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1 Introduction

1.1 Motivation

Over recent decades, physicists have been trying to unify the fundamental laws of Ein-
stein’s theory of General Relativity and Quantum Mechanics. The search for such a
theory of Quantum Gravity has, therefore, become a well-studied open problem with
many different approaches. The problem lies explicitly in creating a theory of gravity
that is consistent with both General Relativity and Quantum Mechanics.

On the one hand, we have Quantum Mechanics, which describes the behavior of nature
on the smallest of scales, ranging from atomic nuclei down to the Planck scale. Its
framework describes three of the four fundamental forces of physics: the electromagnetic
force, the weak force, and the strong force. In Quantum Mechanics, quantities such
as energy and momentum are quantized. Furthermore, particles are described by a
wave function that, when squared, gives a probability distribution of the position of
the particle. Quantum Mechanics is often formulated via the Feynmann path integral
formalism,

Z = /Dxeis[x]/h. (1.1)

Here, one computes an infinite-dimensional integral over all possible paths x a particle
can take from point A to B, where each path contributes with a phase based on its
action [I]. Performing a Wick rotation, we go to the Euclidean path integral formalism,

Z= /Dxe‘glx]/h. (1.2)

This now provides a probability distribution of the path a particle might take, which is,
therefore, non-deterministic, or random.

A

Figure 1.1: A few of the infinitely many possible paths between points A and B in
the path-integral formalism. Source: Wikipedia (Path integral formulation).

On the other hand, we have General Relativity, which describes the fourth and final
fundamental force: gravity. It explains how nature works on a cosmic scale, from planets
and stars to the entire universe. General Relativity is a geometric theory that states
that we live in a 4-dimensional universe consisting of three space dimensions and one
time dimension, which are coupled to form a 4D spacetime. The energy density content
of this spacetime determines its curvature, which in turn governs the motion of matter
and radiation [2]. John Wheeler famously put this as, ”Spacetime tells matter how to
move; matter tells spacetime how to curve.”[3] Gravity is essentially a manifestation of
the geometry of the underlying spacetime.

However, why even bother trying to merge these theories when they both do a fantastic
job of describing the world in their relative regimes? In our everyday lives, we do not



Figure 1.2: A visualization of spacetime curved by the sun and by the earth from
General Relativity. Source: SciTechDaily

encounter situations where there is a need for a Quantum Gravity theory. However,
there are objects and situations where the two scales meet. Two examples of this
are black holes and the Big Bang. Let us take a typical black hole as an example.
Inside, there is an infinitely small singularity with a mass usually greater than the mass
of our sun. Hence, the quantum regime meets the realms of General Relativity. To
understand these mysterious objects, one would need a theory of Quantum Gravity, as
the current description of physics breaks down beyond the event horizon [4]. Therefore,
a theory of Quantum Gravity can offer numerous novel or groundbreaking perspectives
and understandings.

1.2 Euclidean Quantum Gravity

One attempt at such a theory is Euclidean Quantum Gravity. Here, we take the path
integral formalism from quantum mechanics (1.1]), but we now integrate over all possible
geometries [5, p.68-73],

Z = /DgeiSEH[g]/h. (1.3)

In particular, this integral is taken over all possible geometries ¢ on a d-dimensional
spacetime manifold M. In this integral, every geometry carries an appropriate weight,
i.e., the Euclidean Einstein-Hilbert action

1

Senls] = o /Mddx\/g(—R+2A). (1.4)

By now performing a formal Wick rotation on the path integral (1.3), it becomes a
partition function, with which we arrive at the starting point of Euclidean Quantum
gravity,

7 = /Dge*SEH[g]. (1.5)

One of the significant advantages of Euclidean quantum gravity over the Feynman path
integral of Lorentzian quantum gravity is that the integrand is real and positive, which
allows for a statistical interpretation of the partition function Z. In this interpretation,
the term e~S®ul9l plays the role of the Boltzmann weight assigned to the geometries.
This statistical interpretation enables us to view the system as a statistical ensemble,
where the geometries are the different configurations of the ensemble, and the weight
assigned to each geometry is proportional to its probability of occurrence in the ensemble,
turning this problem into a statistical problem. However, finding a probability measure

1
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proves itself quite a challenge. For example, one of the problems we encounter is that
the Einstein-Hilbert action is unbounded from below for dimensions higher than two.
This implies that highly curved geometries will receive much higher Boltzmann weight
than the classical Einstein solutions, known as the conformal factor problem. 1 refer the
reader to [6, p. 2-4] for an overview of this and other issues and reported progress.

For 2D, however, the Einstein-Hilbert action is invariant of the topology. So, we can fix
the 2D manifold to be the 2-sphere S?, so that only the volume V = [ g2 /9 depends
on the metric [6]. Hence, every geometry of volume V now receives an equal Boltzmann
weight. Therefore, the probability measure of this integration over V' should be equiva-
lent to sampling a metric on S? uniformly at random. However, we are still left with an
infinite dimensional integral over all Riemannian geometries on S2. As a starting point,
we can restrict ourselves to only looking at piecewise flat geometries, which brings us to
the study of Random Geometry.

Despite the 2D case being a simpler model compared to realistic 4D spacetimes, it is by
no means trivial. It can serve as an interesting test bed for our mathematical methods,
from which we can learn valuable lessons.

1.2.1 Random geometry

As stated in the previous section, we want to look at discrete geometries. Random
geometry serves as the mathematical description for these discrete geometries, and in
this section, we will conceptually see what Random geometry entails.

Specifically, we look at geometries made from n identical building blocks. If we increase
the number of building blocks to infinity and shrink their size, we will obtain a good
approximation of the continuous case. The major advantage of using discrete models is
that their properties are much easier to analyze. We may find interesting relations and
study their asymptotic behavior in the large n limit. The building blocks are Euclidean
polygons glued together to form a random geometry.

n = 20000

Figure 1.3: A faithful attempt of a 3D embedding of a 2D random geometry, which
is obtained by gluing together n = 20000 Euclidean quadrangles. Image credit: dr.
Timothy Budd.

Which polygons you take does not matter, as in the limit n — oo the geometries all
belong to the same wuniversality class [7]. In this thesis, we will stick to quadrangles



as our building blocks because, with some induced conditions, they offer a convenient
combinatorial model, as will be seen later. We call these geometries obtained b the
gluing of Euclidean quadrangles quadrangulations.

1.2.2 Universality classes and Liouville Quantum Gravity

The random geometry in Figure [[.3]is made out of Euclidean quadrangles, but changing
this to any other p-gon does not change the geometry, as stated earlier. This implies
that these two models are in the same universality class. If by changing any microscopic
details of a model the macroscopic structure of the surface is changed, we say these
are in a different universality class. Fractal characteristics are represented by critical
exponents. 1 refer the reader to [§] for a deeper analysis of universality classes and
critical exponents. For us, it is only interesting to know in what universality class we
are. Therefore, we link this to Liouville Quantum Gravity (LQG), whose content goes
beyond the scope of this thesis. However, parameter values might be interesting to
know. In the case of absence of matter, we have matter central charge ¢ = 0, and
LQG universality class parameter v = \/%, which is called pure gravity. By adding a
massless scalar field, we add 1 to the matter central charge, such that it becomes ¢ = 1,
which corresponds to v = 2, a critical value in LQG [9].

