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Abstract

In 1964 a famous paper appeared by John Bell[1] which answers the paradox
proposed by Einstein Podolsky and Rosen[2] concerning the incompleteness of
quantum mechanics and says: no theory of local hidden variables is compatible with
the results of quantum mechanics. He does so by deriving an inequality relating
the results of a two photon experiment. In this text we analyse all two photon
(polarisation) states and find a new Bell inequality. Additionally, we deduce that
for states with more than two particles, and restricting ourselves to an approach
similar to Bell’s, it is not possible to derive a Bell inequality.
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Preface

This text resulted from my research internship at the department of Theoretical
High Energy Physics under the supervision of Ronald Kleiss during the academic
year of 2016-2017. The internship is the concluding project for undergraduate
students in pursue of their bachelor degree.

To my disappointment, a major element in my undergraduate courses was ne-
glected: both my textbooks in quantum mechanics conclude with Bell’s theorem,
but it was not part of my curriculum. It gives an answer to the paradox proposed
by Einstein, Podolsky and Rosen concerning the indeterminacy of quantum me-
chanics. In particular, it rules out the existence of local hidden variables. The final
chapters of my textbooks, then, inspired the subject of this thesis and led me to
apply Bell’s method more extensively.

In the first part of this thesis (the Preliminaries and Chapter 1) we repeat some
fundamentals of quantum mechanics to eventually derive Bell’s theorem, as is
done in many introductory textbooks. I think most readers can omit these sections.
In the second part (Chapters 2 and 3), we fully analyse the two particle case of
Bell’s theorem where the last chapter explains why an inequality for a system of
more than two particles is impossible if we abide to a similar method John Bell
used in his theorem.

The research mainly took place in the form of conversations between my super-
visor and I facing his blackboard. While his explanations seemed completely clear
in that office, leaving its door made me doubt the arguments that I was strongly
convinced about moments before, and made me realise how hefty I have depended
on his guidance. I thank him for his guidance and appreciate his ”"Socratic” ways
of doing theoretical research.
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Preliminaries

As this thesis is aimed at undergraduate students, some familiarity with quantum
mechanics is assumed. To refresh the reader’s memory, we repeat several basic
concepts of quantum mechanics using the polarisation properties of light as illus-
trations. Most readers are recommended to omit this section and skip to Chapter
1.

Postulates of quantum mechanics and the polarisa-
tion of photons

Quantum mechanics can be formalised with a set of postulates. The postulates
presented below are mostly from the textbook Quantum Mechanics by B. Bransden
and C. Joachain [3]].

Postulate 1. To a physical system can be associated a state function!| which con-
tains all the information about the system.

Example 1. Suppose our physical system consists of a photon. Photons posses
two properties, one of which is polarisation. This property can be made evident
by holding an object called a polariser in front of a light source. We observe that
the photons from the source either passes or do not pass. We observe also that
changing the orientation of the polariser changes the probability that the photon
passes. Moreover, if we lay two polarisers onto each other and we ensure they are
oriented the same, we observe that if the photon passes the first polariser, it will
surely pass the second. Even if we stack many more polarisers and orient them
the same, the photon will continue to pass all polarisers whenever it passed the
first. We can then say that a photon that passes a polariser oriented at angle 6 is
in a definite state, which we denote by

10). e

1Only in certain cases this can be done. There exist mixed states for which the state function is
not completely known. We will not consider these however.
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Postulate 2. (the superposition principle) If |¢);) and |¢,) are possible state func-
tions of a physical system, then so is

c1 Y1) + ¢ |ta) (2)

Example 2. Let |0) := |v) be a photon in a state that surely passes a polariser
oriented vertically, and |7 /2) := |h) for a polariser oriented horizontally. Suppose
we have a system of two photons, one polarised vertically and one horizontally.
We denote this system as

1=v,2=h), or more compact as |vh) .
Then
1
V2

is also viable state by the superposition principle. Physically, the notation of
this state says: if someone observes photon 1 to pass a vertically oriented polariser;
then a second person with a polariser oriented horizontally will never get photon 2
to pass his. The state in equation [3|is called entangled; the two photons cannot be
described independently. A more rigorous definition of entanglement follows.

(loh) = [hv)) )

Definition 1. A multi-particle state is called entangled if it cannot be expressed as
a product of one-particle states.

Example 3. The two-particle state from equation (3| is entangled in the sense of
definition [11

Proof. Suppose not. Then

[vh) = [hv) = |d1) |¢2) (4)

for some one particle states |¢;) and |¢,). Since {|v), |h)}f provides a basis for
the polarisation state of a photon, we have

|61) = alv) +blh), and |62) = clv) +d|h)

for some complex constants a, b, c and d. Substitution gives

|p1) |p2) = ac|vv) + ad |vh) + be |hv) + bd |hh) . (5)

Then equation [4] implies ac = 0, bd = 0, ad = 1 and bc = —1. Since ad = 1 =
a# 0and bc = —1 = ¢ # 0, we have a contradiction with ac = 0. Thus equation
[4] does not hold after all. O

2This becomes clear in example 5.
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Postulate 3. To every dynamical variable is associated a linear operator, and the
only results of a measurement of the dynamical variable is one of the eigenvalues
of the linear operator associated to it.

