloverleaf, cpp-perf-bench, crafty,
dacapo-bench, ebizzy, embree, fhourstones, glibc-bench, gmpbench, himeno, hint,

hmmer, hpcg, javascimark2, m-queens, minion, nero2d, nginx, node-express-

EPY) Massiye loadtest, numenta-nab, phpbench, primesieve, pybench, pyperformance, rodinia,
rust-prime, scimark2, stockfish, swet, sysbench, sudokut, tensorflow, xsbench, for (|nt i= O; i < 1000, i++){
sunflow, bork, java-jmh, renaissance, tiobench, openssl, blake2s, john-the-ripper, create fl|eS()
botan, octave-bench, oidn — !
Disk Suite fs-mark, iozone, dbench, postmark, aio-stress }
Kernel schbench, ctx-clock, stress-ng, osbench
Machine Learn- rbenchmark, numpy, scikit-learn, mkl-dnn
ing
Memory Suite ramspeed, stream, t-test1, cachebench, tinymembench, mbw
Networking Suite iperf, network-loopback
Imaging graphics-magick, inkscape, rawtherapee, tjbench, dcraw, darktable, rsvg, gegl
tungsten, ospray, aobench, c-ray, povray, smallpt, ttsiod-renderer, indigobench,
Renderers : ”
rayslbench, j2bench, qgears, jxrendermark
Desktop Graphics xonotic, openarena, tesseract, paraview, unigine-valley, unigine-heaven, nexuiz,

glmark2 50

Results

Stock Meltdown Spectre MDS AllOff Difference (%)
Tasks Energy Time Energy Time Energy Time Energy Time Energy Time | Energy Time

cassandra_read 127 15 125 15 124 15 125 15 123 15 3.6 0
cassandra_write 115 13 112 13 112 13 114 13 111 13 3.6 0

3.4--6.6%

rocksdb_fillrand 1281 1271 31 31 1212 31 X
rocksdb_fillseq 976 21 969 21 951 21 960 21 936 20 4.1 4.7
sqlitebench 944 134 962 136 878 125 930 134 908 130 3.8 3

51

Impact

on Kernel operations

Stock Meltdown Spectre MDS AllOff Difference (%)
Tasks Energy Time Energy Time Energy Time Energy Time Energy Time | Energy Time
ctx_clock 6192 318 3523 174 6178 318 3165 169 1121 56 81.8 82.3
osb_files 659 29 631 27 593 26 622 25 542 23 17.6 20.6
osb_processes 887 22 852 20 889 22 870 20 803 19 9.4 13.6
osb_threads 588 19 549 17 574 19 550 18 494 15 159 21
osb_mem_alloc 514 23 503 22 508 23 501 22 480 21 6.6 8.6
osb_programs 584 1l 553 10 576 11 546 10 511 9 124 18.1
stress-ng_fork 1232 24 1185 23 1222 24 1170 22 1108 21 10 12:5
stress-ng_matrix 799 14 759 13 775 13 786 14 752 13 5.9 7:1
stress-ng_msg 1024 22 862 18 988 21 636 13 519 10 49.2 54.5
stress-ng_sem 911 20 919 21 888 20 782 17 812 18 9.3 10
stress-ng_sock 1719 30 1392 28 1591 28 1367 28 1309 26 23.8 153
stress-ng_switch 1431 26 1411 25 1329 23 1204 29, 1125 19 213 269
stress-ng_vec 1446 29 914 18 913 18 910 18 911 18 36.9 37.9

52

RQ1. What are the energy and run-time performance implications of
the investigated security mechanisms on a computer system?

