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1 Motivation

One of the big open problems we are currently facing in physics is the unification of Quantum Mechanics
and General Relativity. The problem lies in getting a description of gravity that is consistent with
both theories.
Quantum mechanics describes the electromagnetic, strong and weak interaction forces as fields, and
states that a particle is described by a wave function [1]. The probability of the particle being in
a specific place is given by the square of the wave function. The particle is thus described by a
superposition of states, meaning that quantum mechanics is a non-deterministic theory, as one can not
predict the particle’s trajectory [2].
General relativity on the other hand describes the fourth force: gravity. It states that the universe
has four dimensions: three space dimensions and one time dimension [3]. Gravity is described as the
curvature of this space-time by energy, and therefore also mass. For example, heavy objects such as
stars curve space-time leading to the trajectories of light seeming to curve around the star [4]. The
geometry of space-time is therefore dependent on the matter fields described by quantum field theories.
We know general relativity is not complete, as it is a theory with deterministic equations of motions
[5].
On the one hand, we have a non-deterministic theory, quantum field theory, and on the other hand,
we have a deterministic theory, General relativity. Both theories have a high observational strength
[6, p. 1-24]. From quantum field theory, for example, vacuum polarization has been detected [7]
[8]. From general relativity gravitational waves have been detected by LIGO [9]. The unification of
these two theories is still an open problem, especially in four dimensions. One possibility for unifying
these theories is by finding a quantum field theory that describes the geometry of spacetime (with or
without matter). This can be done by creating a quantum mechanical description of the geometry
of spacetime. More specifically, the superposition from quantum mechanics can be interpreted as
the probability distribution of the geometry of your space. This field of research is called ”Random
geometry”.

1.1 Random geometry

As there is a probability of your spacetime being in one state or another, or specifically, to have one
geometry or another, we need to deal with this randomness of your spacetime. This can be done
analogously to the principles used in the path integral for trajectories of particles. This principle
can then be generalized for quantum fields. Combining this with the Einstein-Hilbert action we can
introduce the partition function for random geometry. From this partition function, one can define a
probability distribution on the geometry of the space.

1.1.1 Path integrals

The path integral is based on the quantum mechanical superposition and is dependent on the action
of the system. Firstly, note that from classical mechanics we have Hamilton’s principle, which states
that the path a particle follows between points 1 and 2, in the time interval [t1, t2] is such that the
action integral

S =

∫ t2

t1

L dt (1)

is stationary. Where L is the Lagrangian of the system. This principle leads to the Euler-Lagrange
equations, which we can use to describe the path of the particle [10].
In quantum mechanics we can not just take one trajectory, as particles are described by superpositions.
We therefore introduce the path integral. The path integral is a generalization of the classical
mechanical action S[a, b] principle [2, p. 503-511]. Let P (a, b) be the probability density of going
from point a to b in the time interval [ta, tb]. Let K(a, b) be the total amplitude for traveling from
a to b, where |K(a, b)|2 = P (a, b). Each trajectory x(t) contributes to the total amplitude, but
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only at specific phases, leading to the formulation K(a, b) =
∑
x(t) path from a to b φ [x(t)]. Meaning φ

determines the contribution of a path. It is defined by φ [x(t)] = c · e(i/~)S[x(t)] with c ∈ R [11, p.
31-39]. This awkward notation of the total amplitude is usually replaced by

K(a, b) =

∫ b

a

e(i/~)S[x(t)]Dx(t), (2)

where the functional integral
∫ b
a
Dx(t) is the notation for integrating over all paths [12, p. 275-314].

Quantum field theory builds upon this idea of path integrals. The probability amplitude of a state φa
of a field at time a to evolve to a state φb at time b is defined by

K(a, b) =

∫ b

a

e(i/~)S[φ(t)]Dφ(t). (3)

This means that we define the probability amplitude by summing over all fields ([1] page 105-127). In
equation (3), we have looked at the time evolution of the field. Note however that fields are dependent
on your manifold, because they are functions from your manifold M to R. This means that the
manifold/space is fixed and the field is defined on points of the manifold [6, p. 39-55].

1.1.2 Einstein-Hilbert action

Before we can consider the quantum gravity partition function, we need to also take a look at the action
from General Relativity. This action is called the Einstein-Hilbert action and give us the Einstein field
equations [3, p. 123-139]. It is given by

SEH =
c2

16πG

∫ √
−g (R− 2Λ) d4x, (4)

where the integral is over the whole spacetime, c is the speed of light, G is the gravitational constant,
g is the determinant of the metric tensor, R is the Ricci scalar and Λ is the cosmological constant.
At least formally, we can take the path integral approach to get a partition function. This time we
sum over the possible metrics [13, p. 68-75]

Z =

∫
e(i/~)SEH[g]Dg. (5)

Equation (5) tries to therefore formulate a quantum field theory of the metric, meaning it unifies
General Relativity and Quantum Field Theory. However, it does not contain matter fields φ, meaning
it unifies the two theories without matter.
In equation (5), we are not considering functions on a manifold, as done in equation (3). Rather, the
partition function (5) is a function over the metric tensor fields of your manifold, meaning that the
geometry of M is not fixed. In equation (3), the geometry is fixed.

1.1.3 Quantum gravity partition function with matter

As we want to unify general relativity and quantum field theory with matter, we need to consider an
action that incorporates equations (5) and (3). In the most general form, we can define the partition
function by [14, p. 3-10]

Z =

∫
e(i/~)S[g,φ]DgDφ. (6)

Meaning we integrate over the possible fields φ on your manifold and metrics g of your manifold.
Where the phase of the contribution for each possible pair of quantum field and metric is defined by
the action. We can use this partition function to try to define a probability distribution on the space

5



of fields and geometries.
The most difficult part of equation (6) is the summing over all metrics. We therefore want to consider
models that simplify this part of the equation. One simplification is only considering two-dimensional
spacetime, instead of the more realistic four-dimensional spacetime. However, we are still working with
an infinite-dimensional space of geometries when we consider two-dimensional spacetime, as one can
locally vary the geometry at every point of the surface. Mathematical analysis for infinite-dimensional
space is very difficult, so we need to introduce methods to simplify the problem.

1.2 Discrete two-dimensional theories

Discrete two-dimensional theories for quantum gravity are based on regularization. The idea is to create
models for finite discrete surfaces which in the limit transform into models for compact continuous
surfaces [15]. These finite discrete surfaces are built by glueing together a finite number of building
blocks, leading to the space of geometries being finite. This means that we can still consider continuous
surfaces (in the limit), while having the benefit of having a finite-dimensional space of geometries, as
this space is 0−dimensional.

1.2.1 Two-dimensional dynamical triangulations

An example of a discrete two-dimensional theory, which in the limit converges to a model for continuous
surfaces, is the theory of two-dimensional dynamical triangulations. The building blocks of the surface
are equilateral triangles, and the created surfaces are called triangulations. The number of possible
geometries is finite, as the ’glueing’ process is finite, meaning that the number of possible triangulations
is finite [16]. For an intuition how the glueing process looks like, see Figure 1.
A probability distribution one can consider on the space consisting of triangulations built from n
triangles, is the uniform probability distribution. This is because there are only finitely many surfaces
one can create. Taking the scaling limit n → ∞, while shrinking the side lengths with a factor of
n1/4, we get a continuous surface [17]. The uniform probability distribution converges, in this limit,
towards a probability distribution of continuous geometries, called the Brownian Sphere [18] and [19].
This is a specific model, which is called pure gravity. This limit is nice, because we already know how
to do quantum gravity without matter fields in this limit. The geometry of the two-dimensional pure
gravity is the Brownian sphere, also called the Brownian Map [20].
In this model, the surfaces created have fractal characteristics. This means that they have a rough
geometric shape which can be split into parts that resemble the original surface. The fractal characteristics
of a surface are mathematically represented by critical exponents. One example of such a critical
exponent is the Hausdorff-dimension, which is a measure of the fractal dimension. It measures the
local surface area, with respect to the distance between two points on the surface [21]. It is possible
to get different kinds of surfaces with different critical components in the limit. However, one needs
to consider other discrete surfaces than dynamical triangulations to get them. This will be discussed
further in the next section.

1.2.2 Universality classes

As stated previously, critical exponents can represent the fractal characteristics of a surface. More
generally, critical exponents represent some macroscopic characteristics of the surface considered [22].
A natural question to ask, is whether changing some microscopic details from the surface influences
these macroscopic characteristics. For example, can we get the same Hausdorff dimension in the scaling
limit for quadrangulations? In this case, the building blocks are squares instead of equilateral triangles.
The general answer to such questions is yes, given some restrictions on the model [23]. We will come
back to these restrictions later.
It is therefore possible to change the microscopic details of your model, such as its building blocks, while
not changing the scaling limit of the surface and therefore keeping the same macroscopic characteristics.
If we have two models where this is the case, we say that the two models are in the same universality
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Figure 1: A representation of the glueing process for triangulations. The dots represent omitted steps.
The pictures are not to scale, but it should be clear that surfaces later in the glueing process are larger,
as represented. The triangulations becomes more fractal, when more triangles are added, as can be
seen by comparing the last two triangulations. Source: T. Budd

class. If changing the microscopic details of your model does change the macroscopic details of the
surface given by your model, one says that the models are in a different universality class [22].

1.2.3 Planar maps

As stated, it is possible to use squares instead of equilateral triangles and still get the same Hausdorff
dimension in the limit. One can ask whether it is possible to generalize this idea even further. Is it
possible to get the same results from glueing together any polygon? Or more generally, can we get the
same results from planar maps? Mathematically, planar maps are graphs embedded into the plane.
Conceptually, they can be thought of as surfaces whose building blocks are different kinds of polygons.
As one can have a collection of different building blocks, we can introduce constraints on these building
blocks which determine the likelihood of a specific building block being added to the surface in the
’glueing process’. The constraint on your building blocks is given by the weight sequence. Just as for
quadrangulations, one can find the same critical exponents as for dynamical triangulations models,
given that the constraints on your building blocks are correct.
In this thesis, we will take a look at specific kinds of planar maps: bipartite planar maps. These planar
maps are built from polygons with an even number of sides and edges. The reason bipartite maps
are considered, is because it is easier to find a recursive formulation for these kinds of surfaces [24].
Using these recursive formulations, one can find patterns for how these surfaces grow depending on
the probability certain polygons get added. This can be used to find critical exponents in the limit
where the size of the surfaces goes to infinity. This limit can therefore be used to find different kinds
of universality classes.

1.3 Continuous two-dimensional theories

So far, we have only discussed discrete two-dimensional surfaces. Another natural question one can
ask, is whether there exist models for continuous surfaces which are in the same universality classes
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as many models for discrete surfaces. As outlined before, one needs to limit the kind of surfaces
considered, because otherwise we will be working with an infinite-dimensional space of geometries.

1.3.1 Hyperbolic surfaces

An example of continuous surfaces one can consider, are hyperbolic surfaces. More specifically they
are Riemannian surfaces with constant scalar curvature of −2 [25]. They can also be thought of as
surfaces, which locally behave like the hyperbolic plane. This is to say, these surfaces are locally
isometric to the hyperbolic plane. The set of these surfaces, the Moduli space, is finite-dimensional
and has a specific volume which is given by the Weil-Peterson volume [26]. This makes it easier to
analyze hyperbolic surfaces, rather than pseudo-Riemannian surfaces, as one can define a partition
function for possible surfaces using the Weil-Peterson volume.
To find critical exponents and compare the hyperbolic surfaces with the discrete surfaces, we want to
take a limit. It is not evident how one can take a limit of a sequence of ’just’ hyperbolic surfaces.
We can therefore allow surfaces to have defects in the form of geodesics holes with specified lengths.
This allows us to create a probability distribution by putting weights on the defects, depending on the
length of the geodesic curve. This is done by the weight function, which is analogous to the weight
sequence. The boundary components also makes it possible to take a limit, as one can take the limit
where a specified boundary component’s length goes to infinity. As we will see in this thesis, it is
possible to get the same critical exponents for models of hyperbolic surfaces as for models of planar
maps.