Example 4. The passing (or not passing) of a photon through a polariser is ob-
servable, and thus has a linear operator associated to it. If we denote with A the
observable that equals 1 if a photon passed a polariser oriented at an angle 6 and
equals O if it didn’t, then A has the linear operator A given by

A=10) (0] (6)

associated to it.

Postulate 4. If a series of measurements of a dynamical variable A is made on a
system described by |¢), the expectation value of A is

(WA
=Ty

Example 5. Suppose we have a photon in the state |#) and a polariser A oriented
vertically. By experiment, we find that the probability that the photon passes the
polariser is (A) = 1(cos6)?. Additionally, we find this probability for a polariser B
oriented horizontally to be (B) = 2(sin@)?. Since a photon in the state |v) surely
passes polariser A, and a photon in the state |h) surely passes B, we conclude
(using postulate [4) that the state |¢) can be given byf]|

(7)

|6) = cosf |v) +sind |h) . (8

Since every polarisation state |f) can be written as a linear combination of the
states |v) and |h), they provide a basis.

3up to a possible complex phase



Chapter 1

Introduction

One of the key principles of quantum mechanics is its indeterminacy: When the
maximum amount of information about a system is known, it is still impossible to
predict all its characteristics. This distinguishes it from any classical theory. Ad-
mittedly, classical examples exist which are described statistically. The roll of dice
for example. This system is however indeterminate in a different sense. Although
very difficult, if we know all the positions and momenta of the dice’s particles,
the table it bounces on and the air in between, and so on, we can in principle
determine the outcome of the roll. The indeterminism of dice arises merely from
our lack of knowledge about the system. It is then reasonable that many found
the stronger notion of indeterminacy in quantum mechanics bothersome. This has
led to the presumption that quantum mechanics is incomplete. There should exist
some hidden variables, of which we are yet unaware, that do decide the outcome
of experiments with certainty. The indeterminacy of quantum mechanics is just a
mirage arising from our lack of knowledge of these hidden variables; seemingly
identically prepared systems yield different results because they are ascribed dif-
ferent hidden variables.

1.1 The Einstein Podolsky Rosen paradox

In 1935, Einstein, Podolsky and Rosen questioned the completeness of quantum
mechanics by considering a Gedankenexperiment of which I give a more didacti-
cally appropriate version['}

Suppose we are dealing with an atom that decays and emits two photons in the
state

that was first discussed by David Bohm
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1
V2

Suppose we let the photons fly away in opposite directions (at the speed of
light) until they are a certain distance apart-10 meters say, or if we like, 10 light
years. We then perform a measurement on the first photon by passing it through
a polariser oriented vertically. Suppose it passes. Then we immediately know
that a person measuring the second photon (which could be 10 light years away)
will get the state |h). We have now performed a measurement on the second
photon (which is many light years away) even though no information could have
reached it on time to inform it about the result of our measurement on photon 1.
As no information travels faster than light, this violates locality. Being bothered
by this, Einstein, Podolsky and Rosen advocated what seemed the only possible
explanation for this result: the state in equation[1.1]does not describe the photons’
polarisations fully, they must have had some set of instructions ascribed at their
creation, which tells them how to behave.

This experiment does not try to show that quantum mechanics is wrong, merely
that it is incomplete, and I think any reasonable physicist at the time would agree
with their argument.

|¥) (lvh) = |hv)). (1.1

1.2 Bell’s theorem

It took almost 30 years until in 1964 John Bell was able to respond to this para-
dox. With a clever argument he showed that any local hidden variable theory is
incompatible with the results of quantum mechanics. His argument is as follows:

Suppose we are dealing with the atom decaying and emitting two photons in
state flying off in opposite directions as before. Suppose we have the two
usual observers Alice and Bob each holding a polariser oriented at angles 6; and
0, respectively. Alice holds her polariser in the path of photon 1 and measures
whether it passes or not, writing down a 1 if it does, and a 0 if not. Bob does the
same with his polariser on photon 2. We call the result of one measurement for
Alice A and B for Bob. We also denote the product AB of the results. After some
iterations of the experiment, the results might look like this:

Alice |0 0 1 1 1 1 0
Bob|1 1 101 00
ABJ0 0 1 01 0 0

We then calculate the average of these products for Alice’s polariser oriented at
angle 6, and Bob’s at #, and call this C'(6;, 6,). It is easy to find this average for the
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state in equation [I.1} suppose that |§) represents a photon in a state that surely
passes a polariser oriented at angle 6. Let A and B be the operators associated to
the observable A and B. Because Alice will write down a 1 for a photon in the
state |0;), we have