1.2.3 Adding matter

Until now, we have considered Euclidean Quantum Gravity in the absence of matter.
A natural and interesting question to ask now is what happens when we add matter
to the problem. The added matter should alter the geometry of the spacetime, which
consequently determines the dynamics of the matter. Therefore, one might ask what
kind of influence matter has on each other. This is equivalent to asking whether there is
some kind of correlation between the matter and what this correlation looks like. To do
this, we will couple our 2D Euclidean quantum gravity to a massless scalar field, which
we know to describe spin-0 particles in Quantum Field Theory [I0]. Such a scalar field
¢ would take a scalar value on every point of our 2D geometry. The partition function
then becomes

Z= /DngzS e Slodl (1.7)
where the weight is now dependent on both the metric and the scalar field,
Slg: ) = Seulo] + [ day/50,00" (18)

and where we integrate now over all possible metrics g and all possible scalar fields ¢ of
a manifold [g].

1.3 Goal and Outline

This thesis will explore 2D Euclidean quantum gravity coupled to a scalar field. In
particular, we aim to find a probability distribution and a scaling limit of the values of
a scalar field on random geometries and thereby deduce quantum gravitational effects
on the scalar field theory.

To this end, we will introduce the theory of Random Geometry by defining planar maps
and disks and how to enumerate these objects in Section[2] In Section[3] we continue by
coupling a scalar field to the context of planar maps, which is done via integer labeling
of the vertices of these maps. Subsequently, we introduce a specific model, which we
then analyze. In Section [ we additionally mark one of the vertices of our map, set up
a recurrence relation, and work our way toward the desired probability distribution and
scaling limit of the values of the scalar field.



2 Planar maps, disks and their enumeration

As a start, it is useful to get acquainted with the mathematical theory that lays the
foundation of this thesis. Therefore, we will introduce the mathematical objects and
machinery we need later. There is a lot of information available on the theory, and
many books have been written that go way beyond the scope of this thesis. Therefore,
we will stick only to the most important aspects necessary for understanding the topic
at hand and make only small excursions for interesting and noteworthy points. This
section is largely based on the work of Budd [0].

2.1 Planar Maps

In this section, we will start by introducing graphs, how they embed on surfaces, and
briefly mention Euler’s theorem. Then, we work our way towards a definition for planar
maps and disks and mention some specified versions of them.

Definition 2.1. A multigraph G is a finite set of vertices, edges and an incidence map
(V(G), E(G),T), where sets of vertices and edges are respectively V(G) and E(G). The
incidence map Z : E(G) — V(G) x V(G) connects two vertices by an edge. These
vertices are then referred to as the endpoints of said edge.

In this definition, we allow for loops, which are edges whose endpoints are the same
vertex, and multiple edges, which means that more than one edge may connect the same
two vertices. We call a graph simple if it does not contain loops or multiple edges. It is
also possible to have vertices that are not connected by any edge. Therefore, we define
connected multigraphs.

Definition 2.2. A connected multigraph is a multigraph where every pair of vertices is
connected by at least one edge. In other words, starting from any vertex and tracing
along the edges, it is possible to reach any other vertex in the graph.

The degree of a vertex is the number of edges incident to it. See Figure for an
example of a connected multigraph.

Figure 2.1: An example of a multigraph, which has one loop and two multiple edges.
The degree of the top right vertex is four, the degree of the bottom right face is seven,
and the degree of the outer face is five.

Now let us work our way from graphs to maps, and in particular planar maps.

Definition 2.3. A closed oriented surface S is an oriented, compact, and connected
two-dimensional manifold with no boundary. The genus g of the surface is the number
of holes it has. A closed surface of genus g is homeomorphic to a sphere with g handles
attached.

On these surfaces, we want to properly embed our graphs.



Definition 2.4. A proper embedding of a connected multigraph G into a surface S is a
drawing of G on S such that:

e Each vertex of G is represented by a unique point in S;

e Each edge in G is represented in S by a non-self-intersecting (curved) line segment
homeomorphic to [0,1]. No two edges intersect, apart from where they meet at
the vertices;

e The edges enclose a collection of topological disks (S \ G), which are the faces of
the graph.

Definition 2.5. A planar map m is a connected multigraph embedded in a genus zero
surface.

Figure 2.2: A connected multigraph properly embedded on S2. Source: Timothy
Budd.

To add a bit of generality here, a genus-g map is a connected multigraph embedded in
a surface of genus ¢g. In a genus-g map, the number of vertices, edges, and faces are
related. This simple yet interesting relation is given by Euler’s theorem.

Theorem 2.6 (Euler’s theorem). For a map m, the sets of vertices, faces, and edges
are respectively denoted by V(m), F(m) and E(m). Euler’s theorem relates the number
of vertices, faces and edges in the following way,

[V (m)| + [F(m)| = [E(m)| = 2 - 2g. (2.1)

Here, F(m) is the set of faces. In Figure for example, the faces are the blue areas
enclosed by a set of edges. Note that the space outside a map (such as in Figure
also represents a face, called the outer face. The degree of a face is the number of edges
that form its boundaryﬂ Since we will only deal with planar maps in this thesis, we
will stick to ¢ = 0 from now on. We can see that these planar maps describe discrete
surfaces when we think of the faces as regular unit polygons that are glued together.
Describing discrete surfaces via the gluing of regular Euclidean unit polygons is done in
[6]. It provides an intuitive way to visualize the discrete surfaces, yielding a redundant
description, however. We are, of course, interested in a precise way to enumerate discrete
surfaces. Just planar maps are not enough for this pursuit. Because, say, there exists a
permutation that non-trivially permutes the vertices and edges of a map but yields the
same map (an orientation-preserving homeomorphism of the sphere). These are called
automorphisms. Multiple embedded graphs then correspond to the same planar map
m. To solve this, we add a direction to one of the edges of the map. We call these
rooted planar maps (see Figure , which now provide an unambiguous combinatorial
representation of discrete surfaces. Now that this is out of the way, we will define some
specified versions of planar maps.

1Every edge can therefore be seen to contribute twice to a face degree. Once for one face and once
for the face on the opposite side of the edge.



Definition 2.7. An even map is a map whose faces are all of even degree. Even planar
maps are bipartite maps, which have the property that you can color all vertices with
two colors and have no neighboring vertices share the same colorE|

We now arrive at the definition of quadrangulations, which will be studied in this thesis.
Definition 2.8. A quadrangulation is a planar map whose faces are all of degree 4.

We will need some additional specifications to extract the desired probability distribu-
tion, but these will be introduced later.

Figure 2.3: An example of a rooted quadrangulation.

In particular, we will work with quadrangulations on a disk. To conclude this section,
let us define what a disk is.

Definition 2.9. A disk is a planar map with a boundary. So now, it is embedded in
an open surface, which is a surface that is homeomorphic to a topological disk and, as
such, has a boundary. The outer face of the map can have arbitrary degree, and the
map’s boundary represents the boundary of the surface it is embedded on.

Remark. Euler’s theorem becomes now |V(m)| + |F(m)| — |[E(m)| = 2 — 2g — b, where
b is the number of boundaries. Disks have one boundary and genus zero, like spheres.
For quadrangulations on a disk, this becomes |V (m)| + |F(m)| — |[E(m)| =1

Figure 2.4: A quadrangulated rooted disk. The faces have a light tone to emphasize
that the outer face is excluded and that it thus is a disk.

2Even maps of genus g > 0 do not necessarily exhibit this property.



2.2 Generating functions

We will now introduce generating functions, which will prove very useful or even essen-
tial for working with planar maps. Generating functions essentially convert the counting
problem of some combinatorial object into an algebraic problem, which has the advan-
tage that we can manipulate them. How we exactly convert our problem to a counting
problem will be seen later in Section Let us begin by defining generating functions.

