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Overview

Post-quantum algorithms:
Overview of algorithms believed to be
secure against quantum adversaries.
The Kyber and Dilithium lattice-based
algorithms.

Side-channel attacks
The threat of side-channel attacks
Relevance for Kyber and Dilithium

Side-channel countermeasures
Security model for high-order security
Conversion between Boolean and
arithmetic masking
Application to Kyber and Dilithium
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Why post-quantum cryptography

Public-key cryptography is based on hard problems
RSA: hardness of factoring N = pq
ECC: hardness of finding d in P = d.G
We don’t know any classical algorithm
that can efficiently solve these problems.
but these problems are broken by a
quantum computer

Post-quantum hardness
In the quantum era, a problem should
remain hard even when attacked by both
classical and quantum computers.
Fortunately, we know many such problems !
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Families of post-quantum schemes

Code-based Cryptography (McEliece, 1978)
Relies on the hardness of
decoding a general linear
code
McEliece’s encryption scheme.
Large key size

Lattice-based cryptography
Based on the difficulty of certain
problems in lattices (SVP and CVP)
NTRU (1996), a very fast public-key
encryption scheme.
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Families of post-quantum schemes (2)

Multivariate cryptography
Matsumoto-Imai C∗ scheme (1988), HFE [P96]
Security relies on the difficulty of solving systems of
multivariate polynomial equations.
Short signatures

Hash-based cryptography (Lamport, 1979)
Based on the security of cryptographic
hash functions.
Mostly used for digital signatures.
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NIST’s PQC standardization

The NIST competition: encryption/KEM and signatures
Round 1 (2017): 82 submissions. Round 2: 26 2nd round
candidates. Round 3: 7 finalists and 8 alternates.

3rd round KEM selection (July 2022):
Kyber (draft standard August 2023)

3rd round Signature selection (July 2022)
Dilithium (draft standard August 2023)
Falcon

SPHINCS+

Jean-Sébastien Coron Post-Quantum Algorithms and Side-Channel Countermeasures



Transition to post-quantum algorithms
Hybrid cryptography

Use of two (or more) cryptographic systems together.
During the transition to PQC, use both classical and PQC
algorithms for robust security.
Recommended by ANSSI and BSI for transition phase

Key establishment (KEM)
Derive a session key dependent
on both classical and PQC
algorithms.

pkRSA pkKyber

EncRSA EncKyber

c1k1 c2k2

k = H(H(k1, k2), c1, c2)Signature
Concatenate the classical and PQC signatures
Signature is verified if both signatures are verified.
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Kyber: post-quantum KEM

Kyber
Key encapsulation mechanism (KEM) based on
lattice-based cryptography.
Goal: provide security level equivalent or better than RSA,
ECC, but resistant to quantum attacks.
Security based on the hardness of certain
problems in ideal lattices: Module
Learning With Errors (MLWE) problem.

Performance:
Designed to have relatively small key sizes and
ciphertexts, and to be computationally efficient.
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Dilithium and Falcon signature schemes
Dilithium and Falcon

Both based on lattice-based cryptography, for security
against quantum attacks
Dilithum: Fiat-Shamir with abort on
module lattices.
Falcon: hash-and-sign on NTRU lattices
Both designed to be efficient with relatively small key and
signature sizes

Comparison
Falcon provides smaller key and signature sizes than
Dilithium.
But Falcon requires Gaussian sampling, which is hard to
secure against side-channel attacks.
Dilithium recommended by NIST to be the primary
signature algorithm.
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The challenge of side-channel attacks

Side-channel attacks
Timing attacks, power analysis attacks, electromagnetic
attacks...

1

0

PQC and side-channel attacks:
PQC algorithms, like all cryptographic
systems, are susceptible to
side-channel attacks.
Side-channel resistance less well
understood and more challenging.
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Hard lattice problems in cryptography
Lattice

Regular grid of points in multidimensional space, defined
by a basis of vectors.

Shortest Vector Problem (SVP)
Given a lattice basis, find the shortest non-zero vector.
Believed to be hard even for quantum computers.
LLL algorithm provides an approximation in
polynomial-time.

b1
b2

b′1

b′2

Original basis
Reduced basis
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Hard lattice problems in cryptography

Learning With Errors (LWE):
Given ®A ∈ Zℓ×n

q such that ®A · ®s = ®e for small ®e, recover ®s.
Ring-LWE and Module-LWE:

Variant of LWE where the secret and errors come from a
polynomial ring.
Offers efficiency advantages.