A=1=6,)(1=0y. (1.2)

Likewise, for Bob we have

B=12=0,)(2=0,. (1.3)

Then the average of their products is just the expectation value (by postulate [4)

C(6,02) = (V| AB Jv). (1.4)
Note that since |#) = cosf |v) + sin 6 |h), then
Blo) = i(smeg L=v2=6) —cost1=h2=0:)). (L9
V2
Applying A gives

- 1
AB|v) = E(cosel sinfy |1 = 01,2 = 6y) — cosfysin |1 = 6,2 = 92>). (1.6)

Multiplying with |¢)) gives

A A 1
(V| AB|Y) = 7 (V| <COS6’1 sinfy |1 =601,2 = 03) — cosbysinby |1 =0;,2 = 92>>
1
=3 ((sin 0y cos 01)* + (sin 6 cos fy)?* — 2 cos 6 cos B sin 6, sin 6’2>
1.
=3 sin(f; — 6)%.

Bell discovered that this result is incompatible with any local hidden variable
theory, using a remarkable simple argument.

Assume that the complete state of the two photon system is described by some
hidden variable w. The variable w can vary for each pair of photons and is thus
distributed with some probability density. Assume also that Alice and Bob are
far enough apart to ensure that the outcome of the result at Bob is independent
of anything happening at Alice (this is the assumption of locality). Then there
exists a function A(¢,, w) which determines the result of Alice’s measurement and
a function B(f, w) which does the same for Bob, such that
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A(f;,w)=00or1 and B(#,w)=0orl. 1.7)

When both observers orient their polarisers the same (6; = 6,), there is a rela-
tion between the responses of the polarisers. If Alice’s (resp. Bob’s) photon passes,
Bob’s (resp. Alice’s) does not, i.e.:

A0, w) =1— B(0,w). (1.8)
Let p be the probability density by which w is distributed, then
/p(w)dw =1land p(w)> 0. (1.9

Then the average of the products is given by

C(64,0) = /dwp(w)A(@l,w)B(Hg,w)

(1.10)
= /dwp(w)A(ehw)(l - A(ezaw)>

We now compare the averages for three similar experiments, but each with
different orientations of the polarisers:

CJ./C(91, 92) + 50(93, 92) + ’70(91, 93) = /dwp(w) (OéA(Ql, W)(l — A(QQ, w))
+ BA(fs, w) (1 = A0, w) +7ABr, w)(1 — A0, w)) ),

where «, § and v are real constants. Since each A(f, w) is either 0 or 1, there is
only eight possible evaluations of the integral (denoted by [ in the table below).

They are
Let m = min{0, 5, + v,a + 8,7} and M = max{0,5,a + v, + 8,7}. Then
clearly

m S 040(91, 92) + 60(03, 02) + ’)/O(Ql, 03) S M. (111)
If we choose a = —1, 5 = 1 and v = 1, then m = 0. This implies that

0 < —C(6,65) + C(63,05) + C(6s,65) (1.12)

or

C(6:,05) < C(61,05) + C(65,05), (1.13)
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A(b,w) A0y, w) A3, w) I
0 0 0 0
0 0 1 o}
0 1 0 0
0 1 1 0
1 0 0 o+
1 0 1 a+p
1 1 0 vy
1 1 1 0
Table 1.1

which is called the Bell inequality. It is valid for all *values’ of w.
But it is easy to find orientations of the polarisers for which the inequality is
violated. For example, choose

s T
91 :0, 92:§ and 9326,
then
1 .« 3
0(61,92) = §SIH<§)2 = g (114)
and
1. my, 1
C(Gl, 03) = 0(03, 92) = = sm(—) = —. (115)
2 6 8
But the Bell inequality says
3 1 1
<y 1.1
8 — 8 * 8’ (1.16)

which is clearly false. Then, under the assumption of locality, which Einstein
Podolsky and Rosen advocated, the results of quantum mechanics are incompat-
able with hidden variables. All what was left to do is to test the above experiment.
Many were (and still are [4]) performed in the ’60’s and ’70’s, of which the exper-
iments from Aspect, Grangier and Roger [5] were most significant.

Finally I like to remark that in contrast to what is found in textbooks (such as
Griffiths and Bransden [3]]), the Bell inequality is seen to arise from the simple
case-by-case distinction of table 1.



Chapter 2

The two-particle system

I find it hard to believe that %(|vh> — |hv)) is the only state bearing the ability to
contradict the existence of hidden variables (as it has such grand implications for
physics). It seems too great of a burden for this single state. It is then natural to
ask: can we find other states which yield a Bell inequality similar to the original one?
In this chapter we analyse all two photon states with this property. We restrict
ourselves to a method similar to Bell’s']

To derive an inequality for other two photon states, note that Bell’s derivation
uses one important fact: there is a definite relation between the responses of
the polarisers A(f,w) = 1 — B(6,w), which holds for all angles. A rotation of
both polarisers with respect to the photon source does not affect this relation.
If we too like to use any relation between the responses of the polarisers in our
derivation of an equality, we must restrict ourselves to states with rotationally
invariant polarisations. We will use the spin properties of a photon to find these
states.

