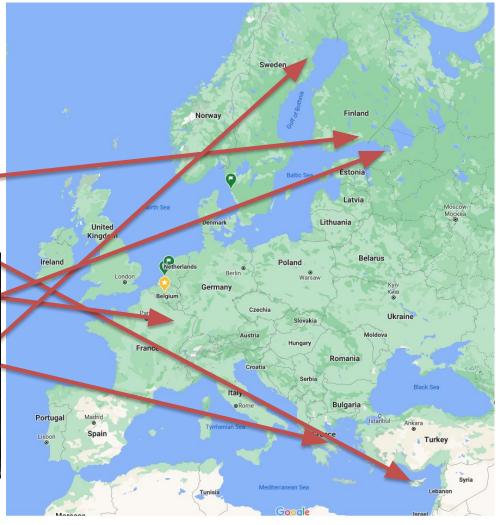


#### Saving Energy in Software Development by Making the Right Choices


By Stefanos Georgiou

4<sup>th</sup> of March 2022 Sustainable Software Engineering

1

#### Before PhD





#### Next to my PhD studies



We specialize in super-fast web & mobile app development for Advertising & Marketing.

C 0 0 0 0 0 00 005



#### Post Doctoral Fellow at Queen's University



### Spare time

Al 33 followers · 14 following · 🟠 60

Athens University of Economics and Bu...

- O Budapest, Hungary
- 🖂 sgeorgiou@aueb.gr
- https://stefanos1316.github.io/my\_port...
- ♥ @StefanosGeorgi1

#### Highlights

\* Arctic Code Vault Contributor

☆ PRO

Organizations



8,389 contributions in the last year

he last year

Contribution settings -





## Agenda

- Introduction
- Key terms
- Existing Challenges
- Programming Languages
- Inter-Process Communication Technologies
- Security Mechanisms
- Deep Learning
- What are we missing?

### Introduction



#### Annualized Total Bitcoin Footprints

| Carbon Footprint                                         | Electrical Energy                                        | Electronic Waste                                                       |
|----------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------------------|
| 114.06 Mt CO2                                            | 204.50 TWh                                               | 32.14 kt                                                               |
| Ĩ                                                        | ×                                                        | Ŵ                                                                      |
| Comparable to the carbon footprint of<br>Czech Republic. | Comparable to the power consumption of <b>Thailand</b> . | Comparable to the small IT equipment waste of <b>the Netherlands</b> . |

#### Single Bitcoin Transaction Footprints


| Carbon Footprint                                                                                              | Electrical Energy                                                                        | Electronic Waste                                                                                                               |
|---------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| 1278.36 kgCO2                                                                                                 | 2291.94 kWh                                                                              | 360.20 grams                                                                                                                   |
| ĨĒ                                                                                                            | ×                                                                                        | Ŵ                                                                                                                              |
| Equivalent to the carbon footprint of<br>2,833,277 VISA transactions or 213,059<br>hours of watching Youtube. | Equivalent to the power consumption of an average U.S. household over <b>78.56</b> days. | Equivalent to the weight of <b>2.20</b><br>iPhones 12 or <b>0.74</b> iPads. (Find more<br>info on e-waste <mark>here</mark> .) |

# Reducing energy consumption to combat Climate change





#### Sustainable software development?



### **Energy-efficient vs Run-time-efficient**

| Computer           | Α  | В  |
|--------------------|----|----|
| Energy (in Joules) | 30 | 20 |
| Time (in seconds)  | 10 | 20 |

### Software Development Life Cycle for Energy-Efficiency: Techniques and Tools



#### Software Development Life Cycle for Energy-Efficiency: Techniques and Tools

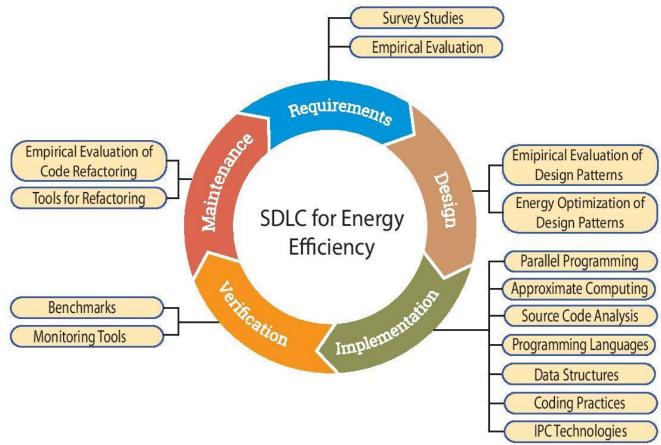
STEFANOS GEORGIOU, Athens University of Economics and Business, Singular Logic S.A. STAMATIA RIZOU, Singular Logic S.A. DIOMIDIS SPINELLIS, Athens University of Economics and Business

Motivation: In modern IT systems the increasing demand for computational power is tightly coupled with ever higher energy consumption. Traditionally, energy efficiency research has focused on reducing energy consumption at the hardware level. Nevertheless, the software itself provides numerous opportunities for improving energy efficiency.

**Goal:** Given that energy efficiency for IT systems is a rising concern, we investigate existing work in the area of energy-aware software development and identify open research challenges. Our goal is to reveal limitations, features, and trade-offs regarding energy-performance for software development and provide insights on existing approaches, tools, and techniques for energy-efficient programming.

Method: We analyze and categorize research work mostly extracted from top-tier conferences and journals concerning energy efficiency across the software development life cycle phases.

Results: Our analysis shows that related work in this area has focused mainly on the implementation and verification phases of the software development life cycle. Existing work shows that the use of parallel and approximate programming, source code analyzers, efficient data structures, coding practices, and specific programming languages can significantly increase energy efficiency. Moreover, the utilization of energy monitoring tools and benchmarks can provide insights for the software practicioners and raise energy-awareness during the development phase.


CCS Concepts: Software and its engineering  $\rightarrow$  Software maintenance tools; Requirements analysis; Software design engineering; Software verification and validation; Extra-functional properties; Data types and structures; Classes and objects; Software design tradeoffs; Concurrent programming structures; Patterns; Software implementation planning; Computing methodologies  $\rightarrow$  Parallel computing methodologies;

Additional Key Words and Phrases: GreenIT, Energy Efficiency, Energy Optimization, Energy Profiling, Design Patterns, Parallel Programming, Code Refactoring, Source Code Analysis, Coding Practices, Approximate Programming, Software Development Life Cycle

#### **ACM Reference Format:**

Stefanos Georgiou, Stamatia Rizou, Diomidis Spinellis, 2019. Software Development Life Cycle for Energy Efficiency: Techniques and Tools. ACM Comput. Surv. 1, 1, Article 1 (January 2019), 35 pages. DOI: 10.1145/3337773

### **Survey Study: Context**



### **Survey Study: Research Challenges**

**RC1.** Limited investigation on diverse programming languages.

**RC2.** Limited investigation on diverse remote Inter-Process Communication technologies.

**RC3.** Limited tooling support for finding which data structures are the most energy-efficient for specific case.

**RC4**. Selection of configurations and parameters (parallel and approximate programming).

#### What are your Programming Language Energy-Delay Product Implications?

#### What Are Your Programming Language's Energy-Delay Implications?

Stefanos Georgiou Athens University of Economics and Business sgeorgiou@aueb.gr

Panos Louridas Athens University of Economics and Business louridas@aueb.gr

#### ABSTRACT

Motivation: Even though many studies examine the energy efficiency of hardware and embedded systems, those that investigate the energy consumption of software applications are still limited, and mostly focused on mobile applications. As modern applications become even more complex and heterogeneous a need arises for methods that can accurately assess their energy consumption. Goal: Measure the energy consumption and run-time performance of commonly used programming tasks implemented in different programming languages and executed on a variety of platforms to help developers to choose appropriate implementation platforms. Method: Obtain measurements to calculate the Energy Delay Product, a weighted function that takes into account a task's energy consumption and run-time performance. We perform our tests by calculating the Energy Delay Product of 25 programming tasks, found in the Rosetta Code Repository, which are implemented in 14 programming languages and run on three different computer platforms, a server, a laptop, and an embedded system.

Results: Compiled programming languages are outperforming the interpreted ones for most, but not for all tasks. C, C#, and JavaScript are on average the best performing compiled, semi-compiled, and interpreted programming languages for the Energy Delay Product, and Rust appears to be well-placed for t/o-intensive operations, such as file handling. We also find that a good behaviour, energywise, can be the result of clever optimizations and design choices in seemingly unexpected programming languages.

#### CCS CONCEPTS

Hardware → Power estimation and optimization;
 Software and its engineering → Software libraries and repositories;
 Software design tradeoffs;

Maria Kechagia Delft University of Technology m.kechagia@tudelft.nl

Diomidis Spinellis Athens University of Economics and Business dds@aueb.gr

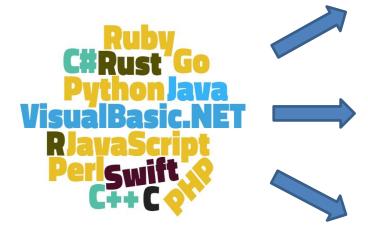
#### **KEYWORDS**

Programming Languages; Energy-Delay-Product; Energy-Efficiency;

#### ACM Reference Format:

Stefanos Georgiou, Maria Kechagia, Panos Louridas, and Diomidis Spinellis. 2018. What Are Your Programming Language's Energy-Delay Implications?? In MSR '18: MSR '18: 15th International Conference on Mining Software Repositories, May 28–29, 2018. Gothenburg, Sweden. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/3196398.3196414

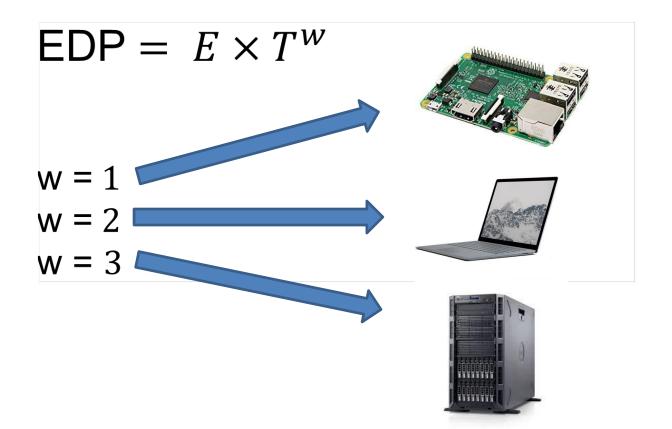
#### **1 INTRODUCTION**


Nowadays, energy consumption<sup>1</sup> mattes more than ever beforegiven that modern software applications should be able to run on devices with particular characteristics (e.g., regarding their main memory and processor). Although hardware design and utilization is undoubtedly a key factor affecting energy consumption, there is much evidence that software can also significantly influence the energy usage of computer platforms [7, 16, 18].

Today, software practitioners can select from a large pool of programming languages to develop software applications and systems. Each of these programming languages comes with a number of features and characteristics that can affect the energy consumption and run-time performance of programming tasks implemented in such languages. With the advent of cloud computing, data centers, and mobile platforms, the same programming tasks can run on distinct platforms consuming energy in different ways. In this context, there is limited work available that examines the energy and performance implications of particular programming tasks that are written in different languages and run on different blatforms.

In this paper, we measure the Energy Delay Product (EDP), a weighted function of the energy consumption and run-time performance product, for a sample of commonly used programming tasks. We do this to identify which programming language implementations (i.e. procramming tasks developed in narticular procramming

#### **Motivation**










### **Energy Delay Product**



#### **Research Questions**



**RQ1:** Which programming languages are the most EDP efficient and inefficient for particular tasks?

**RQ2:** Which type of programming languages are, on average, more EDP efficient and inefficient for each of our selected platforms?

**RQ3:** How much does the EDP of each programming language differ among the selected platforms?

## **Programming Languages**



- Monthly index rating based on languages popularity
- Data retrieved from 25 search engines using search query
- Programming Languages criteria:
  - 1. At least, 5000 hits on Google
  - 2. Turing complete
  - 3. Wikipedia page

### **Selected Programming Languages**

| Categories    | Programming | Compiler | s & Interpre | eters  |
|---------------|-------------|----------|--------------|--------|
|               | Languages   | Embedded | Laptop       | Server |
| Compiled      | С           | 6.3.0    | 6.4.1        | 6.4.1  |
|               | C++         | 6.3.0    | 6.4.1        | 6.4.1  |
|               | Go          | 1.4.3    | 1.7.6        | 1.7.6  |
|               | Rust        | 1.20.0   | 1.18.0       | 1.21.0 |
|               | Swift       | 3.1.1    | 3.0.2        | 3.0.2  |
| Semi-Compiled | C#          | 4.6.2    | 4.6.2        | 4.6.2  |
|               | VB.NET      | 4.6.2    | 4.6.2        | 4.6.2  |
|               | Java        | 1.8.0    | 1.8.0        | 1.8.0  |
| Interpreted   | JavaScript  | 9.0.4    | 8.9.3        | 8.9.3  |
|               | Perl        | 5.24.1   | 5.24.1       | 5.24.1 |
|               | PHP         | 5.6.30   | 7.0.25       | 7.0.25 |
|               | Python      | 2.7.23   | 2.7.13       | 2.7.13 |
|               | R           | 3.3.3    | 3.4.2        | 3.4.2  |
|               | Ruby        | 2.4.2    | 2.4.1        | 2.4.1  |

### **Rosetta Code Repository**



Create account Log in

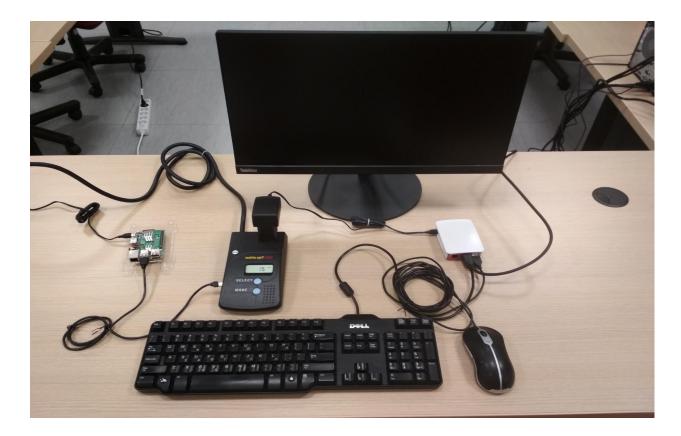
Search

ROSETTACODE.ORG

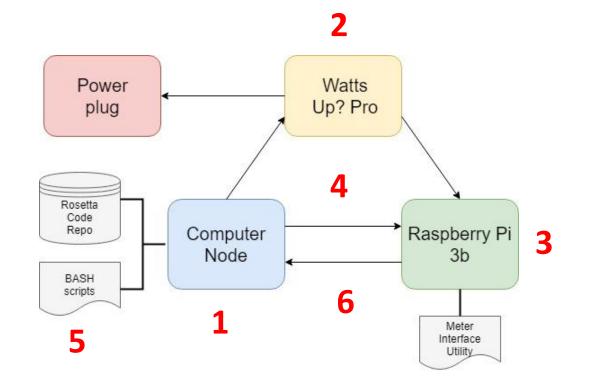
Community - Explore -

Main page Discussion View source History

I'm working on modernizing Rosetta Code's infrastructure. Starting with communications. Please accept this time-limited open invite to RC's Slack.. --Michael Mol (talk) 20:59, 30 May 2020 (UTC)


#### Rosetta Code

Rosetta Code is a programming chrestomathy site. The idea is to present solutions to the same task in as many different languages as possible, to demonstrate how languages are similar and different, and to aid a person with a grounding in one approach to a problem in learning another. Rosetta Code currently has 1,083 tasks, 226 draft tasks, and is aware of 813 languages, though we do not (and cannot) have solutions to every task in every language.


