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Abstract

In this thesis we will be looking at the quantum gravity theory of causal dynamical triangulations
(CDT) in its classical limit. We try to find out which theory of gravity describes this limit best:
Einstein-Hilbert or Hotava-Lifshitz gravity. In order to do this, the expressions for the spatial
volume as a function of time and associated fluctuations are found and compared to data obtained
from numerical simulations of causal dynamical triangulations. In order to get these expressions,
the field equations with positive cosmological constant of these theories of gravity can be solved
for a standard metric of a minisuperspace form to yield the scale factor. The expression for the
spatial 2-volume can be calculated out of the scale factor of this metric. Using perturbation
theory, an equation governing fluctuations in the 2-volume can be derived. After discretization
the obtained spatial 2-volume and the spectrum of fluctuations approximates the classical limit
of causal dynamical triangulations rather nicely. In both the Einstein-Hilbert and the Horava-
Lifshitz case, the obtained equations will be fit against CDT data, where simulations have been
done for the spatial 2-volume, and associated fluctuations, of evolving universes through time
with physical properties. Since the Hofrava-Lifshitz action is a generalization of the Einstein-
Hilbert action, it is expected that the former gives a better fit to the data. However, this turned
out to be true only for specific cases.
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1 Causal dynamical triangulations

For a long time people have been looking for a fully quantised theory of gravity. Causal dynamical
triangulations (CDT) is one of the candidates to fulfil that roll. It is a non-perturbative theory
that already has promising results in dimensions d = 2, d = 3 and especially in d = 4.[1, 2] Tt
makes use of the path integral approach, which looks like

Z = /Dg etSlal/h (1)

The integral on the right hand side gives a quantum state Z in the quantum theory of gravity.
This expression shows the integral over all paths of the exponent of the action S, dependent on
a metric g. For the simulations done in this thesis the Einstein-Hilbert action is used, defined
later on. Each path in this path integral represents a universe in the case of quantum gravity.
In order to do calculations with this path integral, it needs to be discretized to

Z = Zm(T) S/ (2)

where m(T) is called the measure[l] and T a specific triangulation. The measure is calculated
as the inverse of the order of the automorphism group of each triangulation 7. Each triangula-
tion represents a different way of building up discrete spacetimes with small building blocks of
Minkowski space. With these building blocks, expression 2 can be seen as a summation over all
universes. In 2+ 1 dimensions! these building blocks are tetrahedra, see figure 1.[1, 2, 3, 4, 5, €]
These forms have multiple great benefits, but mostly they are simple to use.

(a) (b)

Figure 1: Two different forms a tetrahedron can have in 2+ 1 dimensions. The space coordinates
make a surface into the paper, whereas the time coordinate goes upwards.

There are three kinds of tetrahedra in a (2+1)-dimensional set-up. First, there are tetrahe-
dra where three vertices evolve into one vertex over time (figure 1(a) is an example of such a
tetrahedron), called (3,1) tetrahedra. Next there are tetrahedra where one vertex evolves into
three vertices over time, (1,3) tetrahedra. Due to symmetry reasons, a spacetime build up out
of tetrahedra always has the same number of (3,1) as (1,3) tetrahedra. Lastly, there are (2,2)
tetrahedra, where a tetrahedron with two vertices evolves into a tetrahedron with two different
vertices, see figure 1(b).

These tetrahedra can describe different universes when glued together in various ways. The

1Meaning 2 space and 1 time dimensions.



tetrahedra are always glued face-to-face so that they form layers for each discrete point in time,
also called a time slice. In 2+1 dimensions, for each time slice the tetrahedra form a 2-sphere.
The number of tetrahedra used per simulation is a direct link to what discrete 3-volume each
universe has. The number of time-like (3,1), (1,3) and (2,2) tetrahedra (N?E3’1), §1’3) and N§2"2))
stand for the discrete spacetime 3-volume, where the total spacetime volume is the summation
of those three values, also called the number of 3-simplices. If one looks at a specific time slice,
the number of space-like triangles N5'© one finds represents the discrete spatial 2-volume, also

called the number of spatial 2-simplices.

When restricted to summing over these so-called ‘causal’ spacetimes, equation 2 carries a well-
defined Wick rotation. This is the name for when a manifold with Lorentzian signature is changed
to a manifold with Euclidean signature. After Wick rotation expression 2 becomes a partition
function,

Z =Y m(T) e SN/, (3)

The Einstein-Hilbert action used in this expression can be expressed in terms of the number of
O-simplices and the number of 3-simplices used per simulation|[7],

SEH(T) = —koNo + k3 N3, (4)

where ko and k3 and the coupling constants. This Wick rotation is necessary for the numerical
simulation done in CDT.[4]

Simulations can be done regarding the calculation of the volume of various universes. These
universes are born, the volume evolves in time, and the universes die again. Each particular sim-
ulation is run at a fixed number of 3-simplices and a fixed number of time slices. Three examples
of universes are given in figure 2, where the vertical axes represent time and the horizontal axes
state the spatial 2-volume of each universe in each point in time.[4]

(a) (b) ()

Figure 2: Three examples of simulations where a universe gets born, evolves and dies. The
vertical axes represents time, whereas the horizontal axes states the volume of each universe.



Each of these simulations in figure 2 represents a different phase of quantum geometry. Since
the phase represented in figure 2(c) is the only one with universes having physical properties, we
will only consider universes of such a phase, which is phase C.