Definition 2.10. A generating function of a sequence of numbers (a,)n>0 is a formal
power series ZZOZO anx™, that takes the elements of the sequence as its coefficients.

It is a formal power series, as more often than not, these diverge, still allowing us to work
with them. The radius of convergence p € R are the values z can take and converge.
Thus, for |z| < p, the sum converges and does so to its analytical form. A simple
example is the geometric series, where we have a,, = 1, Vn > 0, such that

> 1
" . 2.2
;w — (2.2)

This holds for all |z| < 1, so p = 1, and the analytic form is F(z) = 1. Therefore, we
can work with these analytical forms to analyze sequences. To extract the coefficient
of z™ of F(x), we use the notation a, = [¢"]F(x). An obvious extension to this is
[z"](z™F (z)) = [" ™]F(z) = an—m. Generating functions can also be used to solve
recurrence relations. For example, we can take the sequence defined by ar = 2ax_1,

with ag = 3. Its generating function is given by

F(x) = Z anx™ = ag + Z anx”™ =3+ Z 2, 12" (2.3)
n=0 n=1 n=1
=342 ap 12" ' =3+ 22F(v). (2.4)
n=1
Hence, F(x) = ﬁ Thus, generating functions provide a means to algebraically work

with these sequences and apply all operations that apply to power series and functions
if they converge. The combinatorial objects we work with in this thesis are maps, so we
will now see how generating functions are applied to the context of planar maps and, in
particular, disks.

2.3 Partition function for maps

Before we set the general generating function for rooted planar maps, we need a few
ingredients. Firstly, we denote the space of all rooted planar maps by M, over which we
will take the summation. For every map m € M, we assign a weight ¢ for every vertex.
Lastly, we want to assign a weight ¢ to every face of the map. Let us, therefore, define
the weight sequence q.

Definition 2.11. The weight sequence q = (g1, ¢, . .. ) provides a weight for the faces
of a map m. So, gi is the weight assigned to every face of m of degree k.

Therefore, we now consider the following generating function for the partition function,

Zt,q)= Y V™ qaen) (2.5)
)

memM fEF(m

To get a bit of a feeling for this, let us look at Figure (and assume for a second it is
rooted). This map contributes to the partition function by a term t?¢;q2q3q4q2 7.



Definition 2.12. If Z(t, q) is finite, we can normalize the sum by 1/Z(¢,q). This gives
us a probability distribution on M, which we call the (¢, q)— Boltzmann planar map.

To specify this, we will be looking at disks. For planar maps, the outer face is also a
face that needs to be considered. For disks, we exclude this outer face or root face f,
which is the face that lies on the left side of the root edge. The generating function for
these disks with controlled boundary length £ is thus given by

W(e)(tq) = Z t|V(m)‘ H ddeg(f)- (26)
M with "
(?eg(f,,,y]:te FEFmMN\{fr}
Here, we set W (©) (t,q) = t by convention, taking into account the map that only consists
of one vertex and no edges.

2.3.1 Ceriticality

When using formal power series to compute the partition function, we disregarded con-
vergence issues. However, we eventually want to look at the statistical properties of
random planar maps. Therefore, we have to ensure that probability measures are sen-
sible. Therefore, q is admissible if Z(t = 1,q) < oo or W) (q) < oco. For generating
functions, we had a radius of convergence p. If a generating function converges for z = p,
but not for x > p, we call p the critical value.

2.4 Tutte’s loop equation

We can obtain an equation for the generating function for disks of controlled boundary
length ¢;. To this end, we can see that for ¢ > 1, we can make a decomposition by
removing the root edge, and construct an equation for this. By removing the root edge,
we either have two maps or a map with one face less.

abE-gd
-y

{4+ k-2

Figure 2.5: Two cases of removing the root edge of a disk. On the top one, we are
left with two maps of length p and / —p — 2 for a 0 < p < £ — 2. On the bottom one,
the new map contains one face less, and the boundary length is now ¢ + k — 2 for any
k> 0.

Let us discuss the two cases, where we both start with a map of perimeter ¢. If by
removing the root edge we end up with two maps, these maps will have new perimeters

10



p and £ — p — 2, because the removed edge contributed 2 in boundary length. Here,
we take that the map which the rooting points to has perimeter p. This holds for
0 <p</{—-2, as we can have that p = 0, where we end up with one map having only
one vertex, all the way up to p = ¢ — 2, where again we are left with a map with one
vertex. In the other case, removing the root edge results in a map with one face less.
Say the face on the left of the root edge has degree k > 1. After removing the root edge,
k becomes k — 1 and ¢ becomes ¢ — 1, as the removed edge contributed 1 in the face
degrees k and ¢. Adding these lengths gives us the new boundary length ¢ + k — 2.
Put into a recurrence relation, this results in Tutte’s famous loop equation

[e'e) -2
wo — Z g H=2) 4 Z w @y —p=2) (2.7)
k=1 p=0

To solve this, Let us introduce a new generating variable x for the boundary length ¢,
allowing us to establish the following generating functions,

W(z) = Z WO ==t Vi(z)=x — quxk_l. (2.8)
1=0 k=1

With these, we can see the Tutte equation to be equivalent to

V' (x)W(x) — W(x)* = Q(z) =1t — pr Z W k—P=2), (2.9)
p=0 k=p+2
Which has the solution

(V@) ~ V(@) = 4Q()) (2.10)

2.4.1 The disk function

An explicit expression for the disk function W) of bipartite maps with boundary
length 2¢; is given in [6] via

2 R
W(Zl)(t,q) = <£€11>/ drg;(r)rzl, (2.11)
0

where
o0

1/2k\
gq(r)=r—;qk2<k)r ; (2.12)
and R = R(t,q) is defined by gq(R) = t.

2.4.2 The cylinder function and beyond

In disks, we can also have holes of certain boundary lengths. To give an expression for
the generating function of bipartite maps with n boundaries, we can use the equation
from [I1]

W) (¢, q) = 20, (2.13)

oqe,,
For the cylinder function (n = 2) with boundaries 2¢; and 2¢s, we insert what we know,
i.e. W((t, q), to get the explicit expression

2.\ (2
Wit q) = ef f2€2 (fj) (f) S 210

11



These cylinders have a root edge somewhere on both boundaries. We can have arbitrarily
many holes and we can use (2.13)) repeatedly to obtain generating functions for these

S
Ja
A\

Figure 2.6: A rooted bipartite cylinder with boundary lengths 2¢; and 2/5.
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3 Labelled Quadrangulations

In this thesis, we are interested in coupling 2D Quantum Gravity to a scalar field. To
add a scalar field to a planar map, one can label the vertices with integer values, which
can be seen as a discretization of the scalar field. We do need to impose some conditions
for this scalar field, like a restriction on the gradient, but those will be introduced later.

3.1 Labelled maps

Definition 3.1. A labeled map is a map where we assign an integer value to every
vertex. In particular, a labeled quadrangulation is a labeled map where all faces are of
degree four.

When we now restrict neighboring vertices to differ by +1, there are two possibilities
of what each face looks like. Either the four labels of the face can have two distinct
values, which we call non-colorful labeling, or the four labels can have three distinct
values, called colorful labeling. It is exactly this colorful labeling that we will decorate
our quadrangulations with.