2.1 Spin and polarisation

Elementary particles, such as photons, carry an intrinsic angular momentum called
spin. It so happens that photons are spin 1 particles. This spin angular momentum
is due to a rotation of its electric and magnetic field. This is called the circular
polarisation of the photon. The polarisation has a direction in space and is thus a
vector S having components S,, S, and S,. The vector S is an observable thus has
a linear operator § associated to it by postulate

We can define the z-axis to be in the direction of propagation of the photon. It

IPerhaps, an approach different to Bell’s could contradict hidden variables as well. I wouldn’t
know, and am not considering this.
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is clear that if S points in the direction of propagation, then the polarisation of the
photon is symmetric with respect to rotations along this axis.
The vector S points in this direction if it is an eigenstate of S, (because we defined
the z-axis to be along the direction of propagation). Our job is then to find the
eigenstates of S.,.
The reader may be used to having 2s + 1 eigenvalues for S., but this is only
true for massive particles. For massless particles, the eigenvalue 0 is excluded:
suppose we have a photon in the spin eigenstate of S, with eigenvalue 0. Then the
photon is invariant under rotations around any axis perpendicular to the z — axis.
This is only possible if the momentum of the photon is zero in its rest frame,
because if the momentum was non-zero, any rotation will change the direction
of the momentum. For massive particles, we can always find a rest frame. For
massless particles, which propagate ate the speed of light, we cannot. Thus the
eigenstate of S, with eigenvalue 0 is excluded.

To find the eigenstates of S, we use the technique of lowering and raising
operators.

Notation 1. We call the component of the total spin in the direction of propagation
of the photon its helicity. For example, if a photon is an eigenstate of S,, then its
helicity is either —h or +h. We denote a state with total spin s and helicity h\ as
|s, \). In addition, to make the effect of the lowering operator more clear, we denote
I1,—1) = |=) and |1, +1) = |+).

2.2 The eigenstates of S,

Definition 2. The lowering operator S_ i defined as

S_ = =) (+]. 2.1)

For we are dealing with a two photon system, and each photon has a helicity of
either —7 or +h, we have the possibilities A = —2,0,+2. Then s = 0,2 (because
helicities add). Then the total spin s = 0, 2 (the helicity can never exceed the total
spin, as it is its component along the z-axis).

12,42) = |[++) . (2.2)

Then, applying the lowering operator to |++), we can find the next eigenstate
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12,0).

) )+ ) (8- 1))
+) ++-)

— 1/v/2(]—+) + |[+—)) after normalisation,

2.0) = S-|++)
|( (2.3)

where we have used the Leibniz rule for a linear operator on a product state.
Applying the lowering operator again we find

2,-2) = 1/V25_(|=+) + [+-))
= 1/V2((S- =) [+) + =) (5= 1=) + (5= 1) |=) + [+(5-[-)))
=2/V2|--)

— |——) after normalisation.

(2.4)

We can rewrite these states using |+) = 1/v/2(|v) +i|h)) and |—-) = 1/v/2(|v) —
i|h)). Then

12,42) = 1/2(|v) + i [m)(|v) +i[h))
= 1/2(|ov) + i |vh) + i |hv) — |hh))
12, 0) = v2/2(jv) =i |R)(Jo) +i|h)) + V2/2(|v) +i|h))(lv) — i |I))
=1/V2(|vv) + |hh)) a

12, =2) = 1/2(|v) — i |h))(|lv) —i]h))
= 1/2(|vv) — i [vh) — i |[hv) — |hhY)

(2.5)
fter normalisation

To find the last state |0, 0), there is no use in the lowering operator. We use the
closure relation

instead.
We can write the closure relation in vector notation with respect to the ordered
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basis (|vv) , |vh) , |hv) ,|hh)) as

1/2 12\" /1/v2\ [1/v2\"
0 0

.| a2 —i/2
T=1 4 il Tl oo 0
—1/2 —1/2 1/v2 1/v2
1/2 12\"
—i/2 +i/2
~1/2 ~1/2
1 0 0 0
1o 1/2 1/2 0
=10 172 172 of T10-00.00
0 0 0 1
Then
1 0 0 0
- lo o172 172 0
0,0)40,00 = 1= 1/2 1/2 0
0 0 0 1
2.7)
0 0 0 0
o 12 -1/2 0
“lo —-1/2 12 0
0 0 0 0
We have now found the missing rotationally invariant state
0,0) = 1/V2(|vh) — |ho)). (2.8)

Of course, this is the state we should have found, as it is the state used in Bell’s
original inequality. Though it is still nice to recover it in the end.
We are now done finding all rotationally invariant states and can move on in our
attempt at deriving more Bell inequalities.
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2.3 The state |vv) + |hh)