1.3.2 JT-gravity

We have already given a mathematical reason for using hyperbolic surfaces: Weil-Peterson volumes
are defined for hyperbolic surfaces. However, we also get a reason from physics to consider these
kinds of surfaces. This has to do with a specific quantum gravity theory called Jackiw–Teitelboim
gravity. Jackiw–Teitelboim gravity, also called JT-gravity, is defined by an action that is similar to
Einstein-Hilbert action from equation (4). The JT-gravity action is

S =
c2

16πG

∫
d2x
√
−g Φ (S) , (R− Λ) (7)

where c is the speed of light, G is the gravitational constant, g is the determinant of the metric tensor,
Φ (S) is the scalar field, R is the Ricci scalar and Λ = −2 is the cosmological constant [27]. The action
from equation (7) uses Lorentzian metrics, as the determinant is negative and the action is still defined
for pseudo-Riemannian metrics [28]. When one solves the Euler Lagrange equations for this model, one
sees that the Lorentzian metrics are specified to be Anti-de Sitter metrics, also called AdS2-surfaces.
The Euler Lagrange equation

∂S

∂ Φ (S)
= R+ 2 = 0 (8)

implies that R = −2. This means that we are indeed working with Anti-de Sitter metrics, as the
curvature is constant and negative [29]. Lorentzian metrics are pseudo-Riemannian metrics, which are
more general than Riemannian metrics, as every Riemannian metric is a pseudo-Riemannian metric
[25]. Hyperbolic surfaces are Riemannian manifolds with a metric that has a negative determinant
and a Ricci scalar R = −2, meaning that they are solutions for the Euler Lagrange equation (8) which
follows from the JT-gravity action (7).
There has been an increasing interest in JT-gravity, because it can be useful for analyzing black holes
[30]. Black holes have an event horizon, which denotes a regime of the black hole where even light can
not escape the gravity of the black hole. In certain two-dimensional regimes, the geometry is similar to
the geometries JT-gravity gives. This means that it appears as a near horizon theory of near extremal
higher black holes [31].
The second reason for the increasing interest is due to the holographic principle. If you have a
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holographic duality in your theory, you are able to describe quantum gravity in the 3+1-dimensional
universe by a theory on the three-dimensional boundary of the universe without quantum gravity. The
requirement is that the system has a good time evolution, e.g. meaning that it has a unitary evolution.
This means that one can describe a d+ 1-dimensional theory on a manifold as a d-dimensional theory
without gravity on the boundary of the manifold [32]. If one considers 1+1-dimensional JT-gravity
on a manifold, it can be described by a one-dimensional model without gravity. This theory on the
boundary is called the SYK-model, which has a unitary evolution [33].
A link has already been made between JT-gravity and dynamical triangulations. This is via matrix
models, which have already been studied in the 90’s [34]. The generating function of Weil-Peterson
volumes give us Korteweg–De Vries ( KdV ) equations [35]: the string equation and Dilatton equation.
These equations also appear in the context of partition functions in the matrix models and discrete
surface models [36]. However, this link is purely algebraic and gives no clear geometric interpretation.
In this thesis, we will find a link between hyperbolic surfaces and planar maps, without using matrix
models. We will instead focus on the geometric link.

1.4 Goal and outline of thesis

The goal of this research is twofold. Firstly, to find out under what condition on the weight functions a
model for hyperbolic surfaces belongs to the universality class of planar maps. Secondly, to see whether
it is possible to use different weight functions to create different universality classes for models with
hyperbolic surfaces.

In this thesis, we will firstly take a look at bipartite planar maps. This work will be largely based
on works by N. Curien [22] and T. Budd [37] [38] [39]. We will look at different universality classes,
by defining different forms of criticalities. These criticalities will be defined by restrictions on the
weight sequence, which determines the likely hood of having a polygon in the planar map. We will
then define the partition functions for different kinds of planar maps. This makes it possible to define
generating functions where the coefficients are partition functions. These generating functions can be
studied, using recursive formulations for the partition functions called the Tutte-equations. We can
then find the leading terms of the partition functions. These leading terms are dependent on the kind
of (critical) weight sequence one considers. Lastly, we will consider the different kinds of surfaces and
critical exponents one gets from the different forms of criticalities, meaning we consider the different
kinds of universality classes.

For the hyperbolic surface case, we will have a similar setup. Firstly, Riemannian surfaces will
be introduced and the volume of the space of hyperbolic surfaces, also called the Weil-Peterson
volume, will be discussed. We then introduce the weight function, which determines the probability of
having geodesic holes with a specific length in the surface. These geodesic holes are called boundary
components. The weight function on the boundary component length makes it possible to define
partition functions for different kinds of hyperbolic surfaces. Further analysis of these partition
functions will follow after having defined different forms of criticalities. These criticalities are defined
by restrictions on the weight function. We will then also look at the leading terms of the partition
functions, depending on the different forms of criticalities. This will make it possible to get the critical
exponent, corresponding to different forms of criticalities. Having found these critical exponents, we
will look at the different kinds of universality classes and the kind of surfaces they have.
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2 Bipartite planar maps

It is assumed that the reader has some elementary grasp of graphs and definitions associated with
them. A short overview of definitions can be found in the appendix, see Appendix A.
As stated in Section 1, one can create two-dimensional gravity models using the ’glueing’ of equilateral
triangles to create surfaces. In this section this idea will be generalized to glueing together polygons,
where we will allow different polygons with different number of sides. These surfaces are called planar
maps.

Figure 2: A figure of a planar map with a root face of degree 12. The outer edge of the map is
marked by the green dotted lines. The map has a marked vertex, denoted by its black colour, and a
distinguished edge with an orientation, denoted by the arrow.

2.1 Introduction to bipartite planar maps

A planar map m is a non-intersecting graph, meaning that it is a graph which can be embedded in the
plane or in the sphere. Alternatively, a planar map can be seen as a gluing of finitely many polygons.
Lets consider a map m. As it is a graph, it has a set of vertices which we will denote by V(m). It also
has a set of edges, which we express with E(m). This means that we can write m = (V(m), E(m)). The
cardinality of the set E(m) is also called the volume of a map m, meaning |E(m)| = |m|. A map is
therefore called finite if |E(m)| < ∞. Lastly, we introduce the set of faces, denoted by F(m). This
can be thought of as the set of labeled polygons which are glued together to get the planar map.
In this thesis, only bipartite planar maps will be considered. A map being bipartite means that one
can label the planar map with two labels, such that two neighbouring vertices do not get the same
label [40]. Equivalently, this means that the faces of the map are of even degree [41, p. 8]. The
reason for only considering bipartite maps, is that only for bipartite maps one gets a ’clean’ recursive
formulation (see Section 2.5.1 and Section 2.5.2 ).
The root edge, is an edge e ∈ E(m), which is oriented and marked. If a planar map has a root edge,
it is called a rooted planar map. The face to the right of the root edge is called the root face fr
or alternatively the external face. The contour of the root face is also called the boundary of the
map. An example of a boundary can be seen in Figure 2. The degree of the root face, and therefore
the degree of the boundary, is called the perimeter. In this thesis, we only consider maps with a
perimeter of even length, as we only consider bipartite maps [22].
For easier enumeration, one can distinguish a specific face of degree 2p in the map which is not the
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root face. Notation wise, in the case of a marked vertex, we say that is a distinguished face of degree
0. The distinguished face is called the target face. A map with a distinguished face of degree 2p will
be denoted by m2p. In the case of a distinguished face of degree 0, it will be denote by m•.
The set of maps m with a perimeter of length 2l with an oriented marked edge is denoted by M2l.
Analogously, the set of maps m2p with a perimeter of length 2l with an oriented marked edge and a
target face of degree 2p is denoted by M2l

2p. Lastly, we define M2l
2p[n] as the set of planar maps with

perimeter 2l, distinguished face of degree 2p, a root edge and consist of n edges, meaning |m| = n.

2.2 Weight sequence q

Before we can define the partition function, we need to introduce a weight sequence. A weight
sequence is a sequence q = (qk)k∈N, where qk ∈ R≥0. The entry qk determines the likelihood of having
a face with degree 2k in a map. The weight sequence is therefore a parameter one can introduce to
determine the kind of surfaces one looks at.
As an example, consider the weight sequence where we set q2 = 1 and for all other i ∈ N we set qi = 0.
With this weight sequence, one only considers maps with faces of only degree 4. These surfaces are
also called quadrangulations.

2.2.1 First formulation of partition function W
(2l)
2p

Let us consider a map m2p ∈M2l
2p. Let q = (qk)k∈N be a weight sequence. One can define the partition

function of maps with perimeter 2l and target face 2p by

W
(2l)
2p = 1 +

∑
m2p∈M2l

2p

∏
f∈F(m2p)\fr

qdeg(f), (9)

where the 1 is added for planar maps with 2l = 0 and 2p = 0. In equation (9),M2l
2p is the set of maps

m2p with a perimeter of length 2l, an oriented marked edge and a target face of degree 2p and F (m2p)
is the set of faces of m2p. Note that planar maps where 2l = 0 and 2p > 0 are not counted in the
partition function.

Analogously, we can define W
(2l)
2p [n], which is the partition function with the added constraint that the

number of edges is n. This is done by swapping M(2l)
2p to M2l

2p[n] in equation (9). One can of course

also define W (2l). In this case the 1 in equation (9) is added for planar maps with 2l = 0.

2.2.2 Admissibility of the weight sequence

To define the partition function in equation (9) the weight sequence qk was introduced. It is natural

to only consider qk, such that W
(2l)
2p < ∞, for any l ∈ N and any p ∈ N. Weight sequences that fulfil

this characteristic are called admissible.
The weight sequence q being admissible is equivalent to fq(x)− x = 0 having a solution for x ∈ R≥0

, where fq(x) is defined by [42]

fq(x) = 1 +

∞∑
k=1

qk

(
2k − 1

k

)
xk. (10)

The smallest positive solution to equation (10) is defined as Zq. We also define the constant cq, by
cq = 4 ·Zq. These terms will come back later when considering the explicit formulation of the partition

functions, such as W
(2l)
2p .
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2.2.3 Probability measure

Using the weight sequence, one can define a measure wq on the set of all finite planar maps, denoted by
M [37]. This can be used to define a probability measure, which can tell us how surfaces will probably
look like in certain limits. One of such limits is the the limit where the perimeter goes to infinity.

Theorem 2.1. Let q be a weight sequence such that: ∃i ∈ N : qi 6= 0 and ∃l ∈ N : W 2l <∞. The set
of all finite planar maps M has a σ−finite measure, defined by

wq (m) =
∏

f∈F(m)\fr

qdeg(f)/2. (11)

For the definition of a σ−finite measure and the proof of this theorem, see Section D. Note that the
probability distribution on the space of planar maps, which follows from this measure is, as outlined
in Section 1, is the probability distribution of your space-time.

2.3 Explicit formulation of the partition functions

To analyze how planar maps m with a root edge looks like in the limit where the perimeter goes to
infinity, we need to have more explicit formulation of the partition function W 2l

2p and W 2l. This will

be done by first getting an explicit formulation for W 2l
2p[n], which will give us the ability to get a more

explicit formulation of both W 2l
2p and W 2l.

2.3.1 Explicit formulation of the partition function W 2l
2p[n]

The idea is to express the partition function W 2l
2p[n] more explicitly then in equation (9) by introducing

a new function gq. Using fq(x) introduced in equation (10), we define

gq (z) =
fq (z · Zq)

fq (Zq)
. (12)

The gq(z) in equation (12) is normalized: gq(1) = 1. Note also that gq(z) gives us a generating
function for a probability measure ξq(k − 1) on N [22]

gq(z) =

∞∑
k=0

ξq (k − 1) zk. (13)

The probability measure ξq(k−1) can then be used to define a probability measure ξq(k) on N∪{−1}.
See appendix D.5 for the definition of a probability measure. The probability measure ξq(k) can then
define a (one-dimensional) random walk Yn. The finer details are shown in [22, A.2-A.15]. What

matters is that one can get an explicit formulation for W
(2l)
2p [n]

W 2l
2p[n] =

l

2

(
2l

l

)(
2p

p

)
(Zq)l+p · 1

n
P[Yn = −l − p]

=
l

2 (l + p)

(
2l

l

)(
2p

p

)
(Zq)l+p · P[τ−l−p = n],

(14)

where Zq has been defined in Section 2.2.2, P[Yn = −2l− 2p] is the probability of the random walk Yn
being at −2l − 2p after n steps and τ−2l−2p is the hitting time of −2l − 2p by the random walk Yn.
For an explicit proof for this theorem, see [22, p. 51-53].
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2.3.2 Explicit formulation of the partition function W
(2l)
2p

In Section 2.3.1 we derived an explicit equation for W 2l
p [n]. Summing over the number of edges in the

planar map, gives us the partition function

W
(2l)
2p =

∞∑
n=0

W 2l
2p[n+ 1] =

l

2 (l + p)

(
2l

l

)(
2p

p

)
(Zq)l+p ·

∞∑
n=0

P[τ−l−p = n]

= 2−2l−2p−1

(
2l

l

)(
2p

p

)
l

l + p
cl+pq ,

(15)

where cq is as defined in Section 2.2.2. The details of the proof can be found in [22, p. 51-53], the
important part to note is that the calculation for the partition function is dependent on the random
walk defined by gq. The result however, is only dependent on the parameters l and p, and cq, which
is defined using the admissibility of the weight sequence q.

Figure 3: To the left is a map with a root edge and 23 edges without a marked face. A new map with
24 edges is created, as seen to the right, by adding one edge and marking the newly created face of
degree 2. This face is coloured orange.