Since CDT is a quantum mechanical theory, it is possible to look at expectation values of observ-
ables in the quantum state defined by expression 2 of all universes with phase C. The expectation
values of various observables may be classically approximated by Einstein-Hilbert gravity and
Horava-Lifshitz gravity. In this thesis we look at two properties: the spatial 2-volume of classical
Einstein-Hilbert and Hotava-Lifshitz gravity and the semi-classical fluctuations in that spatial
2-volume. We approach the spatial 2-volume classically because we are looking at entire uni-
verses. In other words, we examine the large scale physics of CDT, making it a classical limit
to approach. The fluctuations on that volume are approached semi-classically since those are
quantum fluctuations on a classical volume. We compare the values of these properties to the
expectation value of the number of 2-simplices and the expectation value of the fluctuations of
all universes found in numerical simulations of CDT, and state which of the theories of gravity
best describes CDT in its classical limit.



2 Models

As stated before, multiple simulations of growing and dying universes can be done. The typical
form of such a data set for a universe in phase C in 2+1 dimensions is shown is figure 3, where
the expectation value of the spatial number of 2-simplices at each time slice is set against the
discrete number of time slices.
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Figure 3: This is a CDT obtained simulation of the expectation value of all universes that are
born, grow and die. The horizontal axis represents the discrete number of time slices used in
the simulation, while the vertical axis shows the expectation value of the spatial number of
2-simplices at each time slice. In this simulation 21 time slices are used.

Quantum mechanics state that locally there are very small fluctuations in this volume[8]. These
fluctuations represent the deviation from the ensemble average,

3t (1) = Ny H(r)— < NyH(r) > ()

In this thesis we look at the correlation between n5” at two different times, < n5%(7) n3% (1) >,
because the expectation value of n5%(7) is zero, with

K
1
<n3t(r) 3t (r') >= o DO [NGH () - < NFE(r) >] [NGF ()= < N =] (6)
j=1
and
| K
<nst(r) >= % > NSFH(7). (7)
j=1
Since < n5L(7) ngL(r") > is a T x T-matrix with indices 7 and 7/, we can diagonalise it to get

its eigenvectors and eigenvalues. An example of such a dataset can be seen in figures 4 and 5.



05

04F

0af

ot \ 0zl /
I N L . : / \\ £ T
5 LAY 15 o1f f \ \ 10 ‘.’ I‘?.
—oaf \ . - )\ . \ / \
\\ 5 10 "".‘IS\/ T _ezf Vo \
3 \ —oaf \ \ /
-nsp \ -0z o /

04 Il \

5 'w‘l |‘Im \‘ |5Iﬂ 20 = ,‘ - ; ‘I -+ \\ > . I".‘ ] '\lj I‘ ,“' e / -
VoL Vo WY,
‘ [ —oa2f \ /
ot \ )\ o2 Vo * \ o\
\ / \ \ { \ \
\V \/ - V -oaf Vo
v —04F 1

same simulation

—oal

Figure 4: The first six eigenvectors of the fluctuations in the 2-volume of the
that used 21 time slices.
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Figure 5: The eigenvalues of the fluctuations in the 2-volume of the same simulation that used

21 time slices.

In order to describe the number of 2-simplices and its fluctuations, two models have been created
that possibly fit the data. In the first model use has been made of the Einstein-Hilbert action,
which will be shown and explained later on in section 2.1. In the second model the Einstein-
Hilbert action has been generalized to the so-called Hofava-Lifshitz action, section 2.2. Since
the Hofava-Lifshitz action is a generalization of the Einstein-Hilbert action, it has two extra
parameters which can be adjusted later on to get the best fits possible. Note that the Horava-
Lifshitz model might not give better fits in a statistically significant way. Both models use a
classical approach to fit the expectation value of the spatial 2-simplices, and a semi-classical
approach to model the spectrum of fluctuations. The expression for the spatial 2-volume, Vj, is
obtained by solving the equations of motion from the action. In order to get the expression for
the fluctuations in the volume, perturbation theory has been applied on the action around the

classical solution,



V(i) — Vo(t)+6V(2) (8)
S = So+S1+S52+..., (9)

where Vj is the solution to the equation of motion found for the 2-volume. Sy is simply the
action with Vj filled in. In both cases the first order perturbation S; will become zero. This
happens because the expression of the 2-volume satisfies the equation of motion. The equation
of motion is obtained by partial integration,

5S[V, V] 5S[V, V] ~
Ve Vma V(t)+/dt ST vo,v05 V(t)

5S 0 S
_ /dt(w(t)—atw(w)(w(t):o. (10)

The second order perturbation however, S, will be the first non-trivial, non-zero term;

S1[Vo, Vo] = /dt

Sa[Vo, Vo, Vo] = %//dt dt' (m . SV (t) SV (¢)
N / / " ‘gv@f) - SV (t) SV (#)
+ %// dt dt’ m - SV (t) SV (1)
+ // t/ ‘;V‘EL) - SV (t) V(1) (11)

In both models we start off with the general, diagonal, three-dimensional metric

ogie 0 0
gop=1 0 a*(t) 0 . (12)
0 0 a?(t)sin*(0)

Here o is plus or minus one, depending on respectively Euclidean or Lorentzian signature, g
is the time-time component of this metric, which is a positive constant, and a?(t) is called
the scale factor, depending on time. This rather general metric is the so-called minisuperspace
approximation for the action used later on in equation 13. The goal is to find an expression for the
two-dimensional volume of this ‘universe’ depending on time. This volume can be calculated out
of the scale factor, which intuitively can be seen as a radius in the minisuperspace model. This
specific minisuperspace is a 2-sphere at each time, and has been chosen because we only measure
the volume as a function of time from CDT simulations, ignoring all of the other geometrical
information. This scale factor has been found for the Einstein-Hilbert action in section 2.1 and
the Hotava-Lifshitz action in section 2.2.