From the four states
2,42) = |+) [+) , 12,0) = 1/v2(|vv) + [hh))
2,-2) =[-)[-), 10,0) = 1/v/2(|vh) — |hv))

only [2,0) and |0,0) are entangled, because [2,+2) = |+)|+) and |2,-2) =
|—)|—) are products of one particle states. We have already found an inequality
for |0, 0) in Chapter 1. Thus, to complete the picture, we must derive an inequality
for |2,0).
We approach in a similar manner as in Chapter 1. From equation we have
for the average of the responses of the polarisers
C(01,0,) = /dwp(w)A(@l, w)B(0s, w). (2.9)

Again, there exists a relation between the responses of the polarisers. For the
state (1/v/2)(|vv) + |hh)), it is clear that

A0, w) = B(0,w). (2.10)
Substituting this into equation [2.9] gives
C(02,02) = /dwp(w)A(Gl,w)A(Gg,w). (2.11)

To find any non trivial relation between the averages C for three similar setups
of the experiment, we examine the linear combination

L= OéC(@l, 92) + /60(02, 93) + 70(91, (93)
_ / dwp(w)(aA(@l,w)A(Hg,w) + BA(By, w) A(fs, w) + 7A(91,w)A(93,w)>.

Since each A(0,w) is either 0 or 1, all possible evaluations of the integral L are

A0, w) A0y, w) A(f3,w) L
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 I6]
1 0 0 0
1 0 1 ~
1 1 0 o'
1 1 1 |a+B8+79
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Let m = min{0, o, 5,7, + 5 + v} and M = max{0,«, 5,7, + 5+ ~v}. Then

must hold. If we can find «, § and v such that inequality is violated
for some orientation of the polarisers, then we have found a new Bell inequality.
Unfortunately, this is impossible:

Proposition 1. Suppose C : [a,b] x [a,b] — [0, 5] and suppose o, (3, are real num-
bers. Let M = max{0,«,3,v,a+ f+ v} and m = min{0, o, 5,7, + B + v}. Then
the inequality

m S &0(91, 92) + 50(02, (93) —+ 70(91, 93) S M
is always satisfied.

Proof. 1 prove by case distinction on «, [3,v. Suppose «, 3, > 0. Then m = 0 and
M = «a+ [+ . Since 0 < C, we have

m=20 S QO(Ql, 92) + ,80(02, 93) + ’}/C(Ql, 93),
thus the lower bound holds. Since C' < 1/2, we have

aC(0y,60y) + C(04,03) +~vC(01,03) < 1/2(a+F+7v) <a+p+v= M,

thus the upper bound also holds. For the case «, 5,7 < 0, just use («, 3,7) —
(—a, —f,—7). Then the inequality signs reverse and (m, M) — (M, m), which
proves the inequality by the argument above.

Now suppose o < 0 and 3,7 > 0. Then m = a. As C' < 1/2, we have

a<0=alC(0,0:) >a/2 > .

Since 3,y > 0, the remaining terms 3C(6,,03) and vC'(6,,03) are positive or 0.
Then the lower bound follows. For the upper bound, notice that

ozC'(Ql, 82) + BC(@Q, ‘93) -+ 70(91, 93) S ﬁC(eg, 93) + 70(61, @3)
<Pty
- 2
< max{f,~}
< M.

To see this last inequality, notice that {5,~v} C {0,«, 8,7, a+ S +~}, and adding
extra terms to a set only increases its maximum. Thus the upper bound holds.

Lastly, notice that the symmetry of the situation allows us to prove all other
cases under correct permutation of «, 3, 7. O
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2.4 A Bell inequality for |vv) + |hh)

It seems now as if we are out of luck and are unable to find any new Bell inequality.
I claim, however, that this is still possible in a suprisingly simple way.

Instead of denoting a 1 for a photon passing polariser B, and a O for not passing,
we reverse our notation:

g 1 if photon 1 passes Alice’s polariser,
~ |0 ifnot.

and

B 1 if photon 1 does not pass Bob’s polariser,
~ 10 ifit does.

~ Suppose we now calculate the average of the product AB, which we denote by
C(01,0:). It seems at first as if this is just a notation change, but it is not: The
relation between A(f,w) and B(6,w) is

A0, w) =1— B(0,w). (2.13)
Then

C(b,6,) = / dwp(w) A6, w)B(0s, w)
/dwp(w)A(Ql, w) (1 — A(6s, w)>7

which is exactly the same as equation We then derive the new Bell in-
equality

C(6y,0,) < C(61,63) + C(65,6,) (2.14)

by the same arguments as in Chapter 1.

This concludes Chapter 2: we have fully analysed the two particle case by char-
acterising all rotationally invariant entangled states. The only states with these
properties are the special states |vh) — |hv) and |vv) + |hh), and both yield a Bell
inequality.