Definition 3.2. A colorfully labeled quadrangulation is a
labeled quadrangulation where every face has three dis-
tinct labels: ¢, £ + 1, and £+ 2 (for some ¢ € Z).

Remark. Labeling the quadrangulations changes the
counting problem. We still have all possible unlabeled
quadrangulations, but there are (almost always) multiple

ways to label these. This is why our geometry changes, Figure 3.1: A colorfully
as we stated in Section 1. labeled face of a quadran-
gulation.

3.2 Convenient model

We will now define the model we will be working with. This choice of model is con-
venient, as it allows a useful decomposition and has an interesting bijection to rigid
quadrangulations, which we will not go into detail about. In the following subsection,
we will see this ’gasket’ decomposition and why it is so useful. With this model, we
expect to be in the universality class of LQG~—2.

Definition 3.3. The labeled quadrangulations q we will look at are disks and have the
following restriction imposed:

e The boundary length is 2/;

e The labels on the boundary are alter-
natingly 0, 1, 0, 1;

e Neighboring vertices differ by +1;

e The quadrangulations are colorful;

e The root edge lies on the boundary
and points from a 0 to a 1.

Figure 3.2: An example of a labeled
quadrangulation.

13



From now on, when stating labeled quadrangulation, we refer to this model unless ex-
plicitly indicated differently.

3.2.1 Gasket decomposition

The method of gasket decomposition has extensively been used in [12), 13, 14] and has
proven useful. It decomposes maps into a cluster (which we will call gasket) containing
the root edge and then aims to describe what happens inside the faces of this gasket.
It formulates the enumeration problem in terms of Boltzmann planar maps, where the
gasket is the map, and its faces receive a certain weight for what can be inside based on
its degree. This is useful, as we understand the combinatorics of Boltzmann maps well.
Let us define gaskets in the context of labeled quadrangulations.

Definition 3.4. The gasket g(q) of a labeled quadrangulation q is the connected com-
ponent containing the boundary root consisting of all edges that connect the values of
the two endpoints of the boundary root. For the initial gasket these are 0 and 1.

Figure 3.3: Highlighting the gasket of a labeled quadrangulation where all zeros and
ones form a connected component depicted in red.

We can see that this gasket g(q), is again a disk. The disk function we saw in Section
enumerates disks as Boltzmann maps. Suppose now we specify the weight of the faces
for everything that can happen inside. In that case, we can derive a relation between
the disk function and the generating function of labeled quadrangulations.

3.2.2 Level sets

Due to this gasket decomposition, level sets arise.
These are loops that cross all edges in a gasket
that go from 0 to —1, or from 1 to 2. When
jumping over a level set, you go from the gas-
ket face boundary to a new boundary of either
—1, —2-vertices or 2, 3-vertices. Inside these new
boundaries, we can have all kinds of labeled quad-
rangulations again, where the boundaries will be
part of the new gasket. This forms the basis for
setting up a recurrence relation later. Jumping
over a level set essentially means that you go from
a (x,z + 1)-gasket to either a (z + 2,z 4 3)-gasket Figure 3.4:  Explicit example of
or a (z — 2,z —1)-gasket (for z € 2Z), and so on. the level sets (green loops) in the ex-
This is particularly important when determining ample quadrangulation.

a statistical distribution of the labels.
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Figure 3.5: A rough outline of a random labeled quadrangulation to see what happens
deeper inside a gasket face. Inside a gasket face, you cross a level set and end up on
a new gasket, either +1 in value. The different coloring of the gaskets serves solely to
distinguish the gaskets better.

3.3 Connection to the disk function

We will now establish the relation between labeled quadrangulations and the disk func-
tion for Boltzmann maps, which is based on an exercise sheet of Budd [II]. Let us
introduce a generating function Q¥ (v) for the labeled quadrangulations of boundary
length ¢,

o0
QY (v) = anv”, (3.1)
n=0
where a,, is the number of labeled quadrangulations with n vertices. This can be seen
to be equivalent to

QY1) = Z V@Il (3.2)

labelled
quadrangulations q
of perimeter 2¢

where Q(®) = v by convention, being the map that consists of only one vertex. We can
then split the summation and rewrite it as

QY () = Z Z V(@I (3.3)

meM with labelled
perimeter 2¢ quadrangulations q
of perimeter 2¢

g(q)=m
What then remains to be done is to assign a correct weight gx(v) to all the gasket faces,
such that we get the relation

Z V@1 = H Qdess/2- (3.4)

labelled FeEF(m)\{fr}

quadrangulations q
of perimeter 21

g(g)=m

This way, the relation between the disk function and labeled quadrangulations will be
established as

QY (v) =W (v, g (v)) = Z H Gaegy/2(V)- (3.5)

meM witél[ FeF(m)\{f}

perimeter

15



Let us first note that the gasket faces are independent. Therefore, we see this product
over the face weights. Let us now pick a face of the gasket of arbitrary perimeter 2k and
start at a 0-vertex, which always has a face adjacent to it. Going from a neighboring
1-vertex to a new 2-vertex (as a 0-vertex would belong to the gasket) and completing
the face adjacent to the 0-vertex, we draw an edge from the 2 to the 1 on the other side
of the 0, creating a face. Here, you can also use the 2-vertex from a previous time. We
do this until all edges of the gasket face boundary have a face next to them. From all
1-vertices of the gasket adjacent to the newly formed face in the middle, we can have
arbitrarily many extra edges going from 1 to 2. Since we need the quadrangles to be
colorfully labeled, these 2-vertices need to be connected via 3-vertices. By doing this, we
end up with a new perimeter alternatingly 2, 3,2, 3, which is now again the boundary of
a labeled quadrangulation, but with a 2, 3-boundary (which are, of course, in bijection
with ordinary labeled quadrangulations by shifting all vertices by —2). The crucial thing
to notice is that we have now returned to our original problem with a new boundary
length 2p, for any p > 0, in which we again have a gasket whose faces share the same
process described above and seen in Figure |3.6

Figure 3.6: A step-by-step visualization of a possible construction of a gasket face of
length 8 as described in Section 3.3. In the last step, a new boundary of length 2p is
formed, in which we return to a labeled quadrangulation but now with boundary values
alternating 2,3, 2,3. The dots represent the omitted steps.

We can thus already establish the following formula for the weight of a gasket face,

qr(v) = ZQQ(p)(v), (3.6)
p=0

where a denotes the number of possible ways to go from a gasket face of perimeter 2k
to a boundary length 2p, and we take the sum over all p > 0. To figure out the value
of «, we will take an arbitrary gasket ’ring’. In Figure these are all faces that a
level set crosses. We then proceed by cutting open one of the edges and laying it out,
of which an example can be seen in Figure [3.7]

We start with a gasket face of perimeter 2k, created by k quadrangles (the bottom line
of quadrangles in Figure. To go to a new boundary length of 2p, we must distribute
p faces over k spots. The number of possibilities to put p faces in k spots is (stars and

baI‘S problem)
.
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Figure 3.7: An example of a cut-open gasket ring and the corresponding gasket face.

Here, 2k = 8 and 2p = 8.

Lastly, we note that we can either go from a 1 to a 2 or from a 0 to a —1, giving us a

factor 2. All in all, the face weight becomes

g (v) = 22 (“i - 1)62(”)@).

Giving us the relation

QY () = W (v, g (v)).