Significance:
Reduction from worst-case lattice
problems.
Believed to be hard against both
classical and quantum adversaries.
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LWE-based encryption [R05]
Key generation

Secret-key: ®s ∈ (Zq)n
Encryption of m ∈ {0, 1}

A vector ®c ∈ Fq such that
⟨®c, ®s⟩ = e + m · ⌊q/2⌋ (mod q)

for a small error e.

· =

®c
®s

e + m · ⌊q/2⌋ (mod q)

Decryption
Compute m = th(⟨®c, ®s⟩ mod q)
where th(x) = 1 if x ∈ (q/4, 3q/4), and 0 otherwise.

0

q/4

q/2

3q/4
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LWE-based public-key encryption
Key generation

Secret-key: ®s ∈ (Zq)n, with s1 = 1.
Public-key: ®A such that ®A · ®s = ®e for small ®e

Every row of ®A is an LWE encryption of 0.
Encryption of m ∈ {0, 1}

®c = ®u · ®A + (m · ⌊q/2⌉, 0, . . . , 0)
for a small ®u

· +
⌊ q

2
⌉
· =m 0 0

®u

®A

®c

Decryption
Compute m = th(⟨®c, ®s⟩ mod q)
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RLWE-based schemes

RLWE-based scheme
We replace Zq by the polynomial ring
Rq = Zq [x]/< xℓ + 1 >, where ℓ is a power of 2.
Addition and multiplication of polynomials are performed
modulo xℓ + 1 and prime q.
We can take m ∈ R2 = Z2 [x]/<xℓ + 1>
instead of {0, 1}: more bandwidth.

Ring Learning with Error (RLWE) assumption
t = a · s + e for small s, e← R
Given t, a, it is difficult to recover s.
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RLWE-based public-key encryption
Key generation

t = a · s + e for random a← Rq and small s, e← R.
Public-key encryption of m ∈ R2

c = (a · r + e1, t · r + e2 + ⌊q/2⌉m), for small e1, e2 and r.
Decryption of c = (u, v)

Compute m = th(v − s · u)
v − s · u = t · r + e2 + ⌊q/2⌉m − s · (a · r + e1)

= (t − a · s) · r + e2 + ⌊q/2⌉m − s · e1

= ⌊q/2⌉m + e · r + e2 − s · e1︸              ︷︷              ︸
small

m ∈ R2 = Z2 [x]/<xℓ + 1>: more bandwidth.
0

q/4

q/2

3q/4
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The Kyber scheme

Polynomial operations:
Polynomial ring Zq [X]/(X256 + 1) with prime
q = 3329 = 212 − 29 − 28 + 1.
Use k-vectors and k × k-matrices of ring elements
Kyber512: k = 2, Kyber768: k = 3, Kyber1024: k = 4

Module Learning with Error (M-LWE)
t = A · s + e, for a small error e
Given t,A, difficult to recover s.

· + =

A s e t
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Kyber key generation

Key generation
Generate matrix A and small vectors s and e
Compute t = A · s + e

Secret key : s
Public key : (A, t)

· + =

A s e t
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Kyber basic encryption
Encryption of a binary message m ∈ Z[X]/(X256 + 1)

Generate small vectors r and e1, and small polynomial e2

Compute u = AT · r + e1
Compute v := tT · r + e2 + ⌊q/2⌉m

Ciphertext : (u, v)

Decryption
Compute m = th(v − sT · u)

where th(x) = 1 if x ∈ (q/4, 3q/4), and 0 otherwise.

0

q/4

q/2

3q/4
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From CPA to CCA security: FO transform
Chosen Plaintext Attack (CPA) security

The previous scheme is CPA secure: given only the
public-key, a ciphertext reveals no information on the
plaintext.

Chosen Ciphertext Attack (CCA) insecurity
The previous scheme is not CCA secure
By submitting a series of ciphertexts (u, v) and getting the
corresponding m, one can recover the secret s.

