CIEM1110-1: FEM, lecture 3.2

Path-following for nonlinear FEM

Iuri Rocha, Martin Lesueur

Agenda for today

- 1. Nonlinear FEM in load control (recap)
- 2. Displacement-controlled simulations

Discretized form:

$$\int_{\Omega} \mathbf{B}^T \boldsymbol{\sigma} \, \mathrm{d}\Omega = \int_{\Omega} \mathbf{N}^T \mathbf{b} \, \mathrm{d}\Omega + \int_{\Gamma_t} \mathbf{N}^T \mathbf{t} \, \mathrm{d}\Gamma$$

Discretized form:

$$\int_{\Omega} \mathbf{B}^T \boldsymbol{\sigma} \, \mathrm{d}\Omega = \int_{\Omega} \mathbf{N}^T \mathbf{b} \, \mathrm{d}\Omega + \int_{\Gamma_t} \mathbf{N}^T \mathbf{t} \, \mathrm{d}\Gamma$$

Equilibrium residual:

 $\mathbf{r} = \mathbf{f}_{\mathrm{ext}} - \mathbf{f}_{\mathrm{int}} \left(\mathbf{a}
ight)$

Discretized form:

$$\int_{\Omega} \mathbf{B}^T \boldsymbol{\sigma} \, \mathrm{d}\Omega = \int_{\Omega} \mathbf{N}^T \mathbf{b} \, \mathrm{d}\Omega + \int_{\Gamma_t} \mathbf{N}^T \mathbf{t} \, \mathrm{d}\Gamma$$

Equilibrium residual:

$$\mathbf{r}=\mathbf{f}_{\mathrm{ext}}-\mathbf{f}_{\mathrm{int}}\left(\mathbf{a}\right)$$

1st-order Taylor expansion:

$$\mathbf{r}_{new} = \mathbf{r} + \frac{\partial \mathbf{r}}{\partial \mathbf{a}} \Delta \mathbf{a} \quad \Rightarrow \quad \mathbf{r}_{new} = \mathbf{r} - \mathbf{K} \Delta \mathbf{a}$$

Discretized form:

$$\int_{\Omega} \mathbf{B}^T \boldsymbol{\sigma} \, \mathrm{d}\Omega = \int_{\Omega} \mathbf{N}^T \mathbf{b} \, \mathrm{d}\Omega + \int_{\Gamma_t} \mathbf{N}^T \mathbf{t} \, \mathrm{d}\Gamma$$

Equilibrium residual:

$$\mathbf{r}=\mathbf{f}_{\mathrm{ext}}-\mathbf{f}_{\mathrm{int}}\left(\mathbf{a}\right)$$

1st-order Taylor expansion:

$$\mathbf{r}_{new} = \mathbf{r} + \frac{\partial \mathbf{r}}{\partial \mathbf{a}} \Delta \mathbf{a} \quad \Rightarrow \quad \mathbf{r}_{new} = \mathbf{r} - \mathbf{K} \Delta \mathbf{a}$$

Newton-Raphson iteration ($\mathbf{r}_{new} = 0$):

$$\mathbf{K} \Delta \mathbf{a} = \mathbf{r}$$

Recap – load control

Require: Nonlinear relation $f_{int}(a)$ with $K(a) = \frac{\partial f_{int}}{\partial a}$

- 1: Initialize n = 0, $a^0 = 0$
- 2: while n < number of time steps **do**
- 3: Get new external force vector: $\mathbf{f}_{\text{ext}}^{n+1}$
- 4: Initialize new solution at old one: $\mathbf{a}^{n+1} = \mathbf{a}^n$
- 5: Compute internal force and stiffness: $\mathbf{f}_{int}^{n+1}(\mathbf{a}^{n+1})$, $\mathbf{K}^{n+1}(\mathbf{a}^{n+1})$
- 6: Evaluate first residual: $\mathbf{r} = \mathbf{f}_{\text{ext}}^{n+1} \mathbf{f}_{\text{int}}^{n+1}$