2.3.3 Explicit formulation of the partition function W (2l)

Analogously to Section 2.3.3 we want to define W (2l) by summing over W 2l
2 [n]. This can be done by

using W 2l
2 [n+ 1] = n ·W 2l [n]. This holds, as from any map without a target face and n edges, one

can create n maps with n + 1 edges and a target face of degree 2 by adding one edge along another
edge and making the newly created face the target face. This can be done in n ways as there were n
edges of the maps. See Figure 3 for an example of this process.
Filling in p = 1 in equation (14) and using the above formulation, we get

W (2l) =

∞∑
n=0

1

n
W 2l

2 [n] = 2−2l−1

(
2l

l

)
l

l + 1
cl+1
q · E

[
1

τ−l−p − 1

]

=
l

l + 1

(
2l

l

)∫ Zq

0

ds (fq (s)− sfq (s)) sl−1.

(16)

Again, for the details of the proof, we refer to [22, p. 53-54]. The importance still lays in the dependence
of the calculation on the random walk created by gq and the (explicit) dependence of the result on the
perimeter l and the function fq.
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2.4 Criticalities

As stated in Section 1, we want to consider surfaces which microscopically differ, but give the same
macroscopic characteristics. In this section we will introduce constraints on the microscopic level.
Models for surfaces that fulfill these constraints will share some macroscopic characteristics, like the
critical exponent. The details surround the macroscopic characteristics will be discussed in later
sections.

2.4.1 Definitions of criticalities

The microscopic details we will put constraints on is the weight sequence q via the function fq(x). Let
fq(x) be given by equation (10). Recall that Zq is the smallest positive solution to fq(x) = x. Using
the convention from [42], we define a weight sequence q = {qk}k>0 to be critical if

f ′q (Zq) =

∞∑
k=1

qk

(
2k − 1

k

)
Zk−1
q k = 1. (17)

Using the definition of criticality we define when the weight sequence is not critical. Furthermore,
we will make a further distinction between critical weight sequences, categorizing them in generic
critical weight sequences and non-generic critical weight sequences. The weight sequences that we are
interested in can therefore be classified into three cases:

• The weight sequence q is called subcritical if f ′q(Zq) 6= 1.

• The weight sequence q is called generic critical if f ′q(Zq) = 1 and the f ′′q (Zq) <∞

• The weight sequence q is called non-generic critical if f ′q(Zq) = 1 and for s↗ Zq:

fq(s) = Zq − (Zq − s) + κ(Zq − s)α−1/2 + o
(

(Zq − s)α−1/2
)

(18)

with α ∈ (3/2, 5/2) and κ ∈ R.

2.4.2 Critical exponents

Using the definitions from Section 2.4.1, we will introduce the concept of critical exponents. These
exponents characterise the different kinds of weight sequences. We will define the exponents using
fq(x) from equation (10).
Note that for the non-generic critical case, we had an approximation for fq(x) for s near Zq. We
can get a similar approximation for fq(x) in the subcritical or generic critical case using the Taylor
expansion. Let s↗ Zq. In the subcritical case, we have

fq(s) = Zq + f ′q(Zq)(s− Zq) +
f ′′q (Zq)

2
(s− Zq)2 + o

(
(s− Zq)

2
)

= Zq − (1− κ)(Zq − s) +
f ′′q (Zq)

2
(Zq − s)2 + o

(
(Zq − s)2

)
.

(19)

It is easy to see, that we can get equation (19) from equation (18) by setting α = 3/2. In equation
(19), κ ∈ (0, 1) holds, because f ′q(Zq) < 1 [22].
In the generic critical case we get the following approximation for s↗ Zq

fq(s) = Zq + f ′q(Zq)(s− Zq) +
f ′′q (Zq)

2
(s− Zq)2 + o

(
(s− Zq)

2
)

= Zq − (Zq − s) + κ(s− Zq)2 + o
(

(s− Zq)
2
)
.

(20)
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As one can see, equation (20) also follows from equation (18). This time it follows when we set α = 5/2.
Using the approximation of fq(s) for s↗ Zq, we set the critical exponents for the different criticalities
as follows: the subcritical exponent is 3/2, the generic critical exponent is 5/2 and the non generic
critical exponent can take values in (3/2, 5/2).

2.5 Tutte-equations

As we are working with bipartite planar maps, we can easily find a recursive formulations for the
partition functions. These recursive formulations are called the Tutte-equations [43] and will be used
to analyze the W (2l) in the l → ∞ limit, which in turn should tell us how surfaces will look like
depending on their critical exponents.

2.5.1 Tutte-equation for W
(2l)
•

In this section only bipartite planar maps with a root edge, perimeter of 2l and a marked vertex will
be used. As we consider maps with a target face of degree 0, we can set p to 0, meaning we will analyse

W
(2l)
0 = W

(2l)
• .

Let m• ∈ M2l
• be non-trivial. Note that a root edge e is a marked oriented edge of the perimeter,

which is oriented anti-clockwise. When this root edge is removed, there are two possibilities: either
the map is still connected, see Figure 4, or it is separated into two different maps, see Figure 5. In
the first case, we now have a perimeter 2l + 2k − 2, where 2k is the degree of the face incident to the
deleted edge. In the second case, we have two separate connected maps with perimeters 2l − 2 − 2l1
and 2l1. Note that only one of these maps has the marked vertex. This leads to the Tutte-equation

W
(2l)
• =

∞∑
k=1

qkW
(2l+2k−2)
• + 2

l−1∑
l1=0

W
(2l−2l1−2)
• W (2l1), (21)

where qk is the weight of a face with degree 2k; W 2i
• is the partition function of bipartite planar maps

with a marked vertex, root edge, and root face with degree 2i and W 2j is the partition function of
bipartite planar maps with a root edge and root face with degree 2j.

Figure 4: The first possibility: deleting the oriented edge will keep the map connected. The perimeter
now has length 2l + 2k − 2.
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Figure 5: The second possibility: deleting the edge causes the map to fall into two disconnected maps.
Note that only one of the maps has the market point and that the deleted edges counts for two in the
perimeter: once for the left to the right, once for the right to the left.

2.5.2 Tutte-equation for W (2l)

Analogously to the case of W
(2l)
• discussed in Section 2.5.1, we can get a generating function for the

partition function W (2l). In this case we just consider bipartite planar maps with a root edge and a
perimeter of length 2l. For these planar maps we get

W (2l) =

∞∑
k=1

qkW
(2l−2k−2) +

l−1∑
l1=1

W (2l−2l1−2)W (2l1). (22)

Unlike in equation (21), there is no factor 2 in front of the second sum. This is because no distinction

can be made when dealing with the second possibility, depicted in the W
(2l)
• case by Figure 5, as there

is no marked vertex.

2.6 Generating functions

Given the different groups of weight sequences specified in Section 2.7, we can analyze the generating
functions defined using the partition functions defined in Section 2.3. This will give us more abilities
to characterize the universality classes, by giving us more analysis on the critical exponents for the
different groups of weight sequences.
It is assumed that the reader has some familiarity with generating functions. For a short introduction
of generating functions, see Appendix B.

2.6.1 Generating function W• (z)

The generating function W• (z) for bipartite planar maps with perimeter 2l, a marked root edge and
a marked vertex is defined by

W• (z) =

∞∑
l=0

W
(2l)
• z−2l−1. (23)

This is a relatively standard generating function, meaning that one can easily find the analytical
formulation for it.

Theorem 2.2. Let q be an admissible weight sequence and let z > cq. The generating function W• (z)
for bipartite planar maps with perimeter 2l, a marked root edge and a marked vertex given by equation
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(23) is analytically given by

W• (z) =
1

2
√

(z2 − cq)
. (24)

The proof of Theorem 2.2 can be found in the Appendix B.1.

2.6.2 Generating function W (z)

Analogously to Section 2.6.1, we define the generating function for bipartite planar maps with perimeter
2l and a marked root edge by

W (z) =

∞∑
l=0

W (2l)z−2l−1. (25)

Looking at equation (16), one can see that finding an analytical form for W (z) will not be as
straightforward as for W• (z). We will therefore express W (z) using W• (z) and the Tutte-equation
(21) for W 2l

• . Firstly, we define U ′(z) and M(z) similarly as done in [38]

U ′ (z) =

∞∑
k=1

qkz
2k−1 (26)

M (z) = −1 +

∞∑
k=2

k−2∑
l=0

qk.W
(2k−2l−4)
• z2l. (27)

Using the Tutte-equation (21) for W
(2l)
• we find the relation

[z − U ′(z)− 2W (z)]W• (z) = −M(z). (28)

Rewriting equation (28), and using equation (24), we get for z > cq,

W (z) =
1

2

[
z − U ′(z) + 2M(z)

√
(z2 − cq)

]
. (29)

This gives us an alternative expression of W (z), as it is a generating function for a solution to the
Tutte-equation (22) [38, p. 6-9]. We will use this expression in the next sections.

2.6.3 Coefficients of W (z)

Using the expression of W (z) given in equation (29), one can analyse the W (2l) in the l →∞ for the
noncritical, generic critical and non-generic critical case.

Theorem 2.3. Let q be an admissible weight sequence and let z > cq. Let the generating function
W (z) for bipartite planar maps with perimeter 2l, a marked root edge and a marked vertex be given
by equation (25). Then, the following holds:

i. If the weight sequence q is chosen such that M
(√
cq
)
6= 0, then JW (z)Kz−n v κ n−3/2c

−n+1/2
q ,

where κ is a constant in R.

ii. If the weight sequence q is a finite sequence and M
(√
cq
)

= 0, then JW (z)Kz−n v κ n−5/2c
−n+3/2
q ,

where κ is a constant in R.

iii. If the weight sequence q is chosen such that M
(√
cq
)

= 0 and has leading term
(
z2 − cq

)γ
where

γ ∈ (0, 1], then JW (z)Kz−n v κ n−γ−1/2c
n+γ+1/2
q , where κ is a constant in R.
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Proof. First lets do some generic analysis for W (z). It is easy to see from equations (26) and (27),
that the most important part of equation (29) is g(z) = M(z)

√
(z2 − cq), as that is the only term

which can cause a divergence. The derivative of g(z) is

g′(z) = M ′(z)
√

(z2 − cq) +
M(z)z√
(z2 − cq)

. (30)

Equation (30) will be used to analyze the growth of the coefficients of W (z).

Proof for i. Let M
(√
cq
)

= d 6= 0. Equation (30) shows that the convergence radius of g(z) is√
cq, as the first singularity of g(z) is

√
cq. Rewriting g(z), we get

g(z) =
√
cqM (z)

√
z2

cq
− 1. (31)

Using the transfer theorem G.1 (see Appendix G also for an explanation and definitions of the notations
used) and equation (24) one then sees that

Jg(z)Kz−n v κ n−3/2c−n+1/2
q . (32)

From equation (23), we see that this implies that JW (z)Kz−n v κ n−3/2c
−n+1/2
q , with κ ∈ R.

Proof for ii. Let M
(√
cq
)

= 0. The derivative of g(z) at
√
cq becomes

g′(
√
cq) = M ′(

√
cq)
√

(
√
cq

2 − cq) = 0. (33)

The second derivative of g(z) is given by

g′′(z) = M ′′(z)
√

(z2 − cq) +
M ′(z)z√
(z2 − cq)

. (34)

Note that equation (34) therefore shows that g(z) still has a singularity at
√
cq as M ′

(√
cq
)√

cq 6= 0.
Consider the case in which only finitely many values for qk are considered, say up to k = d. The second
term in equation (27) then becomes

d∑
k=2

k−2∑
l=0

qkW
(2k−2l−4)
• z2l. (35)

If one has M
(√
cq
)

= 0, one gets

−1 +

d∑
k=2

k−2∑
l=0

qkW
(2k−2l−4)
• z2l =

(
z2 − cq

)
· P (z). (36)

Where P (z) is a polynomial in z. Note that one can not have higher powers of
(
z2 − cq

)
as M(z)

needs to be a convex polynomial for equation (28) to hold. Also note that from equation (36) we can
not have a power α, such that 0 < α < 1. Therefore, g(z) gets the form

g(z) = c3/2q

(
z2

cq
− 1

)
· P (z)

√
z2

cq
− 1

= c3/2q

(
z2

cq
− 1

)3/2

P (z).

(37)
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Using the transfer theorem G.1 on equation (37), one gets

Jg(z)Kz−n v κ n−5/2c−n+3/2
q . (38)

This implies that for finitely many qk, we have JW (z)Kz−n v κ n−5/2c
−n+3/2
q , with κ ∈ R.

Proof for iii. As seen by equation (34), the first singularity of g(z) is still
√
cq. Let M (z) for

z ↗ √cq be given by

M (z) = λ
(
z2 − cq

)γ
+ o

((
z2 − cq

)γ)
, (39)

where γ ∈ (0, 1] and λ ∈ R.
Using the expression for M(z), we get for g(z)

g (z) =
[
λ
(
z2 − cq

)γ
+ o

((
z2 − cq

)γ)]√
(z2 − cq)

=

[
λ cγ+1/2

q

(
z2

cq
− 1

)γ+1/2

+ o

((
z2

cq
− 1

)γ+1/2
)]

.
(40)

Using the transfer theorem G.1 on equation (40), one sees that

Jg(z)Kz−n v κ n−γ−3/2c−n+γ+1/2
q . (41)

This implies that we have JW (z)Kz−n v κ n−γ−3/2c
−n+γ+3/2
q , with γ ∈ (0, 1] and κ ∈ R.