Using now the disk function and the corresponding potential,

W(x) = Z WO =261 V'(z) =2 — Z gez?F 1,
k=1

£=0

we can establish the relation

V(@) :2W(V1—x2)
T Vi—az2

To see this, let us first look at the left-hand side,

V'(z > _
1_ ( ):quka 2
k=1

T

Substituting now the face weight (3.7), we obtain

V@) - [P+ k-1 (p), 2k—2
1 . _2ZZ< ) )Q 22,

k=1p=0

Now we look at the right-hand side and use that

(oo}

Wi(z) = QW1

=0
as QU0 (v) = WO (v, qi(v)). We then have

17

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)



2W(\/1—$2) _ 2 i (Z)( /;1—‘@2)_%_1 (3.14)

=2> QY1 —2a?)""! (3.15)
=0

—23° Q" (p N K) 22 (3.16)
£=0 p=0 p

=2 (p i g) Q. (3.17)
£=0 p=0 p

This is equivalent to

Qii (ﬁp)@(%%, (3.18)

£=0 p=0
because
p+0\  (@+0O! (p+O! [l+p (3.19)
p ) pll+p—p! (p+e-—0w \ ¢ ) '
Going from (3.15)) to (3.16]), we used that
1 — (P+E\ o
(1—22)0+t Z ( D )x N (3:20)

p=0
Setting now ¢ = k — 1, we obtain
o (PR =1 ) ok2
2y Y QW) g2k—2, (3.21)
k=1 p=0 p

which is the same as (3.12]). Therefore, we now have

V'(z W (V1 — x2
1- i)zz \(/W)' (3.22)

Hence, we see that (W(z) — 1V'(z))/z is symmetric under z — v/1 — 22.

3.4 Branch cut

From Section [2.4] we know that the solution of the disk function is

W) = % (V@) VV@)? —1Q(m)). (3.23)

If we assume now that only finitely many g are nonzero, V'(z) and Q(z) are polynomi-
als. Consequently, we can make the one-cut assumption that V'(x)? — 4Q(z) factorizes
as

V(@) —4Q() = M@)P(a —c) @ —c ), (e <ecs) (3.24)
where we take the sign of M(z) such that V'(z)/(zM(z)) — 1 as  — 1. The disk

function now becomes

1

W) =3 (V@) -M@)Ve—c)@—c)).  (@eC\lees))  (325)
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The interval [c_, cy] € R is called the branch cut, and W(z) is not analytic there. The

gasket of the quadrangulations is bipartite, which implies that the branch cut [c_, c4] is

symmetric around 0, because zW () is even in . Using the notation R = 1c% = 1¢2

(R > 0), we get that ¢, = 2v/R = —c_. Substituting this in W (z), we obtain

W(z) = % <V’(:c) — M(z)V/2? — 4R) . (3.26)

Rearranging and dividing by x, we get

2 (M) = —M(z)\/1 - i—f. (3.27)

For the left-hand side, we derived that it is symmetric under x — +/1 — z2. Therefore a
natural guess for M(x) is

M(@)=\/1- . (3.28)

Leaving us with the final expression

2<M):_\/1_14i2\/1_‘§. (3.29)

To verify this, one could compute the coefficient Q) = [x~2~1]W (z) and compare with
explicit formulas, found in [I5].

T]ﬁ" T T T T T T T T T T T =

Im(z)

|
n
|
|
y
T
8]

Re(x) —

Figure 3.8: The branch cut of (3.29) for 4R = 0.3 (subcritical). The branch cut of
W (z) is the middle part [-2v/R, 2v/R] ~ [-0.5,0.5].

3.5 Criticality

In Section [2.3.1) we briefly mentioned criticality. For criticality of the gasket, M (x)
should be 0 for z = 2v/R [I1]. From (3.28), we then get that R = 1/8. To get the
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critical value for the vertex weight v, we can set up the generating function for wv.
Firstly, we have that

z) = QWa="1, (3.30)
n=0

We also know that W) = v by convention. Hence, v = [z~ ]W (z). As V'(z) only has
positive powers of x, we can apply this to (3.29), such that

v= [z (W) (3.31)

The expression on the right can be derived further as

W(z)— 3V’ 1\/ \/ 4R
( x 2 1—22V " 2?2 (3:32)
1 4R 16 R?
= /1- - L .
2\/ 17x2 22 22(1—a?) (3:33)
R(1—4R)
Bl Towy (3.34)

,/ i xQ (3.35)

where R = R(1 — 4R). Expanding this for R small, we get for v that

o 1 (Dt f2m 4R\

v=lo ]_2712_011’1(2711)(71)(:%(1:#)) (3:36)
g 1 2n\ -~ 1

= b ]nzomn_n(n)R A=) (3:37)

The index n = 0 yields 1, therefore we can set n — n + 1, such that we are left with

> 1 o + 2\ ~ 1
—2 - R ) 3.38
@ ]nz:% 2(2n +1) <n +1 > x2nt2(1 — g2)ntl (3:38)

Using that both
1 2n +2\ 1 (2n+2)2n+1) 20\ 1 [(2n (3.39)
22n+ 1)\ n+1/) 2@2n+1) (n+)n+1) \n/) n+1\n)’ '

(1- ;2)”“ - i (p ng n) o (340

p=0

and

we get

= Z i <2n) R a2 i <p;n> xfTQ; (3.41)

n=0 p=0

The coefficient of =2 is obtained from the sum for p = n. This gives us the final
expression

20



U::o ! (2n>2é(v)"+1. (3.42)

—n+1\n
Analogously,
=1 2n\ =~ o= (P41 TP
@ () = nt1p,—20—2 o
QW =3 o () i 1;( s 6w
1 20\ [2n—10\ 5 .
= " .44
T;)n-l-l(n)(n—E)R(U) (3.44)
= L (2”> (2”_£>R(v)”+1 (3.45)
n:zn+1 n n

The critical value for this sum (3.42)) is R(v,) = 1/16, from which we get that v, = 1/47.
For R, the critical value is R(v,) = 1/8. This result is also confirmed by [15].
3.5.1 Ceritical exponent

Definition 3.5. The critical exponent o defines the asymptotic behaviour of W), As
0 — 0o, WO scales as W) ~ CY=2=3% for a C > 0.

Using our results from the previous sections, we can find the critical exponent of W)
and hence also for Q). We know that

WO = 72 W () (3.46)
_op_ 1
= [z727Y (W(x) — 2V’(x)) (3.47)
Cor1y T 4R \/ 4R
= — =4/l = ———=/1— 3.48
oy -2 (348
1 4R 4R
—20-2
= — —/1— 1-—. 3.49
S 2\/ 1 a2 \/ 72 (349
Setting the critical value R(v.) = 1/8 and using Cauchy’s integral formula, we get
wo — L Ll e [y 2 1- 3 (3.50)
22mi Jo 1— a2 z2’

where the contour % is the contour around the branch cut, seen in Figure
Substituting

r=——c" 5 7 = —e* s dox = —¢* de, 3.51

yields

L+1 p2n 1 1
0 _ 204-2)i0
W() ( ) /0 df e ( \/12—62’9\/162“9 (3'52)
0+1 pon 2i0 —2i0
B 20+2)i (1 —e20)(1 —e—20)
= ( ) /0 do et \/ D : (3.53)
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1T 1.0

Im(x)
0.5 B
0.0 - q
-0.5+ B
710 C n T T T I S IS S A
-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

Re(z) —

Figure 3.9: The contour € around the branch cut of W (z) for the critical value

R = 1/8, which is [—%, %]

The numerator of the fraction in the square root can be written as

\/(1 — e20)(1 — ¢~2i0) = \/2 — (€20 4 ¢—2i0)

= /2 — 2cos(26)

= \/4sin*(0)

— 2[sin(6)|,

such that

£ 2 .
1 /1 o |sin(9)]
w® — _ — () do e(2t+2)i0 1271
0 V2 — 210

14 s 1 —1
L1 / g 20 € — e
2m \ 2 0 i/ — ¢2i0

¢ ™ i0
1 /1 z/ 4o (2610 e’ —1 _
2t \2) ' o - (1)

(3.58)
(3.59)

(3.60)

As we look at £ very large, we get the largest influence from 6 very small. For § — 0,

0 — 1~ 2i0 + O(6?).
Therefore, we can use the Maclaurin series for x small

T

: ~ x4+ O(2?).

