Post-Quantum Algorithms and Side-Channel Countermeasures

Jean-Sébastien Coron

University of Luxembourg

Jean-Sébastien Coron Post-Quantum Algorithms and Side-Channel Countermeasures

Overview

- Post-quantum algorithms:
 - Overview of algorithms believed to be secure against quantum adversaries.
 - The Kyber and Dilithium lattice-based algorithms.
- Side-channel attacks
 - The threat of side-channel attacks
 - Relevance for Kyber and Dilithium
- Side-channel countermeasures
 - Security model for high-order security
 - Conversion between Boolean and arithmetic masking
 - Application to Kyber and Dilithium

Why post-quantum cryptography

- Public-key cryptography is based on hard problems
 - RSA: hardness of factoring N = pq
 - ECC: hardness of finding d in P = d.G
 - We don't know any classical algorithm that can efficiently solve these problems.
 - but these problems are broken by a quantum computer
- Post-quantum hardness
 - In the quantum era, a problem should remain hard even when attacked by both classical and quantum computers.
 - Fortunately, we know many such problems !

< □ > < 同 > < 回 >

Families of post-quantum schemes

- Code-based Cryptography (McEliece, 1978)
 - Relies on the hardness of decoding a general linear code
 - McEliece's encryption scheme.
 - Large key size
- Lattice-based cryptography
 - Based on the difficulty of certain problems in lattices (SVP and CVP)
 - NTRU (1996), a very fast public-key encryption scheme.

< □ > < @ > <

Families of post-quantum schemes (2)

- Multivariate cryptography
 - Matsumoto-Imai C* scheme (1988), HFE [P96]
 - Security relies on the difficulty of solving systems of multivariate polynomial equations.
 - Short signatures
- Hash-based cryptography (Lamport, 1979)
 - Based on the security of cryptographic hash functions.
 - Mostly used for digital signatures.

NIST's PQC standardization

- The NIST competition: encryption/KEM and signatures
 - Round 1 (2017): 82 submissions. Round 2: 26 2nd round candidates. Round 3: 7 finalists and 8 alternates.
- 3rd round KEM selection (July 2022):
 - Kyber (draft standard August 2023)
- 3rd round Signature selection (July 2022)
 - Dilithium (draft standard August 2023)
 - Falcon
 - SPHINCS+

Transition to post-quantum algorithms

• Hybrid cryptography

- Use of two (or more) cryptographic systems together.
- During the transition to PQC, use both classical and PQC algorithms for robust security.
- Recommended by ANSSI and BSI for transition phase

 $k = H(H(k_1, k_2), c_1, c_2)$

Signature

- Concatenate the classical and PQC signatures
- Signature is verified if *both* signatures are verified.

Kyber: post-quantum KEM

- Kyber
 - Key encapsulation mechanism (KEM) based on lattice-based cryptography.
 - Goal: provide security level equivalent or better than RSA, ECC, but resistant to quantum attacks.
 - Security based on the hardness of certain problems in ideal lattices: Module Learning With Errors (MLWE) problem.

- Performance:
 - Designed to have relatively small key sizes and ciphertexts, and to be computationally efficient.

< □ > < 同 > < 回 > <

Dilithium and Falcon signature schemes

- Dilithium and Falcon
 - Both based on lattice-based cryptography, for security against quantum attacks
 - Dilithum: Fiat-Shamir with abort on module lattices.

- Falcon: hash-and-sign on NTRU lattices
- Both designed to be efficient with relatively small key and signature sizes
- Comparison
 - Falcon provides smaller key and signature sizes than Dilithium.
 - But Falcon requires Gaussian sampling, which is hard to secure against side-channel attacks.
 - Dilithium recommended by NIST to be the primary signature algorithm.

(日)

The challenge of side-channel attacks

- Side-channel attacks
 - Timing attacks, power analysis attacks, electromagnetic attacks...

- PQC and side-channel attacks:
 - PQC algorithms, like all cryptographic systems, are susceptible to side-channel attacks.
 - Side-channel resistance less well understood and more challenging.