Note that if we have infinite many qk, we don’t get the restriction on the (z2− cq) exponent in the
second term of M(z). This means that we can have (z2− cq)α term, where 0 < α ≤ 1 hold. Also note
that in the γ = 1 case, we have that equation (39) is the Taylor expansion of M(z).

2.6.4 Critical exponents and the form of M(z)

In Section 2.6.2, we introduced M(z) in equation (27). In Section 2.6.3, we found a way to analyze
the growth of the coefficients of W (z) depending on some constraints on M(z). In this section, we
will introduce the link between the different groups of weight sequences outlined in Section 2.4.1 and
M(z).

Theorem 2.4. Let q be an admissible weight sequence and let z → ∞. Let W
(2l)
• be the partition

function for bipartite planar maps with perimeter 2l, a marked root edge and a marked vertex. For
M(z) defined equation (27) the following holds:

i. The weight sequence q is a subcritical weight sequence, if and only if M
(√
cq
)
6= 0

ii. The weight sequence q is a generic critical weight sequence, if and only if M
(√
cq
)

= 0 and the
leading term of M (z) for z ↗ √cq is (z − cq)

iii. The weight sequence q is a non-generic critical weight sequence, if and only if M
(√
cq
)

= 0 and
the leading term of M (z) for z ↗ √cq is (z − cq)γ where γ ∈ (0, 1)

This proof will not be given, as it is based on peeling algorithms on the map. The idea is that
using peeling algorithms, one can define a measure ν on Z, which makes it possible to define a random
walk S. From analysis of this random walk and the measure that defines it, Theorem 2.4 follows, as
can be seen in [39, p. 9].

From Theorem 2.3 and Theorem 2.4, Corollary 2.4.1 follows.
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Corollary 2.4.1. Let q be an admissible weight sequence and let z → ∞. Let W
(2l)
• be the partition

function for bipartite planar maps with perimeter 2l, a marked root edge and a marked vertex. The
following holds:

i. If the weight sequence q is a subcritical weight sequence, then W
(2l)
• v κ l−3/2c

−2l+1/2
q , with

κ ∈ R.

ii. If the weight sequence q is a generic critical weight sequence, then W
(2l)
• v κ l−5/2c

2l+5/2
q , with

κ ∈ R.

iii. If the weight sequence q is a non generic critical weight sequence, then W
(2l)
• v κ l−γ−3/2c

2l+γ+1/2
q ,

where γ ∈ (1, 2) and κ ∈ R.

Proof. Using the definition (25) of W (z), we see that JW (z)Kz−n−1 = Wn. From Theorem 2.3we

therefore conclude that if M
(√
cq
)
6= 0, then Wn v κ (n + 1)−3/2c

−n−1/2
q . If M

(√
cq
)

= 0 and we

allow only finite many non-zero entries in q, we have Wn v κ (n+1)−5/2c
−n+1/2
q . If we allow infinitely

many entries in q and have M
(√
cq
)

= 0 and its leading term is
(
z2 − cq

)γ
, where γ ∈ (0, 1], then

Wn v κ (n+ 1)−γ−1/2c
−n+γ+3/2
q . The corollary now follows from Theorem 2.4.

2.7 Universality classes

Combining all the previous sections, we are able to analyze the different universality classes. We will
label the universality classes by the critical exponent α from equation (18), which we have defined for
different groups of weight sequences in Section 2.4.2. As we have seen in Section 2.6.4, these critical
exponents are the same exponents for the partition function of W 2l if the perimeter goes to infinity.
In this section, we will also show how surfaces from the different universality classes will look like in
this limit.

2.7.1 The α = 3/2 universality class

The α = 3/2 universality class corresponds to a model with a subcritical weight sequence. From
theorems 2.3 and 2.4, we get the following corollary:

Corollary 2.4.2. Let q be an admissible weight sequence. The following are equivalent:

i. The weight sequence q is subcritical

ii. For s↗ Zq we have fq(s) = Zq − (1− κ)(Zq − s) + o (Zq − s)

iii. log
[
W 2l

cq

]
v −3/2 log [l] as l→∞.

Note that the value for α in (18) for the subcritical case, agrees with the exponent of l in the W 2l

term for the l→∞ limit.
In theorem 2.3, we made a crude estimate of the growth of the coefficients of W (z). The l−3/2 term
holds, but a more specific coefficient can be found in [22, p. 80]

W 2l v
pq
2
c2l+2
q l−3/2, (42)

for l→∞, where

pq =
κZ

α−3/2
q

2
√
π

Γ

(
α+

1

2

)
. (43)

We can derive another characteristic of W (2l) in this case, from the fact that the weight sequence q is
not critical.
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Theorem 2.5. Let q be an admissible weight sequence and let m2p ∈ M (2l)
2p be a random planar map

with perimeter 2l, an oriented edge and a target face of degree 2p. The weight sequence q is subcritical
if and only if E(|m2p|) <∞.

The proof is based on the random walk defined by gq and can be found in [22, p. 77-78]. For notes
on Theorem 2.5 and the link to the σ-measure wq defined in section 2.2.3 see appendix D.5.1. In this
section the physical interpretation of this theorem will be discussed.
Remember from Section 2.1 that |m| is the number of edges. In the subcritical case, the expected
number of edges is finite, even if l→∞. This means, that it wants to minimize the number of edges,
while the number of edges in the perimeter goes to infinity. This means that the number of faces,
which can be interpreted as the surface area, is minimized. This causes the surface to get a tree-like
form as seen in Figure 6.

Figure 6: An artist sketch of the subcritical case in the l → ∞ case. The surface is minimized, while
the perimeter, coloured in blue, becomes infinitely long. This is why the planar map has a tree-like
structure: the only way to minimize the number of edges, while still having the perimeter going to
infinity is by minimizing its surface. Source: G. Ray [44].

2.7.2 The α = 5/2 universality class

The α = 5/2 universality class corresponds to a model with a generic critical weight sequence. From
previous analysis of fq, Theorem 2.3 and Theorem 2.4 we get the next corollary

Corollary 2.5.1. Let q be an admissible weight sequence. The following are equivalent:

i. The weight sequence q is generic critical

ii. For s↗ Zq we have fq(s) = Zq − 1(Zq − s) + κ(Zq − s)2 + o
(
(Zq − s)2

)
iii. log

[
W 2l

cq

]
v −5/2 log [l] as l→∞

The more specific description for W 2l in the limit where l→∞ given in [22, p. 80-81] is

W 2l v
pq
2
c2l+2
q l−5/2, (44)
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where pq is still defined by equation (43). Note that again, the value for α from from equation (20)
agrees with the exponent of l in the W 2l term for the l→∞ limit.
As the weigh sequence considered is critical, theorem 2.5 gives us that the number of expected edges
is infinite. This means that, unlike in the subcritical case, there is no surface area minimization in the
l → ∞ limit. This causes the surface to get not take the form of the tree, but rather as the surface
shown in Figure 7. The Figure also shows that the surface is fractal, as there are repeating forms when
one zooms into the surface. Specifically, one sees these stems-like parts of the surface in different sizes.
Note that there are no holes in the surface.

Figure 7: A figure of how a planar map should look like in the l →∞ limit, if the weight sequence is
generic critical. The surface area is not minimized and the surface is fractal. Source: T. Budd [45]

2.7.3 The α ∈ (3/2, 5/2) universality class

The α ∈ (3/2, 5/2) universality class corresponds to a model with a non-generic critical weight
sequence. Using again theorems 2.3 and 2.4, we get the following corollary:

Corollary 2.5.2. Let q be an admissible weight sequence. The following are equivalent:

i. The weight sequence q is non-generic critical

ii. For s↗ Zq we have fq(s) = Zq − 1(Zq − s) + κ(Zq − s)α−1/2 + o
(
(Zq − s)α−1/2

)
iii. log

[
W 2l

cq

]
v −α log [l] as l→∞

Here the exponent α of l in the W 2l term for the l → ∞ limit (seen in the third item of theorem
2.5.2) is the same α from equation (18). Note that i � ii is trivial by the definition of non-generic
critical as seen in Section 2.4.1.
In [22, p. 81-82], the following more specific relation has been found for the partition function W 2l:

W 2l v
pq
2
c2l+2
q l−α. (45)

The surfaces in the non-generic critical case share some characteristics with surfaces from the generic
critical case. Firstly, there is no minimization of the surface area in the case that l→∞. This means
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that surfaces in the non-generic critical model will not look like trees. Secondly, the surfaces are fractal,
as they can be split into parts that resemble the original surface. An example of a non-generic critical
surface can be found in Figure 8.
Where surfaces from the non-generic critical case differ is the fact that they have holes in them, as can
be seen in Figure 8. In the l→∞ limit, there are holes in the surface that are large enough to still be
notable [37].

Figure 8: A figure of how a planar map in the non-generic critical case would look like in the l → ∞
limit. The perimeter is highlighted in red. The surface does not have a tree like form and has holes in
the surface. These holes are outlined in blue. Source: T. Budd [45].

The interval (3/2, 5/2) can actually be split into two intervals and one point: (3/2, 2), (2, 5/2) and
2. The first interval (3/2, 2) is called the dense phase [37, p. 24-34], while the second interval (2, 5/2)
is the dilute phase [37, p. 20-24]. There is therefore a phase transition at α = 2. In the dense phase
the volume V of a ball with radius r, measured with the graph distance, is exponential in r . In the

dilute phase the distance of the ball is of the order rd, where d =
a− 1

2

α−2 [37]. This means that the
surfaces in the two phases have different macroscopic characteristics.
Planar maps from the dense phase also have relatively more holes than planar planar maps from the
dilute phase [22]. For a visualisation see Figure 9. However, as they still share the same characteristic of
having holes in the surface which are large enough to still be seen in the l→∞ limit, no distinguishment
has been made in this thesis.
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Figure 9: Two sketches of planar maps for the different phases for the non-generic critical model. The
planar map to the left is a sketch of a surface from the dilute phase. The planar map to the right is a
sketch of a surface in the dense phase. Source: T. Budd [37]
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3 Hyperbolic surfaces

In this chapter, hyperbolic surfaces will be analysed to see if one can find a model for continuous surfaces
which is analogous to the models for planar maps. Elementary definitions regarding (Riemannian)
manifolds can be found in Appendix E.

3.1 Hyperbolic surfaces

Figure 10: A figure of a hyperbolic surface with four
boundary components. The top three are denote by
a darker colouring, while the lower one is denoted
by the dotted line.

Before we can analyze partition functions,
the critical exponents, etc. like we did
in the planar map case, we need to be
clear about what kind of surfaces we are
looking at. Hyperbolic surfaces are two-
(real)dimensional Riemannian manifolds with
constant negative curvature and a conformal
structure [46]. Alternatively, hyperbolic
surfaces can be considered as a connected one-
(complex)dimensional manifold with constant
negative curvature [25]. Hyperbolic surfaces are
closed and orientable [47] (see Appendix E for
definitions).
Every closed orientable surfaceX is diffeomorphic
to a connected sum of a 2-sphere and a finite
number of tori [26]. This means that X ∼=
S2 #g

i=1 T2. We analyze a more general type of
hyperbolic surfaces, so-called surfaces of finite
type. A surface of finite type is a surface one
can obtain from a closed surface by removing a
finite number of smooth open discs and points.
Therefor, one can classify a surface S by three
numbers: (g, b, n) [48]:

i. g stands for genus and is the number of tori
in the connected sum that the surface S is
diffeomorphic to

ii. b stands for the number of disks removed
from a closed surface X to get the surface
S

iii. n stands for the number of punctures removed
from a closed surface X to get the surface
S

Notation wise, we introduce the idea of a signature of a surface, which is conventionally denoted by
Σ(g,b,n) [26].
The removal of discs corresponds to the surfaces S having boundary components. These boundary
components are geodesics on the surface and these geodesics will be denoted using β1, ..., βn. Note
that one can use the Riemannian metric to get the length of the boundary components. We will allow
boundary components of lengths 0, which are punctures or alternatively get called cusps. See Figure
10 for an example of a surface with four boundary components.
In this thesis, only surfaces with g = 0 will be discussed. This implies that S ∼= S2 \ {β1, ..., βn}, which
means that the surfaces discussed will have the topology of the sphere with holes and punctures.
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3.2 Weil-Peterson volume

Before we can introduce the partition function of hyperbolic surfaces, we need to discuss the Weil-
Peterson volumes. This is an integration over all possible surfaces with a given set of boundary
components with specified lengths. The volume will be introduced by first explaining pants decomposition,
Teichmüller space, the Moduli space and introducing Fenchel-Nielsen coordinates.

Figure 11: Example of a pants decomposition of a surface S which is diffeomorphic to Σ0,4,0. The
removal of the geodesic α1 leads to two pairs of pants.