2.1 Einstein-Hilbert gravity

The Einstin-Hilbert action is our starting point,

1
Sesy-pi = 1grg [ dt 5 NVG (R 24 (13)

Of course, A is the cosmological constant. N is called the lapse rate, which is the square root of
it~ g represents the determinant of the spatial metric, so /g = a?(t)sinf. The factor R is the
Ricci scalar of the three dimensional metric. The Ricci scalar represents the curvature in each
point in spacetime[9], and is given by

R=g¢g""R,,, (14)
where the Ricci tensor is
R =R, = 0,17, — 0,19, +T§,I', —T5,I',. (15)
T" is called the Christoffel symbol and is given by
1
= 5975 (0a9ps + 03950 — 059ap) - (16)

This Christoffel symbol has nine non-zero terms for the metric of equation 12, namely

aa
Y, = —— I'}, = —sinfcosf
11 oy 22
aa
Iy, = ———sin?6 I3y =Ty =
22 oG 20 02
a cosf
Iy=I% =- rf, =13 =- . 17
10 0= 12 21 s 0 (17)
Now, the Ricci scalar can be calculated in terms of the scale factor:
2 242 4
R=—- - _ 2 (18)
a?  ogwa®  ogupa

After the lapse rate, the square root of g and the Ricci scalar are filled into the Einstein-Hilbert
action, one can integrate over the two-volume to get an extra factor of 47 due to the sine, making

the action look like
S(2+1)7EH = gt /dt (1 + — Aa2> . (19)

Ogtt

The action is an integral over the Lagrangian, which gives the equation of motion. With

S:/Lﬁ (20)

d (0L OL
t<%)=%, (21)

one can find the following differential equation:

and the equation of motion

10



i+ ogyla = 0. (22)
A solution to this equation is given by[6, 10, 11, 12]

a(t) = lgs cos <\/"T” t) , (23)

lds

where [gs is the de Sitter length, with [ = 1/\/K The spatial 2-volume of the de Sitter
spacetime can be calculated out of the scale factor. As seen before, the scale factor is analogous
to a radius. This means that the 2-volume can be found by integrating the scale factor over the
entire volume of a time slice,

Va(t) = /d@dgb Vg = /d&dqﬁ sin(0) a*(t) = 4ma®(t). (24)

If this expression is filled in for the scale factor, one gets

t
Va(t) = 4712, cos? (Vol'g“> . (25)

ds

This classical expression represents the birth and death of the de Sitter universe. When the metric
holds an Euclidian signature (meaning o = +1), the timelength in which this universe lives is
only physically meaningful for ¢ € [~7laqs/2\/Gst; Tlas/2+/9ee]. With the Lorentzian signature
(o0 = —1), the ranges are much broader, namely ¢t € [—o0; c0].

In the CDT simulation, fluctuations in the 2-volume have been observed. This is why we look
for them in our classical theories. These quantum fluctuations can be made visible in the semi-
classical approach, where a slight perturbation is applied to the spatial 2-volume[14, 15]. So,
equation 19 can be rewritten in terms of the 2-volume according to equation 24, so

: v 9tt V2
Se+ny-ealV,V] = 39 dt (1677 + ooV — 4AV> . (26)

Now one can apply the perturbation according to equation 11, which gives

) . .
o o - 1 12 Vo 12 Vo las Vo O 02

So[Vo, Vo, Vol = so—— [ dE OV — | —L2 5 4 42 2 = — = | OV 27

2[Vo, Vo, V] 327rGlds/ Vo < gue Vg " git Vo i Vo Vo 0t O 0

with £ = , /it t/las. In this action the 2-volume can be filled in, ending with the expression

G2 -EH —mfdf&Vseczf(Qse@f—i—?tanfa%—|—g;)év o=+1 (28)
_ 28
2 ~ ~ ~ ~ 2
WG@,S Jdt 8V sech?i (—QSeChzt — 2tanhta%~ + %) % oc=-1

In section 3 this expression is rewritten into a discrete form and used to numerically fit the CDT
obtained data.

11



2.2 Horava-Lifshitz gravity

In the Horava-Lifshitz model the same steps are taken as in the Einstein-Hilbert model in order
to obtain a better fit to the data. The only real difference is the ansatz, where not the Einstein-
Hilbert action, but the Hofava-Lifshitz action is used[11, 12, 13],

1 y
Se+1)-HL = e /dt &*z N\/g {c(AK3 — K;;K”) —2A + bRy — yR3} . (29)

We use the same metric in this action as before in equation 12, so that the lapse rate and the
square root of g are the same. Furthermore, one can spot the three different parameters A, b
and v, which can be fine-tuned later on to get the best fit possible. However, for A;b = 1 and
v = 0, the Hotava-Lifshitz action reduces to the Einstein-Hilbert action, meaning that it is a
generalisation of the Einstein-Hilbert case. The Ricci scalar Ry in this case is the Ricci scalar
over the spatial coordinates only. K;; is called the extrinsic curvature, which states how much
a spatial slice is curved within the whole spacetime. Ky is the trace of the spatial tensor Kjj,
meaning K> = ¢ K;;. K;; is defined by

K;; = e Vang, 30
J (2] B

with e = 92%/0z° and Vong = Oang — I} 5m4-[9] The Christoffel symbol is already calculated
in equation 17. The vector ng is the normal vector on each time slice. This means that ng itself
is a timelike vector. Since it also is a unit normal vector,

\/ngnﬁ = \/ga,@n“nﬁ =-1 — ng=(/9:,0,0). (31)

Now the extrinsic curvature can be calculated in terms of the scale factor;

. 2 42

KK = (32)
gt Q
4 a?