### **Data Set**

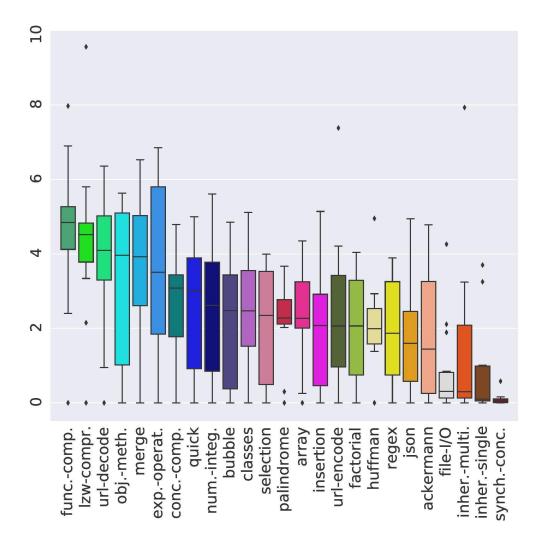
| Categories          | Tasks                                                         |  |
|---------------------|---------------------------------------------------------------|--|
| Arithmetic          | exponentiation-operator and numerical-integration             |  |
| Compression         | huffman-coding and Izw-compression                            |  |
| Concurrent          | concurrency-computing and synchronous-concurrency             |  |
| Data structures     | array-concatenation and json                                  |  |
| File handling       | file-input-output                                             |  |
| Recursion           | Factorial, ackermann-function and palindrome-detection        |  |
| Regular Expression  | regular expression                                            |  |
| Sorting algorithms  | selection, insertion, merge, bubble, and quick                |  |
| String manipulation | url-encoding/decoding                                         |  |
| Object-Oriented     | inheritance single/multiple, class, and call-an-object-method |  |
| Functional          | function-composition                                          |  |

### **Experimental Platform**




#### **Execution Process**




### Questions

- 1. Drawback of using a hardware or software-based energy profiler?
- 2. Which factors can affect our experiment setup?



Energy Delay Product: Weight 3 (Performance Efficiency)

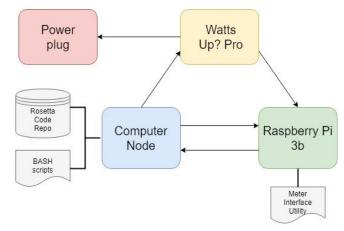
28

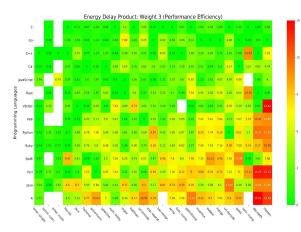


# RQ1. Which programming languages are the most EDP efficient and inefficient for particular tasks?

| Task categories        | Most<br>efficient/inefficient |
|------------------------|-------------------------------|
| Arithmetic             | C/R, VB.NET                   |
| Compression            | C/VB.NET, Java                |
| Concurrent             | C/VB.NET, Perl                |
| File Handling          | Rust/VB.NET                   |
| Regular<br>Expressions | JavaScript/Java               |
| Sorting                | Go/Swift, R                   |
| Functional             | C++/Swift, Perl               |

# RQ2. Which types of programming languages are, on average, more EDP efficient and inefficient for each of the selected platforms?


| Rank | Embedded   | Laptop     | Server     |
|------|------------|------------|------------|
| 1    | С          | С          | С          |
| 2    | C++        | Go         | Go         |
| 3    | Go         | C++        | C++        |
| 4    | Rust       | JavaScript | C#         |
| 5    | JavaScript | Rust       | JavaScript |
| 6    | C#         | C#         | Rust       |
| 7    | VB.NET     | VB.NET     | VB.NET     |
| 8    | PHP        | PHP        | PHP        |
| 9    | Ruby       | Ruby       | Python     |
| 10   | Python     | Swift      | Ruby       |
| 11   | Perl       | Python     | Swift      |
| 12   | Java       | Perl       | Perl       |
| 13   | Swift      | Java       | Java       |
| 14   | R          | R          | R          |


# RQ3. How much does the EDP of each programming language differ among the selected platforms?

• *Hypothesis H0:* A programming language's average EDP, does not have a statistically important difference between the measurement platforms.

In some cases, there is a significant difference between the average EDP in embedded and laptop platforms.

### Takeaways

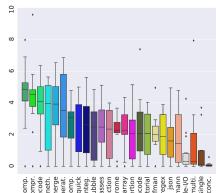








#### Android Developers Blog


#### 01 JUNE 2016

Android Developer Story: Vietnamese games developer Divmob finds more users with localized pricing on Google Play

Posted by Lily Sheringham, Google Play team

Based in Ho Chi Minh City in Vietnam, games developer Divmob has grown quickly from an original team of five people to 40 employees since it was founded three years ago. Divmob now has over 40 million downloads across its various titles, includes the neuronal sector and the s





func.-comp. Izw.compr. Izw.compr. obj.-meth. obj.-meth. obj.-meth. exp.-operat. conc.-comp. num-integ. cons.exp. con

#### **Energy-Delay Investigation of Remote Inter Process Communication (IPC) Technologies**

Energy-Delay Investigation of Remote Inter-Process Communication

#### Technologies

Stefanos Georgioua, Diomidis Spinellisa

<sup>a</sup>Department of Management Science and Technology, Athens University of Economics and Business, Patision 76, Athina 10434 ABSTRACT

#### ARTICLE INFO

#### Keywords Energy Efficiency Programming Languages Remote Inter-Process Communication System Calls

Most modern information technology devices use the Internet for creating, reading, updating, and deleting shared data through remote inter-process communication (IPC). To evaluate the energy consumption of IPC technologies and the corresponding run-time performance implications, we per formed an empirical study on popular IPC systems implemented in Go, Java, JavaScript, Python, PHP, Ruby, and C#. We performed our experiments on computer platforms equipped with Intel and ARM processors. We observed that JavaScript and Go implementations of gRPC offer the lowest energy consumption and execution time. Furthermore, by analysing their system call traces, we found that inefficient use of system calls can contribute to increased energy consumption and poor execution time.

#### 1. Introduction

The energy consumption,1 for the IT-related products, is an evergrowing matter that has caught the attention of academic researchers and industry. This is primarily due to the increasing costs, as IT-related energy consumption is estimated to reach 15% of the world's total by 2020 [42]. Environmental impact is another major concern, as IT's total greenhouse gas emissions are expected to reach 2.3% by the same year [11]. Energy consumption of IT systems is particularly important in two areas. First, the data centres, one of the vital contributors of IT sector's global energy consumption and greenhouse gas emissions. These are housing large number of server nodes communicating with clients through energy-intensive remote inter-process communication (IPC) technologies. Second, the blossoming field of IoT, where low energy performance is critical, has multiple embedded devices connected with hyper-physical systems to exchange, share, and transmit data. To this end, providing sustainable solutions, by reducing energy consumption, to ensure data centres' and IoT infrastructures environmental sustainability and business growth is of paramount importance.

Researchers have carried out studies on different aspects and granularity of software artifacts to investigate the energy consumption of data structures [32, 12, 27, 28, 44], different programming languages [26, 3, 35, 18], multithreaded applications [31, 29, 30], and coding practices [41, 19, 37, 39, 33]. In terms of remote IPC technologies, prior work [13, 8, 7, 22, 23] focused on investigating the energy consumption and run-time performance of smart phones and embedded systems on Java implementations for remote IPC such as RPC. REST, SOAP, and WebSockets. However, IPC

technologies have not been investigated in terms of energy consumption and run-time performance for different programming language implementations.

In this work, we research computer platforms equipped with Intel and ARM processors using three different IPC technologies available in Java, JavaScript, Go, Python, PHP, Ruby, and C#. We try to identify which programming language and IPC technology implementations offer the best energy and run-time performance when invoking remote procedures. Furthermore, we focus on pointing out the reasons behind our results to help software developers, specifically those concerned with IPC library development, build more energy and run-time performance-efficient implementations.

To accomplish this, we perform an empirical study on the selected computer systems on seven popular programming languages that offer implementations of three well known remote IPC technologies and investigate their energy and run-time performance cost. Our results highlight the efficiency of different implementations and libraries. We also examine whether the energy consumption of IPC technologies is proportional to the run-time performance or the systems' resource usage.

Results reveal that JavaScript and Go implementations of gRPC offer the most energy-efficient and best run-time performance implementations among the considered IPC technologies, while Ruby, PHP, Python, Java, and C# perform most inefficiently, for the most cases. We also found that the energy consumption and run-time performance is not proportional for all the examined IPC technology implementations. Besides, from the extracted system call traces, we were able to name certain misuse cases of computer resources that can contribute to higher energy demands and lower run-time performance.

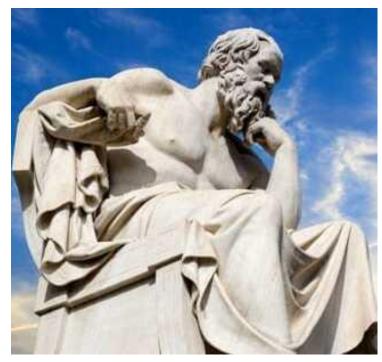
This work is organised as follows. Section 3 presents our

Second se OPCID(s):

### **Motivation**



#### **The Internet in Real Time**




By the time you finish reading this sentence, there will have been 219,000 new Facebook posts, 22,800 new tweets, 7,000 apps downloaded, and about \$9,000 worth of items sold on Amazon... depending on your reading speed, of course. Now that the Internet is widely available, just one second of global online activity is jam-packed full of events, from communication with others to data storage to entertainment options galore.

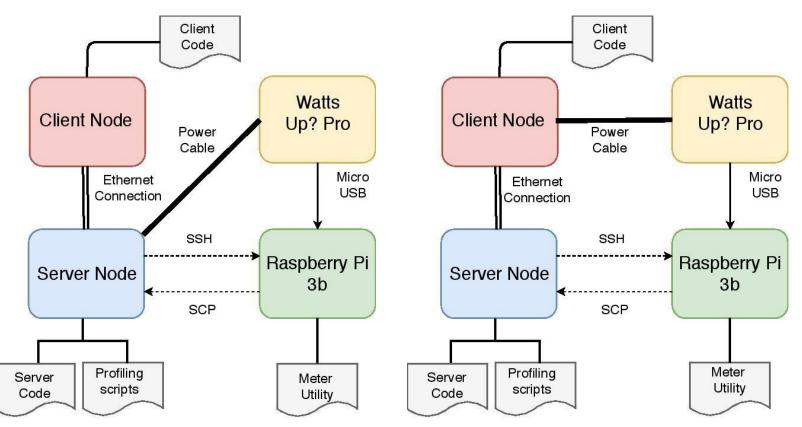
For example, in the amount of time you've been on this page, this is how much data has already passed through the Internet.

# **4,104,000** GIGABYTES OF DATA

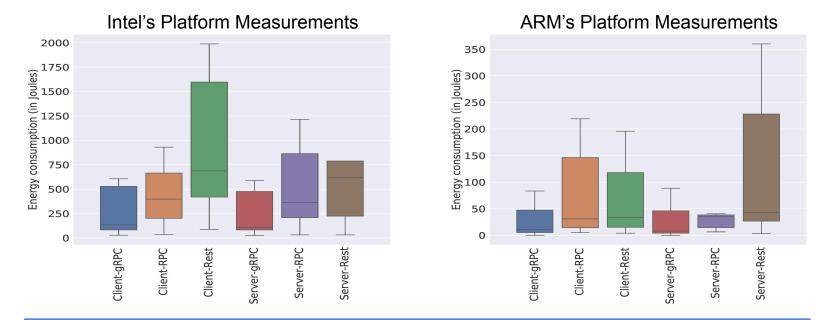
#### **Research Questions**



**RQ1.** Which IPC technology implementation offers the most energy and run-time performance efficient results?

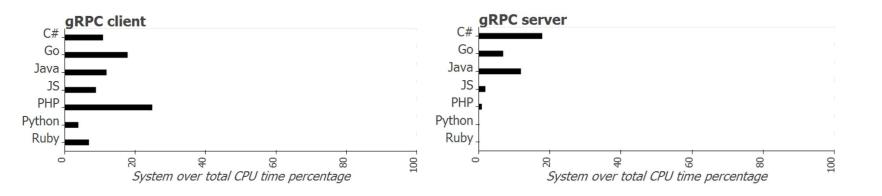

**RQ2.** What are the reasons that make certain IPC technologies more energy and run-time performance efficient?

**RQ3.** Is the energy consumption of the IPC technologies proportional to their run-time performance or resource usage?


### **Subject Systems**

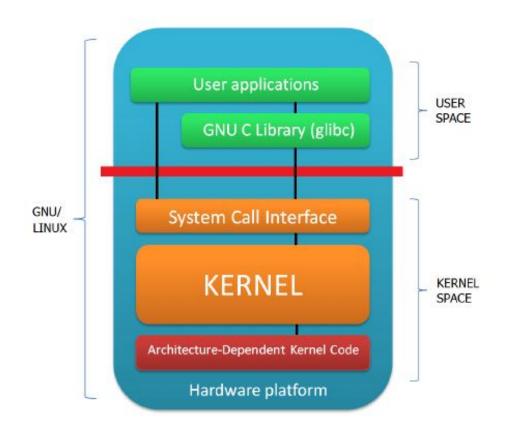
| Categories    | Programming | Compiler and Interp | reter Versions  |
|---------------|-------------|---------------------|-----------------|
|               | Languages - | ARM Processor       | Intel Processor |
| Compiled      | Go          | 1.9.4               |                 |
| Semi-Compiled | Java        | 1.8.0               |                 |
|               | C#          | 4.8.0               | 4.8.0           |
| Interpreted   | JavaScript  | 10.4.0              | 10.4.0          |
|               | Python      | 2.7.14              | 2.7.14          |
|               | PHP         | 7.2.12              | 7.2.12          |
|               | Ruby        | 2.5.3p              | 2.5.3p          |

### **Execution Process**




# RQ1. Which IPC technology implementation offers the most energy and run-time performance-efficient results?

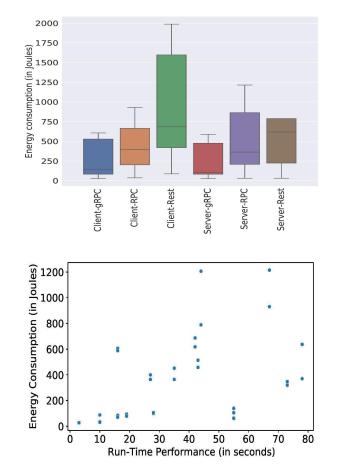


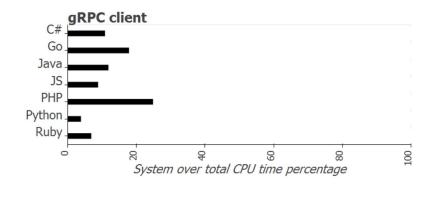

**JavaScript** and **Go** are the programming languages offering the most energy and run-time performance efficient library implementations for the Intel and ARM platforms. In addition, for almost all programming language implementations, we found that **gRPC** is the IPC technology having the most efficient results.