Hard lattice problems in cryptography

Lattice

- Regular grid of points in multidimensional space, defined by a basis of vectors.
- Shortest Vector Problem (SVP)
 - Given a lattice basis, find the shortest non-zero vector.
 - Believed to be hard even for quantum computers.
 - LLL algorithm provides an approximation in polynomial-time.

Hard lattice problems in cryptography

• Learning With Errors (LWE):

• Given $\vec{A} \in \mathbb{Z}_q^{\ell \times n}$ such that $\vec{A} \cdot \vec{s} = \vec{e}$ for small \vec{e} , recover \vec{s} .

- Ring-LWE and Module-LWE:
 - Variant of LWE where the secret and errors come from a polynomial ring.
 - Offers efficiency advantages.
- Significance:
 - Reduction from worst-case lattice problems.
 - Believed to be hard against both classical and quantum adversaries.

LWE-based encryption [R05]

- Key generation • Secret-key: $\vec{s} \in (\mathbb{Z}_q)^n$ • Encryption of $m \in \{0, 1\}$ • A vector $\vec{c} \in \mathbb{F}_q$ such that $\langle \vec{c}, \vec{s} \rangle = e + m \cdot |q/2| \pmod{q}$ for a small error e. \vec{c} $e + m \cdot |q/2| \pmod{q}$ \vec{s} Decryption
 - Compute $m = \text{th}(\langle \vec{c}, \vec{s} \rangle \mod q)$
 - where th(x) = 1 if $x \in (q/4, 3q/4)$, and 0 otherwise.

LWE-based public-key encryption

- Key generation
 - Secret-key: $\vec{s} \in (\mathbb{Z}_q)^n$, with $s_1 = 1$.
 - Public-key: \vec{A} such that $\vec{A} \cdot \vec{s} = \vec{e}$ for small \vec{e}
 - Every row of \vec{A} is an LWE encryption of 0.
- Encryption of $m \in \{0, 1\}$

$$\vec{c} = \vec{u} \cdot \vec{A} + (m \cdot \lfloor q/2 \rceil, 0, \dots, 0)$$

• for a small \vec{u}

RLWE-based scheme

- We replace \mathbb{Z}_q by the polynomial ring $R_q = \mathbb{Z}_q[x]/\langle x^{\ell} + 1 \rangle$, where ℓ is a power of 2.
- Addition and multiplication of polynomials are performed modulo $x^{\ell} + 1$ and prime q.
- We can take m ∈ R₂ = Z₂[x]/<x^ℓ + 1> instead of {0, 1}: more bandwidth.
- Ring Learning with Error (RLWE) assumption
 - $t = a \cdot s + e$ for small $s, e \leftarrow R$
 - Given *t*, *a*, it is difficult to recover *s*.

RLWE-based public-key encryption

Key generation

• $t = a \cdot s + e$ for random $a \leftarrow R_q$ and small $s, e \leftarrow R$.

• Public-key encryption of $m \in R_2$

• $c = (a \cdot r + e_1, t \cdot r + e_2 + \lfloor q/2 \rfloor m)$, for small e_1, e_2 and r.

• Decryption of c = (u, v)

• Compute $m = \operatorname{th}(v - s \cdot u)$

$$v - s \cdot u = t \cdot r + e_2 + \lfloor q/2 \rceil m - s \cdot (a \cdot r + e_1)$$

= $(t - a \cdot s) \cdot r + e_2 + \lfloor q/2 \rceil m - s \cdot e_1$
= $\lfloor q/2 \rceil m + \underbrace{e \cdot r + e_2 - s \cdot e_1}$

• $m \in R_2 = \mathbb{Z}_2[x]/\langle x^{\ell} + 1 \rangle$: more bandwidth.