K* = =% (33)
gt Q

The Ricci scalar is calculated analogously to equation 14, only now for the spatial metric,

i) _ 2

Ry = g’ R = (34)

After filling in the expressions in equations 32, 33 and 34 into the action in equation 29 and
integrating over all spatial coordinates, one is left with

vgtt/ {0(2/\_1)-2 2 27}
S _ = dt{ ——24° —ANa”+b— —
(2+1)—HL 5C ”

1

22 9 S
= M/dt{a —w’a +b/(12}’ (35)

where

12



2 _ 4 gul
22 —1
52917
220 —1
gitb
b=
Toa—1
2 \/ gt G
= . 36
on—1 (36)
Now the equations of motion can be determined again, see equations 20 and 21, for equation 35
to get the following differential equation:

. £
a—|—w2a—520. (37)
The solution to this equation is
1
a(t) = o V(W2A% =€) cos?(wt + ) + £. (38)

Here A and ¢ stand for integration constants.[11] When the limit of Einstein-Hilbert gravity
is taken? A needs to be set to the de Sitter length l4,. ¢ is just a choice of the origin for the
time coordinate, which is set to zero. If done so, the scale factor in the Einstein-Hilbert case of
equation 23 emerges.

Now equation 24 is used to rewrite the scale factor in terms of the spatial 2-volume, so

Va(t) = 2A2 {(w ZA* — €) cos® (wt + 1) +&}. (39)

Again, according to equation 24, the action in equation 35 can be rewritten in terms of the
spatial 2-volume to get

1 1 V2 ooW? 1

Now a perturbation is added where, again, the first order will be zero because this expression is
also proportional to the equation of motion. The second order perturbation can be calculated
according to equation 11, so

1 - 1 7 0 0?
So[Vo, Vo, Vo] = m/dt (SVW ( 0 4V — 64n2 ,5* +wVy— — w?V
0

ov. (41
W o1 a2> @)

Since the 2-volume is now a known expression, it can be filled in to equation 41 to get

342 - 1 y
S§2+1)*HL - _ %/dt OV ——— (W4A8 _52) cos” ¢
6472k (Q cothJrf)
b (@A e+ Qcostsin (Qcos’ E46) o
82
+ ( 0% cos® T+ £Qcos” T+ f) }5‘/' 42)

2Meaning, if \,b =1 and v = 0.

13



In this last expression Q = w?A* — ¢ and ¢ = /GGy t/V/2) — 1 lgs. A simple check can be
performed to see if equation 42 has the right Einstein-Hilbert limit in equation 28, again with
A,b=1 and v = 0 filled in.

14



2.3 Discretisation of the models

Since the CDT simulations are done for a discrete path integral, the formulas from equations
25, 28, 39 and 42 need to be rewritten in a discrete form. Since the Einstein-Hilbert case is a
simplification of the Hotava-Lifshitz case, only the calculation of the discrete analogue of the
spatial 2-volume and the integrand of the second order perturbation of the action in the Horava-
Lifshitz case are needed. Then, the limit of A = b =1 and v = 0 can be taken again to obtain
the Einstein-Hilbert variant.

2.3.1 The number of spatial 2-simplices

In equation 39 the Hotava-Lifshitz spatial 2-volume

Va(t) = g { (A" — €) cos’(wi + ) + £}

was found. A discrete analogue to this continuous expression, called the number of spatial
2-simplices, has been derived out of this equation. The data obtained from simulations are
organized in such a way that ¢» = 0. Now equation 39 can be rewritten as

(e
47TA2{( a) cos? <\/97t> } (43)

with w? = g4 /12,(2A — 1) = g44/1> and a = 27/A*A. Note that the condition o = 41 has been
taken into account here, so that we are looking at de Sitter space with Euclidean signature. We
now constrain the spacetime volume to the value V3, because the simulations are done at fixed
number of 3-simplices. The total spacetime 3-volume can be given by integrating the spatial
2-volume over time

Va(t)

Vs

\/gt/ dt Va(t

—|—A4 2
- 4”\/%< (§2A2w3w D (- W))

w

4 A* ( 25( +1)+aly/gu T — 7rl)> (44)

where 7 is the finite time extent of the continuous time coordinate and a our newly defined
parameter.[6] Now the expressions for the spatial 2-volume (43) and the spacetime 3-volume (44)

are combined to
1 N’
{(1 — a) cos? ( gt ) + a} . (45)
a(ivg’l‘fT—ﬁ)—i—%(l—i—a) l

The total volume V3 can be linked to the discrete total volume of all of the tetrahedra used in
each simulation in units of the lattice spacing, according to

‘/2:

|5

— C3a3Ns. (46)

15



In this condition a stands for the lattice spacing of the tetrahedra used to build this triangulation,
and Cj is the discrete spacetime 3-volume of such tetrahedra.[6] In general, the continuum time

coordinate t scales with V;l/ s, Analogously we expect the discrete time coordinate 7 to scale
. -1/3 . .
with N5 77, making the expression

v\ V2
dt ( N3> T, (47)

where A7, the discrete time steps, is taken to be 1. As seen before in (44), the total volume V3
is the integral over the spatial 2-volume V5 with respect to time. Similarly, the total number of
spacetime 3-simplices N3 can be seen as the summation over all time slices of the total number
spatial 2-simplices No. This means that equation 47 gives

1 a1
Vau Va(O)V5' (1) = 2 (L +€) O a° Ny (1) N3E (7). (48)
Here £ stands for the proportion
g
Nél,S) +N§3,1)'

Now we can plug equations 46 and 47 back in to equation 48 to make

(49)

o Ny Vi
NS = VIt Vs 50
T R (%0)

Here V5 can be filled in from equation 45 to get the discrete number of spatial 2-simplices in the
Horava-Lifshitz case,

3,1
Né ) 1 9 T

1/3 aT (1 —
S0 (N§3’1)> so(N§3>1>)1/3 +5(1—a)

HL _
Ny' & =

with the parameter

1 V9t vy

S0 125(14¢)3
Now we can take the Einstein-Hilbert limit with A = b = 1 and v = 0, in this case meaning
a =0, to get

3,1
NEH 2 N:E : 2 T

COS
1/3 1/3
"o (D) so (N§*V)

The expressions 51 and 53 are compared to data from CDT simulations. As stated before, each
dataset is made with different values for 3-simplices N3 and number of time slices T". This means
that for each dataset the two free parameters sy and a can be chosen to give the best fit in
the Horava-Lifshitz case. All other parameters have disappeared from the calculation. In the
Einstein-Hilbert case only the parameter sy remains.