3.2.1 Pants decomposition

The idea of a pants decomposition is to divide a given surface by creating (sub)surfaces with three
boundary components (where boundary components of length 0 are allowed). These pairs of pants,
denoted by Pi, are diffeomorphic to Σ0,3,0. A pants decomposition P = {α1, ..., αk} of a complete,
orientable surface S of finite area, is a collection of pairwise disjoint simple closed geodesics αi in S,
such that S \

(
∪ki=0αi

)
is a collection of pairs of pants [49]. For an example of a pants decomposition,

see Figure 19. It has been shown that every complete, orientable hyperbolic surface S of finite area
admits a pants decomposition [26, p. 43-46].

3.2.2 Teichmüller space and Moduli space of hyperbolic surfaces

Before we can integrate over surfaces, we need to define a space of hyperbolic surfaces. This space is
the Moduli space and it will be defined using the Teichmüller space.
Let Σg,b,n be a surface with a hyperbolic metric. Let β1, ..., βb be the boundary components with
respective length L1, ..., Lb. The Teichmüller space of Σg,b,n with boundary components L1, ..., Lb is
denoted by Tg,b,n (L1, ..., Lb) = {(X, f) |X is a Riemannian Surface ∧ f : Σg,b,n → X} / v, where f is
an orientation preserving diffeomorphism, such that Lg (f(βi)) = Li. This means that the length of the
boundary components is preserved by f . The equivalent relation is defined as follows: (X, f) v (Y, h)
if and only if ∃m : X → Y isometry, such that h−1 ◦m◦f : Σg,b,n → Σg,b,n is homotopic to the identity

[50, p. 21-23]. An alternative shorter notation for the TeichmÜller is T (Σg,b,n). If S is a hyperbolic
surface diffeomorphic to Σg,b,n, we may also write T (S) instead.
Having defined Teichmüller space, we want to get to the Moduli space for the same surface Σg,b,n, as
this is where the Weil-Peterson volumes work on. Let S0 be a compact hyperbolic surface of finite type
such that ∃ Σ ⊂ S0 which is a finite set such that Σg,b,n = S0 \ Σ. Having introduced this notation,
we define the mapping class group MCG (Σg,b,n) of the surface Σg,b,n by

MCG (Σg,b,n) = Diff+ (Σg,b,n, δΣg,b,n,Σ) /Diff+
0 (Σg,b,n, δΣg,b,n,Σ) . (46)

In equation (46), the set Diff+ (Σg,b,n, δΣg,b,n,Σ) =
{f : Σg,b,n → Σg,b,n|f orientation, boundary component and punctures preserving diffeomorphism},
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where f preserves boundary components set-wise, and punctures point-wise. The set
Diff+

0 (Σg,b,n, δΣg,b,n,Σ) =
{
f : Σg,b,n → Σg,b,n|f ∈ Diff+ (Σg,b,n, δΣg,b,n,Σ) ∧ f homotopic to Id

}
[51].

Now, one can define the Moduli space Mg,b,n (L1, ..., Lb)

Mg,b,n (L1, ..., Lb) = Tg,b,n (L1, ..., Lb) /MCG (Σg,b,n) . (47)

Note that MCG (S) leaves boundary components and punctures ’marked’, meaning that if surface S
and S′ are isometric, but all isometries permute the boundary components or punctures, they represent
two different points in Mg,b,n (L1, ..., Lb) [26, p. 65].

Figure 12: Example of a creation of a new surface from a hyperbolic surface with four boundary
components with given lengths, using pants decomposition. Using the pair of pants decomposition,
one can get two different pair of pants. Twisting one of the pair of pants and then ’glueing’ the pants
together gives us a surface that is different from the original surface. However is is still diffeomorphic
to Σ0,4,0, and has boundary components with the same lengths as the previous surface.

3.2.3 Fenchel-Nielsen coordinates

The intuition behind the Weil-Peterson volume and Frenchel-Nielsen coordinates can be seen in Figure
12. Using a pants decomposition P for a hyperbolic surface S, one can ’twist’ the pairs of pants in
S \ P to create new surfaces. Combining the twist with changing the lengths between the boundary
components of the pair of pants, we get different surfaces even though they have boundary components
with the same lengths.
More formally, one needs to introduce so-called Fenchel-Nielsen coordinates in order to get the Weil-
Peterson volume. The coordinates are given by the length function lα : T (S) → R3g−3+n and
the twist function τα : T (S) → R, where α is a simple closed geodesic that is part of a pants
decomposition P of S. The volume is defined by integrating using these coordinates. In the following
sections the functions will be derived for a surface S of finite type without boundary that admits a
complete metric, given any pants decomposition P = {α1, ..., αk}.

Let α be an essential closed curve on S. Note that every [X, f ] ∈ T (S) can be seen as a marked
hyperbolic surface. Remember that f : Σg,b,n → X is an orientation and boundary component length
preserving diffeomorphism. There is therefore a unique geodesic δα in the homotopy class of f (α),
which is of minimal length [26, p. 43-45]. We now define the length function lα by

lα ([X, f ]) = (Lg (δα))α∈P , (48)

were g is the hyperbolic metric.
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Figure 13: An example of a Riemannian surface of of signature Σ0,4,0 with a collection of disjoint
simple closed curves Γ coloured in green. The surface to the left can be decomposed into two pairs of
pants P1 and P2 by the curve α, shown in black on the surface to the right. The intersection of Γ∩Pi
connects the boundary components of of pair of pants Pi.

For the construction of the twist function, we introduce Γ = {γ1, ..., γk}, which is a collection of
disjoint simple closed curves, such that for every pair of pants Pi ∈ S \ P: Γ ∩ Pi = {γ̃i,1, γ̃i,2, γ̃i,3},
where the curves γ̃i,k connect different pairs of boundary components of Pi. For an example of these
curves γ̃i,k, see the green lines on the surface on the right in Figure 13.
Take an α ∈ P, and for simplicity sake, assume that α bounds two pairs of pants P1 and P2. Let
f : S → X be an orientation preserving diffeomorphism between the surface S and a hyperbolic surface
X. As f is orientation preserving, it maps the pants decomposition P to another pants decomposition
f (P). Furthermore, for any γ̂ ∈ (P1 ∪ P2) ∩ Γ, f (γ̂) is an arc between two boundary components of
f (P1) with length L1 and f (P2) with length L2. Let δf(α) be the unique geodesic in the free homotopy
class of f (α) on X, introduced in Section 3.2.2. Let η1, η2 be the unique perpendiculars between the
boundary components with length L1 or L2 and δ. The relative boundary of f (P1 ∪ P2), the arc f (γ̂)
is freely homotopic to η2 ◦ δk ◦ η1, for a specific k ∈ Z. The twist τα along α for [X, f ] ∈ T (Σg,b,n) is
defined by [26, p. 86-87]

τα ([X, f ]) = k · lα ([X, f ])± d (p1, p2) , (49)

where pi = ηi ∩ δ, and the orientation of the sign is positive if the twist along δ ∈ X is to the left with
respect to the orientation of X and negative if it’s to the right. Note that τα ([S, f ]) ∈ R. See Figure
14 for a visualisation of the different kind of curves.

We can now define the Fenchel-Nielsen map FNP given a pants decomposition P for a hyperbolic
surface with signature Σg,b,n. The map is given by

FNP : T (Σg,b,n)→ R3g−3+b+n
+ × R3g−3+b+n

([X, f ]) 7→ (lα ([X, f ]) , τα ([X, f ]))α∈P .
(50)

This map is a bijection, giving us a topology on Tg,b,n (L1, ..., Ln) and Mg,b,n (L1, ..., Ln). This also
shows that the space of hyperbolic surfaces, the Moduli space, is finite-dimensional, meaning that it
is indeed useful to consider hyperbolic surfaces, as outlined in Section 1 [52, p. 320-328].
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Figure 14: The surface to the left is decomposed into two pairs of pants by the curve α, shown in
black. The line between L1 and L2 is a curve γ̂ ∈ (P1 ∪ P2) ∩ Γ is the green line on the left surface.
The surface to the right is decomposed in pairs of pants by δ, shown in black. The curve γ̂ is sent to
f (γ̂), which is represented by the green line. The unique perpendicular geodesics from δ to L1 or L2

are shown by blue the blue lines.

3.2.4 The Weil-Peterson formula

For this section some basic knowledge of differential forms is assumed. Definition of terms can be
found in Section E.7.
Having defined the Fenchel-Nielsen coordinates, giving us a topology on the Teichmüller and Moduli
space, one can get a natural Weil-Peterson sympletic form on the Teichmüller space Tg,b,n (L1, ..., Ln)
given by [53, p. 8-9]

ωWP =
1

2

∑
α∈P

dlα ∧ dτα. (51)

The volume form that follows is defined as

dvolWP =
23g+n−3

(3g + n− 3)!
∧3g+n−3 ωWP. (52)

This sympletic form can in turn gives us an integral by

Vg,n (L1, ..., Ln) =

∫
Mg,b,n(L1,...,Ln)

dvolWP. (53)

We therefore have an explicit formulation of the Weil-Peterson volume Vg,n (L1, ..., Ln) for surfaces
with genus g and n boundary components of length L1, ..., Ln. There is recursive formulation of the
Weil-Peterson volumes found by Mirzhakani [54]. In this thesis, we will use this recursion implicitly
in Section 3.3.3 to analyze the partition function for hyperbolic surfaces.

3.3 Partition function FWP
0 for hyperbolic surfaces

To be able to analyze critical exponents and therefore universality classes, we need to define the
partition function for hyperbolic surfaces with specified boundary components. Using Section 3.2, we
will introduce the function in this section.
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3.3.1 Weight function

To be able to control the kind of surfaces we are looking at and to define the partition function, we
need to define the probability of a surface having a boundary component of length L. This is done by
introducing the weight function µ (L). This is a continuous analogue for the discrete weight sequence
introduced in the planar map case in Section 2.2. As done in the planar map case, we only consider
weight functions which are admissible, meaning that the partition function is finite.

3.3.2 Explicit formula

Using sections 3.2 and 3.3.1 we now define the partition function FWP
0 as

FWP
0 =

∞∑
n=3

22−n

n!

∫ ∞
0

dL1...

∫ ∞
0

dLnµ (L1) ...µ (Ln)V0,n (L1, ..., Ln) . (54)

In equation (54) V0,n(L1, ..., Ln) is the Weil-Peterson volume for hyperbolic surfaces with n boundary
components with length L1, ..., Ln and µ(L) is the weight of the boundary component of length L. In
equation (54) the 0 in the indexes are there to denote the fact that we only consider surfaces with genus
0. The 1

n! is introduced to counter over counting, as there are n! ways to enumerate the boundary
components. The 22−n factor is there for convention. It has been introduced to the partition function
to show similarities with the generating function for 2π-irreducible maps [55].

3.3.3 The generating function and the string equation

In the planar map case, we had introduced a new formulation of the partition functions to analyze
them. For the hyperbolic surface case we will do the same. There is a generating function for the
partition function defined in equation (54) [55, p. 26]

FWP
0 =

1

4

∫ R

0

drZµ(r)2, (55)

where the function Zµ(r) is given by

Zµ(r) =

√
r

π
J1(2π

√
r)−

∫ ∞
0

µ(L)I0(L
√
r)dL. (56)

In equation (56) J1 and I0 are Bessel functions (see Section F for definitions), L is the length of a
boundary component and µ(L) is the weight of a boundary component of length L.
We have not yet defined the R term in equation (55). It is (implicitly) defined using Zµ(r) from
equation (56) in the following way

Zµ(R) = 0. (57)

Where R is the first solution for this equation. Equation (57) is called the String equation and is
one of the KdV-equations outlined in Section 1.3.2. The string equation shows that R is (implicitly)
dependent on the weight function µ (L), which is why we introduce the notation R = Rµ.
Having defined Zµ(r) in equation (56), we can define admissibility for µ (L) a bit more explicitly. The
weight function µ (L) is called admissible if Zµ(r) = 0 has a solution.

3.4 Marked hyperbolic surfaces

Having introduced the generating function FWP
0 of Weil-Peterson volumes in Section 3.3.3, one can

define the partition function for hyperbolic surfaces with marked boundary components and analyze
the adapted form of the generating function from equation (55).
The partition function for bipartite planar maps was calculated using random walks, where the chance
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of making a step was implicitly dependent on the function fq, which was defined using the weight
sequence. This used the discrete nature of planar maps. In the hyperbolic surfaces model, one is
dealing with non-discrete surfaces, meaning that there is no clear analogue for the random walk. We
therefore need to resort to a different way to get the partition function.
In the hyperbolic surface case, the marking of a boundary component of length L′ coincides with taking
the functional derivative of FWP

0 with respect to µ(L′) [55]. This implies that the explicit formulation
of the partition function is the same as in equation (54), except the boundary components considered
are the non-marked boundary components.
The generating function for surfaces with one marked boundary can not be found easily and will be
done in the Section 3.4.2. As we will see, it is easier to take two functional derivatives, meaning we will
consider the partition function for hyperbolic surfaces with two marked boundary components. The
generating function for the two marked boundary components case is called the cylinder function,
while the generating function for the one marked boundary component case is called the disc function.