< 日 > < 同 > < 回 > < 回 > < 回 > <

small

The Kyber scheme

- Polynomial operations:
 - Polynomial ring $\mathbb{Z}_q[X]/(X^{256} + 1)$ with prime $q = 3329 = 2^{12} 2^9 2^8 + 1$.
 - Use k-vectors and k × k-matrices of ring elements
 - Kyber512: *k* = 2, Kyber768: *k* = 3, Kyber1024: *k* = 4
- Module Learning with Error (M-LWE)
 - $\mathbf{t} = \mathbf{A} \cdot \mathbf{s} + \mathbf{e}$, for a small error \mathbf{e}
 - Given t, A, difficult to recover s.

Kyber key generation

Key generation

- Generate matrix A and small vectors s and e
- Compute $\mathbf{t} = \mathbf{A} \cdot \mathbf{s} + \mathbf{e}$
 - Secret key : s
 - Public key : (A, t)

Kyber basic encryption

Encryption of a binary message $m \in \mathbb{Z}[X]/(X^{256}+1)$

- Generate small vectors r and e₁, and small polynomial e₂
- Compute $\mathbf{u} = \mathbf{A}^T \cdot \mathbf{r} + \mathbf{e_1}$
- Compute $v := \mathbf{t}^T \cdot \mathbf{r} + \mathbf{e}_2 + \lfloor q/2 \rceil \mathbf{m}$
 - Ciphertext : (**u**, *v*)

Decryption

• Compute
$$m = \operatorname{th}(v - \mathbf{s}^T \cdot \mathbf{u})$$

• where th(x) = 1 if $x \in (q/4, 3q/4)$, and 0 otherwise.

From CPA to CCA security: FO transform

- Chosen Plaintext Attack (CPA) security
 - The previous scheme is CPA secure: given only the public-key, a ciphertext reveals no information on the plaintext.
- Chosen Ciphertext Attack (CCA) insecurity
 - The previous scheme is not CCA secure
 - By submitting a series of ciphertexts (**u**, *v*) and getting the corresponding *m*, one can recover the secret *s*.

- CCA-security: Fujisaki-Okamoto transform
 - Generic transformation from CPA to CCA-security.
 - Verify correct decryption by re-encrypting the message and comparing the ciphertexts.

IND-CCA decryption with the FO transform

• Given the ciphertext *c*, the secret-key *s* and the public-key *pk*, recover the session key *K*

Side-channel attacks on the FO transform

Jean-Sébastien Coron Post-Quantum Algorithms and Side-Channel Countermeasures

Side channel attack on the FO transform [BDH+21]

- Without the FO transform, decryption failure attack
 - We submit perturbed ciphertexts $\vec{c'} = \vec{c} + \delta$
 - We obtain a plaintext *m*' and compare to *m*: plaintext checking oracle.
 - We can recover $\langle \vec{c}, \vec{s} \rangle$ by binary search, and eventually \vec{s}
- With FO, template attack against ciphertext comparison
 - The SCA gives us a plaintext checking oracle.
 - Use the above attack and recover the key

Jean-Sébastien Coron Post-Quantum Algorithms and Side-Channel Countermeasures

Decryption failure attack against CPA scheme

- Decryption failure attack without the FO transform
 - Assume that an attacker can submit a LWE ciphertext *c* and obtain *m* = th(⟨*c*, *s*⟩ mod *q*)
 - Submit a perturbed ciphertext with a small error

$$\vec{c'} = \vec{c} + (e, 0, \dots, 0)$$

• Get $m' = \text{th}(\langle \vec{c'}, \vec{s} \rangle) = \text{th}(\langle \vec{c}, \vec{s} \rangle + e)$ (with $s_1 =$

$$3q/4 + (\vec{c}, \vec{s}) + (\vec{c}, \vec{s}) + e)$$

• Key recovery

- Recover the value of $\langle \vec{c}, \vec{s} \rangle \mod q$ by binary search.
- With *n* such equations, recover \vec{s}

1).