(53)

16



2.3.2 The integrand of the second order perturbation

Equation 42 states the expression for the action of Hofava-Lifshitz gravity perturbed to second
order. There is an constant in front of equation 42 for which we can determine its numerical
value by fitting the model to < n5L(7) n5¥(7') > from equation 6, but for our purposes we
do not care about the value of this constant. Taking this last remark into consideration, the
integrand of equation 42 with the perturbation JV removed from both sides looks like

1

-~ 3 (1—a2)00525+a+a2
(1 —a)cos?t+a)

+ (1fa)cosfsinf((lfa)cos2t~+a)(%
+ 1(1— )2 cos*t + a(l — )COS2E—|—} 2) & (54)
5 a a a 5% ) 5 |

where ¢ = /g; t/vV2X—1 lgs and the free parameter a = 2v1%/A*. Again note that this
integrand has been taken for the Euclidean signature, so 0 = +1. This expression can be seen
as a differential operator in front of the perturbation §V. What we use to model the data of
< n5t(r) nsL(r") > with, is < §V(¢) §V () >. This expectation value is per definition the
integral

<OV(E) SV(E) > = [ DIV SV 0V ()Y, (55)

where the action S[0V] is the action as defined in equation 28 for the Einstein-Hilbert case, and
equation 42 for the Horava-Lifshitz case. The state Z is

Z = / DoV eSOVl (56)

so that the expectation value normalises. The outcome for the integral of this expectation value
is proporional to the inverse of the differential operator seen in equation 54. Now we can apply
the same condition as in equation 47 to get the discretisation of equation 54:

2(1+a) 3.1\ /3 L 9 - 2 A
— 250 [ N3~ 1—a)cos7sinT ((1 —a)cos“T+a —
((1 —a)cos?7+ a)2 0 ( 8 ) ( ) (( ) ) AT

2/3 _1 AZ?
82 (Nés’l)) (1 —a)cos® 7 + a) t=

AT2 (57)

; 1/3
where T = 7/sg (Néd’l)) and A/Ar a discrete derivative. In the Einstein-Hilbert limit, a = 0,
it looks like
1/3 A 2/3 A2
—2sec? 7 — 25 (N?E?”l)) tan7 sec? %A— — 52 (N§3’1)> sec? F-——. (58)
T T

These last two equations, 57 and 58 can be seen as a differential operator in between of the fluc-
tuations 0. These operators have eigenvectors and corresponding eigenvalues. The eigenvectors
and -values are used to derive the spectrum of fluctuations.

17



3 Data analysis

Now that the plotting formulas have been calculated, the fits can be made. For this section, the
program Mathematica has been used. In every simulation the data points have been fit according
to the parameter sg in the Einstein-Hilbert case, and parameters sg and a in Hotava-Lifshitz
gravity. In order to see how good of a fit each simulation is, the ‘chi-squared’ value per degree
of freedom has been calculated. The closer this number is to zero, the better the fit. These X?)df
values have been calculated for three cases: the spatial 2-volume, the fluctuations and for a so
called ‘combined’ fit. For the spatial 2-volume the optimal values of sy and a correspond to the
lowest x4 value. Its value is calculated according to

T-1
data — fit)?
Cu = 3 e fy £
t=2

error in data)2’

X2

T — #fitparameters’

X;z%df vol (60)
with T the number of data points being fit. For ¢t = 1, T the data sets have specific fixed values,
which means that de error is zero. Because of this reason, those data points have been held out
of the calculation of the Xf)df values. Also note that the higher the number of variables used in
each fitting function, the higher the X?)df value gets. This means that the Horava-Lifshitz case,
which has one extra parameter, does not always has to give statistically better fits.

In the fit for the fluctuations the same values of sy and a have been taken as for the fit to the
spatial 2-volume. In order to calculate its szdf value, the right fitting model needs to be made.
This is the so-called inverse covariance matrix (ICM), and is build up out of the eigenvectors
(Vi) and eigenvalues (\;) of the operators in equations 57 and 58,

T
1
IOM =3 ViV, (61)
t=1 "t

where V,T is the transponent of eigenvector number ¢. The X;Q)df value is now calculated according
to

T-1 t 2
9 (data — p ICM)
X flue pos ; (error in data)? ’ (62)
2
X
Xpdf fluc (63)

T — #fitparameters’

Note that only half of the fit values of the matrices are being taken into consideration. This is
so because the matrices are mirror symmetric. Also note the extra free parameter p. In section
2.3.2 it was explained that the constant factor in from of equation 42 has been left out of the
expression. The reason for this is that the free parameter p can be chosen to give the best fit
possible anyway, making the a priory unknown constant redundant.

In the combined fit the parameter values have been chosen to give a lowest possible value for the
summation of X;Q;df vol a0d the Xde Fluer SO

X;rz)df,total = X;idf,vol [57 a} + X]z)df,fluc [57 a, P]- (64)
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Out of various datasets two distinguished cases have been analysed, the case where the number of
time slices per simulation increases while the number of 3-simplices used have been kept constant,
and the case where the number of 3-simplices increases while the number of time slices have been
kept constant.
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3.1 Changing the number of time slices at fixed number of 3-simplices

In this section fits have been made to datasets with the number of time slices T' = 13,17, 21,25
at the number of 3-simplices used N3 = 30850. This means that four cases have been simulated.
In each simulation approximately 10° universes were generated and averaged for the spatial 2-
volume and corresponding fluctuations. All cases have the same amount of space-time 3-volume.
All simulations have been done at bare coupling constant kg = 1 (see equation 4).