8

We are then left with

W(f) ~ do e(2€+1)i9(62i9 _ 1)

(
(

N~ N

1
2
1
2w

o
'

Integrating this givesﬂ

do (e(2€+3)i9 _ e(2€+1)i9) ’

(3.61)

(3.62)

(3.63)

(3.64)

3If we had used more terms of the Maclaurin series (3.62)), they would give contributions of

£=3,¢=% ..., which are dominated by £=2 for large /.
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¢
1 /1 1
WO~ —(2) ———. 3.65

Ar \2) £ +20+3 (3.65)
For ¢ — oo, we have the asymptotic behavior

1
w® ~ Eﬂﬂ' (3.66)

Therefore, the gasket is non-generic critical with exponent o = 3/2.
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4 Marking a vertex

To actually obtain a distribution of the value of the labels, we will mark one of the
vertices of the quadrangulation and get a probability distribution of the value of this
uniformly marked vertex.

4.1 Pointed labelled quadrangulations

Definition 4.1. Let us start by defining what we mean by pointing a map. A pointed
labeled rooted planar map is a labeled rooted planar map where one vertex is marked
uniformly at random.

Figure 4.1: A pointed labeled quadrangulation, where the vertex surrounded by a
blue ring is the (uniformly at random) marked vertex

The generating function of these pointed labeled quadrangulations is then

Oy = 3 V@I, (4.1)

pointed labelled
quadrangulations q
of perimeter 2¢

It is very similar to counting just labeled quadrangulations, but for every quadrangula-
tion, we now have |V (q)| possibilities. In giving a weight to a quadrangulation, we do

not count the pointed vertex. Therefore, one can observe that Qg)(v) is the derivative
over v of Q) (v),

V() = Q0 0) (42)

We take again the generating variable z for boundary length and define

Qu(@) =Y "2771QY,  qu(w) =) gl
k=1

£=0

where

o S k—1
= =2 (" e (4.3)
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Note that, in contrast to the definitions of W (z) and V’'(z), for convenience, we use
x linearly and not quadratically. Therefore, the branch cut of Qe(z) is [0,1/2] for the
critical case, where W (z) had a branch cut at [—1/v/2,1/v/2]. As a reminder, we had

W (z) = Z ) 14O V'(z) =2 — Z 2 gy, (4.4)
=0 k=1

Differentiating these with respect to v, we obtain the following,

oW o

o = =20, (4.5)
oV'(x) 21 e

aux :’kzzlf”% gy = —xqa(2?). (4.6)

Using now the relation between W (z) and V'(z),

1- Vx(x) = QW\(/Q), (4.7)
we can derive a relation for Q,(z) and ge(z)
C1oVi(x) 2 oW (V1 — z2) (48)
z v i
xq.g(f?) _ 2%@,(1 —2?), (4.9)
ge(2?) = 2Q4 (1 — 2?). (4.10)
This is equivalent to
go(z) = 2Qo(1 — ) (4.11)
for 22 — x.
(4.12)

4.1.1 Pointed disk function

In section we saw the explicit expression of W), For the pointed disk function,
we then have

0

Wi = 2w W(z) =Y wiam M = S w(a). (4.13)
£=0

ot

From [6], we get an explicit expression for this,
1
Ja—e@—c)

We work with quadrangulations, which are bipartite maps, such that ¢, = 2/ R = —c_.
Therefore, this changes to

Wa(z) = (4.14)

1
Wale) = e (4.15)
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from which can be deduced by series expansion around x — oo that

W _ <2€£> R, (4.16)

However, as stated earlier we will work with x linearly. Therefore, we redefine W, (x) to

be
We(z) = [E_O W.(%)x_é_l = g (;) Rlg™ 1l ————— (4.17)

= va(z —4R)
where £ is the half perimeter, as we want it to be, since the boundary lengths are even

(20).

4.2 Setting a recurrence relation

To set an equation which Q(.e)(v) satisfies, we can find a recurrence relation using the
gasket decomposition. On the left-hand side of the equation, we put QSZ) (v), the gen-
erating function for our pointed labeled quadrangulations. Let us now think of the two
possibilities the pointed vertex can be. This is either on the gasket or inside one of the
gasket faces. If it lies on the (z, x+1)-gasket (for a z € 2Z), we can see the gasket to be a
pointed disk with the gasket as the map, so we will use the pointed disk function for this
possibility. If it lies inside one of the gasket faces, we can see the gasket inside this face
again as a pointed labeled quadrangulation with now either a (z — 2,2 — 1)-boundary
or a (z + 1,z + 2)-boundary. We need to consider all possible ways this can happen.
So, say the gasket face in which the marked vertex lies is of degree 2k. We can observe
that, briefly disregarding the face itself, we obtain a cylinder. The number of cylinders
of perimeters 2¢ and 2k is given by the cylinder function we saw in Section [2.4.2] How-
ever, this considers all the ways the inner boundary of length 2k can be rooted, and
we can take this rooting in some arbitrary fashion, such as closest to the original root.
Therefore, we divide the cylinder function by 2k. See Figure for a rough sketch of

this process.

e

Figure 4.2: Rough outline of the two possibilities of where the marked vertex can be.
Writing out the equation in shorthand, we get
0 _ 0 N~ L per @ 41
QL =ws +;2kW 5 (4.18)

where ¢y, is given a factor 1/2, as we either go up or down a value in the recursion
and g;, had a factor 2, including both these options. Substituting now the pointed disk
function, the cylinder function, and the face weight, it becomes
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This is valid for any vertex value v, but we will now restrict ourselves to the critical case
V= Uy

4.2.1 Controlling number of level set jumps

If we find a function for QSE) (vs), it has to satisfy this recursion relation. It would be
even better to extract a closed solution from this equation. However, this is not so easy.
We can introduce a new generating variable for controlling the change in vertex labels
when crossing a level set. For this, we want to take into account that if (eventually) the
vertex lies on a gasket, the value is either z or 4+ 1 for z € 2Z. Without changing the
probability distribution, we can take these two values as one. We do this by defining a
variable for the vertex value

(4.20)

{label of marked VertexJ
5 )

We can define a new generating function with this new generating variable like

O (v, 0) = 3 V(1 02, (4.21)

pointed labelled
quadrangulations q
of perimeter £

which has the additional advantage that we can easily find the characteristic function
for the random label A via

Zq va(q)\ JRIDN sfz) (0s,6)
el Q@0 =0)

Additionally, we introduce the following variables, which are similar to those of the O(n)
loop model [12| 13| [T4], [T6],

E[e?] = (4.22)