・ロット (雪) (日) (日)

Decryption failure attack against CPA scheme

- Decryption failure attack without the FO transform
 - Assume that an attacker can submit a LWE ciphertext \vec{c} and obtain $m = \text{th}(\langle \vec{c}, \vec{s} \rangle \mod q)$
 - Submit a perturbed ciphertext with a small error

- Key recovery
 - Recover the value of $\langle \vec{c}, \vec{s} \rangle \mod q$ by binary search.
 - With *n* such equations, recover \vec{s}

SCA on FO transform

- The previous attack is prevented by the FO transform
 - But one can perform a SCA on the FO transform !
- Decryption failure attack on ciphertext comparison
 - Submit a perturbed cipherext $\tilde{c} = c + \delta$
 - If still decrypts to the same m, then re-encrypted c' and c̃ will differ on a single coefficient
 - otherwise they will differ on all coefficients
 - can be distinguished by SCA [BDH+21]

SCA on FO transform

- The previous attack is prevented by the FO transform
 - But one can perform a SCA on the FO transform !
- Decryption failure attack on ciphertext comparison
 - Submit a perturbed cipherext $\tilde{c} = c + \delta$
 - If still decrypts to the same *m*, then re-encrypted c' and c̃ will differ on a single coefficient
 - otherwise they will differ on all coefficients
 - can be distinguished by SCA [BDH+21]

Full masking of IND-CCA decryption

- The variables s, m, c', \hat{K} and K must be masked.
 - The operations CPA.Dec, CPA.enc, G, H and ²/₌ must also be masked.

Higher-Order Masking

Basic principle

Each sensitive variable x is shared into n variables:

 $x = x_1 \oplus x_2 \oplus \cdots \oplus x_n$

• Generate n - 1 random variables $x_1, x_2, \ldots, x_{n-1}$

• Initially let $x_n = x \oplus x_1 \oplus x_2 \oplus \cdots \oplus x_{n-1}$

Security against DPA attack of order n - 1

• Any subset of n-1 shares is uniformly and independently distributed

 \Rightarrow If we probe at most n-1 shares x_i , we learn nothing about x

Higher-Order Masking

Basic principle

Each sensitive variable x is shared into n variables:

 $x = x_1 \oplus x_2 \oplus \cdots \oplus x_n$

• Generate n - 1 random variables $x_1, x_2, \ldots, x_{n-1}$

• Initially let $x_n = x \oplus x_1 \oplus x_2 \oplus \cdots \oplus x_{n-1}$

Security against DPA attack of order n-1

Any subset of n - 1 shares is uniformly and independently distributed

 \Rightarrow If we probe at most n - 1 shares x_i , we learn nothing about x

High-order masking of Boolean circuits

Ishai-Sahai-Wagner private circuit [ISW03]

- The adversary can probe any subset of at most t wires
- Algorithm to transform any Boolean circuit *C* of size |*C*| into a circuit of size O(|*C*| · t²) that is perfectly secure against such an adversary.
 - Any Boolean circuit can be written with only Xor gates $c = a \oplus b$ and And gates $c = a \times b$.
 - High-order masking of $c = a \oplus b$: easy since linear.
 - High-order masking of $c = a \times b$: ISW multiplication gadget.
 - Generic ISW transform
 - Not very adequate for lattice-based algorithms combining arithmetic and Boolean operations.

< ロ > < 同 > < 回 > < 回 > .

- The *t*-probing model
 - Protected block-cipher takes as input n = 2t + 1 shares sk_i of the secret key sk, with

$$sk = sk_1 \oplus \cdots \oplus sk_n$$

• Prove that even if the attacker probes *t* variables in the block-cipher, he learns nothing about the secret-key *sk*.

- The *t*-probing model
 - Protected block-cipher takes as input n = 2t + 1 shares sk_i of the secret key sk, with

$$sk = sk_1 \oplus \cdots \oplus sk_n$$

 Prove that even if the attacker probes t variables in the block-cipher, he learns nothing about the secret-key sk.

• Simulation framework of [ISW03]:

- Show that any t probes can be perfectly simulated from at most n - 1 of the sk_i's.
- Those n 1 shares sk_i are initially uniformly and independently distributed.
- ⇒ the adversary learns nothing from the *t* probes, since he could simulate those *t* probes by himself.