3.1.1 Fit of the spatial 2-volume

For these fits of the number of spatial 2-simplices against a discrete number of time slices, with
the Einstein-Hilbert 2-volume as classical limit, equation 53 has been used.
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Figure 6: The blue line is the fit done for 7' = 13 time slices, the red line has T' = 17, the yellow
fit uses T' = 21 time slices and the green fit has T' = 25 time slices. The horizontal axes state
the number of time slices, while the vertical axes represents the number of spacial 2-simplices on
that time slice. The area under the curve represents the number of spacetime 3-simplices used,
which is constant in all four cases.

For the next graphs equation 51 of the volume in the Horava-Lifshitz case has been used. The
datapoints fit are the same as in figure 6.
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Figure 7: These fits contain the same datapoints as in figure 6, only here the Hotava-Lifshitz
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case from equation 51 has been used. Again T = 13,17, 21, 25 respectively.

To see which fits are better, the X?)df values have been calculated and stated in table 1.

T 50 EH X,Q,df EH S0 HL agL X?ydf 0L
13 | 0.190416 | 98.1280 | 0.198168 | -0.041616 | 3.01075
17 | 0.251378 | 64.9558 | 0.259040 | -0.026975 | 2.19027
21 | 0.310805 | 38.7624 | 0.317400 | -0.016409 | 7.48319
25 | 0.366519 | 7.73903 | 0.366203 0.000545 | 7.67937

Table 1: This is the table concerning the graphs in figures 6 and 7. Seen here is the number of
time slices used, the best fit parameter values sg and a in the Einstein-Hilbert and the Horava-
Lifshitz cases and the X?gdf values of all fits.

A plot has been made of these X127 4 Values in table 1 against the number of time slices, see figure

8.
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Figure 8: A plot of the ijdf values of the 2-volume against the number of time slices. The blue
line represents the Einstein-Hilbert case, while the red line shows the Hofrava-Lifshitz case.

It is seen that for the 2-volume, the Hotava-Lifshitz case in general clearly has better fits to
the CDT data than the Einstein-Hilbert case for T' < 25. For T' = 25 time slices however, the
difference in the X;Q)df value is too small to make the same conclusion.

3.1.2 Fit of the fluctuations

To fit the eigenvectors of the fluctuations, the eigenvectors of equation 58 for the Einstein-Hilbert
case and equation 57 for the Hotava-Lifshitz case have been calculated. In the next few graphs the
red eigenvectors are the CDT-obtained datapoints, and the blue eigenvectors are the calculated

Einstein-Hilbert and Hofava-Lifshitz vectors. Only the first six eigenvectors of each simulation
have been shown.
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Figure 9: The first six eigenvectors of 7' = 13 in the Einstein-Hilbert case for the data and fit.
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Figure 10: The first six eigenvectors of T'= 17 in the Einstein-Hilbert case for the data and fit.
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Figure 11: The first six eigenvectors of 7' = 21 in the Einstein-Hilbert case for the data and fit.
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Figure 12: The first six eigenvectors of 7' = 25 in the Einstein-Hilbert case for the data and fit.
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Figure 13: The first six eigenvectors of T'= 13 in the Einstein-Hilbert case for the data and fit.
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Figure 15: The first six eigenvectors of 7' = 21 in the Einstein-Hilbert case for the data and fit.
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Figure 16: The first six eigenvectors of T'= 25 in the Einstein-Hilbert case for the data and fit.

The parameter values are taken to be the same as in table 1. Those, and ijdf values, are given
in table 2. The X?,df values here are calculated with respect to all the available eigenvectors for
that number of time slices?, and not just the first six.

T 50 BH | Xogf mH 50 HL anr | Xpar wr
13 | 0.190416 | 15.1191 | 0.198168 | -0.041616 | 419.615
17 | 0.251378 38.327 | 0.259040 | -0.026975 | 579.281
21 | 0.310805 | 193.079 | 0.317400 | -0.016409 | 990.735
25 | 0.366519 | 626.571 | 0.366203 | 0.000545 | 576.719

Table 2: This is the table concerning the graphs in figures 9 until 16. Seen here is the number of
time slices used, the parameter values sg and a in the Einstein-Hilbert and the Horava-Lifshitz
case and the ngjdf values of all fits.

The results in table 2 have also been plotted in figure 17.

3For T' = 13 time slices for example, there were 13 eigenvectors. In every simulation however, three eigenvectors
did not fit the boundary conditions that they started and ended in zero, and that the total spacetime volume
was zero as well. These eigenvectors have been taken out of the calculation of Xidf' So for T" = 13, only 10
eigenvectors were taken into consideration. For T' = 17, there were 14, for T' = 21 there were 18 and for T' = 25
there were 22.
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Figure 17: A plot of the ngf values against the number of time slices of the fluctuations. Again,
the blue line represents the Einstein-Hilbert case, and the red line shows the Hotava-Lifshitz
case.

In the 2-volume an obviously lower Xf)df value in the Hofava-Lifshitz case has been found. The
same can not be said for the fluctuations. Here the Horava-Lifshitz case is way higher than the
Einstein-Hilbert case for T < 25. For T' = 25 it is seen that the Hofava-Lifshitz case is indeed
a bit smaller, as we would have expected. The reason the Hotava-Lifshitz X?gdf value is so much
higher is due to the parameter values of sy and a for which the fit has been done, since these were
taken to be the same as in the spatial 2-volume case. Small changes is those parameter values
could create large differences in the ijdf values. To see if this statement is true, the combined
fit has been done.