(u, v) m

s

CCA-security: Fujisaki-Okamoto transform
Generic transformation from CPA to CCA-security.
Verify correct decryption by re-encrypting the message
and comparing the ciphertexts.
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IND-CCA decryption with the FO transform

Given the ciphertext c, the secret-key s and the public-key
pk, recover the session key K

CPA.Dec

c

s

m G

CPA.encpk r

c′

K̂

H K

?
=

return K

return $

yes

no
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Side-channel attacks on the FO transform

CPA.Dec

c

s

m G

CPA.encpk r

c′

K̂

H K

?
=

return K

return $

yes

no

[PPM17]
[XPRO21]

[UXT+22]
[BDH+21]
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Side channel attack on the FO transform
[BDH+21]

Without the FO transform, decryption failure attack
We submit perturbed ciphertexts ®c′ = ®c + 𝛿
We obtain a plaintext m′ and compare to m: plaintext
checking oracle.
We can recover ⟨®c, ®s⟩ by binary search, and eventually ®s

With FO, template attack against ciphertext comparison
The SCA gives us a plaintext checking oracle.
Use the above attack and recover the key

CPA.Dec

c

s

m G

CPA.encpk r

c′

K̂

H K

?
=

return K

return $

yes

no

[BDH+21]
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Decryption failure attack against CPA scheme
Decryption failure attack without the FO transform

Assume that an attacker can submit a LWE ciphertext ®c
and obtain m = th(⟨®c, ®s⟩ mod q)
Submit a perturbed ciphertext with a small error

®c′ = ®c + (e, 0, . . . , 0)
Get m′ = th(⟨ ®c′, ®s⟩) = th(⟨®c, ®s⟩ + e) (with s1 = 1).

0

q/4

q/2

3q/4

⟨®c, ®s⟩

⟨®c, ®s⟩ + e

Key recovery
Recover the value of ⟨®c, ®s⟩ mod q by binary search.
With n such equations, recover ®s
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Jean-Sébastien Coron Post-Quantum Algorithms and Side-Channel Countermeasures



SCA on FO transform
The previous attack is prevented by the FO transform

But one can perform a SCA on the FO transform !
Decryption failure attack on ciphertext comparison

Submit a perturbed cipherext c̃ = c + 𝛿
If still decrypts to the same m, then re-encrypted c′ and c̃
will differ on a single coefficient
otherwise they will differ on all coefficients
can be distinguished by SCA [BDH+21]

CPA.Dec

c

s

m G

CPA.encpk r

c′

K̂

H K

?
=

return K

return $

yes

no

[BDH+21]
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SCA on FO transform
The previous attack is prevented by the FO transform

But one can perform a SCA on the FO transform !
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If still decrypts to the same m, then re-encrypted c′ and c̃
will differ on a single coefficient
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CPA.Dec

c

s

m G

CPA.encpk r

c′

K̂

H K

?
=

return K

return $

yes

no

[BDH+21]
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Full masking of IND-CCA decryption

The variables s, m, c′, K̂ and K must be masked.
The operations CPA.Dec, CPA.enc, G, H and ?

= must also
be masked.

CPA.Dec

c

s

m G

CPA.encpk r

c′

K̂

H K

?
=

return K

return $

yes

no
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Higher-Order Masking
Basic principle
Each sensitive variable x is shared into n variables:

x = x1 ⊕ x2 ⊕ · · · ⊕ xn

Generate n − 1 random variables x1, x2, . . . , xn−1

Initially let xn = x ⊕ x1 ⊕ x2 ⊕ · · · ⊕ xn−1

Security against DPA attack of order n − 1
Any subset of n − 1 shares is uniformly and independently
distributed
⇒ If we probe at most n − 1 shares xi, we learn nothing
about x
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High-order masking of Boolean circuits
Ishai-Sahai-Wagner private circuit [ISW03]

The adversary can probe any subset of at most t wires
Algorithm to transform any Boolean circuit C of size |C | into
a circuit of size O(|C | · t2) that is perfectly secure against
such an adversary.

Any Boolean circuit can be written with only Xor gates
c = a ⊕ b and And gates c = a × b.

High-order masking of c = a ⊕ b: easy since linear.
High-order masking of c = a × b: ISW multiplication
gadget.