3.4.1 Cylinder function W(Li, Lj)

The cylinder function W (Li, Lj) is the generating function for hyperbolic surfaces with two marked
boundary components of length Li and Lj and is given by

W (Li, Lj) =

∞∑
n=3

22−n

(n− 2)!

∫ ∞
0

dL3...

∫ ∞
0

dLnµ (L3) ...µ (Ln)LiLjV0,n (Li, Lj , L3, ..., Ln) . (58)

It is clear from equation (59), that W (Li, Lj) the functional derivative of FWP
0 from equation (54)

with respect to µ(Li) and µ(Lj) is. Analogously, the generating function W•(L) is a partition for
hyperbolic surfaces with one marked boundary component of length L and one marked cusp and is
defined as

W• (L′) =

∞∑
n=3

22−n

(n− 2)!

∫ ∞
0

dL3...

∫ ∞
0

dLnµ (L3) ...µ (Ln)L′V0,n (0, L′, L3, ..., Ln) . (59)

As we have another formulation of FWP
0 given by equation (55), we can calculate a different formulation

of W (Li, Lj) and W• (L′). We will do this, using some calculations can be found in Appendix F.4.
They will be explicitly referred to if used. For example, in the following equations, the calculations
from Appendix F.4.1 are used. The functional derivative of FWP

0 with respect to µ(L′) is given by

∂FWP
0

∂µ (L′)
= ∂µ(L′)F

WP
0 =

1

4
∂µ(L′)

∫ R

0

drZµ(r)2

=
1

4
· Zµ(R)2 · ∂µ(L′)R+

1

4

∫ R

0

dr · −2 Zµ(r) · ∂µ(L′)Zµ(r)

= −1

2

∫ R

0

dr Zµ(r)I0(L′
√
r).

(60)

Taking the second functional derivative and using equation (189) we see that

∂µ(Lj)∂µ(Li)F
WP
0 = −1

2
∂µ(Lj)

∫ R

0

dr Zµ(r)I0(Li
√
r)

= −1

2
· Zµ(r)I0(Li

√
r) · ∂µ(Lj)R+−1

2

∫ R

0

drI0(Li
√
r) ∂µ(Lj)Zµ(r)

=
1

2

∫ R

0

dr I0(Lj
√
r)I0(Li

√
r))

=


√
R
2 [LiI1(Li

√
R)I0(Lj

√
R)−LjI1(Lj

√
R)I0(Li

√
R)]

L2
i−L2

j
if Li 6= Lj

R
2

[
I0(Li

√
R)2 − I1(Li

√
R)2

]
if Li = Lj

 .

(61)
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Having calculated the derivatives of FWP
0 , we can now define the cylinder function

W(Li, Lj) := LjLi∂µ(Lj)∂µ(Li)F
WP
0

= LjLi ·


√
R
2 [LiI1(Li

√
R)I0(Lj

√
R)−LjI1(Lj

√
R)I0(Li

√
R)]

L2
i−L2

j
if Li 6= Lj

R
[
I0(Li

√
R)2 − I1(Li

√
R)2

]
if Li = Lj

 .
(62)

Using equation (62), we can define the generating function for hyperbolic surfaces with one marked
boundary component of length L′ and one marked cusp as

W•(L′) :=
W(L′, Lj)

Lj
|Lj=0 = L′

√
R
2

[
L′I1(L′

√
R)
]

L′2

=

√
R

2
I1(L′

√
R).

(63)

The generating function W(Li, Lj) is the hyperbolic surface analogue for the planar map partition

function W
(2l)
2p , while W•(L′) is the analogue for the partition function W

(2l)
• .

3.4.2 Disc function W(L′)

The disc function W (L′) is the generating function for hyperbolic surfaces with one marked boundary
component of length L′. We define W(L′) in the same manner as W(Li, Lj) , using equation (60)

W(L′) = L′∂µ(L′)F
WP
0 =

−L′

2

∫ R

0

drZµ(r)I0(L′
√
r)

=
−L′

2

∫ R

0

dr

[√
r

π
J1(2π

√
r)−

∫ ∞
0

µ(L)I0(L
√
r)dL

]
I0(L′

√
r).

(64)

It is clear from equation (64), that the calculation for W(L′) is not as easy as the W(Li, Lj) case. To
make it easier for our self, we split the calculation of equation (64) into two parts.

There are multiple ways to calculate the first term in equation (64). Only one is discussed in this
section, a second way can be found in Appendix H. Naturally, they give the same solution. Using
partial integration and equation (189) one gets∫ R

0

√
r

π
J1(2π

√
r)I0(L′

√
r)dr =

√
R

π
J1(2π

√
R)

2
√
R

L′
I1(L′

√
R)−

∫ R

0

2
√
r

L′
J0(2π

√
r)I1(L′

√
r)dr

=
R

πL′
J1(2π

√
R)I1(L′

√
R)

− 2

L′
∂

∂L′

R
{
L′J0(2π

√
r)I1(L′

√
R)− 2πJ1(2π

√
R)I0(L′

√
R)
}

L′2 − 4π2
.

(65)
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Calculating the derivative in equation (65), one sees that

∂

∂L′

√
R{L′J0(2π

√
r)I1(L′

√
R) + 2πJ1(2π

√
R)I0(L′

√
R)}

L′2 + 4π2
=

−
4L′
√
R
[
L′J0(2π

√
R)I1(L′

√
R) + 2πJ1(2π

√
R)I0(L′

√
R)
]

(L′2 + 4π2)2

+ 2
√
R

[
I1(L′

√
R)J0(2π

√
R)

L′2 + 4π2
+

1
2L
′
√
R {I0(L′

√
R) + I2(L′

√
R)} J0(2π

√
R)

L′2 + 4π2

+
2π
√
RI1(L′

√
R)J1(2π

√
R)

L′2 − 4π2

]
=

−
4L′
√
R
[
L′J0(2π

√
R)I1(L′

√
R) + 2πJ1(2π

√
R)I0(L′

√
R)
]

(L′2 + 4π2)2

+
2
√
R
[
L′
√
RI0(L′

√
R)J0(2π

√
R) + 2π

√
RI1(L′

√
R)J1(2π

√
R)
]

L′2 + 4π2
.

(66)

The second term of equation (64) is given by

L′

2

∫ R

0

dr

[∫ ∞
0

µ(L)I0(L
√
r)dL

]
I0(L′

√
r) =

L′

2

∫ ∞
0

µ(L)dL

∫ R

0

I0(L′
√
r)I0(L

√
r)dr

= L′
∫ ∞

0

µ(L) dL ∂µ(L)∂µ(L′)F
WP
0

=

∫ ∞
0

µ(L) dL
W(L′, L)

L
.

(67)

Combining equations (64), (67) and (65) to fill in equation (64), one gets

W(L′) =
L′

2

∫ R

0

drZµ(r)I0(L′
√
r)

=
R

π
J1(2π

√
R)I1(L′

√
R) +

4L′
√
R
[
L′J0(2π

√
R)I1(L′

√
R) + 2πJ1(2π

√
R)I0(L′

√
R)
]

(L′2 + 4π2)2

−
2
√
R
[
L′
√
RI0(L′

√
R)J0(2π

√
R) + 2π

√
RI1(L′

√
R)J1(2π

√
R)
]

L′2 + 4π2
−
∫ ∞

0

µ(L) dL
W(L′, L)

L
.

(68)

The generating function W(L′) is the hyperbolic surface analogue generating function W (2l) from the
planar maps model.

3.5 Criticalities

We want to introduce criticality conditions to analyze similar universality classes that were outlined in
the planar map models (see Section 2.7). This will be done in this section, by first taking a closer look
at Rµ from Section 3.3.3. We will then, just like in the planar map case, study the critical components
for the different criticalities. This will later help us characterise how the surfaces look like for different
groups of weight functions.

3.5.1 Analysis of Rµ

In Section 3.3.3 we have implicitly defined Rµ in the String equation (57). In this section, we will take
a deeper look into Rµ as we will be classifying when a weight function is subcritical, generic critical
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or non-generic critical.
Equation (63) gives us a hint for the physical interpretation of Rµ. Let us consider the generating
function FWP

0 for hyperbolic surfaces with two marked cusps

∂µ(0)∂µ(0)F
WP
0 =

1

4
∂µ(0)

∫ R

0

drZµ(r) · 2
{
−
∫ ∞

0

∂µ(0)µ(L)I0(L
√
r)dL

}
=

1

2
∂µ(0)

∫ R

0

drZµ(r) ·
{
−
∫ ∞

0

δ (L) I0(L
√
r)dL

}
=

1

2
∂µ(0)

∫ R

0

drZµ(r)I0(0 ·
√
r)

=
1

2

∫ Rµ

0

dr[I0(0) I0(0)] =
Rµ
2
.

(69)

As one can see from equation (69), Rµ is the generating function for hyperbolic surfaces with two
marked cusps, where the cusps are no yet labeled differently from each other. For an example of such
a surface, see Figure 15. Note that equation (54) implies that all coefficients of Rµ, are positive, as
the coefficients of the partition function of hyperbolic surfaces is positive.

There is another way to analyse Rµ, which is by studying the string equation (57). Note again, that
Rµ is a function depending on the weight function. Combining the chain rule, the Taylor expansion
and equation (56) gives us

d

dµ(L′)
[Zµ(Rµ)] =

[
∂Zµ (r)

∂µ(L)

] ∣∣∣∣∣
r=Rµ

+ Z ′µ(Rµ) ·R′µ = 0. (70)

In equation (70), we use the notation Z ′µ(Rµ) = (∂rZx,µ (r))
∣∣
r=Rµ

and R′µ = ∂µ(L)Rµ. Rewriting

equation (70) and using equation (56) shows that

∂µ(L)Rµ =

[
∂Zµ(r)
∂µ(L)

] ∣∣∣∣
r=Rµ

Z ′µ(Rµ)
=

I0(L
√
Rµ)

J0(2π
√
Rµ)−

∫∞
0
dL′µ(L′)I1(L′

√
Rµ) L′

2
√
Rµ

. (71)

This gives us and explicit formulation of the derivative of Rµ with respect to µ. However, it not easily
solvable as there are still Rµ terms inside the Bessel functions on the right side of equation (71). Using
this relation, we will define the different forms of criticality.
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Figure 15: An example of a hyperbolic surface with two marked cusps, one unmarked cusp and four
unmarked boundary components. The marked cusps are denoted by the black crosses and they are
not labelled any number.

3.5.2 Definitions of criticality

Analogously to the planar map case, we want to define different forms of criticality. Let Rµ be the
first solution to equation (57), we define for µ (L) the following:

• The weight function µ (L) is called subcritical if Z ′µ (Rµ) 6= 0.

• The weight function µ (L) is called generic critical if Z ′µ (Rµ) = 0 and the radius of convergence
of Zµ (r) is larger than Rµ

• The weight function µ (L) is called non-generic critical if Z ′µ (Rµ) = 0 and Zµ (r) for r around

Rµ has leading term (Rµ − r)α−1/2
, where α ∈ (3/2, 5/2)

. One can see from equation (71), that if Z ′µ(Rµ) → 0, then ∂µ(L)Rµ → ∞. This means that if the
weight function µ(L) is chosen such that Z ′µ (Rµ) = 0, then ∂µ(L′) Rµ diverges. As seen above, this
happens when the weight functions are critical. In the case that the weight function is chosen such that
Z ′µ(Rµ) 9 0, we have a weight function that is subcritical. This means that the criticality condition
for the weight function µ(L) is

Z ′µ (Rµ) = J0(2π
√
Rµ)−

∫ ∞
0

dLµ(L)I1(L
√
r)

L

2
√
Rµ

= 0. (72)

Consider how we have defined criticality for the planar map case (see Section 2.4). Note that for the
hyperbolic surface case, we have defined criticality very similar to how we did in the planar map case.
Firstly, the weight function/sequence determines a term ( Rµ and Zq respectively) for which a function
gives a zero (Zµ(r) and fq(x)−x respectively). Secondly, the form of criticality determines the leading
terms for that function. They even share similar exponents in these leading terms.
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3.5.3 Criticality analysis for x · µ(L)

We want to be able to describe the behaviour of the coefficients in Rµ that are linked to hyperbolic
surfaces with n boundary components, where the marked cusps are not included. This is done by adding
a weight x to every boundary component. This is equivalent to changing µ(L) to µx (L) = x · µ(L).
The goal of this section is to analyse JRx,µKxn , as this gives us the contribution of hyperbolic surfaces
with n boundary components.
Let’s consider an adapted form for the function Zµ (r) and its derivative. They become

Zx,µ (r) =

√
r

π
J1

(
2π
√
r
)
− x

∫ ∞
0

dL µ(L)I0
(
L
√
r
)

(73)

Z ′x,µ (r) = J0(2π
√
r)− x

∫ ∞
0

dLµ(L)I1(L
√
r)

L

2
√
r
. (74)

Analogously to the Rµ case, we want to define a Rx,µ for the x · µ(L) case. In this context, Rx,µ is
the first solution to Zx,µ (Rx,µ) = 0. It is clear from equations (73) and (74), that one gets the old
equations back by filling in x = 1. We therefore have R1,µ = Rµ from Section 3.5.1.