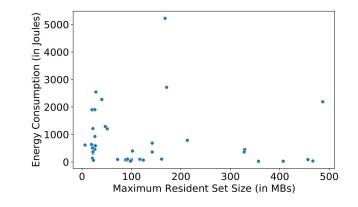
# RQ2. What are the reasons that make certain IPC technologies more energy and run-time performance-efficient?



Our analysis shows the frugal opening, connecting, closing, accepting, and shutting down connections can impact the energy consumption and run-time performance of the IPC technologies. The usage of **writev** system call appears in the most efficient implementations.


### What are the system calls?





RQ3. Is the energy consumption of the IPC technologies proportional to their run-time performance or resource usage?

We found that there is a positive moderate and very strong monotonic correlation between the energy consumption and run-time performance of the Intel and ARM platforms, respectively. Also, we found a weak and very weak monotonic relationship between our energy measurements and resource usage. Therefore, none of the collected resource usage measurements can be used to justify the energy consumption results in terms of IPC technologies.

### Takeaways









### Energy-Efficient Computing in a Secure Environment

### 111

### **Energy-Efficient Computing in a Secure Environment**

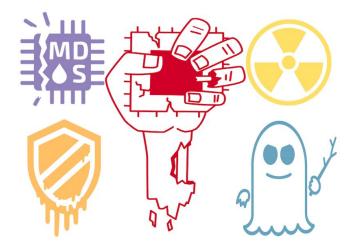
STEFANOS GEORGIOU, Athens University of Economics and Business, Greece DIMITRIS MITROPOULOS, Athens University of Economics and Business, Greece DIOMIDIS SPINELLIS, Athens University of Economics and Business, Greece

An operating system (os) typically includes numerous security mechanisms that protect the confidentiality, integrity, and availability of its data and services. However, such safeguards may impact energy consumption and encumber the run-time performance of applications running on a system. We present a large scale study, where we investigate how the various security mechanisms affect energy and run-time performance cost at the os-level. We focus on well-known mechanisms including encrypted communication protocols, memory zeroing, accc safeguards, and refu vulnerability patches against critical vulnerabilities, such as Meltdown. To do so, we utilise 128 benchmarks of different application types found under the well-established Phoronic test suite. Our findings suggest that security mechanisms lead to an increased energy consumption and significantly degrade the run-time performance of various applications including we bevers, database systems, kernel operations, and disk usage. Notably, when we disabled the various security mechanisms, real-world applications such as Apache and Redis, indicated important energy (from 18% to 41%) and run-time performance (from 23% to 45%) gains. Additionally, we examined the correlation between energy consumption and performance. Our findings showed that the two are not always related. Overall, our results suggest that administrators should consider disabing such security mechanism when a computer system runs inside a secure environment to benefit from energy and run-time performance gains.

CCS Concepts: • Hardware → Power and energy; • Security and privacy → Systems security.

Additional Key Words and Phrases: energy consumption, CPU vulnerability patches, secure environment, security mechanisms, GCC safeguards, encrypted network communications, memory zeroing, Spectre, Meltdown, MDS;

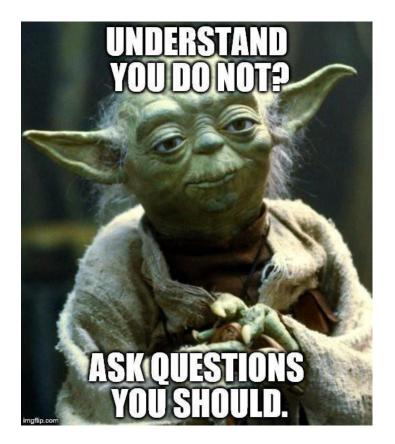
### ACM Reference Format:


### 1 INTRODUCTION

The high computational demands and services, offered by the different rr-related products, increase the energy consumption of the computer systems. The study of energy consumption in computer systems has gained vast popularity in recent years due to the advent of mobile applications and data centers that are responsible for more than 10% of the world's [18, 25, 62]. Therefore, reducing the energy footprint of rr products is of increased importance.

Unix-like os's are equipped with various services, background processes, and daemons [59]. Among such services are the security mechanisms that protect computer systems from attackers trying to exploit potential vulnerabilities. Such security mechanisms can affect the energy consumption and the run-time performance of a

Authors' addresses: Stefanas Georgiou, georgiou@aueb.gr, Athens University of Economics and Business, Patision 76, Athens, Greece, 10434; Dimitris Mitropoulos, dimitro@aueb.gr, Athens University of Economics and Business, Patision 76, Athens, Greece, 10434; Diomidis Spinellis, dds@aueb.gr, Athens University of Economics and Business, Patision 76, Athens, Greece, 10434;


## **Motivation**

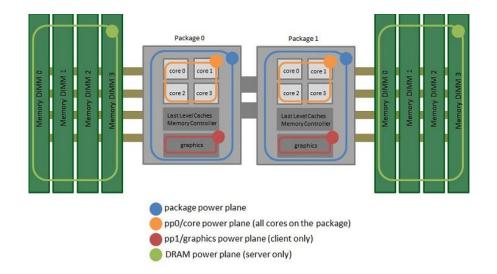






### **Research Questions**




**RQ1.** What are the energy and run-time performance implications of the investigated security mechanisms on a computer system?

**RQ2.** Is the energy consumption of the examined security mechanisms proportional to their run-time performance?

**RQ3.** How do security mechanisms affect the energy consumption and the run-time performance of diverse applications and utilities?

## **Subject Systems**

| System                 | Kaby Lake (x86)        |
|------------------------|------------------------|
| Microarchitecture      | Kaby Lake              |
| Processor/Soc          | Core i7-7700           |
| $Cores \times threads$ | 4 × 2                  |
| Base Frequency         | 3.6 GHz                |
| Max Frequency          | 4.2 GHz                |
| Cache line size        | 64 B                   |
| L1-D/L1-I Cache        | 4 x 32 KiB 8-way       |
| L2 cache               | 4 x 256 KiB 4-way      |
| L3 cache               | 8 MB 16-way            |
| I-TBL                  | 4-KByte pages, 8-way   |
| D-TBL                  | 1-GB pages, 4-way      |
| L2-TBI                 | 1-MB, 4-way            |
| RAM                    | 16 GB UDIMM, DDR4 2400 |



### **Scenarios**

CPU Vulnerability Patches GCC Security Flags HTTP/HTTPS

| Stock    | Stock           | HTTP  |
|----------|-----------------|-------|
| Meltdown | Stack Protector | HTTPS |
| Spectre  | FORTIFY_SOURCE  |       |
| MDS      | PIC/PIE         |       |
| AllOff   | RELRO           |       |
|          | AllOff          |       |

### **Data-set**

| Category                                   | Benchmark Suites                                                                                                                                                                                                                                                          |                                    |
|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| Audio Encoding<br>Video En-<br>code/Decode | encode-mp3, encode-flac<br>dav1d, svt-av1, svt-hevc, svt-vp9, vpxenc, x264, x265, ffmpeg                                                                                                                                                                                  | while (get_time<br>create files()  |
| Code Compila-<br>tion                      | build-php, build-linux-kernel, build-gcc, build-gdb, build-llvm, build2                                                                                                                                                                                                   | }                                  |
| File Compression                           | compress-p7zip, compress-bzip2, compress-zstd, compress-xz, lzbench                                                                                                                                                                                                       |                                    |
| Database Suite                             | sqlite, redis, rocksdb, cassandra, mcperf, pymongo-insert                                                                                                                                                                                                                 |                                    |
|                                            | aircrack-ng, apache, blogbench, brl-cad, byte, cloverleaf, cpp-perf-bench, crafty, dacapo-bench, ebizzy, embree, fhourstones, glibc-bench, gmpbench, himeno, hint, hmmer, hpcg, javascimark2, m-queens, minion, nero2d, nginx, node-express-                              |                                    |
| CPU Massive                                | loadtest, numenta-nab, phpbench, primesieve, pybench, pyperformance, rodinia, rust-prime, scimark2, stockfish, swet, sysbench, sudokut, tensorflow, xsbench, sunflow, bork, java-jmh, renaissance, tiobench, openssl, blake2s, john-the-ripper, botan, octave-bench, oidn | for (int i = 0; i<br>create_files( |
| Disk Suite                                 | fs-mark, iozone, dbench, postmark, aio-stress                                                                                                                                                                                                                             | }                                  |
| Kernel                                     | schbench, ctx-clock, stress-ng, osbench                                                                                                                                                                                                                                   |                                    |
| Machine Learn-<br>ing                      | rbenchmark, numpy, scikit-learn, mkl-dnn                                                                                                                                                                                                                                  |                                    |
| Memory Suite                               | ramspeed, stream, t-test1, cachebench, tinymembench, mbw                                                                                                                                                                                                                  |                                    |
| Networking Suite                           | iperf, network-loopback                                                                                                                                                                                                                                                   |                                    |
| Imaging                                    | graphics-magick, inkscape, rawtherapee, tjbench, dcraw, darktable, rsvg, gegl                                                                                                                                                                                             |                                    |
| Renderers                                  | tungsten, ospray, aobench, c-ray, povray, smallpt, ttsiod-renderer, indigobench, rays1bench, j2bench, qgears, jxrendermark                                                                                                                                                |                                    |
| Desktop Graphics                           | xonotic, openarena, tesseract, paraview, unigine-valley, unigine-heaven, nexuiz, glmark2                                                                                                                                                                                  |                                    |

while (get\_time() - start\_t < TIME) {
 create\_files();</pre>

for (int i = 0; i < 1000; i++) {
 create\_files();
}</pre>

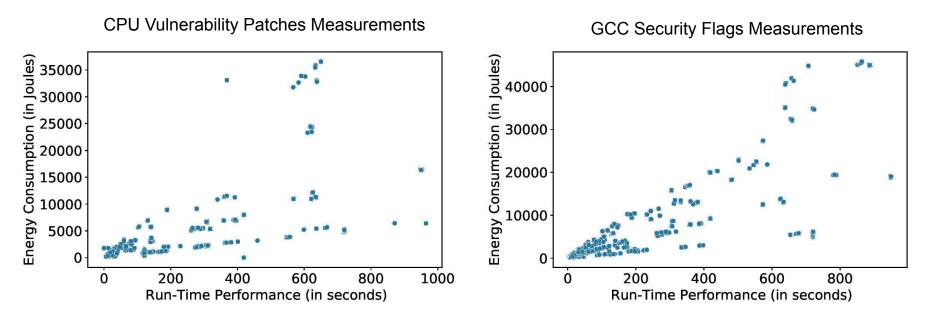
### **Results**

1--3.3%

6.7--9.9%

|           |                  | Sto    | ck   | Meltd  | own  | Spec   | tre  | MD     | S    | AllOff |      | Difference (%) |      |
|-----------|------------------|--------|------|--------|------|--------|------|--------|------|--------|------|----------------|------|
|           | Tasks            | Energy | Time | Energy         | Time |
|           | cassandra_read   | 127    | 15   | 125    | 15   | 124    | 15   | 125    | 15   | 123    | 15   | 3.6            | 0    |
|           | cassandra_write  | 115    | 13   | 112    | 13   | 112    | 13   | 111    | 13   | 111    | 13   | 3.6            | 0    |
|           | mcperf_add       | 804    | 30   | 760    | 28   | 665    | 25   | 777    | 29   | 590    | 21   | 26.6           | 30   |
|           | mcperf_append    | 752    | 29   | 710    | 27   | 632    | 24   | 712    | 27   | 555    | 20   | 26             | 31   |
| 3.46.6%   | mcperf_delete    | 550    | 18   | 521    | 17   | 441    | 14   | 508    | 17   | 387    | 12   | 29.6           | 33.3 |
| 0.1 0.070 | mcperf_get       | 546    | 18   | 503    | 16   | 434    | 14   | 500    | 17   | 386    | 12   | 29.2           | 33.3 |
| 10% >     | mcperf_prepend   | 748    | 29   | 710    | 27   | 631    | 23   | 711    | 27   | 555    | 20   | 25.8           | 31.1 |
| 10 /0 -   | mcperf_replace   | 747    | 30   | 710    | 28   | 630    | 25   | 720    | 29   | 553    | 20   | 25.8           | 31   |
|           | mcperf_set       | 802    | 30   | 762    | 28   | 666    | 25   | 766    | 29   | 594    | 21   | 25.9           | 30   |
|           | pymongo          | 883    | 38   | 890    | 39   | 866    | 37   | 870    | 38   | 867    | 38   | 1.8            | 0    |
|           | redis_get        | 1972   | 66   | 1631   | 53   | 1761   | 58   | 1685   | 55   | 1166   | 36   | 40.8           | 45.4 |
|           | redis_lpop       | 1985   | 65   | 1629   | 52   | 1756   | 58   | 1672   | 54   | 1167   | 36   | 41.1           | 45.4 |
|           | redis_lpush      | 1988   | 66   | 1640   | 53   | 1763   | 58   | 1665   | 54   | 1166   | 36   | 41.3           | 45.4 |
|           | redis_sadd       | 1981   | 66   | 1642   | 52   | 1764   | 58   | 1680   | 54   | 1169   | 36   | 40.9           | 45.5 |
|           | redis_set        | 1972   | 66   | 1622   | 53   | 1761   | 58   | 1680   | 54   | 1167   | 36   | 40.8           | 44.6 |
|           | rocksdb_fillrand | 1281   | 31   | 1271   | 31   | 1243   | 31   | 1250   | 31   | 1212   | 31   | 5.3            | 0    |
|           | rocksdb_fillseq  | 976    | 21   | 969    | 21   | 951    | 21   | 960    | 21   | 936    | 20   | 4.1            | 4.7  |
|           | sqlitebench      | 944    | 134  | 962    | 136  | 878    | 125  | 930    | 134  | 908    | 130  | 3.8            | 3    |

### **Impact on Kernel operations**


|                  | Stock  |      | Meltdown |      | Spec   | tre  | MD     | S    | AllC   | Off  | Difference (%) |      |
|------------------|--------|------|----------|------|--------|------|--------|------|--------|------|----------------|------|
| Tasks            | Energy | Time | Energy   | Time | Energy | Time | Energy | Time | Energy | Time | Energy         | Time |
| ctx_clock        | 6192   | 318  | 3523     | 174  | 6178   | 318  | 3165   | 169  | 1121   | 56   | 81.8           | 82.3 |
| osb_files        | 659    | 29   | 631      | 27   | 593    | 26   | 622    | 27   | 542    | 23   | 17.6           | 20.6 |
| osb_processes    | 887    | 22   | 852      | 20   | 889    | 22   | 870    | 21   | 803    | 19   | 9.4            | 13.6 |
| osb_threads      | 588    | 19   | 549      | 17   | 574    | 19   | 550    | 18   | 494    | 15   | 15.9           | 21   |
| osb_mem_alloc    | 514    | 23   | 503      | 22   | 508    | 23   | 501    | 22   | 480    | 21   | 6.6            | 8.6  |
| osb_programs     | 584    | 11   | 553      | 10   | 576    | 11   | 546    | 10   | 511    | 9    | 12.4           | 18.1 |
| stress-ng_fork   | 1232   | 24   | 1185     | 23   | 1222   | 24   | 1170   | 22   | 1108   | 21   | 10             | 12.5 |
| stress-ng_matrix | 799    | 14   | 759      | 13   | 775    | 13   | 786    | 14   | 752    | 13   | 5.9            | 7.1  |
| stress-ng_msg    | 1024   | 22   | 862      | 18   | 988    | 21   | 636    | 13   | 519    | 10   | 49.2           | 54.5 |
| stress-ng_sem    | 911    | 20   | 919      | 21   | 888    | 20   | 782    | 17   | 812    | 18   | 9.3            | 10   |
| stress-ng_sock   | 1719   | 30   | 1392     | 28   | 1591   | 28   | 1367   | 28   | 1309   | 26   | 23.8           | 13.3 |
| stress-ng_switch | 1431   | 26   | 1411     | 25   | 1329   | 23   | 1204   | 21   | 1125   | 19   | 21.3           | 26.9 |
| stress-ng_vec    | 1446   | 29   | 914      | 18   | 913    | 18   | 910    | 18   | 911    | 18   | 36.9           | 37.9 |