Stock Meltdown Spectre MDS AllOff Difference (%)
Tasks Energy Time Energy Time Energy Time Energy Time Energy Time| Energy Time
build2 10419 196 10352 197 10329 197 10282 197 10247 195 1.6 0.5
gcc 17039 359 16830 353 16898 355 16796 350 16539 345 3 39
gdb 5791 134 5695 131 5729 132 5666 130 5587 128 3:3 44
kernel 81490 1555 73093 1382 73330 1393 72572 1371 72103 1374 115 116
llvm 45784 864 45569 861 45488 862 45302 858 45052 851 1.5 1.5
php 4403 99 4380 98 4366 98 4360 98 4318 97 1.9 2

CPU vulnerability patches can impact the energy and run-time performance real-word
applications from 18% up to 45%, respectively. Similarly, GCC safeguards affect the energy
and run-time performance of applications up to 10%. Similar results appear for the
communications-related security mechanisms as well.

53

RQ2. Is the energy consumption of the examined security
mechanisms proportional to their run-time performance?

CPU Vulnerability Patches Measurements GCC Security Flags Measurements
£ 35000 W g S
S . o* >3 | &
2 30000 2 40000
£ £ * e
= 25000 y et »
g - '5 30000 .
S 20000+ B .
(S ” £ | . e
a 15000+ a 20000 a2 ¥ L ™
S oo « & & Py %
> s @ «® . » ® > o i "
o 5000 1 ol - Bt o ey gen e we 8
(] s gew =% * Q - . . & '
uCJ 0- oﬁ §?ww‘! " | | | ch 0. @@ﬁ-ﬁ%“ s ' | |
0 200 400 600 800 1000 0 200 400 600 800
Run-Time Performance (in seconds) Run-Time Performance (in seconds)

Our findings suggest that energy consumption and the run-time performance have a very
strong monotonic correlation for the investigated benchmarks in the case of the CPU
vulnerability patches and the GCC safeguards.

54

RQ3. How do security mechanisms affect the energy consumption
and the run-time performance of diverse applications and utilities?

Application types such as database systems, code compilation, compute-intensive, kernel
operations, disk usage had the highest energy and run-time performance gains after disabling
the CPU vulnerability patches. For the GCC safeguards, compute-intensive, databases

systems, and file compression applications had the highest energy and run-time performance
gains after disabling security flags.

55

Takeaways

Stock Meltdown Spectre MDS AllOff Difference (%)

Tasks Energy Time Energy Time Energy Time Energy Time Energy Time|Energy Time

cassandra_read 127 15 125 15 124 15 125 15 123 15 3.6 0

cassandra_write 115 13 112 13 112 13 114 13 111 13 3.6 0
® e

rocksdb_fillrand 1281 31 1271 1243 31 1250 31 1212 31 5.3 0 N G ' M x A pa c h e

rocksdb_fillseq 976 21 969 21 951821 960 21 936 20 4.1 4.7
sqlitebench 944 134 962 136 878 125 930 134 908 130 3.8 8

38 35000 <
3 L -* %
230000
£
< 25000 2
S 20000
1S -
3 15000
c
(=) | e e - o

¥ ¥ ¥ L;1oooo Lo o

' & 5000 *h e e
CPU Memory| |[Devices 2 o] 2% gouw + - 7T,
0 200 400 600 800 1000

Run-Time Performance (in seconds) 56

Green Al: Do Deep Learning Frameworks
Have Different Costs?

Green Al: Do Deep Learning Frameworks Have Different Costs?

Stefanos Georgiou* Maria Kechagia® Tushar Sharma
Queen’s University University College London Dalhousie Uninversity
stefanos.georgiou@queensu.ca m.kechagia@uclac.uk tushar@dal.ca

Federica Sarro
University College London
f.sarro@uclac.uk

ABSTRACT

The use of Artificial Intelligence (ar), and more specifically of Deep
Learning (pv), inmodern software systems, is nowadays widespread
and continues to grow. At the same time, its usage is energy de-
manding and contributes to the increased CO, emissions, and has
a great financial cost as well. Even though there are many studies
that examine the capabilities of DL, only a few focus on its green
aspects, such as energy consumption.