0 = b, n = 2cos(h), (4.23)
which are related via
1
n_ cos(7h), b = — arccos (E) . (4.24)
2 s 2
The recurrence relation now becomes
O (. o) = (2N Real (0 o it L (20 (2 Re+koo PHE=1\ o, o
Qe (v, 0) (z Ty (fre );Hk 0 )\ k ,;) p )@ )
(4.25)
Here, ¢'? indicates every time of going up a value, so from a (z,z + 1)-gasket to a

(z + 2,z + 3)-gasket, and e~ indicates going down a value, so from (z,z + 1)-gasket
to a (x — 2,z — 1)-gasket (for z € 2Z). Substituting n, we get

@0 = ()5 S A () (D) e (T e o). o)
k=1

p=0

Which in short notation is

ne= 1 .
Qsl) _ W.(M) + 3 Z ﬁW(M)qk’ (4.27)
k=1
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However, now solving this to get a closed solution is very hard and will probably
yield a difficult expression. The generating function with a generating variable for the
boundary length 2¢

Q-(w)fz 1 (v, 0) (4.28)
£=0

usually yields a simpler expression, for which we can use a transfer theorem to analyze

the asymptotic behavior of QSE) (vi,0) as £ — oo. In the recurrence relation, we can
multiply both sides by 2=¢~! and sum over all £ to get

S 2t n ——1 20\ (2K Lok ptk— ()
= ()R Zm Z”k ) (%) & Z ol w0
(4.29)
We know that R(v,) = 1/8 and we take x to be positive. This gives

N OO Tl G

x (m -1 =0 k=1 p=0
(4.30)

O
o
&
\
+
IS

4.3 Solution for Q.(x)
Extracting a closed solution from (4.30]) is rather difficult. So instead we take a different
approach. In (4.18]) we had the term

1
— Wk 4.31
o% , (4.31)

which is the generating function of rooted maps of perimeter 2¢ and a marked unrooted
face of degree 2k. We will define this as

@ _ Lo 1 L (20\ (2K op 439
Wk'2kW 20+ k\ 0 kR ' (4.32)

This can also be written as

R
0 _1 dr, (20\ 4 (2K &
Wy —2/0 rg(ﬁ W L (4.33)
Since

= (2 1 = (2 1

Z ( g)réz_é_l = and Zﬂ( Z)rez_e_l = rﬁi,

o\t z(z —4r) ¢ Oor \/z(z — 4r)
(4.34)

we find that

= 5, 1
_ —{—1 —k— lw(é) / , 4.35
Zx Z \/zz—4r 87“\/3333—47" ( )

£=0 =

which can be integrated to get

z—4R n 1 1
2(z —)\/z(x —4R)\/2(z —4R) 2z(x—2)

(4.36)
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Introducing now the notation

f(z+10) = 1'{% flz+ te), (4.37)
we get that for z € [0,4R],
V(@ +1i0)(x + 0 — 4R) = —/(x —i0)(z — i0 — 4R). (4.38)
Therefore,
1

W(x+10,z) + W(x —i0,2) = ) for x € [0,4R]. (4.39)

z(xz — 2)
As a reminder, the recursion relation in shorthand notation (4.27)) with our new notation
is now

J4 14 n - L) o
0 = W+ 25wt (140
k=1

/—

Multiplying by z=¢~! and summing over all £ > 0 yields

Qe(x) = We(x) + %g%dz Wiz, z) z ge(x) (4.41)
1 1
= e WG ), (1.42)

as ¢e(z) = 2Qe (). The term W, (x) satisfies
Wa(2 + i0) + Wa (2 — i0) = 0. (4.43)

So, for x € [0,4R], we get that

Qe(x +10) + Qo(z —i0) = QL % dz x(%_z)an.(l — ), (4.44)

™

and by Cauchy’s integral formula (and taking v critical, such that R(v,) = 1/8), this
becomes

Qe(x +110) + Qo(z —i0) + nQe(1 — ) =0, for z € 10,1/2]. (4.45)

To obtain a solution for Q(x) from this equation, we can consult the solving strategy
in [13] and follow the steps in Sections 3.2 and 3.3. Additionally, from [I2] 13], we know
that if we find a function for Q. (), it is a unique solution if 1) it has the right boundary
conditions and 2) it satisfies equation . The starting point in the solving strategy
is the equation

Whom (2 + 90) + Whom (2 + 90) — ns’(2) Whom(s(z)) = 0, € [y_,v+].  (4.46)

For us, Whom () represents Qe (z) and the branch cut is [0,1/2]. Here, s(z) is defined
by

1 —ahx
= . 4.4
s(@) ah + (1 — a?)h?z (4.47)
If we now take a =1 and h = 0, we get
s(x)y=1—u, (4.48)
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such that we obtain (4.45)) and hence

1
7-=0, n=5 (4.49)
The solution is then given by
w(v)
. = ) 4.50
Qulr(v) = 208 (4:50)

where

w(v) = Zak (C(k)(v — Vo) — () (—p — Uoo)> . (4.51)

k>0
This is thus a linear combination of {(v) and its derivatives, where zeta(v) is given by
¢(v) = cosh(bv) coth(v) — sinh(bv), (4.52)

with n
wb = arccos (§> . (4.53)

The coefficients ay, are to be found via the boundary conditions later. We also have that

cosh(v) — 1
cosh(v) — cosh(veo)

z(v) = (r+ —s(7-)) +s(7-)- (4.54)

Here, cosh(vs) is determined by z(im) = v—, which gives cosh(vs,) = 0, implying that
Voo = @m/2. Filling in what we know, we get

BSOS )

We now invert x(v) to get

v(x) = arccosh <2$1_ 1) . (4.56)

For determining the coefficients aj, we use Mathematica and expand w(v)/z'(v) around
& — 0o up to the third derivativeﬂ We now want Qe(x) = 1/x + O(1/2?) as z — oo.
To get this, we can see that all coefficients other than a¢ have to be zero, and ag is
chosen as such that we get the desired 1/x. Plugging this in and so solving for Qe(z),

we obtain
0u(e) = sinh ((1 — b) arccosh (211_1>) . (457

x,/l—lcos”—b
x 2

Rewriting this in non-hyperbolic sinusoidal functions, this becomes

sin ((1 — b) arccos (ﬁ))

x\/l—%cos(%b)

Finally, the function must be symmetric in b, and we know that § = cos(mb), which is
also symmetric in b. Therefore, we change b into |b|, giving us our final expression

Qe(z) = (4.58)

4We could have taken higher order derivatives into account, but we see that only the linear term is
nonzero
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0u@) = sin ((1 — |b]) arccos (ﬁ)) | (459
Ty/1— %cos (%b)

By construction, Qe () satisfies equation (4.45)) and can be checked in Mathematica to
have a branch cut on [0,1/2] (see Figure 4.3). For the uniqueness of Qe(z), we addi-
tionally check if it has the right boundary conditions for x — co and = N\ 1/2.

Firstly, we know that Q(x) = % + O(%) = £+ O(55), as ¢ — oo, and that
Qe(z) = B%Q(a:). Therefore, we should have that Qs(z) = L + O(%), as v —
(which was actually already used in the construction).

Secondly, from [I3] we know that as = \, 74+ (so  \, 1), Qe(z) should behave as
Qe(x) ~ @Tl)lf\bl In short, these two come down to the following,
2

e as  — 00, Qe(x) ~ %;

® as T\, %7 Q-(CC) ~ ($,%1)17\b|
These conditions are confirmed with Mathematica, which means our solution for Qe (z)

is unique. We can perform two additional sanity checks to ensure (4.59)) is the correct
function.