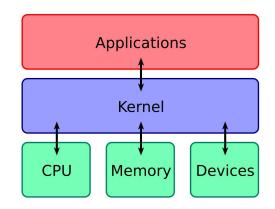
# RQ1. What are the energy and run-time performance implications of the investigated security mechanisms on a computer system?

|        | Sto    | ck   | Meltd  | own  | Spec   | tre  | MD     | S    | Allo   | Off  | Differen | ice (%) |
|--------|--------|------|--------|------|--------|------|--------|------|--------|------|----------|---------|
| Tasks  | Energy | Time | Energy   | Time    |
| build2 | 10419  | 196  | 10352  | 197  | 10329  | 197  | 10282  | 197  | 10247  | 195  | 1.6      | 0.5     |
| gcc    | 17039  | 359  | 16830  | 353  | 16898  | 355  | 16796  | 350  | 16539  | 345  | 3        | 3.9     |
| gdb    | 5791   | 134  | 5695   | 131  | 5729   | 132  | 5666   | 130  | 5587   | 128  | 3.5      | 4.4     |
| kernel | 81490  | 1555 | 73093  | 1382 | 73330  | 1393 | 72572  | 1371 | 72103  | 1374 | 11.5     | 11.6    |
| llvm   | 45784  | 864  | 45569  | 861  | 45488  | 862  | 45302  | 858  | 45052  | 851  | 1.5      | 1.5     |
| php    | 4403   | 99   | 4380   | 98   | 4366   | 98   | 4360   | 98   | 4318   | 97   | 1.9      | 2       |

CPU vulnerability patches can **impact the energy and run-time performance real-word applications from 18% up to 45%**, respectively. Similarly, GCC safeguards affect the energy and run-time performance of applications **up to 10%**. Similar results appear for the communications-related security mechanisms as well.

# RQ2. Is the energy consumption of the examined security mechanisms proportional to their run-time performance?



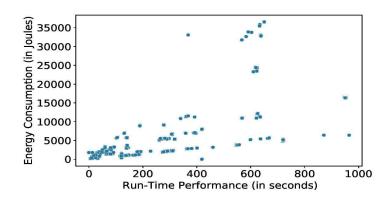

Our findings suggest that energy consumption and the run-time performance have a very strong monotonic correlation for the investigated benchmarks in the case of the CPU vulnerability patches and the GCC safeguards.

# RQ3. How do security mechanisms affect the energy consumption and the run-time performance of diverse applications and utilities?

Application types such as **database systems**, **code compilation**, **compute-intensive**, **kernel operations**, **disk usage** had the highest energy and run-time performance gains after disabling the CPU vulnerability patches. For the GCC safeguards, **compute-intensive**, **databases systems**, and **file compression** applications had the highest energy and run-time performance gains after disabling security flags.

### **Takeaways**

|                  | Stock  |      | Meltd  | own  | Spec   | tre  | MD     | )S   | Allo   | Off  | Differen | ice (%) |
|------------------|--------|------|--------|------|--------|------|--------|------|--------|------|----------|---------|
| Tasks            | Energy | Time | Energy   | Time    |
| cassandra_read   | 127    | 15   | 125    | 15   | 124    | 15   | 125    | 15   | 123    | 15   | 3.6      | 0       |
| cassandra_write  | 115    | 13   | 112    | 13   | 112    | 13   | 111    | 13   | 111    | 13   | 3.6      | 0       |
| mcperf_add       | 804    | 30   | 760    | 28   | 665    | 25   | 777    | 29   | 590    | 21   | 26.6     | 30      |
| mcperf_append    | 752    | 29   | 710    | 27   | 632    | 24   | 712    | 27   | 555    | 20   | 26       | 31      |
| mcperf_delete    | 550    | 18   | 521    | 17   | 441    | 14   | 508    | 17   | 387    | 12   | 29.6     | 33.3    |
| mcperf_get       | 546    | 18   | 503    | 16   | 434    | 14   | 500    | 17   | 386    | 12   | 29.2     | 33.3    |
| mcperf_prepend   | 748    | 29   | 710    | 27   | 631    | 23   | 711    | 27   | 555    | 20   | 25.8     | 31.1    |
| mcperf_replace   | 747    | 30   | 710    | 28   | 630    | 25   | 720    | 29   | 553    | 20   | 25.8     | 31      |
| mcperf_set       | 802    | 30   | 762    | 28   | 666    | 25   | 766    | 29   | 594    | 21   | 25.9     | 30      |
| pymongo          | 883    | 38   | 890    | 39   | 866    | 37   | 870    | 38   | 867    | 38   | 1.8      | 0       |
| redis_get        | 1972   | 66   | 1631   | 53   | 1761   | 58   | 1685   | 55   | 1166   | 36   | 40.8     | 45.4    |
| redis_lpop       | 1985   | 65   | 1629   | 52   | 1756   | 58   | 1672   | 54   | 1167   | 36   | 41.1     | 45.4    |
| redis_lpush      | 1988   | 66   | 1640   | 53   | 1763   | 58   | 1665   | 54   | 1166   | 36   | 41.3     | 45.4    |
| redis_sadd       | 1981   | 66   | 1642   | 52   | 1764   | 58   | 1680   | 54   | 1169   | 36   | 40.9     | 45.5    |
| redis_set        | 1972   | 66   | 1622   | 53   | 1761   | 58   | 1680   | 54   | 1167   | 36   | 40.8     | 44.6    |
| rocksdb_fillrand | 1281   | 31   | 1271   | 31   | 1243   | 31   | 1250   | 31   | 1212   | 31   | 5.3      | 0       |
| rocksdb_fillseq  | 976    | 21   | 969    | 21   | 951    | 21   | 960    | 21   | 936    | 20   | 4.1      | 4.7     |
| sqlitebench      | 944    | 134  | 962    | 136  | 878    | 125  | 930    | 134  | 908    | 130  | 3.8      | 3       |














### **Green AI:** Do Deep Learning Frameworks Have Different Costs?

### Green Al: Do Deep Learning Frameworks Have Different Costs?

Stefanos Georgiou\* Queen's University stefanos.georgiou@queensu.ca Maria Kechagia\* University College London m.kechagia@ucl.ac.uk

Federica Sarro University College London f.sarro@ucl.ac.uk Ying Zou Queen's University ving.zou@queensu.ca

### ABSTRACT

The use of Artificial Intelligence (AI), and more specifically of Deep Learning (DL), in modern software systems, is nowadays widespread and continues to grow. At the same time, its usage is energy demanding and contributes to the increased CO<sub>2</sub> emissions, and has a great financial cost as well. Even though there are many studies that examine the capabilities of DL, only a few focus on its green *aspects*, such as energy consumption.

This paper aims at raising awareness of the costs incurred when using different DL frameworks. To this end, we perform a thorough empirical study to measure and compare the energy consumption and run-time performance of six different DL models written in the two most popular DL frameworks, namely PYTOREM and TENSORFLOW. We use a well-known benchmark of DL models, DEEPLEARNINGEXAMPLES, created by NVIDIA, to compare both the training and inference costs of DL. Finally, we manually investigate the functions of these frameworks that took most of the time to execute in our experiments.

The results of our empirical study reveal that there is a statistically significant difference between the cost incurred by the two DL frameworks in 94% of the cases studied. While TENSORFLOW achieves significantly better energy and run-time performance than PyTorch, and with large effect sizes in 100% of the cases for the training phase, PyTorch instead exhibits significantly better energy and run-time performance than TENSORFLOW in the inference phase for 66% of the cases, always, with large effect sizes. Such a large difference in performance costs does not, however, seem to affect the accuracy of the models produced, as both frameworks achieve comparable scores under the same configurations. Our manual analysis, of the documentation and source code of the functions examined, reveals that such a difference in performance costs is under-documented, in these frameworks. This suggests that developers need to improve the documentation of their DL frameworks, the source code of the functions used in these frameworks, as well as to enhance existing DL algorithms.

### CCS CONCEPTS

• Hardware  $\rightarrow$  Power and energy; • Software and its engineering  $\rightarrow$  Software libraries and repositories; • Computing methodologies  $\rightarrow$  Machine learning;

Tushar Sharma

Dalhousie Uninversity

tushar@dal.ca

### KEYWORDS

Energy consumption, run-time performance, deep learning, APIS

### ACM Reference Format:

Stefanos Georgiou, Maria Kechagia, Tushar Sharma, Federica Sarro, and Ying Zou. 2022. Green Al: Do Deep Learning Frameworks Have Different Costs?. In 44th International Conference on Software Engineering (ICSE '22), May 21–29, 2022, Pittsburgh, PA, USA, ACM, New York, NY, USA, 13 pages. https: //doi.org/10.1145/nnnnnn.nnnnn

### **1 INTRODUCTION**

Deep learning (Dz) is a field of machine learning (ML) that has recently gained significant attention from researchers and practitioners. Along with the increase of computational power and availability of data, the use of deep learning has contributed to the improvement of several applications (e.g., in the medical, financial, transportation sectors) that, for instance, use speech and image recognition, machine translation, and natural language processing (MLP). The advancement in these areas would have not been possible without the great advancement in Dz.

While the research community has spent a significant effort towards improving the accuracy of DL approaches, it has often overlooked their costs. As recently reported by Schwartz et al. [76], DL has been assisting in an increase in the computational costs of the state-of-the-art AI research as big as 3000,000 between 2012 and 2018. Such a dramatically increasing trend in resource consumption, dubbed as RED AL is not just often prohibitively expensive for researchers and practitioners, but also environmentally unfriendly. This has motivated the field of Green Software Engineering (ex) research which aims to decrease software environmental foot.

(se) research, which aims to decrease software environmental footprints and supports *inter alia* GREEN AI [58] Ontimizing resource

### Questions

- What programming languages are TensorFlow and PyTorch written in?
- Which computer component makes the biggest difference when training Deep Learning models?

### Why is this important?

- The energy spent to train a model can vary significantly between frameworks, but how much?
- Investigate the energy and run-time performance for training and inferencing Deep Learning algorithms build in popular ML frameworks and suggest which to use in specific cases.
- What tuning parameters can affect the energy and run-time performance of the selected models?

### **Research Questions**

**RQ1:** Which is the most energy and run-time performance-efficient Deep Learning framework for the models examined?

**RQ2:** How much accuracy do energy and run-time performance efficient Deep Learning frameworks sacrifice for the models under examination?

**RQ3:** What are the most energy and run-time performance inefficient APIs of Deep Learning frameworks for the models under examination?



### **Public Repository**

| Searcl     | h or jump to (/) Pull reques          | sts Issues Marketplace Explore             |                                            |                           | <i>└</i> , + - ⊛, |
|------------|---------------------------------------|--------------------------------------------|--------------------------------------------|---------------------------|-------------------|
| 📮 NVIDIA / | DeepLearningExamples (Public)         |                                            |                                            | ⊙ Watch 252 ▼ 😵 Fork 2.1k | Starred 7.5k 🗸    |
| <> Code    | ○ Issues 116 🎲 Pull requests 14       | 🕞 Actions 🛛 🛗 Projects 🖾 Wiki              | 🕕 Security 🛛 🗠 Insights                    |                           |                   |
|            | 💡 master 👻 🖓 6 branches 🔇 0 tags      |                                            | Go to file Add file ▼ Code ▼               |                           |                   |
|            | nv-kkudrynski Merge: [nnUNet/PyT] Fiz | x DALI inference pipeline                  | 589604d 11 days ago 🛛 <b>1,066</b> commits | Deep Learning Examples    |                   |
|            | .github/ISSUE_TEMPLATE                | Update issue templates                     | 2 years ago                                | <b>分 7.5k</b> stars       |                   |
|            | CUDA-Optimized/FastSpeech             | Adding links to performance benchmark page | 6 months ago                               |                           |                   |
|            | DGLPyTorch/DrugDiscovery/SE3Tra       | Remove RoseTTAFold                         | 2 months ago                               | ਿ <b>2.1k</b> forks       |                   |

### Tasks

| Categories             | Models         | Datasets     |  |  |
|------------------------|----------------|--------------|--|--|
| Recommender<br>Systems | NCF            | ML-20M       |  |  |
|                        | Transformer-XL | WikiText-103 |  |  |
| NLP                    | GNMT           | WMT16 EN-DE  |  |  |
|                        | ResNet-50      | Coco 2014    |  |  |
| Computer Vision        | SSD            | Coco 2017    |  |  |
|                        | MaskRCNN       | Coco 2017    |  |  |

### Tools

| NVID.      | IA-SMI       | 460.3    | 2.03 D               | river        | Version:         | 460.32.03                 | CUDA Versi                              | on: 11.2                               |
|------------|--------------|----------|----------------------|--------------|------------------|---------------------------|-----------------------------------------|----------------------------------------|
| GPU<br>Fan | Name<br>Temp | Perf     | Persiste<br>Pwr:Usag |              | Bus-Id           | Disp.A<br>Memory-Usage    |                                         | Uncorr. ECC<br>Compute M.<br>MIG M.    |
| Θ          | Quadro       | P400     | ========<br>0        | =====+<br>0n | 0000000          | 0:2D:00.0 Off             | -+===================================== | ====================================== |
| 64%        | 82C          | P0       | 63W /                | 105W         | 7789M            | iB / 8110MiB              | 98%                                     | Default<br>N/A                         |
|            |              |          |                      |              |                  |                           |                                         |                                        |
| Proce      | esses:       |          |                      |              |                  |                           |                                         |                                        |
| Proce      | esses:<br>GI | CI       | PID                  | Тур          | e Proc           | ess name                  |                                         | GPU Memory                             |
|            |              | CI<br>ID | PID                  | Тур          | e Proc           | ess name                  |                                         | GPU Memory<br>Usage                    |
|            | GI           | 0.07.07  | PID<br>2023          | ======       |                  | ess name<br>/lib/xorg/Xor |                                         |                                        |
| GPU        | GI<br>ID     | ID       |                      |              | ======<br>G /usr |                           | -                                       | Usage                                  |

### cProfile

Python 3.X

cProfile and profile provide deterministic profiling of Python programs. A profile is a set of statistics that describes how often and for how long various parts of the program executed. These statistics can be formatted into reports via the pstats module.The Python standard library provides two different implementations of the same profiling interface:

More at Python 3 Documentation

Share Feedback

Display all 240 possibilities? (y or n) tushar@Enterprise:/media/tushar/Cupboard/machine\_learning\_frameworks\_analysis\$ cat measurements/transformer xl PyTorch perf 2.txt

Performance counter stats for 'system wide':

144,643.48 Joules power/energy-pkg/ 15,078.98 Joules power/energy-ram/

1431.584266139 seconds time elapsed

tushar@Enterprise:/media/tushar/Cupboard/machine\_learning\_frameworks\_analysis\$