• Simulation framework of [ISW03]:

- Show that any *t* probes can be perfectly simulated from at most *n* − 1 of the *sk_i*'s.
- Those n 1 shares sk_i are initially uniformly and independently distributed
- ⇒ the adversary learns nothing from the t probes, since he could simulate those t probes by himself.

• Simulation framework of [ISW03]:

- Show that any *t* probes can be perfectly simulated from at most *n* − 1 of the *sk_i*'s.
- Those *n* 1 shares *sk_i* are initially uniformly and independently distributed.
- ⇒ the adversary learns nothing from the *t* probes, since he could simulate those *t* probes by himself.

Probing Model vs. Reality

- Probing model
 - The attacker can choose at most t variables
 - He learns the value of those *t* variables.
- Reality with power attack
 - The attacker gets a sequence of power consumptions correlated to the variables.
 - Noisy leakage but not limited to t variables

Relevance of probing model

- t-probing model
 - With security against t probes, combining t power consumption points as in a t-th order DPA will reveal no information to the adversary.
 - To recover the key, attacker must perform an attack of order at least *t* + 1 ⇒ more complex.

Relevance of probing model

• *t*-probing model

- With security against *t* probes, combining *t* power consumption points as in a *t*-th order DPA will reveal no information to the adversary.
- To recover the key, attacker must perform an attack of order at least *t* + 1 ⇒ more complex.

Never publish a high-order masking scheme without a proof of security !

- So many things can go wrong.
- Many countermeasures without proofs have been broken in the past.
- We have a poor intuition of high-order security.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

ъ

Masking Kyber CPA decryption

Arithmetic masking

$$s = s_1 + \dots + s_n \pmod{q}$$

Boolean masking

$$m = m_1 \oplus \cdots \oplus m_n \in \{0, 1\}$$

- High-order masking
 - We must process the shares *s_i* of *s* independently
 - without leaking information about s and m

Masking Kyber CPA decryption

• Kyber CPA decryption
•
$$m = \operatorname{th}(v - \mathbf{s}^T \cdot \mathbf{u}) \text{ for } c = (\mathbf{u}, v).$$

• Write $\mathbf{s} = \mathbf{s}_1 + \dots + \mathbf{s}_n \pmod{q}$
 $\mathbf{s}^T \cdot \mathbf{u} = \sum_{i=1}^n \mathbf{s}_i^T \cdot \mathbf{u}$
 $\Rightarrow v - \mathbf{s}^T \cdot \mathbf{u} = w_1 + \dots + w_n \pmod{q}$
 $m_1 \oplus \dots \oplus m_n$

each w_i is computed independently from s_i

How to high-order compute ?

 $m_1 \oplus \cdots \oplus m_n = \operatorname{th}(w_1 + \cdots + w_n \mod q)$

Arithmetic vs Boolean conversion

How to high-order compute ?

$$m_1 \oplus \cdots \oplus m_n = \operatorname{th}(w_1 + \cdots + w_n \mod q)$$

• If $q = 2^k$, then $m_1 \oplus \cdots \oplus m_n$
is MSB of $w_1 + \cdots + w_n \mod q$
 $3q/4 \bigoplus_{q/2}^{0} q/4$

• Arithmetic vs Boolean masking conversions

We first convert from arithmetic to Boolean conversion

$$x_1 \oplus \cdots \oplus x_n = w_1 + \cdots + w_n \mod q$$

We extract the MSB

$$m_1 \oplus \cdots \oplus m_n = \mathsf{MSB}(x_1 \oplus \cdots \oplus x_n)$$

Boolean vs arithmetic masking

Conversion between Boolean and arithmetic masking

$$x_1 \oplus \cdots \oplus x_n = w_1 + \cdots + w_n \mod 2^k$$

	Direction	First-order	High-order	
	Direction	complexity	complexity	
Goubin's algorithm	$B \rightarrow A$	O (1)	-	
[Gou01]	$A \rightarrow B$	O(k)	-	
[CCV14]	$B \rightarrow A$		$O(n^2 \cdot k)$	
[00014]	$A \rightarrow B$	-		
[BCZ18]	$B \rightarrow A$	-	$O(2^n)$	

Masking Kyber CPA decryption

• How to high-order compute with prime q?