This paper aims at raising awareness of the costs incurred when
using different pL frameworks. To this end, we perform a thor-
ough empirical study to measure and compare the energy con-
sumption and run-time performance of six different DL models
written in the two most popular DL frameworks, namely PyTorcH
and TENSORFLOw. We use a well-known benchmark of pL models,
DEEPLEARNINGEXAMPLES, created by NVIDIA, to compare both the
training and inference costs of pL. Finally, we manually investigate
the functions of these frameworks that took most of the time to
execute in our experiments.

The results of our empirical study reveal that there is a statisti-
cally significant difference between the cost incurred by the two
DL frameworks in 94% of the cases studied. While TENSORFLOW
achieves significantly better energy and run-time performance than
PyTorcH, and with large effect sizes in 100% of the cases for the
training phase, PyTorcH instead exhibits significantly better en-
ergy and run-time performance than TENSORFLOW in the inference
phase for 66% of the cases, always, with large effect sizes. Such a
large difference in performance costs does not, however, seem to
affect the accuracy of the models produced, as both frameworks
achieve comparable scores under the same configurations. Our man-
ual analysis, of the documentation and source code of the functions
examined, reveals that such a difference in performance costs is
under-documented, in these frameworks. This suggests that devel-
opers need to improve the documentation of their pr frameworks,
the source code of the functions used in these frameworks, as well
as to enhance existing DL algorithms.

Ying Zou
Queen’s University
ying.zou@queensu.ca

CCS CONCEPTS

« Hardware — Power and energy; - Software and its engi-
neering — Software libraries and repositories; - Computing
methodologies — Machine learning;

KEYWORDS
Energy consumption, run-time performance, deep learning, Ap1s

ACM Reference Format:

Stefanos Georgiou, Maria Kechagia, Tushar Sharma, Federica Sarro, and Ying
Zou. 2022. Green Al: Do Deep Learning Frameworks Have Different Costs?.
In 44th International Conference on Software Engineering (ICSE '22), May
21-29, 2022, Pittshurgh, PA, USA. ACM, New York, NY, USA, 13 pages. https:
//doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Deep learning (pL) is a field of machine learning (ML) that has
recently gained significant attention from researchers and prac-
titioners. Along with the increase of computational power and
availability of data, the use of deep learning has contributed to the
improvement of several applications (e.g., in the medical, financial,
transportation sectors) that, for instance, use speech and image
recognition, machine translation, and natural language processing
(~rp). The advancement in these areas would have not been possible
without the great advancement in DL.

While the research community has spent a significant effort
towards improving the accuracy of DL approaches, it has often
overlooked their costs. As recently reported by Schwartz et al. [76],
DL has been assisting in an increase in the computational costs of the
state-of-the-art Al research as big as 3000,000x between 2012 and
2018. Such a dramatically increasing trend in resource consumption,
dubbed as RED Al is not just often prohibitively expensive for
researchers and practitioners, but also environmentally unfriendly.

This has motivated the field of Green Software Engineering
(sE) research, which aims to decrease software environmental foot-
nrints and snnnarts inter alia Green a1 [58]1 Ontimizing resonrce

57

Questions

. What programming languages are TensorFlow and PyTorch
written in?

. Which computer component makes the biggest difference when
training Deep Learning models?

58

Why is this important?

The energy spent to train a model can vary significantly between
frameworks, but how much?
Investigate the energy and run-time performance for training and
inferencing Deep Learning algorithms build in popular ML
frameworks and suggest which to use in specific cases.

. What tuning parameters can affect the energy and run-time
performance of the selected models?

59

Research Questions

RQ1: Which is the most energy and run-time
performance-efficient Deep Learning framework for the
models examined?

RQ2: How much accuracy do energy and run-time
performance efficient Deep Learning frameworks
sacrifice for the models under examination?

RQ3: What are the most energy and run-time
performance inefficient APIs of Deep Learning
frameworks for the models under examination?