7: repeat

- 8: Solve linear system of equations: $\mathbf{K}^{n+1}\Delta \mathbf{a} = \mathbf{r}$
- 9: Update solution: $\mathbf{a}^{n+1} = \mathbf{a}^{n+1} + \Delta \mathbf{a}$
- 10: Compute internal force and stiffness: $\mathbf{f}_{int}^{n+1}(\mathbf{a}^{n+1})$, $\mathbf{K}^{n+1}(\mathbf{a}^{n+1})$
- 11: Evaluate residual: $\mathbf{r} = \mathbf{f}_{\mathrm{ext}}^{n+1} \mathbf{f}_{\mathrm{int}}^{n+1}$
- 12: **until** $|\mathbf{r}| <$ tolerance
- **13**: n = n + 1

14: end while

 \mathcal{U}

Limitations of load control

Snap-through behavior:

• Sometimes there is no (close) solution on top of the equilibrium path for an increasing load

Limitations of load control

Snap-through behavior:

• Sometimes there is no (close) solution on top of the equilibrium path for an increasing load

Compact tension test (material nonlinearity)

Laminated shallow shell (geometric nonlinearity)

Limitations of load control

Snap-through behavior:

• Sometimes there is no (close) solution on top of the equilibrium path for an increasing load

Compact tension test (material nonlinearity)

Laminated shallow shell (geometric nonlinearity)

Displacement control

Require: Nonlinear relation ${\bf f}_{\rm int}({\bf a})$ with ${\bf K}({\bf a})=\frac{\partial {\bf f}_{\rm int}}{\partial {\bf a}}$

- 1: Initialize n = 0, $\mathbf{a}^0 = \mathbf{0}$
- 2: while n < number of time steps **do**
- 3: Initialize new solution at old one: $\mathbf{a}^{n+1} = \mathbf{a}^n$
- 4: Compute internal force and stiffness: $f_{int}^{n+1}(a^{n+1})$, $K^{n+1}(a^{n+1})$
- 5: Constrain \mathbf{K}^{n+1} so that $\Delta \mathbf{a}_c = \overline{\mathbf{a}}^{n+1} \overline{\mathbf{a}}^n$
- 6: Evaluate first residual: $\mathbf{r} = -\mathbf{f}_{\text{int},f}^{n+1}$

7: repeat

- 8: Solve linear system of equations: $\mathbf{K}^{n+1}\Delta \mathbf{a} = \mathbf{r}$
- 9: Update solution: $\mathbf{a}^{n+1} = \mathbf{a}^{n+1} + \Delta \mathbf{a}$
- 10: Compute internal force and stiffness: $f_{int}^{n+1}(a^{n+1})$, $K^{n+1}(a^{n+1})$
- 11: Evaluate residual: $\mathbf{r} = -\mathbf{f}_{\text{int},f}^{n+1}$
- 12: Constrain \mathbf{K}^{n+1} so that $\Delta \mathbf{a}_c = 0$
- 13: **until** $|\mathbf{r}| <$ tolerance
- **14**: n = n + 1

15: end while

Limitations of displacement control

Snap-back behavior:

• Sometimes displacements do not increase monotonically

Limitations of displacement control

Snap-back behavior:

• Sometimes displacements do not increase monotonically

Arc-length control – linearization

Redefine the external load vector:

$$\mathbf{r}(\mathbf{a}) = \mathbf{f}_{\text{ext}} - \mathbf{f}_{\text{int}}(\mathbf{a}) \implies \mathbf{r}(\mathbf{a}, \lambda) = \lambda \hat{\mathbf{f}} - \mathbf{f}_{\text{int}}(\mathbf{a})$$

Arc-length control – linearization

Redefine the external load vector:

$$\mathbf{r}(\mathbf{a}) = \mathbf{f}_{\text{ext}} - \mathbf{f}_{\text{int}}(\mathbf{a}) \quad \Rightarrow \quad \mathbf{r}(\mathbf{a}, \lambda) = \lambda \hat{\mathbf{f}} - \mathbf{f}_{\text{int}}(\mathbf{a})$$

Too many unknowns, so introduce a new constraint equation:

Arc-length control – constraints

Recap and outlook

Controlling nonlinear FE simulations:

- Load/displacement cannot trace general equilibrium paths
- Arc-length models come in different flavors \Rightarrow active research topic
- Convergence is always an issue, smart stepping algorithms are a must

Coming up next:

- Tomorrow: zoom into material nonlinearity
- Next week: viscoelasticity theory and pyJive implementation