3.1.3 Combined fit

In the combined fit the parameter values of sy and a were chosen in such a way that the summation
of the X2, values of the 2-volume and the fluctuations are the lowest. In table 3 the found
xf, df totar Values are shown.

T 50 BH | Xoar mH S0 HL anr | Xoa mr
13 | 0.190407 | 105.066 | 0.194456 | -0.021327 | 51.4802
17 | 0.251428 | 99.1745 | 0.255640 | -0.015035 | 70.7158
21 | 0.311241 | 228.171 | 0.314792 | -0.009801 | 167.531
25 | 0.360912 | 393.709 | 0.362293 | 0.005244 | 217.476

Table 3: The parameter values and X?}df values against the number of time slices used per
simulation.

Also for these def values a plot has been made, seen in figure 18.
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Figure 18: The combined ng qp values plotted against the number of time slices. Again, the blue
line represents the Einstein-Hilbert case, and the red line shows the Horava-Lifshitz case.

This graph shows a lower ngf value in the Horava-Lifshitz case in every point. This means that,
in general, Hofava-Lifshitz gravity gives better fits to CDT obtained data of the spatial 2-volume
and the fluctuations in that volume for a rising number of time slices. It also means that the
optimal parameter values for sy and a in the spatial 2-volume are not the optimal parameter
values for the fluctuations. A plot has been made for the parameter value a in the Hotava-Lifshitz
case against the number of time slices, see figure 19
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Figure 19: A plot of the parameter value a in the Horava-Lifshitz case against the number of
time slices. The red line represents the values of a for the fit of the 2-volume, while the blue line
states the values of a for the combined fits.

It is seen in figure 19 that the parameter value indeed changes significantly for the different fits.
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3.2 Changing the number of 3-simplices at fixed number of time slices

In this section fits have been made to datasets with a constant number of time slices 7' = 25 at
different numbers of 3-simplices used N3 = 30851; 65587; 102452. This means that three cases
have been simulated. All have the same amount of time before they die, but the space-time
3-volume increases per simulation. This implies that the growth in the space-time 3-volume is
found in the spatial 2-volume per time slice alone. Again, all simulations have been done at bare
coupling constant kg = 1.

3.2.1 Fit of the spatial 2-volume

Again, equation 53 has been used in order to make the fit to the number of spatial 2-simplices
in the Einstein-Hilbert case, see figure 20.
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Figure 20: In this figure all three plots represent a universe being born and dying off with
T = 25 time slices in the Einstein-Hilbert case. The blue fit has a number of 3-simplices used of
N3 = 30851, the red fit uses N3 = 65587 and the yellow fit is made for N3 = 102452.

The fits to the data points in figure 20 have also been done in the Hofava-Lifshitz case. Here,
equation 51 has been used in order to obtain the graphs in figure 21.
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Figure 21: In this figure the universes are fit for the Hofava-Lifshitz case. Again, T' = 25, and

the blue fit has a number of 3-simplices used of N3 = 30851, the red fit uses N3 = 65587 and the
yellow fit is made for N3 = 102452.

For these six graphs the X;%df values are listed in table 4.

N3 S0 EH X?;df EH S0 HL GHL X?gdf HL
30851 0.366519 | 7.73903 | 0.366203 0.000544 | 7.67937
65587 0.290071 | 147.504 | 0.298586 | -0.021390 | 32.6985
102452 | 0.250851 | 310.889 | 0.260465 | -0.028605 | 19.1124

Table 4: This table states the parameter values of sg and a, and the X?)df values for the spatial
2-volume in the Einstein-Hilbert and Hotava-Lifshitz cases for increasing 3-simplices.

These Xidf values have been plotted as a function of 3-simplices in figure 22.
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Figure 22: Seen here is the xf,df value of the spatial 2-volume against an increasing number of
3-simplices used per simulation.

Whereas the difference in ij a4 Of the volume between the Einstein-Hilbert and Horava-Lifshitz
cases grows smaller for an increasing number of time slices (figure 8), it only increases for an
increasing number of 3-simplices. The xidf value for the spatial 2-volume grows linear for the
Einstein-Hilbert case, yet in the Hotava-Lifshitz case it stays roughly constant.

3.2.2 Fit of the fluctuations

In order to fit the eigenvectors of the fluctuations, again equations 58 for the Einstein-Hilbert
case and 57 for the Hotava-Lifshitz case have been taken into consideration. As before, the
parameter values of sy and a have been taken to be the same as in the fit to the volume. In
figures 23 through 28 the red eigenvectors show the CDT obtained data points, and the blue
eigenvectors are from the Einstein-Hilbert and Horava-Lifshitz cases.
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Figure 23: The first six eigenvectors of N3 = 30851 in the Einstein-Hilbert case for data and fit.
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six eigenvectors of N3 = 30851 in the Horava-Lifshitz case for data and fit.
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Figure 27: The first six eigenvectors of N3 = 65587 in the Hotava-Lifshitz case for data and fit.
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Figure 28: The first six eigenvectors of N3 = 102452 in the Hotava-Lifshitz case for data and fit.

All three simulations* have 25 eigenvectors, since the number of time slices used is T' = 25.
Again, three eigenvectors were considered non-physical and were taken out of the calculation.
For the remaining 22 eigenvectors the ngf values per simulation are listed in table 5.

N3 50 EH X?)df EH S0 HL aHL Xf)df HL
30851 0.366519 | 626.571 | 0.366203 | 0.000544 | 576.719
65587 0.290071 | 451.612 | 0.298586 | -0.021390 | 2077.18
102452 | 0.250851 115.807 | 0.260465 | -0.028605 | 1523.60

Table 5: This table states the parameter values of sy and a, and the x? daf values in the Einstein-
Hilbert and Hofava-Lifshitz cases for increasing 3-simplices for the eigenvectors of the fluctua-

tions.