60

Public Repository

O Search or jump to... / Pull requests Issues Marketplace Explore £ +- -

& NVIDIA/DeepLearningExamples ' Publi ® Watch 252 ~ % Fork 2.1k % Stared 7.5k
<> Code Issues ' 116 Pull requests ' 14 Actions Projects Wiki Security Insights
¥ master ~ ¥ 6 branches © 0tags Go to file Add file » Code ~ About

Deep Learning Examples

g nv-kkudrynski Merge: [nnUNet/PyT] Fix DALI inference pipeline 589604d 11 days ago %) 1,066 commits
0 Readme
B _github/ISSUE_TEMPLATE Update issue templates 2 years ago W 7.5k stars
&® 252 watching
B CUDA-Optimized/FastSpeech Adding links to performance benchmark page 6 months ago £
Y 2.1k forks
B DGLPyTorch/DrugDiscovery/SE3Tra... Remove RoseTTAFold 2 months ago

Tasks

Categories

Recommender
Systems

NLP

Computer Vision

Models

NCF

Transformer-XL

GNMT

ResNet-50

SSD

MaskRCNN

Datasets

ML-20M

WikiText-103

WMT16 EN-DE

Coco 2014

Coco 2017

Coco 2017

62

Tools

Tue Aug 3 17:16:41 2021

B e +

| NVIDIA-SMI 460.32.03 Driver Version: 460.32.03 CUDA Version: 11.2 |

|---------------~‘-----? -------- 0~-'-------'-----t ----- +------: --------------- n CProfiIe

| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |

| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. | Python 3.X

| | | MIG M. |

| | cProfile and profile provide deterministic profiling of Python

I 64? Oggg ro P;geo oy g;sw : eogggg:gszeogl‘ie:g I - Defa:{i I programs. A profile is a set of statistics that describes how often
o 3

I I | N/A | and for how long various parts of the program executed. These

PR S R e e R e S e S R R S P e + statistics can be formatted into reports via the pstats module.The
Python standard library provides two different implementations of

TProcessés __ T the same profiling interface:

| GPU GI CI PID Type Process name GPU Memory |

| ID D Usage | @ More at Python 3 Documentation

I |

| (<] N/A N/A 2023 G /usr/lib/xorg/Xorg 9MiB |

| 0 N/A N/A 2086 G /usr/bin/gnome-shell 5MiB | s ck
| ¢} N/A N/A 21488 C python 7769MiB |

B e e +

Display all 240 possibilities? (y or n)
tu r terpr :/media/tushar/Cupboard/machine_learning_frameworks_analysis$ cat measurements/transformer_xl_PyTorch perf 2.txt

Performance counter stats for 'system wide':

144,643.48 Joules power/energy-pkg/
15,078.98 Joules power/energy-ram/

1431.584266139 seconds time elapsed

:/media/tushar/Cupboard/machine_learning_frameworks_analysis$ I

63

Our platform

0.0%]
0.0%]

2.40

v

1.83G/94.76G]

64

More challenges ahead

%ﬂxm Bendwidth
Faste tran Gend e 5502

PrEngDL

o Search or jump to...

H stefanos1316/ICSE_2022_artifact (pubiic

<> Code

Issues Pull requests Actions

¥ main ~

I_Q stefanos1316 Add manual analysis data

configs

data

tools

.pre-commit-config.yaml
PyTorchVs.TensorFlow_manual_ana...
README.md
install_and_configure.yml

run.sh

Pull requests Issues Marketplace Explore

Projects

Add all tools and data
Add all tools and ¢

Add all tools and data
Add all tools and data
Add manual analy

Add all tools and data
Add all tools and data

Add all tools and data

Security

Insights Settings

Go to file Add file »

1 22 days ago @ 3 commits

lays ago

go

22 days ago
ago

ago

days ago

66

Training results

The ORecommender System, the ONaturaI Language Processing, and theOComputer Vision Category