Chapter 3

The n-particle system

3.1 A system of n particles

It is tempting to try to derive inequalities for an n-particle state in a similar manner
as we did for a 2-particle state. We must then, as before, find states which

(1) are rotationally invariant under change of the parameters 6,’s, i.e. being
invariant under the function which maps 60, — 6; + ¢ for all i, and

(2) yield a non-trivial relation between the responses A; of the polarizers.

A state satisfying condition (1) must be a spin eigenstate. We can expand a spin
eigenstate |s) with total spin s as a linear combination of the form

|s) = E Csi |Pi1Di2---Pin) » (3.1
pij€{+,—}
> x(pij)=s

where each c¢; is some complex constant. The function y maps + — (+1) and
— +— (—1). The first constraint on the sum means that each term |p;;p...pin) in
the expansion is some product of length n consisting of |+)-states or |—)-states.
The second constraint on the sum ensures the total helicity of each term equals s.

Concerning condition (2), it seems at first as if there exist many relations be-

tween the A;’s. However, since each A; = 1 or 0, and since we can always relabel
the indices of the particles, the only relations eligible are of the form

(Ay = Ay = .. = A}) # (Apps = Ao = ... = Ay), (3.2)

for some 1 < k < n. Thus a state satisfying (2) reduces to the form

13
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In, kY = ay |vv...v hh...h) + as |hh...h vv..v ), (3.3)
—— N — —— N —

k times n-k times k times n-k times

which has just two complex (non-zero) parameters a; and a,. We shall call such
states H-states.

Question. Can a state that satisfies (2) also satisfy (1)? That is, does there exist
an s and a set of constants c,; such that

Ink) = [s)? (3.4)

To make this more clear, I give an example for a 3 particle state.

Example. Consider a 3 particle system, and suppose the responses of the po-
larizers Ay, A; and A relate as (A;) # (A = A3z) (thus n =3 and k = 1). Then

|nk) = ay [vhh) + ag |hov) . (3.5)

To check whether this is a pure spin eigenstate (checking if the condition |nk) =
|s) holds for some s), we would like to get rid of the v’s and 4’s and expand the
state in only +’s and —’s. That is, mapping v — |+)+|—) and h +— (1/3)(]4+) —|—)).
You could to this by hand or, as I did, use some codd!| The expansion yields

+
+ (a1 — iaz) |—|— + —> + +(CL1 — iag) |+ - +> + (—al + iag) |‘|‘ - —>
+ (—a1 — ia2> |+ + +>

(3.6)

If we want this state to be a pure spin eigenstate, we must have that (all) the
coefficient(s) for all of the spin eigenstates in the expansion vanish, except for one
spin eigenstate. Clearly, if the coefficient (—a; —ias) for the |+ + +)-state vanishes,
we must have that all the coefficients for the |+ — —), |- + —) and |- — +) states
also vanish. Similarly, if the coefficient (—a; + ias) for the |— — —)-state vanishes,
we must have that all the coefficients for the |+ + —), |+ — +) and |- + +) states
also vanish. Thus we cannot write |n, k) as a pure spin eigenstate. We conclude
that for a 3 particle system satisfying (A;) # (As = Aj3), there is no rotationally
invariant H-state.

IThe Maple code used is found in the appendix.
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We could check many more examples for different values of £ and n, and check
whether they yield pure spin eigenstates. I tried this for all » and k, in the range
3 <n<6,1 <k < n, but the result of the example remains unchanged: no
state satisfying (5) is a spin eigenstate. However, there exists a pattern in the
coefficients. Of course some pattern ought exist, as the expansion in +’s and —’s is
a straightforward one. Fortunately, the pattern is simple and useful:

Proposition 2. Let ¢, ¢, ..., g be the coefficients in the expansion of |nk) = >_ |s),

where | = ((nﬁsw). Then for every s

Cs1 =0 <= =0 < ... < ¢4 =0. (3.7)

Proof. We can write one of the coefficients c,; as

Csi = (P1iP2i--- + . — .pni| (a1 |vv...0 hh..h) + ag |hh...h vu..v)), (3.8)
k times n-k times k times n-k times
where (py;ps;... + ... — ...pni| is some product of = (+|-bras and y (—|-bras, such

that x + y = s. Since all the different arrangements of the p;;’s occur in the
expansion of |s), there exists a coefficient c,; which is identical to c,; except for the
helicities of two particles, which are switched. As before, we can write down this
Cgj AS

csj = (P1jD2j--s — -+ -Pnj| (a1 |vv...v hh..h) 4+ ag |hh...h vu..v)), (3.9)

k times n-k times k times n-k times
where (p1;p2i... — ... + ...pni| is another such product, in which the helicity of
one pair of particles is switched with respect to the bra (p;ps;... + ... — ...pni|. By

switching the helicity of several pairs of particles consecutively, we can obtain all
the [ separable states with total spin s. Moreover, this ensures the total spin s
of the separable state to remain unchanged. The switching of helicities between
particles v and w can occur in several cases

(1) if u,w < k, then we are able to compute ¢, more explicitly as

Csi = a1 (p1;[0) (P2 |v) . (=[0) .. (£[0) .. (pns|P)
+az (py|h) (paslh) o (=[R) . ([R) - (pnglv)
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To find ¢,;, we switch the two +’s and the two —’s.