In figure 29 the resulting X;Q;df values are plotted as a function of the number of 3-simplices.

4N3 = 30851; 65587; 102452
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Figure 29: A plot of the X;Q;df values against the number of 3-simplices for the eigenvectors of
the fluctuations. The blue line represents the Einstein-Hilbert case and the red line shows the
Horava-Lifshitz case.

Noticeable is the peak in the X?;df values of the Hofava-Lifshitz curve of xﬁdf g = 2077.18.
This value is too high to state anything meaningful. In section 3.2.3 another fit is done where
the parameter values of sy and a have been chosen to be optimal for the summation of the Xfydf
values of the 2-volume and the fluctuations, instead of just for the 2-volume alone.

3.2.3 Combined fit

In table 6 the outcome of the optimal parameter values in the combined fit, along with the X?)df
values have been listed.

N3 S0 EH X?)df EH S0 HL aHL X;Z)df HL
30851 0.360912 | 393.709 | 0.362293 | 0.005244 | 217.476
65587 0.290592 | 587.964 | 0.286606 | 0.007310 | 380.334
102452 | 0.250978 | 413.097 | 0.254721 | -0.011189 | 267.479

Table 6: This table represents the parameter values optimal in the combined fit and the accom-
panied X;%df values.

These outcomes have been plotted in figure 30 a function of the number of 3-simplices.
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Figure 30: The plot of the combined X;%df values against the number of 3-simplices used. The
blue line represents the Einstein-Hilbert case and the red line shows the Hotava-Lifshitz case.

Visible is that the Hotava-Lifshitz case has an overall better fit to the data than the Einstein-
Hilbert case, which is in agreement with the findings of section 3.1.3. Again, the optimal values
of the free parameter a for the fit of the spatial 2-volume and for the combined fit in the Hotava-
Lifshitz case are seen below in figure 31.
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Figure 31: A plot of the parameter value a in the Horava-Lifshitz case against the number of
3-simplices used per simulation. The red line represents the values of a for the fit of the 2-volume,
while the blue line states the values of a for the combined fits.

In general the parameter values for a for the fit of the spatial 2-volume lie lower than the values
for the combined fit.
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4 Conclusions

The models created in sections 2.1 and 2.2 are both shown to be able to fit the simulations done
in CDT. Initially, it was expected that Horava-Lifshitz gravity would have a better fit to the
data than Einstein-Hilbert gravity, since it is a generalisation of the latter one. This is seen in
the fact that the Hotava-Lifshitz case had three extra free parameters to begin with, namely A,
b and +, as seen in equation 29. These parameters could be chosen in such a way the Einstein-
Hilbert case would show up again. However, two of these parameters fell out of the equation,
leaving only the extra parameter a, which was dependent on «y. The parameter sg on the other
hand was dependent on /g ° in the Einstein-Hilbert case, and dependent on /¢t and A in the
Horava-Lifshitz case. With these two new parameters, equations 51, 53, 57 and 58 were found
and used to describe the CDT data in section 3.

The def in the number of spatial 2-simplices used per simulation shows a decreasing differ-
ence between the Einstein-Hilbert case and the Horava-Lifshitz case for increasing time slices,
and an increasing difference for increasing number of 3-simplices used. This means that, in case
of the number of 2-simplices used per simulation, the Hofava-Lifshitz case only has significant
better fits for data with a small number of time slices, while the number of 3-simplices used is
respectively high. For data with many time slices and few 3-simplices, the difference between the
Hotava-Lifshitz case and the Einstein-Hilbert case falls off. This means that while calculating
these cases, the Einstein-Hilbert case gives approximately the same results as the Hotava-Lifshitz
case.

In order to state anything about the X?)df values of the fluctuations, one has to look at the
combined fits. The fits for the fluctuations alone are done with the parameter values for sq and
a of the number of spatial 2-simplices. For the fluctuations this means that one looks at fits
that are most likely not optimal. Since the dependence of xidf of the fluctuations with varying
parameter values is unknown, these fits could be far off.

The combined fits show an overall increase in Xf,df with increasing number of time slices. The
difference between the Einstein-Hilbert case and the Hotava-Lifshitz case shows an overall in-
crease for T > 21, whereas for T' < 21 the difference is kept relatively constant. Since the fits
for the spatial number of 2-simplices used starts for Xf)deH = 98.1280 and X;%deL = 3.01075 at
T = 13, and the combined fits start at X7 = 105.066 and X7z, = 51.4802, one can assume
that for the fluctuations at a smaller number of time slices the Einstein-Hilbert case has a lower
X;def value, and thus a better fit to the data. Though, the higher the number of time slices used,
the lower the difference in the ngf values gets, and for T" > 21 again the Hofava-Lifshitz case
takes over to be the better fit to the CDT data.

At increasing numbers of 3-simplices used with a constant number of time slices T' = 25, the exact
opposite is found. For the fit of the spatial 2-simplices, the difference in xf, q values only grows for
increasing numbers of 3-simplices. Since the combined fit has a constant difference in def values,
the Einstein-Hilbert case will have lower X, values at a high number of 3-simplices. This means
that for a small number of time slices, and a high number of 3-simplices, the Einstein-Hilbert
case will have a better fit to CDT data of fluctuations than the Hotfava-Lifshitz case. This is
opposite to what has been found for the number of spatial 2-simplices, where the Hotava-Lifshitz
case has a better fit for a low amount of time slices and a high number of 3-simplices. When

50ut of the initial metric in expression 12.

35



both the number of spatial 2-simplices and the fluctuations are looked at simultaneously, the
Horava-Lifshitz case will produce better fits within the boundaries used in this thesis.
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