Models CPU & RAM Energy | p-value (A12) | GPUEnergy | p-value (A12) Run-Time p-value (A12)
NCF TensorFlow <0.001 (1) | TensorFlow | <0.001 (1) | TensorFlow | <0.001 (1)
Transformer-XL | PyTorch <0.001 (1) | PyTorch <0.001 (1) | PyTorch < 0.001 (1)
GNMT PyTorch <0.001 (1) | PyTorch <0.001 (1) | PyTorch <0.001 (1)
ResNet-50 TensorFlow <0.001 (1) | TensorFlow |<0.001(1) | TensorFlow | <0.001 (1)
SSD TensorFlow <0.001 (1) | TensorFlow | <0.001 (1) | TensorFlow <0.001 (1)
Mask-RCNN | TensorFlow <0.001 (1) | TensorFlow |<0.001(1) | TensorFlow | <0.001 (1)

67

Inference results

The ORecommender System, the ONaturaI Language Processing, and theOComputer Vision Category

Models CPU & RAM Energy | p-value (A12) | GPUEnergy | p-value (A12) Run-Time p-value (A12)
NCF TensorFlow <0.001 (1) | TensorFlow | <0.001 (1) | TensorFlow | <0.001 (1)
Transformer-XL | PyTorch <0.001 (1) | PyTorch <0.001 (1) | PyTorch < 0.001 (1)
GNMT PyTorch <0.001 (1) | PyTorch <0.001 (1) | PyTorch <0.001 (1)
ResNet-50 TensorFlow <0.001 (1) | TensorFlow |<0.001(1) | TensorFlow | <0.001 (1)
SSD PyTorch <0.001 (1) | PyTorch < 0.001 (1) PyTorch < 0.001 (1)
Mask-RCNN | PyTorch <0.001 (1) | PyTorch <0.001 (1) | PyTorch < 0.001 (1)

68

Answer to RQ1

performs better for training Recommender Systems
and Computer Vision tasks.
outperforms TensorFlow for Natural Language
Processing tasks.

For model inference, is more efficient for
Recommender Systems and ResNet-50.
Overall, IS more energy and run-time performance

efficient for training models, while for models inference.

69

Accuracy Trade-Offs

Tasks

PyTorch-Energy

TensorFlow-Energy

1200K

1000K

800K

600K

400K

200K

0K

1200K

1000K

800K

600K

400K

200K

0K

Rt: 2,438
Acc: 0.000
Rt: 2,515
Acc: 0.450
Acc: 0.480
Rt: 2,028
Acc: 0.000
- 4
= 2
- A
© 3
x
]
a
=3

Rt: 5,901
Acc:0.089

NCF

Rt: 3,472

Acc:0.440

ResNet-50

Rt: 5,667
Acc: 0.030

SSD

En
w
i

]
o

Transformer-XL

Answer to RQ2: The collected results suggest that better energy consumption
and run-time performance—in most of the cases—yield better accuracy results as
well. Overall, we find that TensorFlow has similar accuracy to PyTorch, under the
configurations and parameter used in our study.

70

|dentifying costly API calls — Spearman

Tuples PyTorch TensorFlow
PKG Energy—Run-Time 0.25 0.88
RAM Energy—Run-Time 0.88 0.94

GPU Energy—Run-Time 0.42 0.60

71

Deep Learning Frameworks Profiling

~:0:<built-in method builtins.exec>
100.00%

(X)
1719

train_loop
99 64%
(0.09%)

1x

< 6.36%
J14786x _14786x

module:567: _call_ optimizer-159:zero_grad tensor: 156 backward
33.68% 22.32%
(0.20%) (0.09%)
=P —— s 2042414x
3.30% 50.37% (2.48% 2.48% [2.20%)\ 2.14% 200%\ 290% N 126% 1.33%

14786x _~ 88716x 14786x | 14786x / 14786x |192218%1774320x 88716x |547082x \ 783658x 961090

model:50 2snet: 101-forward ; __init__:335:synchronize [l ~:0:<method ‘zero_" of ‘torch._C._TensorBase' objects> il grad_mode:12:decorate_context
1 20.21% 96% 16.24% 36%

(0.00%) (21.98%) (0.00%) (0.00%)