## Our platform

| Actinics                                                                                |                                                                                                          |                                                                                                                                                                                                          |                                                                                                 | anag + 05.40                                                                                                                                                                                              |                                                                                                                                      |                                                                                           |                                                                                                                                                                                                                 | $\sim$ |
|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Í                                                                                       |                                                                                                          | tushar@Enterprise: /media/tus                                                                                                                                                                            | har/Cupboard/machine_learning_                                                                  | frameworks_analysis/DeepLearningExamples                                                                                                                                                                  | s/TensorFlow/Detection                                                                                                               | /SSD                                                                                      |                                                                                                                                                                                                                 | ×      |
| File Edit View Search Terminal Tabs H                                                   | elp                                                                                                      |                                                                                                                                                                                                          |                                                                                                 |                                                                                                                                                                                                           |                                                                                                                                      |                                                                                           |                                                                                                                                                                                                                 |        |
| tushar@Enterprise: /media/tushar/Cupboard/m                                             | achine_le ×                                                                                              | tushar@Enterprise: /media/tushar                                                                                                                                                                         | /Cupboard/machine_le ×                                                                          | tushar@Enterprise: /media/tushar/Cupboard                                                                                                                                                                 | d/machine_lea ×                                                                                                                      | tushar@Enterprise: /media/tusha                                                           | r/Cupboard/machine_lea × 💽 💽                                                                                                                                                                                    | Y      |
| 1 [   <br>2 [  <br>3 [  <br>4 [  <br>5 [<br>6 [ <br>7 [<br>8 [ <br>9 [<br>10 [ <br>11 [ | 3, 9%<br>2, 6%<br>1, 3%<br>0, 0%<br>0, 6%<br>0, 6%<br>0, 6%<br>0, 6%<br>0, 6%<br>0, 6%<br>0, 6%<br>0, 6% | 19       [         20       [         21       [         22       [         23       [         24       [         25       [         26       [         27       [         28       [         29       [ | 0.6%]<br>0.0%]<br>2.6%]<br>0.6%]<br>0.6%]<br>0.6%]<br>0.6%]<br>0.6%]<br>0.6%]<br>0.6%]<br>0.0%] | 37       [ ]         38       [ ]         39       [ ]         40       [ ]         41       [ ]         42       [ ]         43       [ ]         44       [ ]         45       [ ]         46       [ ] | $\begin{array}{c} 1.3\%\\ 1.9\%\\ 1.9\%\\ 0.6\%\\ 0.6\%\\ 0.6\%\\ 0.6\%\\ 0.0\%\\ 0.0\%\\ 10.0\%\\ 1.3\%\\ 1.3\%\\ 1.3\%\end{array}$ | 55 [<br>56 [<br>57 []<br>58 []<br>59 []<br>60 [<br>61 []<br>62 [<br>63 [<br>63 [<br>64 [] | $\begin{array}{c} 0 & 0 \% \\ 0 & 0 \% \\ 0 & 6 \% \\ 0 & 6 \% \\ 0 & 6 \% \\ 0 & 6 \% \\ 0 & 0 \% \\ 0 & 0 \% \\ 0 & 0 \% \\ 0 & 0 \% \\ 0 & 0 \% \\ 0 & 0 \% \\ 0 & 0 \% \\ 1 & 3 \% \\ 1 & 3 \% \end{array}$ | G      |
| 12 [i<br>13 [i<br>14 [i<br>15 [i<br>16 [<br>17 [i]<br>18 [i]<br>Mem[i]<br>Swp[i]        | 0.6%]<br>0.6%]<br>0.6%]<br>1.9%]<br>0.0%]<br>1.9%]<br>1.3%]                                              | 29 [<br>30 []<br>31 [<br>32 []<br>33 []<br>34 [<br>35 [<br>36 [                                                                                                                                          | 0.0%]<br>0.6%]<br>0.0%]<br>1.9%]<br>1.9%]<br>0.0%]<br>0.0%]<br>0.0%]<br>0.0%]<br>1.836/94.76]   | 47 [ ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ]                                                                                                                                                                  | 44.7%]<br>0.0%]<br>6.5%]<br>2.0%]<br>1.9%]<br>0.0%]<br>0.0%]                                                                         | 66 [<br>67 [<br>68 [  ]<br>69 [ <br>70 [ <br>71 [ <br>72 [                                | 1.5%]<br>0.6%]<br>4.5%]<br>1.3%]<br>3.2%]<br>0.6%]                                                                                                                                                              |        |

### More challenges ahead



## PrEngDL

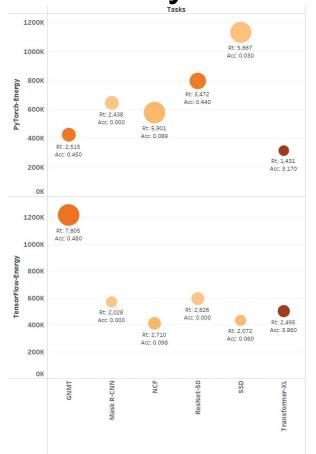
| Search      | or jump to / Pull reque                 | sts Issues Marketplace Explore  |                                 |
|-------------|-----------------------------------------|---------------------------------|---------------------------------|
| 🖵 stefanos1 | 316 / ICSE_2022_artifact Public         |                                 |                                 |
| <> Code     | ⊙ Issues 🖞 Pull requests ⊙ Action       | is 🖽 Projects 🖽 Wiki 🕕 Security | 🖂 Insights 🛛 🕸 Settings         |
|             | 😚 main 👻 🐉 1 branch 🔊 0 tags            |                                 | Go to file Add file - Code -    |
|             | 🙊 stefanos1316 Add manual analysis data | a                               | 45bd2c1 22 days ago 🕚 3 commits |
|             | in configs                              | Add all tools and data          | 22 days ago                     |
|             | 🖿 data                                  | Add all tools and data          | 22 days ago                     |
|             | tools                                   | Add all tools and data          | 22 days ago                     |
|             | .pre-commit-config.yaml                 | Add all tools and data          | 22 days ago                     |
|             | PyTorchVs.TensorFlow_manual_ana         | Add manual analysis data        | 22 days ago                     |
|             | C README.md                             | Add all tools and data          | 22 days ago                     |
|             | install_and_configure.yml               | Add all tools and data          | 22 days ago                     |
|             | 🗅 run.sh                                | Add all tools and data          | 22 days ago                     |

### Training results

The Recommender System, the Natural Language Processing, and the Computer Vision Category

| Models         | CPU & RAM Energy | p-value (A12) | GPU Energy | p-value (A12) | Run-Time   | p-value (A12) |
|----------------|------------------|---------------|------------|---------------|------------|---------------|
| NCF            | TensorFlow       | < 0.001 (1)   | TensorFlow | < 0.001 (1)   | TensorFlow | < 0.001 (1)   |
| Transformer-XL | PyTorch          | < 0.001 (1)   | PyTorch    | < 0.001 (1)   | PyTorch    | < 0.001 (1)   |
| GNMT           | PyTorch          | < 0.001 (1)   | PyTorch    | < 0.001 (1)   | PyTorch    | < 0.001 (1)   |
| ResNet-50      | TensorFlow       | < 0.001 (1)   | TensorFlow | < 0.001 (1)   | TensorFlow | < 0.001 (1)   |
| SSD            | TensorFlow       | < 0.001 (1)   | TensorFlow | < 0.001 (1)   | TensorFlow | < 0.001 (1)   |
| Mask-RCNN      | TensorFlow       | < 0.001 (1)   | TensorFlow | < 0.001 (1)   | TensorFlow | < 0.001 (1)   |

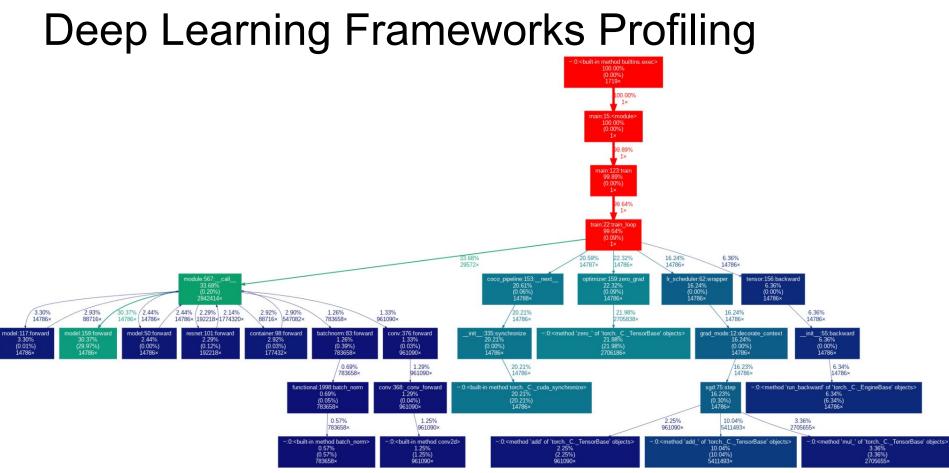
### Inference results


The Recommender System, the Natural Language Processing, and the Computer Vision Category

| I | Models         | CPU & RAM Energy | p-value (A12) | GPU Energy | p-value (A12) | Run-Time   | p-value (A12) |
|---|----------------|------------------|---------------|------------|---------------|------------|---------------|
|   | NCF            | TensorFlow       | < 0.001 (1)   | TensorFlow | < 0.001 (1)   | TensorFlow | < 0.001 (1)   |
| I | Transformer-XL | PyTorch          | < 0.001 (1)   | PyTorch    | < 0.001 (1)   | PyTorch    | < 0.001 (1)   |
| I | GNMT           | PyTorch          | < 0.001 (1)   | PyTorch    | < 0.001 (1)   | PyTorch    | < 0.001 (1)   |
| I | ResNet-50      | TensorFlow       | < 0.001 (1)   | TensorFlow | < 0.001 (1)   | TensorFlow | < 0.001 (1)   |
| 1 | SSD            | PyTorch          | < 0.001 (1)   | PyTorch    | < 0.001 (1)   | PyTorch    | < 0.001 (1)   |
|   | Mask-RCNN      | PyTorch          | < 0.001 (1)   | PyTorch    | < 0.001 (1)   | PyTorch    | < 0.001 (1)   |

## Answer to RQ1

- TensorFlow performs better for training Recommender Systems and Computer Vision tasks.
- PyTorch outperforms TensorFlow for Natural Language Processing tasks.
- For model inference, TensorFlow is more efficient for Recommender Systems and ResNet-50.
- Overall, **TensorFlow** is more energy and run-time performance efficient for **training models**, while **PyTorch** for models inference.


### **Accuracy Trade-Offs**

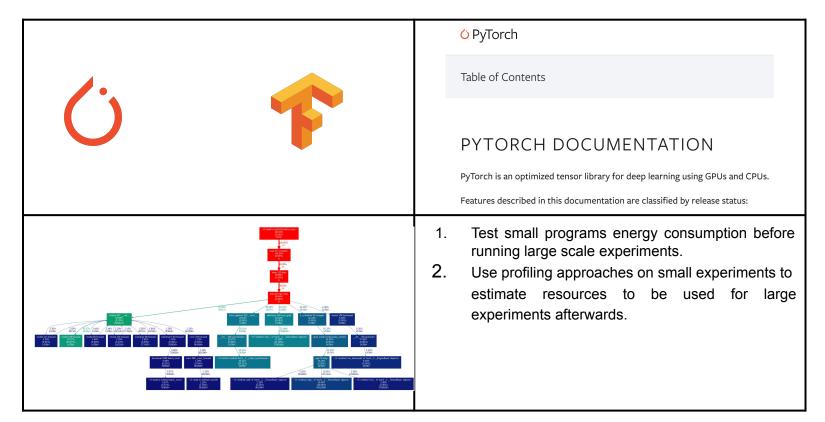


Answer to RQ2: The collected results suggest that better energy consumption and run-time performance—in most of the cases—yield better accuracy results as well. Overall, we find that TensorFlow has similar accuracy to PyTorch, under the configurations and parameter used in our study.

## Identifying costly API calls – Spearman

| Tuples              | PyTorch | TensorFlow |
|---------------------|---------|------------|
| PKG Energy–Run-Time | 0.25    | 0.88       |
| RAM Energy–Run-Time | 0.88    | 0.94       |
| GPU Energy–Run-Time | 0.42    | 0.60       |




# Symbols and their meanings

- Complex calculations
- Complex Implementation
- Large data
- Oevice dependency
- Unknown

# PyTorch Inference

| Model      | Function Name        | Ncalls    | Run-Time | Cost  | Туре       |
|------------|----------------------|-----------|----------|-------|------------|
|            | Torch.tensor         | 81,819    | 578      | 60.6% | $\diamond$ |
|            | Torch.nn.Conv2d      | 380,000   | 24       | 2.6%  |            |
| Mask R-CNN | Torch.Tensor.nonzero | 400,000   | 17       | 1.8%  | —          |
|            | Torch.Tensor.float   | 1,505,005 | 16       | 1.7%  | igodol     |
|            | Torch.Tensor.to      | 105,312   | 16       | 1.7%  |            |
|            | Torch.Tensor.type    | 9,735,395 | 14       | 1.5%  | -          |

## Takeaways



# What are we missing as a community?

- How to convince developers which programing language, module, or framework to choose in order to reduce energy consumption?
- How different components will affect the energy and the run-time performance of applications in the long term?
- . An easy way to collect measurements.