Csj = a1 (Prj|v) (Pojlv) - (o) oo {=v) o {pns|)
+az (piy ) (pas|h) - (H[R) o (=[R) - (g v)
= ay (p1[v) (pa;[v) - {=|v) ... ([0} . (gl )
+az (piy|h) (paslh) o (=[h) o ([R) - (g v)

since multiplication is commutative.
(2) if u,w > k we have c,; = c,; by the argument above.

(3) ifu < k and w > k, then

Csi = ar (p1j|v) (p2;[v) .. (=[v) .. (+|h) .. {pnjl )
+ az (pyjlh) (p2;|h) - (=[h) .. (+[v) ... (Pnjlv)
= a1 (p1;[v) (p2;|v) .-.(1)...(=7)... (Puy|P)
+ az (pij|h) (p2;[R) - (4)...(1)-.. (Pujlv) ,

while

Csj = a1 (p15]v) (p2;]v) ... (V) ... (=[h) ... (Prj|P)
+ az (pijlh) (p2;|h) ... (+[R) ... (=[v) ... (Pnj|v)
= a1 (p1;]v) (P2;[v) - (1)-..(9)-.. (pnjl 1)
+ az (pi;|h) (pajlh) . (=4) .. (1) (Puglv)
= —Cg

(4) if w < k and u > k, then again ¢,;; = —c,; by the argument above.
Then c¢,; = *c,;, which implies ¢;; = 0 <= c¢,;, proving the proposition. O

There is a second pattern concerning successive coefficients in the expansion of
|n, k) in spin eigenstates |s):

Proposition 3. The coefficient c,; = 0 if and only if cs14,; = 0.
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Proof. To obtain c,4; from c,; we must raise the helicity of two particles from a
|—) to a |[+). That is

Csi = (P1iP2ie- — oo — .Pnil (a1 |vv.. 0B R) + ag |hh...hov...v)), (3.10)
and

Cstai = (D1iP2i--- + oo + oo.Dni (a1 |vv...0hh..R) + ag |hh...hov...v)) (3.11D)

Suppose we raise the helicities of particle © and w. This raising can occur in
several cases

o if u,w < k, then

Csi = a1 (p1s|v) (Pailv) . (—|v) ... (=[v) ... (Pnilh)
+ az (p1ilh) (pailh) ... (=[R) .. (=[h) .. (pnj|v)
= ar (p1iv) (p2i[v) ...(1)-..(1)-.. (Ppil )

+ az (pulh) (p2ilh) -.(2)-.-(8).. (Pnjlv)

and

+ as (p1i|h) (p2ilh) ... (+
= ay (p1ilv) (pailv) ...(1)...(1)... {pnilh)
+ az (puilh) (pailh) ..(=1)...(=7)... (Pnjlv)

e if u,w > k, then we have c¢,; = ¢,44; by the argument above.

e if u < kand w > k, then

csi = a1 (p1ilv) (p2ilv) ... (=|v) ... (=|h) ... (Puil 1)
+az (pulh) (pailh) . (=|h) - (=[v) oo {pnjv)
= a1 (p1i|v) (P2i[v) ..(1)...(8)... (PnilR)

+ az (pui|h) (P2l ) -..(0)...(1)-.. (pnjv)
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and
Csia = a1 (Priv) (P2ilv) ... (+[v) .. (+[h) ... (Puil R)
+ az (puslh) (P2l ) . (+|R) .. (H]v) ... (pnjlv)
= a1 (p1ilv) (p2i[v) ..(1)-.(=1)-.. (puil h)
+ as (puilh) (p2ilh) ..(=1)...(1)... (Pnjv)
Csi
e if w < k and u > k, then again ¢,; = —cs14, by the argument above.

In all the cases we have ¢,; = £c¢,.4,, which proves ¢,; = 0 if and only if ¢,14; =
0. ]

We now have the tools (being the two propositions) to answer the question:
Does there exist an s and a set of constants c,; such that

In, k) =|s)? (3.12)
Answer. Note that we can always expand |n, k) as

In, k) = > By (3.13)

For |n, k) to be a pure spin eigenstate, the following condition must hold:

For every s € {—n,—n + 2,...,n} except one, we must have for every
i € {1, ((nsny2) } that i = 0.

The first proposition ensures that the part "for every i € {1, .. ( ) " in this

condltlon is always satisfied, since if we choose an s, we have c,; = f and only if
= ( for every ¢ and j. This simplifies the condition to

for every s € {—n,—n + 2,...,n} except one, we must have cy; = 0 for
some 1.