14786x 2706186x 14786x 14786x

functional:1 v_| : ~:0:<built-in method torch._C._cuda_synchronize>
Z 20.21%
(20.21%)
14786x

sgd:75:step torch._C._EngineBase' objects>
16.23%
(0.30%)
14786x

2.25 10.04% - 3.36%
961090 5411493x ~_2705655x

_Tens

0:<built-in method batch_norm>
0.57%

Symbols and their meanings

B Complex calculations

Complex Implementation
® Largedata

(> Device dependency

— Unknown

73

PyTorch Inference

Model Function Name Ncalls Run-Time Cost Type
Torch.tensor 81,819 578 60.6% <>
Torch.nn.Conv2d 380,000 24 2.6% .
Mask R-CNN Torch.Tensor.nonzero 400,000 17 1.8% —
Torch.Tensor.float 1,505,005 16 1.7% o
Torch.Tensor.to 105,312 16 1.7% D
Torch.Tensor.type 9,735,395 14 1.5% —

74

Takeaways

O PyTorch

Table of Contents

PYTORCH DOCUMENTATION

PyTorch is an optimized tensor library for deep learning using GPUs and CPUs.

Features described in this documentation are classified by release status:

Test small programs energy consumption before
running large scale experiments.

Use profiling approaches on small experiments to
estimate resources to be wused for large
experiments afterwards.

75

What are we missing as a community?

How to convince developers which programing language,
module, or framework to choose in order to reduce energy
consumption?

How different components will affect the energy and the run-time
performance of applications in the long term?

. An easy way to collect measurements.

76

Thank you for your attention!!!

Think Green

Email: stefanos1316@gmail.com
GitHub: stefanos1316

77

Backup slides

78

Programming Languages

Go

C++

JavaScript -

C#

Rust

VB.Net

PHP -

Swift -

Ruby

Python

Perl

%’)

. :
4 4 4, 7
% % 2
3 6% %;% %
]

G
0,
(‘0 %,:

Programming Tasks

79

Programming Languages

JavaScript -

Go

C++

C#

Rust

VB.Net

PHP -

Ruby

Swift -

Python

Perl

% P
T Mo T Ry o R N % % T S Y Tu e, % S P wTa %% % %
4’» Ny Y, © K2 %e v Qb% %9 %% 7% e % %’) oo°<r %, © o %@ o, R =
% o) ® % ® 2 KA % %

Programming Tasks

80

Programming Languages

(e 20

Go

Rust

JavaScript -

C#

VB.Net

PHP -

Ruby

Python

Perl

Programming Tasks

8.42

81

C++

192}

g’ VB.N
2 .Net
=]

(o))

=

® JavasScript -
o

=

£

£

5

<] Ruby
o

fsbon 37 i+ PV 8 s lEcs 3.98 453 457

% % PO 9, % A <) (o G o, @, & 4 %
RS ", o, o, “ G%o %/"% P g o %, 6‘“‘@,%“» e %ox, % %’b@ %%, "o %,
o s, 3 ° 9 %, % < K 0,
°’>Q Iblo 'bo 4‘/ s,)o 4 % (7 23 % (‘Go 0@0 % 0%{ °¢ys 2 %

Programming Tasks

82

Programming Languages

JavaScript -

Go

C++

C#
Rust

VB.Net

Ruby 3.41) 9 .0 v E 499 467 5.07

Python

Perl

Programming Tasks

83

Programming Languages

JavaScript -

C++

Go

Rust

C#
VB.Net
PHP -
Ruby
Python
Perl
Java ; 5.04 7. 797 717 Q 6.69 52 12.59
Swift - 5.61 698 548 5 . 92 701 754 633 818
R- 4.8 .28 i LY 8.48
i ; 1 . . - i 3 1 1 T T Ll