# Thank you for your attention!!!



Email: stefanos1316@gmail.com GitHub: stefanos1316

### Backup slides

|                       | C-          | 0.04      |           |           | 0.56 | 1.09     | 0.46      | 1.77  | 0.21     | 0.18      | 0.64      | 0          | 0        | 0.78   | 0       | 0.67      | 2.56       | 0    | 0.1      | 1.1   | 0.53  | 0.84     | 0         | 0.1       | 0           | 0.76    |
|-----------------------|-------------|-----------|-----------|-----------|------|----------|-----------|-------|----------|-----------|-----------|------------|----------|--------|---------|-----------|------------|------|----------|-------|-------|----------|-----------|-----------|-------------|---------|
|                       | Go -        | 0.08      |           |           | 0.69 | 0.19     | 0.44      | 3.33  | 0.61     | 0.82      | 0.66      | 0.76       | 1.87     | 0.8    | 1.21    | 1.12      | 3.18       | 1.37 | 1.89     | 0     | 1.05  | 1.18     | 0.27      | 0.7       | 1.82        | 0       |
|                       | C++-        | - 0       | 0         | 0         | 2.64 | 0.88     | 0.36      | 1.28  | 0.16     | 0         | 0.99      | 0.6        | 2.99     | 1.11   | 2.05    | 1.41      | 1.65       | 0.4  | 2.04     | 0.96  | 0.79  | 0        | 4.63      | 0         | 1.58        | 2.76    |
| Ja                    | avaScript - | -         | 1.35      | 5.89      | 0.2  | 2.38     | 0.6       | 0     | 0.7      | 0.99      | 0         | 0.01       | 0        | 0.19   | 1.61    | 0         | 1.06       | 2.44 | 2.99     | 2.17  | 2.98  | 0.64     |           | 0         | 1.93        | 0.1     |
|                       | C# -        | 0.54      | 0.3       |           | 0.57 | 2.38     | 0.16      | 2.73  | 0        | 1.45      | 0.06      | 1.59       | 1.66     | 0      | 1.69    | 1.02      | 1.69       | 1.91 | 2.08     | 1.21  | 0     | 4.82     | 3.36      | 2.46      | 3.74        | 2.23    |
| juages                | Rust -      | 0.47      |           |           | 1.74 | 0        | 1.24      | 0.13  | 0.78     | 1         | 2.39      | 0.04       | 1.64     | 2.23   | 2.57    | 2.48      | 1.01       | 1.86 | 4.25     | 3.38  | 2.92  | 1.55     | 2.78      | 0.1       | 3.04        | 0       |
| Programming Languages | VB.Net      | - 1.89    | 0.39      |           | 0.31 | 4.45     | 0         | 2.37  | 2.21     | 2.07      | 0.48      | 4.2        | 1.69     | 0.29   | 4.55    | 0.99      | 2.19       | 1.78 | 0        | 1.62  | 2.66  |          | 2.96      | 0.72      | 3.41        | 6.69    |
| ammin                 | PHP -       | -         | 0.24      |           | 0    | 0.47     | 2.37      | 0.21  | 2.29     | 0.43      | 2.68      | 2.64       | 0.73     | 3.18   | 1.41    | 3.1       | 0          | 2.7  | 1.09     | 3.83  | 3.35  | 2.97     | 4.81      | 5.06      | 4.29        | 4.92    |
| Progra                | Swift -     | -10       | 0.83      | 0.39      | 2.53 | 1.7      | 0.15      | 2.65  | 0.25     | 2.53      | 2.84      | 3.52       | 4.1      | 4.6    | 2.57    | 3.42      | 2.67       | 3.42 | 4.21     | 4.74  | 5.48  | 3.25     | 0.58      | 3.01      | 3.63        | 4.03    |
|                       | Ruby -      | 0.06      | 0.37      | 0.32      | 2.27 | 0.05     | 2.94      | 0.44  | 2.63     | 2.95      | 3.38      | 3.63       | 2.56     | 3.34   | 3.15    | 3.37      | 2.37       | 3.22 | 1.74     | 3.59  | 4.09  | 3.7      | 4.24      | 4.81      |             | 5.13    |
|                       | Python -    | 0.92      | 0.52      | 0.71      | 1.87 | 0.36     | 3.52      | 1.42  | 3.37     | 2.76      | 3.37      | 2.85       | 2.11     | 3.63   | 1.98    | 3.73      | 2.74       | 3.33 | 2.05     | 4.04  | 3.86  | 3.4      | 2.97      | 5.75      |             |         |
|                       | Perl -      | 1.24      | 0.32      | 0.32      | 0.7  | 0.29     | 4.01      | 1     | 3.34     | 2.25      | 3.35      | 3.91       | 2.66     | 3.43   | 2.76    | 4.11      | 1.02       | 4.09 | 4.21     | 4.39  | 3.84  | 5.62     | 5.71      | 7.16      | 5.77        |         |
|                       | Java -      | 0.45      | 1.8       | 1.73      | 4.99 | 4.24     | 3.03      | 4.4   | 3.52     | 4.87      | 2.06      | 2.27       | 4.02     | 2.55   | 2.04    | 2.31      | 5.07       | 4.42 | 3.3      | 3.03  | 2.31  | 4.44     | 3.4       | 5.38      | 4.48        | 5.46    |
|                       | R           |           | 1.45      |           | 2.49 | 3.15     | 4.42      | 3.19  | 4.88     | 3.2       | 3.61      | 1.63       |          | 3.68   | 4.15    | 4.22      | 5.64       | 3.97 | 5.07     | 3.62  | 4.57  | 4.11     |           | 6.74      | 5.82        | 6.87    |
|                       | ş           | Anch: con | thet sing | nhet mult | Son  | file 110 | factorial | reget | cternani | IT Decode | selection | NUM. Intes | tw compt | bubble | huffman | Insertion | uri-encode | anay | alindrom | merge | quict | unc. com | onc. cons | obj.meth. | , +0. 00era | Classes |
|                       |             |           |           |           |      |          |           |       |          |           |           |            |          | nmin   | g Tas   |           |            |      |          |       |       |          |           |           |             |         |

- 6.0

- 4.5

- 3.0

- 1.5

- 0.0

|                       | C.         | 0.04      |           |           | 1.61    | 0.83 | 0.69      | 0.32    | 2.66  | 0.26      | 0.94      | 0         | 0        | 1.18   | 0       | 1.04      | 3.82      | 0    | 0.14       | 1.65  | 0.83  | 1.26      | 0.01      | 0        | 0         | 1.24    |
|-----------------------|------------|-----------|-----------|-----------|---------|------|-----------|---------|-------|-----------|-----------|-----------|----------|--------|---------|-----------|-----------|------|------------|-------|-------|-----------|-----------|----------|-----------|---------|
|                       | Go         | - 0.08    |           |           | 0.19    | 1.11 | 0.67      | 0.91    | 4.98  | 1.24      | 0.96      | 1.19      | 2.95     | 1.21   | 1.77    | 1.72      | 4.75      | 2.07 | 2.81       | 0     | 1.75  | 1.76      | 0.91      | 0.46     | 2.71      | 0       |
|                       | C++ ·      | - 0       | 0         | 0         | 1.25    | 3.97 | 0.55      | 0.26    | 1.94  | 0         | 1.44      | 0.91      | 4.57     | 1.68   | 3.04    | 2.14      | 2.43      | 0.61 | 3.04       | 1.44  | 1.27  | 0         | 0         | 7.13     | 2.39      | 4.17    |
| Ja                    | vaScript · | _         | 1.99      | 9.63      | 3.49    | 0.3  | 0.89      | 1.03    | 0     | 1.46      | 0         | 0         | 0        | 0.29   | 2.37    | 0         | 1.53      | 3.65 | 4.45       | 3.25  | 4.56  | 0.9       | 0.21      |          | 2.88      | 0.4     |
|                       | C# ·       | 0.84      | 0.45      |           | 3.5     | 0.88 | 0.24      | 0       | 4.09  | 2.18      | 0.06      | 2.62      | 2.62     | 0      | 2.48    | 1.58      | 2.53      | 2.88 | 3.08       | 1.81  | 0     |           | 3.52      | 5.15     | 5.62      | 3.38    |
| Programming Languages | Rust ·     | 0.77      |           |           | 0       | 2.61 | 1.87      | 1.16    | 0.23  | 1.5       | 3.54      | 0.09      | 2.54     | 3.36   | 3.8     | 3.74      | 1.49      | 2.8  | 6.38       | 5.07  | 4.5   | 2.36      | 0         | 4.34     | 4.55      | 0       |
| ig Lang               | VB.Net ·   | - 2.93    | 0.54      |           | 6.58    | 0.48 | 0         | 3.3     | 3.56  | 3.11      | 0.71      | 6.54      | 2.64     | 0.44   | 6.77    | 1.51      | 3.34      | 2.68 | 0          | 2.44  | 4.08  |           | 0.93      | 4.5      | 5.28      | 10.16   |
| ammin                 | PHP        | -         | 0.32      |           | 0.69    | 0    | 3.53      | 3.42    | 0.3   | 0.63      | 3.97      | 3.97      | 1.21     | 4.75   | 2.06    | 4.68      | 0         | 4.2  | 1.61       | 5.73  | 5.12  | 4.44      | 7.39      | 7.3      | 6.43      | 7.4     |
| Progr                 | Ruby ·     | 0.06      | 0.57      | 0.47      | 0.05    | 3.41 | 4.39      | 3.92    | 0.69  | 4.4       | 5.02      | 5.46      | 3.94     | 4.99   | 4.67    | 5.07      | 3.52      | 4.85 | 2.57       | 5.37  | 6.07  | 5.53      | 7.03      | 6.57     | 8.83      | 7.73    |
|                       | Swift ·    | -         | 1.17      | 0.73      | 2.67    | 3.81 | 0.22      | 0.36    | 4     | 3.79      | 4.24      | 5.46      | 6.22     | 6.9    | 3.81    | 5.17      | 3.97      | 5.15 | 6.36       | 7.14  | 8.34  | 4.89      | 4.33      | 0.85     | 5.46      | 6.09    |
|                       | Python ·   | 1.39      | 0.73      | 1.05      | 0.49    | 2.8  | 5.24      | 5.02    | 2.12  | 4.12      | 4.99      | 4.7       | 3.22     | 5.42   | 2.95    | 5.6       | 4.07      | 4.99 | 3.03       | 6.03  | 5.87  | 5.07      | 8.43      | 4.55     | 8.91      | 9.11    |
|                       | Perl       | - 1.94    | 0.47      | 0.53      | 0.41    | 1.05 | 5.99      | 4.98    | 1.51  | 3.38      | 4.97      | 6.01      | 4.06     | 5.12   | 4.08    | 6.17      | 1.5       | 6.13 | 6.68       | 6.56  | 5.85  | 8.95      | 10.55     | 8.65     | 8.8       | 9.61    |
|                       | Java ·     | 0.75      | 2.66      | 2.6       | 6.33    | 7.49 | 4.57      | 5.3     | 6.62  | 7.32      | 3.06      | 3.65      | 6.13     | 3.81   | 3.04    | 3.48      |           | 6.98 | 5.42       | 4.53  | 3.57  | 6.86      | 8.07      | 5.16     | 6.71      | 8.28    |
|                       | R·         |           | 2.13      |           | 4.63    | 3.73 | 6.59      | 7.28    | 4.8   | 4.82      | 5.35      | 2.43      |          | 5.49   | 6.16    | 6.32      | 8.44      | 6.18 | 8.08       | 6.25  | 6.93  | 6.17      | 10.45     | ,        | 9.03      | 10.5    |
|                       | ų          | Anch. con | nhet sing | nher mult | filetto | ison | factorial | ckerman | reget | ul decode | selection | num intes | AW COMPL | bubble | huffman | insertion | utiencode | ene  | Dalindrome | merge | 9Uict | UNC. CONN | obj.metr. | onc. com | to operat | Classes |
|                       |            |           |           |           | ā       |      |           |         |       |           |           |           | ograr    |        | g Tas   |           |           |      |            |       |       |           |           |          |           | 5       |

- 10

- 8

- 6

- 4

- 2

|                       | c-          | 0         |           | 1.2     |           | 1.05 | 0.49     | 0.3      | 4.08  | 0.42      | 1.11      | 0.98   | 0       | 1.94       | 0     | 0.43       | 0.61      | 0       | 0        | 0.63  | 0         | 0         | 4.22  | 0         | 4.23     | 8.13     |
|-----------------------|-------------|-----------|-----------|---------|-----------|------|----------|----------|-------|-----------|-----------|--------|---------|------------|-------|------------|-----------|---------|----------|-------|-----------|-----------|-------|-----------|----------|----------|
|                       | C++-        | 0         | 0         | 0.81    | 0.18      | 4.62 | 0.55     | 0.31     | 2.83  | 0.93      | 1.6       | 0.69   | 2.77    | 1.63       | 0.41  | 1.21       | 4.03      | 2.83    | 8.06     | 0.96  | 0         | 1.95      | 3.43  | 1.91      | 9.54     | 0        |
|                       | Go -        | 0.19      |           | 0.04    |           | 2.41 | 0.3      | 0        | 7.09  | 0.07      | 0         | 0      | 2.7     | 6.82       | 4.13  | 0.85       | 5.51      | 2.71    | 0.43     | 0     | 4.02      | 3.45      | 0     | 7.34      | 8.89     | 10.64    |
|                       | Rust -      | 0.04      |           | 0       |           | 0    | 4.6      | 0.81     | 0.3   | 4.13      | 6.05      | 4.76   | 4.14    | 1.54       | 3.86  | 0          | 5.67      | 3.6     | 7.34     | 5.75  | 7.11      | 0         | 8.67  | 6.6       | 0        | 4.7      |
|                       | avaScript - | -         | 4.47      | 4.18    | 13.3      | 3.61 | 1.89     | 1.48     | 0     | 0         | 0.79      | 1.54   | 3.54    | 1.17       | 3.36  | 3.52       | 4.47      | 0       |          | 6.1   | 1.27      | 4.09      | 7.21  | 6.44      | 4.38     | 6.45     |
| Programming Languages | C# -        | 0.08      | 0.2       | 0.25    |           | 1.66 | 2.38     | 1.69     | 6.56  | 1.6       | 0.63      | 0.11   | 3.7     | 3.22       | 3.96  | 4.38       | 4.68      | 3.66    | 4.11     | 0.4   | 9.15      | 6.96      | 5.02  | 7.94      | 7.64     | 10.48    |
| ig Lang               | VB.Net -    | 0.18      | 0.25      | 1.33    |           | 0.91 | 1.69     | 4        | 5.84  | 0.95      | 0.94      | 0.16   | 9.84    | 4.6        | 3.84  | 8.45       | 0         | 6.84    | 4.74     | 5.79  | 0.01      | 6.83      | 5.61  | 9.78      | 7.72     |          |
| ammin                 | PHP -       | -         | 0.1       | 0.23    |           | 0.31 | 7.56     | 7.42     | 0.36  | 7.72      | 7.83      | 7.05   | 3.77    | 0          | 4.75  | 7.74       | 4.17      | 6.67    |          | 8.18  | 10.13     | 8.43      | 11.31 | 5.4       | 6.54     | 8.42     |
| Progra                | Ruby -      | 0.1       | 0.09      | 0.03    | 0         | 4.4  | 6.93     | 6.18     | 1.53  | 6.46      | 7.94      | 6.7    | 5.81    | 4.22       | 5.22  | 6.87       | 4.51      | 7       | 6.22     | 7.52  | 9.75      |           | 9.38  | 10.42     | 9.49     | 9.55     |
|                       | Python -    | 0.28      | 0.06      | 0.33    | 0.6       | 3.91 | 6.58     | 7.54     | 3.42  | 5.86      | 7.18      | 7.21   | 4.09    | 5.11       | 5.73  | 8.33       | 4.57      | 8.92    | 6.18     | 7.44  | 11.12     |           | 9.07  | 9.99      | 8.92     | 9        |
|                       | Perl -      | 1.06      | 0.1       | 0.29    | 0.36      | 1.47 | 7.45     | 6.56     | 1.58  | 6.72      | 6.57      | 5.79   | 5.05    | 1.03       | 6.49  | 9.77       | 8.38      | 10.06   | 10.29    | 6.61  | 10.01     | 12.22     | 10.2  | 8.17      | 9.68     | 10.4     |
|                       | Java -      | 0         | 1.89      | 3.69    | 1.84      | 8.15 | 4.97     | 5.04     | 7.76  | 4.17      | 4.66      | 5.12   | 3       | 7.97       | 7.17  | 6.23       | 6.69      | 5.28    | 6.07     | 4.37  | 10.47     | 9.18      | 7.71  | 12.59     | 11.45    | 13.69    |
|                       | Swift -     | •         | 3.56      | 5.61    | 3.55      | 6.84 | 0        | 0.39     | 6.98  | 5.48      | 5         | 7.93   | 4.92    | 7.01       | 7.54  | 6.33       | 8.18      | 4.42    | 3.53     | 10.01 | 4.78      | 6.73      | 11.26 | 9.56      | 15.96    | 12.81    |
|                       | R·          |           | 2.01      |         |           | 4.97 | 6.31     | 10.15    |       | 10.78     |           | 10.14  |         | 14.28      |       | 3.05       | 8.08      | 10.43   |          | 8.93  |           | 13.54     |       |           |          | 10.32    |
|                       | ş           | Anch: Con | nhet sing | file 10 | Ther mult | Son  | Factoria | acternan | reget | Insertion | selection | bubble | huffman | uri encode | array | JUR. integ | alindrome | Classes | onc. com | 9uict | obj.meth. | 40. 00era | merge | uridecoo. | tw compr | Unc. com |
|                       |             |           |           | e       |           |      |          |          |       |           |           | Pr     |         | nmin       |       |            |           |         |          |       |           |           | •     |           |          |          |