Generic ISW transform
Not very adequate for lattice-based algorithms combining
arithmetic and Boolean operations.
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ISW security model
The t-probing model

Protected block-cipher takes as input n = 2t + 1 shares ski
of the secret key sk, with

sk = sk1 ⊕ · · · ⊕ skn

Prove that even if the attacker probes t variables in the
block-cipher, he learns nothing about the secret-key sk.

m (sk1, sk2, . . . , skn)

c

Block cipher

t probes
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ISW security model
Simulation framework of [ISW03]:

m (sk1, sk2, . . . , skn)

c

Block cipher

t probes Sim

Show that any t probes can be perfectly simulated from at
most n − 1 of the ski’s.
Those n − 1 shares ski are initially
uniformly and independently distributed.
⇒ the adversary learns nothing from the t
probes, since he could simulate those t
probes by himself.
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Probing Model vs. Reality
Probing model

The attacker can choose at most t variables
He learns the value of those t variables.

Reality with power attack
The attacker gets a sequence of power consumptions
correlated to the variables.
Noisy leakage but not limited to t variables

Block cipher

t probes

Probing model

Real life leakage
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Relevance of probing model
t-probing model

With security against t probes, combining t power
consumption points as in a t-th order DPA will reveal no
information to the adversary.
To recover the key, attacker must perform an attack of
order at least t + 1⇒ more complex.

Block cipher

t probes

Probing model

Real life leakage
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Relevance of probing model
t-probing model

With security against t probes, combining t power
consumption points as in a t-th order DPA will reveal no
information to the adversary.
To recover the key, attacker must perform an attack of
order at least t + 1⇒ more complex.

Block cipher

t probes

Probing model

Real life leakageNever publish a high-order masking scheme without a proof of
security !

So many things can go wrong.
Many countermeasures without proofs have been broken in the
past.
We have a poor intuition of high-order security.
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Masking Kyber CPA decryption

CPA.Dec

c

s1 + · · · + sn

m1 ⊕ · · · ⊕ mn

Arithmetic masking

s = s1 + · · · + sn (mod q)
Boolean masking

m = m1 ⊕ · · · ⊕ mn ∈ {0, 1}
High-order masking

We must process the shares si of s independently
without leaking information about s and m
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Masking Kyber CPA decryption
Kyber CPA decryption

m = th(v − sT · u) for c = (u, v).
Write s = s1 + · · · + sn (mod q)

sT · u =

n∑︁
i=1

sT
i · u

⇒ v − sT · u = w1 + · · · + wn (mod q)
each wi is computed independently from si

CPA.Dec

c

s1 + · · · + sn

m1 ⊕ · · · ⊕ mn

How to high-order compute ?
m1 ⊕ · · · ⊕ mn = th(w1 + · · · + wn mod q)

0

q/4

q/2

3q/4
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Arithmetic vs Boolean conversion
How to high-order compute ?

m1 ⊕ · · · ⊕ mn = th(w1 + · · · + wn mod q)

If q = 2k, then m1 ⊕ · · · ⊕ mn
is MSB of w1 + · · · + wn mod q

0

q/4

q/2

3q/4

Arithmetic vs Boolean masking conversions
We first convert from arithmetic to Boolean conversion

x1 ⊕ · · · ⊕ xn = w1 + · · · + wn mod q

We extract the MSB

m1 ⊕ · · · ⊕ mn = MSB(x1 ⊕ · · · ⊕ xn)
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Boolean vs arithmetic masking

Conversion between Boolean and arithmetic masking

x1 ⊕ · · · ⊕ xn = w1 + · · · + wn mod 2k

Direction First-order High-order
complexity complexity

Goubin’s algorithm B→ A O(1) -
[Gou01] A→ B O(k) -

[CGV14] B→ A - O(n2 · k)A→ B
[BCZ18] B→ A - O(2n)
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Masking Kyber CPA decryption

How to high-order compute with prime q ?

m1 ⊕ · · · ⊕ mn = th(w1 + · · · + wn mod q)

Conversion from A mod q to Boolean + secure ANDs
[BGR+21]

A mod q→ B [BBE+18] + 4 secure ANDs.
Complexity: O(n2 log q)

Modulus switching to modulo 2k, then A to B [CGMZ22]
A mod q→ A mod 2k → B.
Complexity O(n2 log n).
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High-order masking of Kyber.Decaps

m1 ⊕ · · · ⊕ mn G

CPA.encpk r1 ⊕ · · · ⊕ rn

c′1 + · · · + c′n
Masking Kyber re-encryption

Binomial sampling with e = Hw(x) − Hw(y)
1-bit B→ A mod q, complexity O(n2) [SPOG19]