 $m_1 \oplus \cdots \oplus m_n = \operatorname{th}(w_1 + \cdots + w_n \mod q)$

- Conversion from A mod q to Boolean + secure ANDs [BGR+21]
 - $A \mod q \rightarrow B$ [BBE+18] + 4 secure ANDs.
 - Complexity: $O(n^2 \log q)$
- Modulus switching to modulo 2^k, then A to B [CGMZ22]
 - $A \mod q \to A \mod 2^k \to B$.
 - Complexity $O(n^2 \log n)$.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

High-order masking of Kyber.Decaps

- Masking Kyber re-encryption
 - Binomial sampling with $e = H_w(x) H_w(y)$
 - 1-bit $B \rightarrow A \mod q$, complexity $O(n^2)$ [SPOG19]
- Masking the polynomial comparison
 - Hybrid approach with masked compressed coefficients and masked uncompressed coefficients [CGMZ23]
 - Complexity $O(n^2)$

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Fully masked implementation of Kyber

	Security order t							
	0	1	2	3	4	5	6	7
Intel i7	133	1164	2 2 2 2 5	4723	6613	11 177	14174	19 806
ARM Cortex-M3	3 1 7 3	21 492	39 539	69 348	-	-	-	-

Table: Kyber.Decaps cycles counts on Intel(R) Core(TM) i7-1065G7 and ARM Cortex-M3, in thousands of cycles.

The Dilithium signature scheme

- Dilithium
 - Lattice-based signature scheme, selected by NIST for standardization.
 - Security based on the hardness of the Module-Learning-With-Errors (MLWE) and the Module Short Integer Solution (MSIS) problems.

- Fiat-Shamir with Aborts technique [L09]
- Key generation (simplified)
 - Compute $t = \mathbf{A} \cdot \mathbf{s}_1 + \mathbf{s}_2$
 - Public-key: (\mathbf{A}, t) , secret-key: $(\mathbf{s}_1, \mathbf{s}_2)$

Overview of Dilithium (without pk compression)

- Signature generation
 - $\mathbf{y} \leftarrow D$, with uniform small coefficients
 - $\mathbf{w} = \mathbf{A} \cdot \mathbf{y}$
 - $(\mathbf{w}_0, \mathbf{w}_1) = \mathsf{Decompose}_q(\mathbf{w}), c = H(M || \mathbf{w}_1)$
 - $\mathbf{z} = \mathbf{y} + c\mathbf{s}_1$, $\mathbf{\tilde{r}} = \mathbf{w}_0 c\mathbf{s}_2$
 - Rejection sampling on $\|z\|_\infty$ and $\|\tilde{r}\|_\infty$
 - Return (z, c)
- Signature verification of (**z**, *c*)
 - $\mathbf{w}'_1 = \text{HighBits}(\mathbf{Az} c\mathbf{t})$
 - Check $\|\mathbf{z}\|_{\infty}$ and $c = H(M\|\mathbf{w}_1')$

$$\mathbf{A}\mathbf{z} - c\mathbf{t} = \mathbf{A}(\mathbf{y} + c\mathbf{s}_1) - c(\mathbf{A}\mathbf{s}_1 + \mathbf{s}_2) = \mathbf{A}\mathbf{y} - c\mathbf{s}_2 \simeq \mathbf{A}\mathbf{y}$$

Side-channel attacks on Dilithium

- Key generation
 - $t = \mathbf{A} \cdot \mathbf{s}_1 + \mathbf{s}_2$
- Signature generation
 - $\mathbf{y} \leftarrow D$, with uniform small coefficients

•
$$\mathbf{w} = \mathbf{A} \cdot \mathbf{y}$$

- $(\mathbf{w}_0, \mathbf{w}_1) = \mathsf{Decompose}_q(\mathbf{w})$
- $c = H(M || \mathbf{w}_1)$