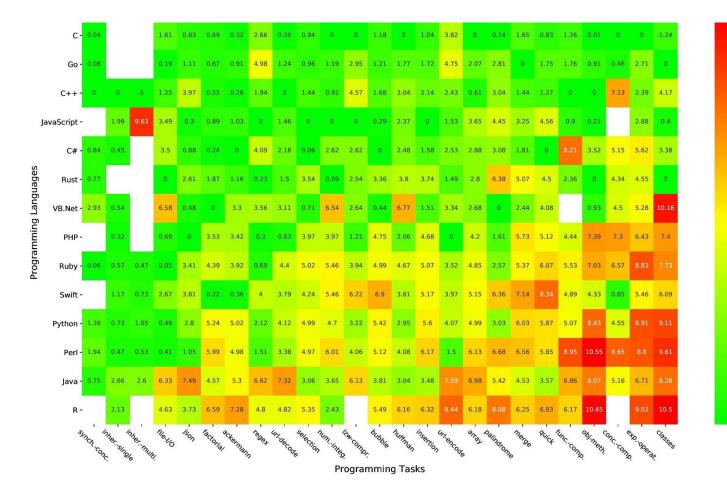
- 15

- 12

- 9

- 6

- 3


| c-                       | 0         | 0.62    |           | 0.53    |           | 0.16      | 0.19      | 2.03  | 0.48   | 0.56      | 0.54      | 0       | 0.3        | 1.15       | 0     | 0.22      | 0       | 0          | 0.31         | 0         | 0    | 2.12  | 0          | 2.15     | 4.12      |
|--------------------------|-----------|---------|-----------|---------|-----------|-----------|-----------|-------|--------|-----------|-----------|---------|------------|------------|-------|-----------|---------|------------|--------------|-----------|------|-------|------------|----------|-----------|
| C++-                     | 0         | 0.44    | 0         | 2.32    | 0.08      | 0.16      | 0.46      | 1.31  | 0.34   | 0.61      | 0.81      | 1.41    | 2.02       | 1.03       | 0.25  | 0.61      | 1.43    | 3.94       | 0.49         | 0         | 0.99 | 1.72  | 0.95       | 4.83     | 0         |
| Go -                     | 0.11      | 0.05    |           | 1.23    |           | 0         | 0.03      | 3.57  | 0      | 0.48      | 0         | 1.38    | 2.77       | 3.64       | 2.07  | 0.43      | 1.31    | 0.22       | 0            | 2.06      | 1.76 | 0     | 3.74       | 4.52     | 5.14      |
| Rust -                   | 0.04      | 0       |           | 0       |           | 0.41      | 2.06      | 0.11  | 2.39   | 2.63      | 3.04      | 2.09    | 2.19       | 0.94       | 2.01  | 0         | 1.79    | 3.65       | 2.9          | 3.29      | 0    | 4.36  | 3.35       | 0        | 2.4       |
| C# -                     | 0.03      | 0.17    | 0.1       | 0.71    |           | 0.86      | 0.8       | 3.29  | 0.06   | 1.5       | 0.31      | 1.87    | 2.35       | 1.82       | 2.07  | 1.68      | 1.86    | 1.36       | 0.18         | 4.64      | 3.53 | 2.54  | 4.03       | 3.89     | 5.3       |
| VB.Net -                 | 0.1       | 0.73    | 0.12      | 0.46    |           | 2.02      | 0.47      | 2.94  | 0.08   | 1.17      | 0.48      | 4.95    | 0          | 2.51       | 2.01  | 3.35      | 3.49    | 2.19       | 2.93         | 0.01      | 3.48 | 2.81  | 4.96       | 3.94     |           |
| VB.Net -<br>JavaScript - | •2        | 2.11    | 3.7       | 3.32    | 7.93      | 0.75      | 0         | 0     | 0.78   | 1.28      | 0.41      | 1.79    | 2.25       | 0.82       | 1.78  | 3.19      | 0       |            | 3.08         | 0.67      | 2.09 | 3.63  | 3.28       | 3.78     | 3.3       |
| PHP -                    |           | 0.12    | 0.05      | 0.17    |           | 3.73      | 3.87      | 0.17  | 3.54   | 4.04      | 3.93      | 1.91    | 2.09       | 0          | 2.47  | 4.88      | 3.4     |            | 4.12         | 5.13      | 4.28 | 5.44  | 2.75       | 3.34     | 4.28      |
| PHP -<br>Ruby -          | 0.06      | 0.02    | 0.05      | 2.21    | 0         | 3.1       | 2.97      | 0.74  | 3.11   | 3.79      | 3.99      | 2.93    | 2.26       | 2.31       | 2.7   | 2.78      | 3.57    | 3.09       | 3.94         | 4.94      | 6.66 | 4.71  | 5.28       | 4.82     | 4.84      |
| Python -                 | 0.16      | 0.18    | 0.03      | 1.97    | 0.3       | 3.79      | 2.75      | 1.7   | 3.61   | 2.92      | 3.61      | 2.07    | 2.29       | 2.76       | 2.96  | 4.4       | 4.53    | 3.08       | 3.75         | 5.63      | 6.78 | 3.98  | 5.04       | 4.53     | 4.57      |
| Perl -                   | 0.58      | 0.16    | 0.05      | 0.74    | 0.18      | 3.31      | 3.37      | 0.78  | 2.81   | 3.73      | 3.3       | 2.55    | 3.5        | 0.68       | 3.35  | 5.61      | 5.11    | 4.79       | 3.34         | 4.99      | 6.18 | 5.13  | 4.15       | 4.92     | 5.27      |
| Java -                   | 0         | 1.89    | 0.96      | 3.91    | 0.93      | 2.53      | 2.09      | 3.89  | 2.57   | 2.82      | 2.34      | 1.51    | 2.77       | 4.21       | 3.68  | 3.92      | 2.68    | 3.03       | 2.2          | 5.28      | 4.65 | 3.87  | 6.36       | 5.8      |           |
| Swift -                  |           | 4.26    | 3.25      | 4.94    | 3.24      | 0.2       | 2.7       | 3.5   | 3.73   | 0         | 2.35      | 2.48    | 3.63       | 3.73       | 3.82  | 2.45      | 2.26    | 3.22       | 5            | 2.44      | 3.42 | 5.58  | 4.85       | 9.56     |           |
| R -                      | 8         | 0.85    | 1.01      | 2.5     |           | 4.78      | 5.14      | 3.15  | 4.85   | 3.41      | 3.93      | 2.66    | 3.67       | 7.38       | 4.35  | 1.56      | 4.77    |            | 4.34         | 5.41      | 6.85 | 6.53  | 5.24       |          | 5.23      |
| S                        | Anch. con | filetto | nhet sing | -ison " | nher mult | acternan. | insertion | reget | bubble | lactorial | selection | huffman | Dalindrom. | uriencode  | array | num intes | Classes | 'onc. cont | quict        | obj.meth. |      | merge | uti de cod | tw.comp. | "Inc. com |
|                          | 7         | Ċ       | ġ.        | e       | */        | ?<br>?    | >         |       |        |           |           |         |            | 。<br>g Tas |       | °C.       | ?       | 2          | <sup>5</sup> |           | 0    | č     | -0         | 0        | 3         |

- 8

- 6

- 4

- 2



- 10

- 8

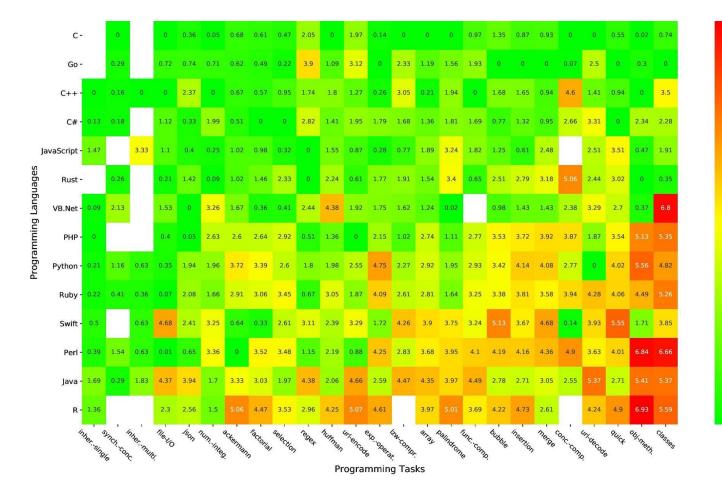
- 6

- 1

- 2

|        | C.           | - 0       |             | 1.2     |           | 1.05 | 0.49      | 0.3      | 4.08    | 0.42      | 1.11      | 0.98   | 0       | 1.94       | 0     | 0.43      | 0.61     | 0       | 0        | 0.63  | 0         | 0         | 4.22  | 0           | 4.23     | 8.13     |
|--------|--------------|-----------|-------------|---------|-----------|------|-----------|----------|---------|-----------|-----------|--------|---------|------------|-------|-----------|----------|---------|----------|-------|-----------|-----------|-------|-------------|----------|----------|
|        | C++ -        | - 0       | 0           | 0.81    | 0.18      | 4.62 | 0.55      | 0.31     | 2.83    | 0.93      | 1.6       | 0.69   | 2.77    | 1.63       | 0.41  | 1.21      | 4.03     | 2.83    | 8.06     | 0.96  | 0         | 1.95      | 3.43  | 1.91        | 9.54     | 0        |
|        | Go           | 0.19      |             | 0.04    |           | 2.41 | 0.3       | 0        | 7.09    | 0.07      | 0         | 0      | 2.7     | 6.82       | 4.13  | 0.85      | 5.51     | 2.71    | 0.43     | 0     | 4.02      | 3.45      | 0     | 7.34        | 8.89     | 10.64    |
|        | Rust         | 0.04      |             | 0       |           | 0    | 4.6       | 0.81     | 0.3     | 4.13      | 6.05      | 4.76   | 4.14    | 1.54       | 3.86  | 0         | 5.67     | 3.6     | 7.34     | 5.75  | 7.11      | 0         | 8.67  | 6.6         | 0        | 4.7      |
|        | JavaScript · | -         | 4.47        | 4.18    | 13.3      | 3.61 | 1.89      | 1.48     | 0       | 0         | 0.79      | 1.54   | 3.54    | 1.17       | 3.36  | 3.52      | 4.47     | 0       |          | 6.1   | 1.27      | 4.09      | 7.21  | 6.44        | 4.38     | 6.45     |
| lages  | C# ·         | 0.08      | 0.2         | 0.25    |           | 1.66 | 2.38      | 1.69     | 6.56    | 1.6       | 0.63      | 0.11   | 3.7     | 3.22       | 3.96  | 4.38      | 4.68     | 3.66    | 4.11     | 0.4   | 9.15      | 6.96      | 5.02  | 7.94        | 7.64     | 10.48    |
| I Lang | VB.Net       | 0.18      | 0.25        | 1.33    |           | 0.91 | 1.69      | 4        | 5.84    | 0.95      | 0.94      | 0.16   | 9.84    | 4.6        | 3.84  | 8.45      | 0        | 6.84    | 4.74     | 5.79  | 0.01      | 6.83      | 5.61  | 9.78        | 7.72     |          |
| mming  | PHP          | -         | 0.1         | 0.23    |           | 0.31 | 7.56      | 7.42     | 0.36    | 7.72      | 7.83      | 7.05   | 3.77    | 0          | 4.75  | 7.74      | 4.17     | 6.67    |          | 8.18  | 10.13     | 8.43      | 11.31 | 5.4         | 6.54     | 8.42     |
| Progra | Ruby ·       | 0.1       | 0.09        | 0.03    | 0         | 4.4  | 6.93      | 6.18     | 1.53    | 6.46      | 7.94      | 6.7    | 5.81    | 4.22       | 5.22  | 6.87      | 4.51     | 7       | 6.22     | 7.52  | 9.75      | 13.17     | 9.38  | 10.42       | 9.49     | 9.55     |
|        | Python ·     | 0.28      | 0.06        | 0.33    | 0.6       | 3.91 | 6.58      | 7.54     | 3.42    | 5.86      | 7.18      | 7.21   | 4.09    | 5.11       | 5.73  | 8.33      | 4.57     | 8.92    | 6.18     | 7.44  | 11.12     |           | 9.07  | 9.99        | 8.92     | 9        |
|        | Perl         | 1.06      | 0.1         | 0.29    | 0.36      | 1.47 | 7.45      | 6.56     | 1.58    | 6.72      | 6.57      | 5.79   | 5.05    | 1.03       | 6.49  | 9.77      | 8.38     | 10.06   | 10.29    | 6.61  | 10.01     |           | 10.2  | 8.17        | 9.68     | 10.4     |
|        | Java -       | 0         | 1.89        | 3.69    | 1.84      | 8.15 | 4.97      | 5.04     | 7.76    | 4.17      | 4.66      | 5.12   | 3       | 7.97       | 7.17  | 6.23      | 6.69     | 5.28    | 6.07     | 4.37  | 10.47     | 9.18      | 7.71  | 12.59       | 11.45    | 13.69    |
|        | Swift        | -         | 3.56        | 5.61    | 3.55      | 6.84 | 0         | 0.39     | 6.98    | 5.48      | 5         | 7.93   | 4.92    | 7.01       | 7.54  | 6.33      | 8.18     | 4.42    | 3.53     | 10.01 | 4.78      | 6.73      | 11.26 | 9.56        | 15.96    |          |
|        | R·           | -)        | 2.01        | 1.6     |           | 4.97 | 6.31      | 10.15    | 6.28    | 10.78     | 7.81      | 10.14  | 6.67    | 14.28      | 8.48  | 3.05      | 8.08     | 10.43   |          | 8.93  | 11.31     | 13.54     | 13.3  | 10.32       |          | 10.32    |
|        | ្ទុ          | Anch. con | inner. sing | filetto | inner mul | ison | lactorial | acternan | · reget | insertion | selection | bubble | huffman | urlencode  | array | Jun integ | alindrom | Classes | onc. com | quict | obj.metn. | 40. 00era | merge | uri de code | the comp | Inc. con |
|        |              | On        | No.         | 6       | 101       | ¢;   |           | 30,      | >       |           |           |        |         | ~~<br>nmin |       |           |          | 0       | -73      | 2     | 1         | 10        | č     | 0           |          |          |
|        |              |           |             |         |           |      |           |          |         |           |           |        | -9.01   |            | 5.45  |           |          |         |          |       |           |           |       |             |          |          |