Masking the polynomial comparison
Hybrid approach with masked compressed coefficients
and masked uncompressed coefficients [CGMZ23]
Complexity O(n2)
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Fully masked implementation of Kyber

Security order t
0 1 2 3 4 5 6 7

Intel i7 133 1 164 2 225 4 723 6 613 11 177 14 174 19 806
ARM Cortex-M3 3 173 21 492 39 539 69 348 - - - -

Table: Kyber.Decaps cycles counts on Intel(R) Core(TM) i7-1065G7
and ARM Cortex-M3, in thousands of cycles.
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The Dilithium signature scheme

Dilithium
Lattice-based signature scheme, selected by NIST for
standardization.
Security based on the hardness of the
Module-Learning-With-Errors (MLWE)
and the Module Short Integer Solution
(MSIS) problems.
Fiat-Shamir with Aborts technique [L09]

Key generation (simplified)
Compute t = A · s1 + s2
Public-key: (A, t), secret-key: (s1, s2)
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Overview of Dilithium (without pk
compression)

Signature generation
y← D, with uniform small coefficients
w = A · y
(w0,w1) = Decomposeq(w), c = H(M∥w1)
z = y + cs1, r̃ = w0 − cs2
Rejection sampling on ∥z∥∞ and ∥r̃∥∞
Return (z, c)

Signature verification of (z, c)
w′1 = HighBits(Az − ct)
Check ∥z∥∞ and c = H(M∥w′1)

Az − ct = A(y + cs1) − c(As1 + s2) = Ay − cs2 ≃ Ay
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Side-channel attacks on Dilithium

Key generation
t = A · s1 + s2

Signature generation
y← D, with uniform small coefficients
w = A · y
(w0,w1) = Decomposeq(w)
c = H(M∥w1)
z = y + cs1
r̃ = w0 − cs2
Rejection sampling on ∥z∥∞ and ∥r̃∥∞
Return (z, c)
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Side-channel attacks on Dilithium

Key generation
t = A · s1 + s2←− [HLK+21]

Signature generation
y← D, with uniform small coefficients←− [MUTS22]
w = A · y
(w0,w1) = Decomposeq(w) ←− [BVC+23]
c = H(M∥w1)
z = y + cs1←− [CKA+21]
r̃ = w0 − cs2
Rejection sampling on ∥z∥∞ and ∥r̃∥∞
Return (z, c)
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High-order masking of Dilithium

The variables s1, s2, y, w0, r̃ must be masked.
z must also be masked before rejection sampling.

Key generation
t = A · s1 + s2

Signature generation
y← D, with uniform small coefficients
w = A · y
(w0,w1) = Decomposeq(w)
c = H(M∥w1)
z = y + cs1
r̃ = w0 − cs2
Rejection sampling on ∥z∥∞ and ∥r̃∥∞
Return (z, c)

Jean-Sébastien Coron Post-Quantum Algorithms and Side-Channel Countermeasures



Fully masked implementation of Dilithium

Security order t
0 1 2 3 4

Dilithium2 506 26602 (×53) 54945 (×109) 101020 (×200) 155025 (×306)
Dilithium3 853 36986 (×43) 83696 (×98) 130590 (×153) 205473 (×241)
Dilithium5 989 38069 (×38) 87809 (×89) 137034 (×139) 201838 (×204)
NTTs - 304 451 598 732
Sample y - 3034 5135 7890 13127
Compute Ay - 616 916 1121 1515
Decompose - 13088 32963 52030 84131
z = y + c · s1 - 355 528 641 872
Reject - 18956 42856 67281 103840
w − c · s2 - 262 390 487 635

Effect of high-order masking
Slow operation (NTT) become fast.
Fast operation (Decompose, Reject) become slow.
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Conclusion

Challenges of protecting post-quantum algorithms
against side-channel attacks

Side-channel attacks are powerful (template attacks, fault
attacks, etc.)
Variety of operations in post-quantum algorithms. Boolean
vs arithmetic operations.

New challenges and future work
Minimize the complexity penalty in countermeasures.
Side-channel friendly schemes: Raccoon signature NIST
submission
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