Note that further calculation with respect to the cylinder function and disc function calculated in
Section 3.4 remain the same in this case. This is because changing the functional derivative of the
changed partition function FWP

0 to be with respect to µx (L) gives the same results. This shows that
adding x is just a mere mathematical tool which helps us analyze the partition function for hyperbolic
surfaces with two undistinguished marked cusps.

3.5.4 Coefficients of Rx,µ

In this section, we will look at the coefficients of Rx,µ in the subcritical, generic critical and non-generic
critical case.

Theorem 3.1. Let Rx,µ be the generating function of hyperbolic surfaces with two marked cusps for
the x · µ (L) case, where Rx,µ is the first solution for the String equation with Zx,µ given by equation
(73). Let µ (L) be an admissible weight function such that

∫∞
0
dL µ(L)I0

(
L
√
Rµ
)
6= 0 . Let x ∈ R>0.

The following hold:

i. If µ(L) is subcritical, then
∑∞
n=1JRx,µKxnc

n <∞ for a constant c ∈ R>1.

ii. If µ(L) is generic critical, then JRx,µKxn v c n−3/2, where c ∈ R>0.

iii. If µ(L) is non-generic critical, then JRx,µKxn v c n−1/γ−1, where γ ∈ (1, 2) and c ∈ R>0.

Proof. First we will do some general analysis of Rx,µ, which will be used to prove the theorem for the
different forms of criticalities. Let Rx,µ and µ (L) be given as described above. Let ρ be such that Zρ,µ
is an analytical function at Rρ,µ. We can have a Taylor expansion of Zx,µ (Rx,µ) in x around ρ. This
is given by

Zx,µ (Rx,µ) = Zρ,µ (Rρ,µ) +
dZρ,µ (Rρ,µ)

dx
(x− ρ) + o

(
(x− ρ)2

)
=

[
∂Zx,µ (Rx,µ)

∂x
+
∂Zx,µ (Rx,µ)

∂Rx,µ

∂Rx,µ
∂x

] ∣∣∣∣∣
x=ρ

(x− ρ) + o
(
(x− ρ)2

)
.

(75)

We want to analyze the x−dependency of Rx,µ to be able to analyze the coefficients of xn. Using
equation (75) and the fact that Zx,µ (Rx,µ) = 0, we get

dZx,µ (Rx,µ)

dx
=
∂Zx,µ (Rx,µ)

∂x
+
∂Zx,µ (Rx,µ)

∂Rx,µ

∂Rx,µ
∂x

= 0. (76)
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Rewriting equation (76) gives us the possibility to express the derivative
∂Rx,µ
∂x , like we did in equation

(71),

∂Rx,µ
∂x

= −∂Zx,µ (Rx,µ)

∂x
/
∂Zx,µ (Rx,µ)

∂Rx,µ

=

∫∞
0
dL µ(L)I0

(
L
√
Rx,µ

)
J0(2π

√
Rx,µ)− x

∫∞
0
dL′µ(L′)I1(L′

√
Rx,µ) L′

2
√
Rx,µ

.
(77)

We therefore see that Rx,µ is analytical up to x∗, where x∗ is such that (∂rZx∗,µ (r))
∣∣
r=Rµ(x∗)

= 0 .

This means that x∗ is the convergence radius of Rx,µ.
Having found the (implicit) convergence radius of Rx,µ, we can express x as a function of Rx,µ using
equation (73)

x (Rx,µ) =

√
Rx,µ
π J1

(
2π
√
Rx,µ

)∫∞
0
dL µ(L)I0

(
L
√
Rx,µ

) . (78)

Note that x is an analytical function up to x∗ if
∫∞

0
dL µ(L)I0

(
L
√
Rµ
)
6= 0, which holds by assumption

on µ (L). This implies that we can look at the derivative of x with respect to Rx,µ, for x < x∗

x′ (Rx,µ) =
J0(2π

√
Rx,µ)

∫∞
0
dL µ(L)I0

(
L
√
Rx,µ

)
−
√
Rx,µJ1(2π

√
Rx,µ)

π

∫∞
0
dLµ(L)

L I1(L
√
Rx,µ)

2
√
Rx,µ[∫∞

0
dL µ(L)I0

(
L
√
Rx,µ

)]2 .

(79)

Note that x′ (Rx,µ) = 0 if and only if

J0(2π
√
Rx,µ)

∫ ∞
0

dL µ(L)I0

(
L
√
Rx,µ

)
=

√
Rx,µ

π
J1

(
2π
√
Rx,µ

)∫ ∞
0

dLµ(L)I1(L
√
Rx,µ)

L

2
√
Rx,µ

J0(2π
√
Rx,µ) = x (Rx,µ)

∫ ∞
0

dLµ(L)I1(L
√
Rx,µ)

L

2
√
Rx,µ

.

(80)

Looking at equation (80) and equation (74), we see x′ (Rx,µ) = 0 if and only if (∂rZx,µ (r))
∣∣
r=Rx,µ

= 0.

Looking at equation (77), we see that this implies that
∂Rx,µ
∂x diverges at the point x where x′ (Rx,µ) = 0.

Thus, equation (79) show us two things. Firstly it gives us an explicit formulation of the convergence
radius x∗ of Rx,µ, which is

x∗ =
J0

(
2π
√
Rx,µ

)∫∞
0
dLµ (L) I1

(
L
√
Rx,µ

)
L

2
√
Rx,µ

∣∣∣∣∣
x=x∗

. (81)

Secondly, it shows that x (Rx,µ) is monotonically increasing up to x = x∗.

Proof for i. Let µ(L) be subcritical. This means that (∂rZx,µ (r))
∣∣
r=Rx,µ

6= 0, which implies that

x′ (Rx,µ) 6= 0, meaning x < x∗. Remember that we should get Rµ from Rx,µ by setting x = 1. This
means that Zx,µ (Rx,µ) = 0, and therefore equation (77), should still hold for the case where x = 1.
This shows us that x∗ > 1. We can therefore pick a c ∈ R such that x < c < x∗ and 1 < c. For such
a c ∈ R, we have

∑∞
n=1JRx,µKxnc

n < ∞, as it is smaller than x∗, which is the convergence radius of
Rx,µ.
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Proof for ii. Let µ(L) be generic critical. We will take a look at equation (75), where we consider
ρ = 1. We now get, using Zx,µ (r)

∣∣
x=1

= Zµ (r), the following expression

Zx,µ (r) = Z1,µ (r) +

[
∂Zx,µ (r)

∂x

] ∣∣∣∣∣
x=1

(x− 1) = Zµ (r) +
∂Zx,µ (r)

∂x

∣∣∣∣∣
x=1

(x− 1) + o ((x− 1)) . (82)

By the fact that µ(L) is generic critical, there is a radius of convergence P of Zx,µ (r), such that
P > Rµ. This implies that Zx,µ (r) is analytical for r < P , meaning ∀r ∈ R, such that 0 < r < P

∀n ∈ N : Z
(n)
x,µ (r) <∞, implying we have a convergent Taylor expansion for r. Combining the Taylor

expansion with the fact we are in the generic critical case, we see that for r around Rµ

Zµ (r) = c1 + c2 (Rµ − r) + c3 (Rµ − r)2
+ o

(
(Rµ − r)2

)
, (83)

where ci ∈ R. Combining equations (82) and (83), we get for x around 1 and r around Rµ that

Zx,µ (r) =
∂Zx,µ (r)

∂x

∣∣∣∣∣
x=1

(x− 1) + o ((x− 1)) + c1 + c2 (Rµ − r) + c3 (Rµ − r)2
+ o

(
(Rµ − r)2

)
.

(84)

Considering equation (78), we see that

x (r) =
d1 + d2 (Rµ − r) + d3 (Rµ − r)2

+ o
(

(Rµ − r)2
)

d4 + d5 (Rµ − r) + d6 (Rµ − r)γ + o ((Rµ − r)γ)
. (85)

Note that Zx,µ (Rx,µ) = 0 implies that d1 = d4 and that (∂rZx,µ (r))
∣∣
Rx,µ

= 0 implies that d2 = d5.

Equivalently, it implies that c1 = c2 = 0. This means that

x (r) = 1−
(d5 − d6) (Rµ − r)2

+ o
(

(Rµ − r)2
)

d3 + d4 (Rµ − r) + d5 (Rµ − r)2
+ o

(
(Rµ − r)2

)
= 1− b (Rµ − r)2

(1 + o (Rµ − r)) ,

(86)

with di ∈ R. Note that for x around 1, we have that Rx,µ is around Rµ, as R1,µ = Rµ. Filling in
r = Rx,µ, we see that

x− 1 = −b (Rµ −Rx,µ)
2

+ o
(

(Rµ − r)2
)

Rx,µ = Rµ −
(

1− x
b

)1/2

(1 + o (1)) .
(87)

Using the Transfer theorem G.1, we see that

JRx,µKxn v c n−3/2, (88)

where c ∈ R.

Proof for iii. Let µ(L) be non-generic critical. The proof will be an adaptation for the proof for
the generic critical case. Again, let x be around 1. Note that, for r around Rµ we have that Zµ (r)
has leading term (Rµ − r)γ , where γ ∈ (1, 2). Let r be around Rµ. The approximation of Zx,µ (r) is
now given by

Zx,µ (r) = (x− 1)
∂Zx,µ (r)

∂x
+ c3 (Rµ − r)γ + o ((Rµ − r)γ) , (89)
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with c3 ∈ R. Note that the exponent γ is dependent on the criticality, and therefore on xµ (L). This
means that x

∫∞
0
dL µ(L)I0(L

√
r) has leading term (Rµ − r)γ . We therefore get that x is given by

x (r) =
d1 + d2 (Rx,µ − r) + o

(
(Rx,µ − r)2

)
d3 + d4 (Rx,µ − r) + d5 (Rx,µ − r)γ + o ((Rx,µ − r)γ)

, (90)

where di ∈ R. Note that Zx,µ (Rx,µ) = 0 implies that d1 = d3 and that (∂rZx,µ (r))
∣∣
Rx,µ

= 0 implies

that d2 = d4. This means that

x (r) = 1− d5 (Rx,µ − r)γ

d3 + d4 (Rx,µ − r) + d5 (Rx,µ − r)γ + o ((Rx,µ − r)γ)

= 1− b (Rx,µ − r)γ (1 + o (Rx,µ − r)) ,
(91)

with b ∈ R. By setting r = Rµ, we express Rx,µ in x in the following way

Rx,µ = Rµ −
(

1− x
b

)1/γ

(1 + o (1)) . (92)

Using the Transfer theorem G.1, we see that

JRx,µKxn v c n−1/γ−1, (93)

where γ ∈ (1, 2) and c ∈ R.

Having analyzed criticalities, we will consider two specific examples for illustration purposes.

3.5.5 Example: µ (L) = cL δ (L′ − L)

Let µ (L) be cL · δ (L′ − L) , where δ (L′ − L) is the delta function and cL is a constant in R. In this
case the coefficient cL for a boundary component of length L is going to determine whether the weight
function is critical. We therefore introduce the notation Rµ = Rµ (cL). Remember that the weights
are critical when ∂µ(L)Rµ (cL) diverges. The coefficient for which this holds, is denoted by c∗L. Filling
in equation (71), we get

∂µ(L)Rµ (cL) =
I0(L

√
Rµ)

J0(2π
√
Rµ)−

∫∞
0
dL′cL δ (L′ − L) I1(L′

√
Rµ) L′

2
√
Rµ

=
I0(L

√
Rµ (cL))

J0(2π
√
Rµ (cL))− cLI1(L

√
Rµ (cL)) L

2
√
R

.

(94)

To simplify equation (94), we consider the specific case where L = 0. The ∂µ(L)Rµ (cL) then simplifies
to

∂µ(L)Rµ (c0) =
I0(0 ·

√
Rµ (c0))

J0(2π
√
Rµ (c0))− c0I1(0

√
Rµ (c0)) 0

2
√
Rµ(c0)

=
1

J0(2π
√
Rµ (c0))− c0 · 1 · 0

=
1

J0(2π
√
Rµ (c0))

.

(95)

From equation (95), we see that if J0(2π
√
Rµ (c0))→ 0, then ∂µ(0)Rµ (c0)→∞. From Section 3.5.1,

we know that the values c0 for which this happens are critical. We therefore want to analyse
√
Rµ (c0)
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such that J0(2π
√
Rµ (c0))→ 0. This is the case for Rµ (c0)→ j0,1

2

4π2 = r. Where j0,1 is the first value
x, such that J0(x) = 0. Note that by construction of Rµ and equation (57) we get

Z (Rµ (c∗0)) = 0 =

√
Rµ (c∗0)

π
J1

(
2π
√
Rµ (c∗0)

)
− c∗0. (96)

It is clear to see that equation (96) implies that

c∗0 =

√
Rµ (c∗0)

π
J1

(
2π
√
Rµ (c∗0)

)
=
j0,1
2π2

J1(j0,1). (97)

Equation (95) implies that Rµ(c0) is analytical up to where J0(2π
√
r) = 0. Combining this with

equation (97), the convergence radius ρ of Rµ is the constant c∗0 defined in equation (97).