- 15


- 12

- 9

- 6

- 3

- 0



- 6.0

- 4.5

- 3.0

- 1.5

|                       | C            | -         | 0         |          | 0       | 0.54 | 0.74      | 0.98     | 0         | 0.71      | 3.08  | 0       | 2.95      | 0.19     | 0        | 0     | 1.44        | 0          | 1.35      | 1.97   | 1.41  | 0          | 0.85  | 0         | 0.02      | 1.21    |
|-----------------------|--------------|-----------|-----------|----------|---------|------|-----------|----------|-----------|-----------|-------|---------|-----------|----------|----------|-------|-------------|------------|-----------|--------|-------|------------|-------|-----------|-----------|---------|
|                       | Go           | -         | 0.29      |          | 1.02    | 1.14 | 0.56      | 0.88     | 1.01      | 0.33      | 5.89  | 1.66    | 4.68      | 0        | 3.51     | 1.89  | 2.89        | 2.34       | 0         | 0      | 0     | 3.74       | 0     | 0.12      | 0.6       | 0       |
|                       | C++ -        | 0         | 0.16      | 0        | 0       | 3.56 | 0.67      | 0.97     | 0.22      | 1.41      | 2.61  | 2.68    | 1.87      | 0.38     | 4.54     | 0.29  | 0           | 2.92       | 2.47      | 2.47   | 1.34  | 2.16       | 1.42  | 7.61      | 0         | 5.33    |
|                       | C#           | 0.19      | 0.18      |          | 1.6     | 0.51 | 0         | 0.73     | 2.91      | 0         | 4.23  | 2.09    | 2.9       | 2.69     | 2.45     | 2.04  | 2.53        | 2.71       | 1.97      | 1.11   | 1.42  | 4.94       | 0     | 3.96      | 3.59      | 3.51    |
|                       | JavaScript · | 2.2       |           | 5.06     | 1.58    | 0.6  | 1.29      | 1.49     | 0.3       | 0.48      | 0     | 2.3     | 1.27      | 0.43     | 1.25     | 2.82  | 2.71        | 5.02       | 0.91      | 1.83   | 3.73  | 3.74       | 5.25  |           | 0.94      | 2.95    |
| Programming Languages | Rust         | -         | 0.26      |          | 0.21    | 2.13 | 2.01      | 1.5      | 0.06      | 3.47      | 0     | 3.42    | 0.91      | 2.65     | 2.81     | 2.32  | 1.04        | 5.47       | 4.17      | 3.88   | 4.77  | 3.62       | 4.53  | 7.7       | 0         | 0.65    |
| g Lang                | VB.Net       | 0.15      | 3.13      |          | 2.23    | 0    | 0.36      | 2.98     | 5.52      | 0.61      | 3.67  | 6.56    | 2.88      | 2.65     | 2.4      | 1.86  |             | 0.04       | 2.12      | 1.4    | 2.17  | 4.93       | 4.05  | 3.6       | 0.67      | 10.81   |
| ammin                 | PHP          | 0         |           |          | 0.57    | 0.09 | 3.78      | 3.86     | 4.02      | 4.36      | 0.76  | 2.01    | 0         | 3.22     | 1.49     | 4.12  | 4.21        | 1.67       | 5.57      | 5.47   | 5.88  | 2.79       | 5.31  | 5.9       | 7.79      |         |
| Progra                | Python ·     | 0.31      | 1.64      | 0.93     | 0.52    | 2.92 | 5.08      | 5.54     | 3.8       | 4.25      | 2.7   | 2.95    | 3.82      | 7.15     | 3.35     | 4.39  | 4.45        | 2.91       | 6.19      | 5.6    | 6.12  | 0          | 6.02  | 4.23      | 8.57      |         |
|                       | Ruby         | 0.33      | 0.71      | 0.54     | 0.07    | 3.12 | 4.41      | 4.36     | 3.48      | 5.16      | 1.02  | 4.56    | 2.8       | 6.22     | 3.87     | 4.22  | 4.94        | 2.45       | 5.7       | 5.4    | 5.37  | 6.43       | 5.98  | 6.14      | 6.83      | 7.98    |
|                       | Swift        | 0.73      |           | 0.93     | 7.05    | 3.61 | 0.31      | 0.94     | 5.12      | 3.91      | 4.67  | 3.56    | 4.93      | 2.6      | 6.37     | 5.85  | 4.92        | 5.85       | 5.5       | 7.63   | 7.02  | 5.87       | 8.31  | 0.24      | 2.66      | 5.87    |
|                       | Perl         | 0.59      | 2.15      | 0.97     | 0.01    | 0.98 | 5.53      | 0        | 5.48      | 5.22      | 1.73  | 3.55    | 1.28      | 6.36     | 4.21     | 5.52  | 6.21        | 6.47       | 6.52      | 6.23   | 6.54  | 5.43       | 6     | 7.5       | 10.57     | 10.4    |
|                       | Java -       | 2.52      | 0.29      | 2.73     | 6.48    | 6.32 | 4.48      | 5.08     | 2.9       | 2.95      | 6.58  | 3.07    | 6.98      | 3.88     | 6.67     | 6.54  | 6.94        | 6.13       | 4.05      | 4.33   | 4.57  | 8.42       | 4.05  | 3.82      | 8.23      |         |
|                       |              | 2.03      |           | 7        | 3.4     | 3.84 | 6.62      | 7.55     | 2.2       | 5.26      | 4.67  | 6.36    | 7.81      | 6.9      | ,        | 5.96  | 5.59        | 8.14       | 7.07      | 6.46   | 5.28  | 6.57       | 7.34  |           | 10.97     |         |
|                       |              | nher sing | Anchi con | ther mul | filello | ison | factorial | acternan | num intes | selection | reget | huffman | utiencode | 10.00ero | tw.comp. | array | LUNC: CONTR | oalindrom. | insertion | bubble | merge | utide code | quict | onc. cont | obj.metr. | Classes |
|                       |              |           | 0         | ¢, ¢     | <.      |      |           |          | , 0       | •         |       |         | ograr     |          |          |       | ^           |            |           |        |       |            |       | ×         |           |         |

- 10

- 8

- 6

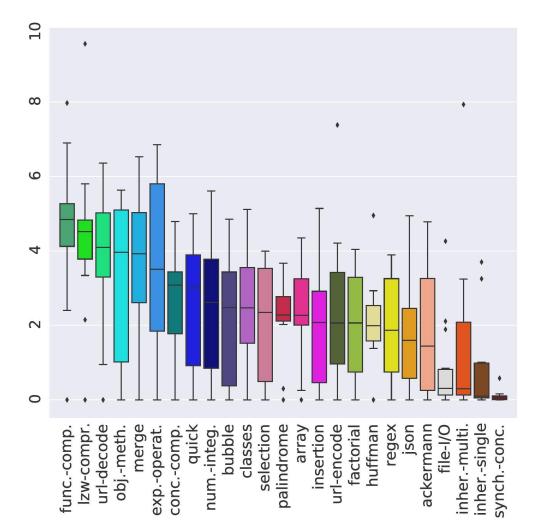
- 4

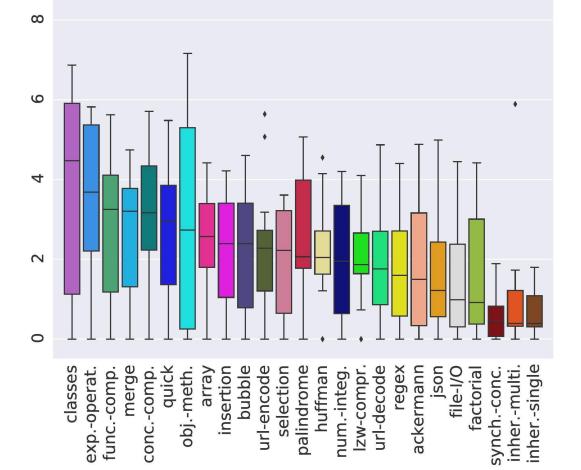
- 2

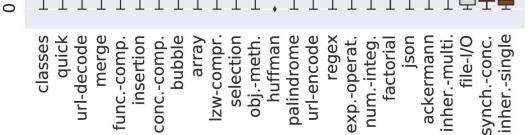
0

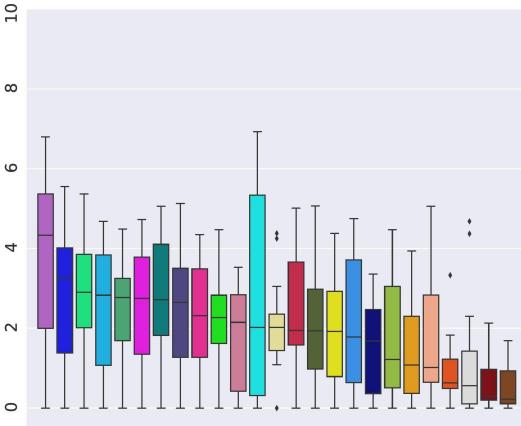
|                       | C.          |           | 0          |           | 0       | 0.71 | 0.87      | 1.28     | 0.04      | 0         | 4.1   | 0       | 3.93       | 0.24      | 0        | 0     | 1.91        | 0          | 1.83      | 2.59   | 1.89  | 0          | 1.15  | 0         | 0.02      | 1.69   |
|-----------------------|-------------|-----------|------------|-----------|---------|------|-----------|----------|-----------|-----------|-------|---------|------------|-----------|----------|-------|-------------|------------|-----------|--------|-------|------------|-------|-----------|-----------|--------|
|                       | Ċ.          |           | Ŭ.         |           | U       | 0.71 | 0.07      | 1.20     | 0.94      | U         | 4.1   | U       | 3.95       | 0.24      | Ū        | Ū     | 1.51        | Ŭ          | 1.05      | 2.35   | 1.09  | U          | 1.15  | U         | 0.02      | 1.05   |
|                       | Go          | -         | 0.29       |           | 1.32    | 1.54 | 0.63      | 1.14     | 0.44      | 1.36      | 7.89  | 2.22    | 6.25       | 0         | 4.69     | 2.59  | 3.86        | 3.12       | 0         | 0      | 0     | 4.98       | 0     | 0.18      | 0.9       | 0      |
|                       | C++ ·       | 0         | 0.16       | 0         | 0       | 4.75 | 0.77      | 1.27     | 1.87      | 0.49      | 3.48  | 3.55    | 2.47       | 0.51      | 6.03     | 0.37  | 0           | 3.89       | 3.28      | 3.26   | 1.74  | 2.92       | 1.89  | 10.63     | 0         | 7.16   |
|                       | C# ·        | 0.25      | 0.18       |           | 2.07    | 0.69 | 0         | 0.95     | 0         | 3.88      | 5.64  | 2.78    | 3.85       | 3.6       | 3.23     | 2.72  | 3.36        | 3.62       | 2.62      | 1.44   | 1.9   | 6.57       | 0     | 5.27      | 4.85      | 4.74   |
| 123                   | avaScript · | 2.94      |            | 6.79      | 2.05    | 0.81 | 1.6       | 1.97     | 0.63      | 0.4       | 0     | 3.06    | 1.67       | 0.58      | 1.72     | 3.75  | 3.6         | 6.81       | 1.22      | 2.42   | 4.97  | 4.97       | 6.99  |           | 1.42      | 4      |
| Juages                | Rust ·      | 2         | 0.26       |           | 0.21    | 2.83 | 2.56      | 1.97     | 4.62      | 0.08      | 0     | 4.6     | 1.21       | 3.53      | 3.72     | 3.1   | 1.43        | 7.54       | 5.55      | 5.26   | 6.36  | 4.81       | 6.04  | 10.35     | 0         | 0.95   |
| Programming Languages | VB.Net      | 0.21      | 4.13       |           | 2.93    | 0    | 0.36      | 4.29     | 0.8       | 7.83      | 4.89  | 8.74    | 3.83       | 3.54      | 3.18     | 2.49  |             | 0.06       | 2.82      | 1.83   | 2.91  | 6.58       | 5.39  | 4.82      | 0.97      | 14.82  |
| ammin                 | PHP         | 0         |            |           | 0.75    | 0.13 | 4.93      | 5.11     | 5.8       | 5.47      | 1.02  | 2.67    | 0          | 4.29      | 1.97     | 5.49  | 5.65        | 2.22       | 7.42      | 7.41   | 7.84  | 3.71       | 7.07  | 7.93      | 10.45     |        |
| Progra                | Python ·    | 0.42      | 2.12       | 1.23      | 0.7     | 3.89 | 6.78      | 7.36     | 5.89      | 5.68      | 3.61  | 3.92    | 5.09       | 9.54      | 4.42     | 5.85  | 5.97        | 3.87       | 8.24      | 7.79   | 8.16  | 0          | 8.02  | 5.7       |           |        |
|                       | Ruby ·      | 0.44      | 1.01       | 0.71      | 0.07    | 4.16 | 5.76      | 5.8      | 6.86      | 5.36      | 1.36  | 6.06    | 3.73       | 8.36      | 5.12     | 5.63  | 6.63        | 3.27       | 7.59      | 7.43   | 7.16  | 8.59       | 7.89  | 8.34      | 9.17      | 10.69  |
|                       | Swift ·     | 0.97      |            | 1.23      | 9.42    | 4.81 | 0.29      | 1.24     | 5.2       | 7.04      | 6.23  | 4.74    | 6.57       | 3.47      | 8.48     | 7.8   | 6.6         | 7.95       | 7.33      | 10.13  | 9.36  | 7.81       | 11.08 | 0.34      | 3.62      | 7.88   |
|                       | Perl        | 0.79      | 2.75       | 1.3       | 0.01    | 1.3  | 7.55      | 0        | 6.95      | 7.64      | 2.31  | 4.92    | 1.68       | 8.48      | 5.59     | 7.36  | 8.32        | 9          | 8.88      | 8.28   | 8.72  | 7.23       | 8     | 10.11     | 14.29     | 14.13  |
|                       | Java -      | 3.34      | 0.29       | 3.62      | 8.6     | 8.7  | 5.93      | 6.84     | 3.92      | 4.14      | 8.77  | 4.09    | 9.3        | 5.17      | 8.87     | 8.73  | 9.39        | 8.29       | 5.39      | 5.89   | 6.1   | 11.47      | 5.39  | 5.08      | 11.04     |        |
|                       |             | 2.71      |            |           | 4.5     | 5.12 |           | 10.03    | 7         | 2.96      | 6.39  | 8.47    | 10.56      | 9.19      | , .      | 7.94  | 7.49        | 11.26      |           | 8.7    | 7.94  | 8.9        | 9.77  |           | 15.01     |        |
|                       | 1           | nhet sing | Anch. Conc | Ther mult | file Ho | ison | tactorial | acternan | selection | NUT intes | reget | huffman | uri encode | 2+0.00er3 | tw.compt | array | LUNC: CONTR | oalindrome | insertion | bubble | merge | UTI-decode | quict | onc. cont | obj.metr. | Classe |
|                       |             |           | 0 1        |           | ×.      |      |           |          |           |           |       |         |            | nmin      |          |       | ~           |            | e         |        |       |            |       | X         | :         |        |

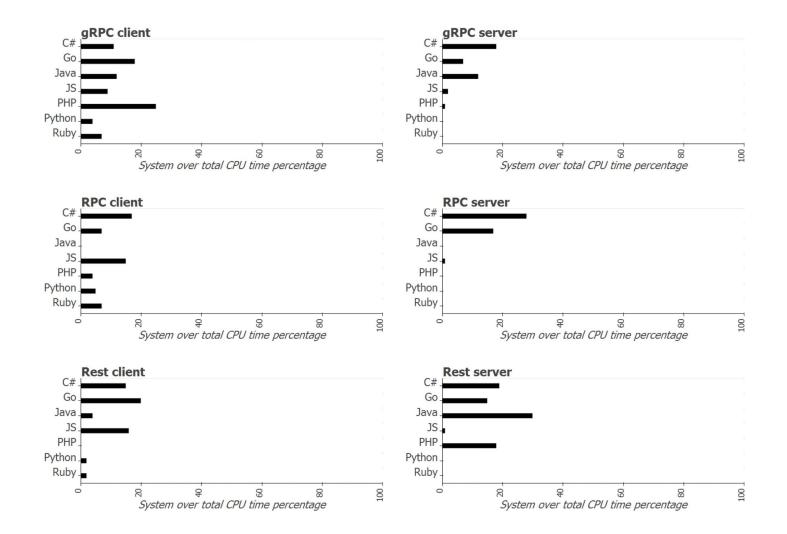
- 15


- 12


- 9


- 6


- 3


- 0