•
$$\mathbf{z} = \mathbf{y} + c\mathbf{s}_1$$

•
$$\tilde{\mathbf{r}} = \mathbf{w}_0 - c\mathbf{s}_2$$

- Rejection sampling on $\|z\|_\infty$ and $\|\tilde{r}\|_\infty$
- Return (**z**, *c*)

・ 同 ト ・ ヨ ト ・ ヨ ト

Side-channel attacks on Dilithium

- Key generation
 - $t = \mathbf{A} \cdot \mathbf{s}_1 + \mathbf{s}_2 \longleftarrow [\mathsf{HLK+21}]$
- Signature generation
 - $\mathbf{y} \leftarrow D$, with uniform small coefficients \leftarrow [MUTS22]

•
$$\mathbf{w} = \mathbf{A} \cdot \mathbf{y}$$

• $(\mathbf{w}_0, \mathbf{w}_1) = \mathsf{Decompose}_q(\mathbf{w}) \longleftarrow [\mathsf{BVC+23}]$

•
$$c = H(M \| \mathbf{w}_1)$$

•
$$\mathbf{z} = \mathbf{y} + c\mathbf{s}_1 \longleftarrow [\mathsf{CKA+21}]$$

•
$$\tilde{\mathbf{r}} = \mathbf{w}_0 - c\mathbf{s}_2$$

- Rejection sampling on $\|z\|_\infty$ and $\|\tilde{r}\|_\infty$
- Return (**z**, *c*)

< ロ > < 同 > < 回 > < 回 > < □ > <

High-order masking of Dilithium

- The variables s_1 , s_2 , y, w_0 , \tilde{r} must be masked.
 - z must also be masked before rejection sampling.
- Key generation
 - $t = \mathbf{A} \cdot \mathbf{s}_1 + \mathbf{s}_2$
- Signature generation
 - $\mathbf{y} \leftarrow D$, with uniform small coefficients
 - $\mathbf{w} = \mathbf{A} \cdot \mathbf{y}$
 - $(\mathbf{w}_0, \mathbf{w}_1) = \mathsf{Decompose}_q(\mathbf{w})$
 - $c = H(M \| \mathbf{w}_1)$
 - $\mathbf{z} = \mathbf{y} + c\mathbf{s}_1$
 - $\tilde{\mathbf{r}} = \mathbf{w}_0 c\mathbf{s}_2$
 - Rejection sampling on $\|z\|_\infty$ and $\|\tilde{r}\|_\infty$
 - Return (z, c)

・ ロ ト ・ 雪 ト ・ 目 ト ・

Fully masked implementation of Dilithium

	Security order t						
	0	1	2	3	4		
Dilithium2	506	26602 (×53)	54945 (×109)	101020 (×200)	155025 (×306)		
Dilithium3	853	36986 (×43)	83696 (×98)	130590 (×153)	205473 (×241)		
Dilithium5	989	38069 (×38)	87809 (×89)	137034 (×139)	201838 (×204)		
NTTs	-	304	451	598	732		
Sample y	-	3034	5135	7890	13127		
Compute Ay	-	616	916	1121	1515		
Decompose	-	13088	32963	52030	84131		
$z = y + c \cdot s_1$	-	355	528	641	872		
Reject	-	18956	42856	67281	103840		
$w - c \cdot s_2$	-	262	390	487	635		

• Effect of high-order masking

- Slow operation (NTT) become fast.
- Fast operation (Decompose, Reject) become slow.

- Challenges of protecting post-quantum algorithms against side-channel attacks
 - Side-channel attacks are powerful (template attacks, fault attacks, etc.)
 - Variety of operations in post-quantum algorithms. Boolean vs arithmetic operations.
- New challenges and future work
 - Minimize the complexity penalty in countermeasures.
 - Side-channel friendly schemes: Raccoon signature NIST submission

< 日 > < 同 > < 回 > < 回 > < 回 > <