T
T 04
Im(x)
0.2 i
0.0+ B
-0.2
—04 i
| Ir—— T T S S S T N B T N B S
-0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
Re(z) —

Figure 4.3: The branch cut of Q4 (), which is [0,1/2].

If b =0 (n = 2), we can use inverse trigonometric identities to rewrite Qo (z) to Qe(z) =

wil Moreover, this yields Q) (v,) = 2~¢, which we can check with the recursion relation

(4.26). As a reminder, this relation was

- ()6) 55 () B £ eren

p=0
(4.60)
We will look at the right-hand side and check if it gives back 27¢ for n = 2. We first

note that

= -1

3 <p+ K )2—1’ = 2%, (4.61)
p=0 p
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Therefore, we have

BIORIBI0 PO

We then evaluate the sum with WolframAlpha, giving
=0 2k (1" T(0+1
Z( )() gk - VTLUHD (4.63)
= l+k\k)\8 r'+s3)
VAT (4 1) (24) (1)‘ (464)
ree+4)y \¢)\8) "’ '

If now b = 3 (n = 0), we see in (4.30) that we should get Qq(z) =

by which we are left with

which is exactly 27¢.

1
——— B
Veeh )
substituting b = 1 in (4.59) (for > 0 and R > 0), we exactly obtain this result.
Therefore, we conclude that we have found the correct and unique solution for Qe(z).

4.4 Statistical distribution of the label value

The statistical distribution can be obtained by finding the characteristic function ¢y (6)
of the label value A for £ — oo and then checking which known distribution shares that
characteristic function. We start with the characteristic function

O 0 Z U\V(q)l iOA se)(v*ﬁ)
[ = Z U\V(q)l Q(t’)(v 0)'
q [ ] * 9

When 6 = 0, we have n = 2, for which we found that Q) (v,,0) = 2=*. However, we
do not have an exact expression for arbitrary 6. As we are interested in the asymptotic
behavior at £ — oo, we will use a transfer theorem from [I7], which we will use apply

to Qe(z).
Theorem 4.2 (Transfer theorem [I7]). Assume that

ea(0) =E (4.65)

fz)~(1—-2)"7 as z — 1,

with o & Z<o. The coefficients of f(z) then satisfy

noc—l

[z"]f(z)N@7 as n — oo.

Continuing with (4.65) and leaving the limit for a moment,

. sin ((1 — |b]) arccos (

ryf1= feos (%)

Q(v.,0) _ o7 11Qu@) _ por s-

Q¥ (v.,0) QP (v,)

)

We will look at z — 3, where we had that

1
Qe () ~ b

cos( ) (z —

(4.67)

Nl | =

)1—|b\'
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Hence, we want to solve

26[”5_@_1%0;7;”) = i)llbl’ (4.68)

1

To match the requisites of the transfer theorem, we take z = 5,

such that we get

e p— (469
b 1—[b]” '
() (E )
2¢ 261 1
= —[] — (4.70)
cos( %) z (%) -l |(1 2)1 o, 1p|—1
but z — 1, so
1 , 1
=—" [2] T (4.71)
() Meos(zt) (-2
Applying now the transfer theorem, we then end up with
, O (v,,0 1 i
EG[e] = Q;@)@*a ) o — —o(b)e M, as e .
Qe (’U*, O) (%) cos(%b) F(l - |b|)
(4.72)
where 1
C(Jp]) = ] " . (4.73)
(3) 7 cos(F)I(1 - [b])
This diverges, however. To solve this, we introduce now the renormalized label
A
A= . 4.74
log(¢) e
The characteristic equation for A is
oa(a) = lim B[] = lim E@[e'm@?) (4.75)
£— 00 {— 00
= lim E¥[¢!] (4.76)
{— 00
where we have taken that
@ 0 @
0 = h=— = ) 4.77
log(¢)’ 7 wlog(f) (4.77)
As ¢ — oo, we have § — 0 and thus b — 0, such that
lim E[e*] = lim C(b)¢~ 1 (4.78)
£— 00 {—00
) || __la
= lim C (" 71oe@ 4.79
P (wlog(é) (4.79)
= C(0)e % (4.80)
=5 (4.81)
Therefore, we have
_ Lol
or(a)=¢e = (4.82)



We also know from probability theory that the Cauchy distribution ® has probability

distribution
1 dx

T2+ 1

Hence, the characteristic function of a Cauchy distributed variable X is

i Xt 1o Xt —¢|
ox(t)=Ele ]:;/,oon—i—ldx:e .

(4.83)

(4.84)

By Lévy’s continuity theorem [I7], we can thus conclude that for £ — oo, A converges
in distribution to the Cauchy distribution ®. Consequently, the value of the labels A

converges in distribution to the Cauchy distribution and scales with log(¢),

(d) (0]
/\—>log(€)'
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5 Conclusion and discussion

In this thesis, we looked at 2D Quantum Gravity coupled to a scalar field, where we
discretized the geometries and represented this with integer-labeled maps. We imposed
the condition on the scalar field so that it cannot deviate very much via the colorful
labeling of the maps. As the combinatorics of Boltzmann maps are well understood, we
made a connection between these and our model. The universality class of this model
is seen to be non-generic critical with critical exponent o = 3/2, meaning the surfaces
are fractal. With the method of gasket decomposition, we set up a recurrence relation,
confirming its usefulness. With the solving strategy from the work of Borot, Bouttier
and Guitter [I2], we could establish the unique function for Qs(x). As our main result,
we then showed with the help of a transfer theorem that the values of the colorful quad-
rangulations are distributed along the Cauchy distribution and scale with log(¢). This
means that when we couple a massless scalar field to 2D Quantum Gravity, the values
of this scalar field are Cauchy distributed and scale with log(¢), yielding a notion of
correlation. In contrast, for a scalar field on a discretized square lattice with the same
gradient restriction, the scalar field value also scales logarithmically with the boundary
length but is expected to be normally distributed [I8]. This is an interesting change
induced by the coupling to 2D Quantum Gravity. We have also seen that adding matter
changed the geometry of our problem as the critical exponent in the absence of matter
(LQG7: 5 /3) is @ = 2 [6], while coupled to a massless scalar field (LQG~=2) we found

it to be o = 3/2. Furthermore, we can interpret the scaling of the values as the influ-
ence matter has on each other, which we expect. This all was previously seen via the
generating functions of these labeled quadrangulations, established in [I5]. This thesis,
however, aimed to do this enumeration via the method of gasket decomposition, which
has proven useful and is arguably easier than the work of Bousquet-Mélou and Price [15].

We did all of the above for a critical vertex value v,, greatly simplifying the prob-
lem. If not for this, the solutions would have been elliptic functions, adding a whole new
layer to the problem. For us, v = v, was enough, as it allowed us to find the critical
exponent and the statistical distribution. However, it might be insightful to analyze this
model leaving v a variable. In the future, it might also be interesting to couple more
interesting fields to 2D Quantum gravity and find out how matter influences other mat-
ter here. However, with more ’interesting’ comes more complicated. Therefore, finding
ways to couple more complex fields to Quantum Gravity and determining what LQG
universality class it is in might be insightful. The model of colorful quadrangulations is
proven to be in bijection with so-called rigid quadrangulations, and it could be inter-
esting to explore this to better our understanding of the combinatorics of this model.
Furthermore, in [I4], for the O(n) loop model, a relation was observed between the
number of loops surrounding a marked vertex and the total winding angle of a simple
random walk, with some initial conditions. Perhaps, a relation to a similar random can
be found for these colorful quadrangulations.
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