% P
2%, S, Q@ 1%% % qéiq%b 43% %, q%b %, % % %, U Sy
9, L g

Programming Tasks

84

Programming Languages

C++

C#

JavaScript

Rust -

VB.Net

PHP

352 348

Programming Tasks

85

Programming Languages

C++

C#

5.08 5.54

526 4.67

Programming Tasks

86

Programming Languages

G+

C#

JavaScript

Rust -

VB.Net

PHP

Python

Ruby

Swift

Perl

Programming Tasks

6.6

7.95

707 7.93

11.05

87

0T

+
*
il.
-

l.
Is

1+

W

'

O
<
oN
o

88

"JU0D-"YdUAS
9|buis--aayul
‘Rnw-"isyul
o/I-e|1y
uuewuaxoe
uos/

x2b63.
uewyny
|eli0loe)
9pOodUd-|IN
uoIlMasul
Aewe
Qwoupuljed
uonD3|as
so9sse|d
9|qqnq
‘Bajul--winu
321nb
‘dw02-'2u0d
"jesado-"dxa
abiow
"yew--fqo
9podap-|in
f1dwod-mz|
‘dwod-"ouny

0T

¢+

léim

|

I

&é

¢

é

¢

¢

|

ﬁ

¢

Wl

a

O

<

oN

o

89

9|buis-"1ayul
‘IINW-"J19yul
"'JU0D-"YDdUAS
|elioloey
O/1-911

uosl
uuewuaxoe
x2b3.
9p0odap-|in
"1dwo0d-Mz|
‘BajuI-"wnu
uewyny
awoJpuljed
uoID3|as
9p0odUd-|In
°|qqnq
uoIuasul
Aede
"Yw-'fqo
3}21nb
*dw02-2u0d
abisw
*dwod-"2uny
"jesado--dxa
sosse|d

0T

L

i

1t

¢

|

o

O

<

oN
o

90

9|buis-"1ayul
"JU0D-"YdUAS
Oo/1-914
‘Rnw-‘Jayul
uuew.uaxoe
uos/
|eli03oey
‘BajuI-"Wwnu
esado-"dxa
x963.
9p0oduUd-|In
QwoJpuljed
uewyiny
"yaw--fqo
uonIdI9S
*1dwod-mz|
Aesse
°|qqnq
‘dwod-"2u0d
uoIasuUl
‘dwod-"2uny
abisw
9p0dap-|in
321nb
sosse|d

gRPC client
C#

Go
Java
]S
PHP

Python
Ruby

L
o

t t t t
[=3 (=3 (=3
~N 2 O @

System over total CPU time percentage

RPC client
#

Go
Java
JS
PHP

Python
Ruby

100

Go
Java
]S
PHP

Python
Ruby

t t t t
(=] (=3 f=3
~N ? (=} @

System over total CPU time percentage

Rest client

100

0_

1 T 1 1
(=3 (=3 (=]
~N g O @

System over total CPU time percentage

100 1

gRPC server
C#

Go
Java
]S
PHP

Python
Ruby

|
- R ? 3 8

System over total CPU time percentage

“ RPC server

Go
Java
JS
PHP

Python
Ruby

100

] 2 2 2
System over total CPU time percentage

0_

Rest server

Go
Java
]S
PHP

Python
Ruby

100

System over total CPU time percentage

100 1

91

gRPC client
C#

Go
Java
JS
PHP

Python
Ruby

: 3 : : :
System over total CPU time percentage

RPC client
#

Go
Java
JS
PHP

Python
Ruby

100

-] : : :
System over total CPU time percentage

. Rest client

Go
Java
JS
PHP

Python
Ruby

100

e = s 2 2
System over total CPU time percentage

100

gRPC server
C#

Go
Java
]S
PHP

Python
Ruby

: 3 : : :
System over total CPU time percentage

" RPC server

Go
Java
JS
PHP

Python
Ruby

100

k t U t u
o (=] f=] j=3
~ 8 O @

System over total CPU time percentage

. Rest server

Go
Java
JS
PHP

Python
Ruby

100

- ; : 2 2
System over total CPU time percentage

100

92