Note that we have n + 1 different values for s, as s € {—n,—n + 2,...,n}.
Suppose n > 2. Then we have 4 or more different values for s. Now using the
second proposition we derive:

Suppose cs; = 0 for every s but one, namely c,; # 0. Then clearly c,.4,; =
0 as well. Surely, c,14; exists since we have more than 4 values for s. But
the second proposition says precisely; if c,44; = 0 then c¢,; = 0. This is a
contradiction.
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We conclude that for a system of more than 2 particles, there is no H-state which
is (1) rotationally invariant and (2) satisfies nontrivial relations for the responses
of the polarisers.

If however n < 2, the coefficient ¢,,,, does not exist, since we only have 3 or
less values for s, and the argument above fails. This shows why a Bell inequality
for a two particle experiment is not excluded by the propositions in this chapter.



Afterword

We have concluded Chapter 2 with all possible Bell inequalities for a two photon
experiment: there are just two of them. This makes the states |vh) — |hv) and
|vv) 4 |hh) quite remarkable.

In the final chapter, we found that H-states with more than two particles are
never rotationally invariant. I therefore consider |vh) — |hv) and |vv) + |hh) as
rather important.

I find it important to emphasise that statements such as ’having no Bell inequal-
ity’, must be read as having no inequality if we use a similar method as Bell orig-
inally did; the reader must not assume that this is the only way local hidden
variables are ruled out. Most likely, there exist some argumentation which makes
local hidden variables incompatible with quantum mechanical results.

20



Maple code

In Chapter 4, we proved in propositions |2/ and |3| that there exists a pattern in the
coefficients c,;. This pattern might strike the reader as being out of the blue, and
he/she might wonder how it was found. It was discovered while trying to check
whether it is possible to find states which hold a non trivial relation between the
responses of the polarisers could be rotationally invariant. Since doing this for
more than 3 particles becomes labourious, we used Maple. The following code
was written by Ronald Kleiss and edited by me.

As an example, we check the conditions (1) and (2) from Chapter 4, for the 4
particle state

ay |[vhhh) + ay |hvvv) . (14)

restart;
a := alxket([v, h, h, h])+a2xket([h, v, v, v]);

We define four procedures which map the one particle states of a as
h) = i(l=) = [+), ) = 4 +1-)-

We then apply the procedure to a and expand the result.

wl:=proc(ketje);
if op(l,ketje)=h then return (—I)xket(subsop(l=p, ketje))
+ Ixket(subsop(l1=m, ketje)) fi;
if op(1,ketje)=v then return ket(subsop(l=p, ketje))
+ ket(subsop(l=m, ketje)) fi;
end proc;

w2:=proc(ketje);
if op(2,ketje)=h then return (—I)xket(subsop(2=p, ketje))
+ Ixket(subsop(2=m, ketje)) fi;
if op(2,ketje)=v then return ket(subsop(2=p, ketje))

21
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+ ket(subsop(2=m, ketje)) fi;
end proc;

w3:=proc(ketje);
if op(3,ketje)=h then return (—I)xket(subsop(3=p, ketje))
+ Ixket(subsop(3=m, ketje)) fi;
if op(3,ketje)=v then return ket(subsop(3=p, ketje))
+ ket(subsop(3=m, ketje)) fi;
end proc;

w4:=proc(ketje);
if op(4,ketje)=h then return (—I)xket(subsop(4=p, ketje))
+ Ixket(subsop(4=m, ketje)) fi;
if op(4,ketje)=v then return ket(subsop(4=p, ketje))
+ ket(subsop(4=m, ketje)) fi;
end proc;

b:=expand (eval (subs (ket=w4, eval (subs (ket=w3,
eval (subs (ket=w2, eval (subs(ket=wl,a)))))))));

Finally, we ask Maple to evaluate the coefficients for each term in the expansion
such that coefficients with the same helicity are displayed together.

coeff(b, ket([m, m, m, m]));

al+a2
coeff(b, ket([p, m, m, m])); coeff(b,ket([m,p,m,m]));
coeff (b, ket([m, m, p, m])); coeff(b, ket([m, m, m, p]));

al — a2
al — a2
al — a2
al — a2

coeff (b, ket([p, p,
coeff (b, ket([p, m,
coeff (b, ket([m, p,

, m])); coeff(b,ket([p, m, p, m]));
pl)); coeff(b, ket([m, p, p, m]));
, p1)); coeff(b,ket([mm,p,pl));
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al + a2
al + a2
al + a2
al + a2
al + a2
al + a2



coeff (b, ket([m, p, p, pl)); coeff(b, ket([p, m, p, pl));
coeff(b, ket([p, p, m, pl)); coeff(b, ket([p, p, p, ml));

al — a2
al — a2
al — a2
al — a2

coeff(b, ket([p, p, P, P1));
al + a2
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