The Taylor expansion of J(z) =
√
z
π J1(2π

√
z) around r is given by

J(z) =

√
z

π
J1(2π

√
z) ≈ J(r) +

J ′(r)

1!
(z − r) +

J ′′(r)

2!
(z − r)2 + o((z − r)2)

= c∗0 +
J ′′(r)

2!
(z − r)2 + o((z − r)2).

(98)

Rewriting equation (98) and setting z = Rµ(c0), we see that

c0 = J(Rµ (c0))

≈ c∗0 +
J ′′(r)

2!
(Rµ (c0)−Rµ (c∗0))2 + o

(
(Rµ (c0)−Rµ (c∗0))

2
) (99)

When we rewrite equation (99), we get

Rµ(c0) ≈ Rµ (c∗0)−

√
2(c∗0 − c0)

−J ′′(r)
+ o(

√
c0 − c∗0). (100)

Using the transfer theorem G.1 and equation (100), it follows that

JRµ(c0)K(c0)n =

√
2c∗0
−J ′′(r)

n−3/2

Γ(−1
2 )

(c∗0)−n(1 + o(1))

v κ n−3/2(c∗0)−n+1/2,

(101)

with κ ∈ R. From Section 3.5.2, we see that if c0 = c∗0, meaning it fulfills the condition laid out in
equation (97), we are in the generic critical case. If c < c∗0, we are in the subcritical case.

3.5.6 Example: µ(L) = L · exp{−cL}

Another example of a weight function is µ(L) = L · exp{−cL}, where c ∈ R≥0. We will find out
the circumstances when µ(L) is a critical weight function, by trying to find conditions on c such that
Z ′µ(Rµ) = 0. Calculating the second part of equation (56) for µ(L) = L · exp{−cL}, we get [56]∫ ∞

0

µ (L) I0
(
L
√
r
)
dL =

∫ ∞
0

L · exp{−cL}I0
(
L
√
r
)
dL =

c

(c2 − r)3/2
. (102)

Filling equation (102) into equation (56) and setting r = Rµ, we see that

Zµ (Rµ) =

√
Rµ

π
J1

(
2π
√
Rµ

)
−
∫ ∞

0

µ (L) I0

(
L
√
Rµ

)
dL

=

√
Rµ

π
J1

(
2π
√
Rµ

)
− c

(c2 −Rµ)
3/2

= 0.

(103)
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Equation (71) tells us that we should also analyse Z ′µ (Rµ). So first let us calculate the second part of
equation (72) [56]∫ ∞

0

dL µ (L) I1

(
L
√
Rµ

) L

Rµ
=

∫ ∞
0

dL L · exp{−cL}I1
(
L
√
Rµ

) L

2
√
Rµ

=
1

2
√
Rµ

4c
√
RµΓ

(
5
2

)
(c2 −Rµ)

5/2
=

3c

2 (c2 −Rµ)
5/2

,

(104)

such that

Z ′µ (Rµ) = J0

(
2π
√
Rµ

)
−
∫ ∞

0

dL µ (L) I1

(
L
√
Rµ

) L

2
√
Rµ

= J0

(
2π
√
Rµ

)
− 3c

2 (c2 −Rµ)
5/2

= 0.

(105)

This means that we now have two (indirect) expressions of R in c. Using Mathematica, one get
numerical values for Rµ and c: Rµ = 0.145095..., c = 4.00363.... Note that we know that for this value
of c, the weight function is generic critical by the fact that equation (102) is analytical.

3.6 The disc function in the L′ →∞ limit

In Section 3.5, we have defined what it means to be subcritical, generic critical and non-generic critical
in the hyperbolic surface case. In this part, we will look at what this means for the disk function
W(L′) in the L′ → ∞ limit for these different kinds of weight function. Taking the L′ → ∞ limit is
analogous to taking the perimeter l to infinity for the planar map case, which we analyzed in Section
2.6.3.

Theorem 3.2. Let µ(L) be an admissible weight function. Let W(L) be the partition of hyperbolic
surfaces with a marked boundary component of length L given by equation (68). If the marked boundary
component L→∞, then the leading term of the partition function W(L) from equation (68) takes the
form

W(L) v κecL

 L−
3
2 for µ(L) subcritical

L−
5
2 for µ(L) generic critical

L−α for µ(L) non generic critical

 , (106)

where α ∈ ( 3
2 ,

5
2 ) and c, κ ∈ R.

For ease of reading, we will first prove two lemmas. They will each consider a part of the large
equation (68), which gives us W(L).

Lemma 3.3. Let µ(L) be an admissible weight function. Let W(L) be given by equation (68). If the
marked boundary component L → ∞, then the leading terms of the first three terms in equation (68)
will take the form

eL
′√R

{
R

π
J1(2π

√
R)

 1

(2πL′
√
R)

1
2

1 +
1

L′
√
R

+
29

70
(
L′
√
R
)2




+
4 (L′)

2√
RJ0(2π

√
R)

(L′2 + 4π2)
2

[
1

(2πL′
√
R)

1
2

]
− 2L′RJ0(2π

√
R)

L′2 + 4π2

[
1

(2πL′
√
R)

1
2

(
1 +

−1

L′
√
R

)]
−

4πRJ1(2π
√
R)
]

L′2 + 4π2

[
1

(2πL′
√
R)

1
2

]
+O

((
1

L′

)5/2
)}

.

(107)
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Proof. To get an approximation of the first three terms of W(L′), one needs to get an approximation
of In(L′

√
R) for L′ →∞ [57]

In(L
√
R) ≈ eL

√
R

(2πL
√
R)

1
2

∞∑
s=0

(−1)s
as(n)(
L
√
R
)s ± e±nπi e−L

√
R

(2πL
√
R)

1
2

∞∑
s=0

(−1)s
as(n)(
L
√
R
)s , (108)

where

as(n) =

∏s
i=0(4n2 − (2i+ 1)2)

(s+ 1)!

s∑
j=0

1

4n2 − (2i+ 1)2
. (109)

As L→∞, we see that e−L
√
R → 0, meaning equation (108) simplifies to

In(L
√
R) ≈ eL

√
R

(2πL
√
R)

1
2

∞∑
s=0

(−1)s
as(n)(
L
√
R
)s . (110)

Using equation (110) for the first three terms in (68), one gets

W(L)1,2,3 =
R

π
J1(2π

√
R)I1(L

√
R)

+
4L
√
R
[
LJ0(2π

√
R)I1(L

√
R) + 2πJ1(2π

√
R)I0(L

√
R)
]

(L2 + 4π2)2

−
2
√
R
[
L
√
RI0(L

√
R)J0(2π

√
R) + 2π

√
RI1(L

√
R)J1(2π

√
R)
]

L2 + 4π2

=
R

π
J1(2π

√
R)

 eL
√
R

(2πL
√
R)

1
2

∞∑
s=0

(−1)s
as(1)(
L
√
R
)s


+
4 (L)

2√
RJ0(2π

√
R)

(L2 + 4π2)
2

 eL
√
R

(2πL
√
R)

1
2

∞∑
s=0

(−1)s
as(1)(
L
√
R
)s


+
8πL
√
RJ1(2π

√
R)

(L2 + 4π2)
2

 eL
√
R

(2πL
√
R)

1
2

∞∑
s=0

(−1)s
as(0)(
L
√
R
)s


− 2LRJ0(2π
√
R)

L2 + 4π2

 eL
√
R

(2πL
√
R)

1
2

∞∑
s=0

(−1)s
as(0)(
L
√
R
)s


−
4πRJ1(2π

√
R)
]

L2 + 4π2

 eL
√
R

(2πL
√
R)

1
2

∞∑
s=0

(−1)s
as(1)(
L
√
R
)s
 .

(111)

Note that as L→∞
1

L2 + 4π2
v κ

1

L2
,

L

L2 + 4π2
=

1

L+ 4π2

L

v κ
1

L
,

L

(L2 + 4π2)2
=

1

L3 + 8π2L+ 6π4

L

v κ
1

L3
,

L2

(L2 + 4π2)2
=

L2

L4 + 8π2L2 + 16π4
=

1

L2 + 8π2 + 6π4

L2

v κ
1

L2
,

(112)
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where κ ∈ R. Using the approximations in (112) and ignoring terms decreasing faster then
(

1
L

)5/2
eL
√
R

in equation (111), one gets

W(L)1,2,3 =
R

π
J1(2π

√
R)

 eL
√
R

(2πL
√
R)

1
2

a0(1) +−1 · a1(1)

L
√
R

+
a2(1)(
L
√
R
)2




+
4 (L)

2√
RJ0(2π

√
R)

(L2 + 4π2)
2

[
eL
√
R

(2πL
√
R)

1
2

a0(1)

]

− 2LRJ0(2π
√
R)

L2 + 4π2

[
eL
√
R

(2πL
√
R)

1
2

(
a0(0) +−1 · a1(0)

L
√
R

)]

−
4πRJ1(2π

√
R)
]

L2 + 4π2

[
eL
√
R

(2πL
√
R)

1
2

a0(1)

]
+O

((
1

L

)5/2

eL
√
R

)

=
R

π
J1(2π

√
R)

 eL
√
R

(2πL
√
R)

1
2

1 +
1

L
√
R

+
29

70
(
L
√
R
)2




+
4 (L)

2√
RJ0(2π

√
R)

(L2 + 4π2)
2

[
eL
√
R

(2πL
√
R)

1
2

]
− 2LRJ0(2π

√
R)

L2 + 4π2

[
eL
√
R

(2πL
√
R)

1
2

(
1 +

−1

L
√
R

)]

−
4πRJ1(2π

√
R)
]

L2 + 4π2

[
eL
√
R

(2πL
√
R)

1
2

]
+O

((
1

L

)5/2

eL
√
R

)
.

(113)

The second lemma will be concerned with the last term in equation (68), by analyzing the cylinder
function.

Lemma 3.4. Let µ (L) be an admissible weight function. Let W(L,L′) be defined by equation (62).
If the marked boundary component L′ →∞, then the leading terms of the cylinder function W(L,L′)
will take the form

eL
′√R

{
L

√
R(L′)2I0(L

√
R)

L′2 − L2

 1

(2πL′
√
R)

1
2

1 +
1

L′
√
R

+
29

70
(
L′
√
R
)2




− LL
′
√
RLI1(L

√
R)

L′2 − L2

[
1

(2πL′
√
R)

1
2

(
1 +

−1

L′
√
R

)]}
.

(114)

Proof. Using definition (62) and the approximation given by equation (110) one gets

W(L,L′) = L′L

√
R
[
L′I1(L′

√
R)I0(L

√
R)− LI1(L

√
R)I0(L′

√
R)
]

L′2 − L2

≈ L
√
R(L′)2I0(L

√
R)

L′2 − L2

 eL
′√R

(2πL′
√
R)

1
2

∞∑
s=0

(−1)s
as(1)(
L′
√
R
)s


− LL
′
√
RLI1(L

√
R)

L′2 − L2

 eL
′√R

(2πL′
√
R)

1
2

∞∑
s=0

(−1)s
as(0)(
L′
√
R
)s
 .

(115)
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As L′ →∞, we will use the following equations

L′

L′2 − L2
=

1

L′ − L2

L′

v κ
1

L′
,

(L′)
2

L′2 − L2
=

1

1− L2

(L′)2

v 1,

(116)

with κ ∈ R. Using the approximations in (116) and ignoring terms decreasing faster then
(

1
L′

)5/2
eL
′√R

in equation (115), one gets

W(L,L′) ≈ L
√
R(L′)2I0(L

√
R)

L′2 − L2

 eL
′√R

(2πL′
√
R)

1
2

1 +
1

L′
√
R

+
29

70
(
L′
√
R
)2




− LL
′
√
RLI1(L

√
R)

L′2 − L2

[
eL
′√R

(2πL′
√
R)

1
2

(
1 +

−1

L′
√
R

)]
.

(117)

Having proven both lemma 3.3 and lemma 3.4, we can now proof Theorem 3.2.

Proof. Let µ(L) be an admissible weight function and letW(L′) be given by equation (68). Combining
equations (113) and (117) to fill in equation (68), we get

W(L′) =W(L′)1,2,3 −
∫ ∞

0

µ(L) dL
W(L,L′)

L

= eL
′√R

{
R

π
J1(2π

√
R)

 1

(2πL′
√
R)

1
2

1 +
1

L′
√
R

+
29

70
(
L′
√
R
)2




+
4 (L′)

2√
RJ0(2π

√
R)

(L′2 + 4π2)
2

[
1

(2πL′
√
R)

1
2

]
− 2L′RJ0(2π

√
R)

L′2 + 4π2

[
1

(2πL′
√
R)

1
2

(
1 +

−1

L′
√
R

)]
−

4πRJ1(2π
√
R)
]

L′2 + 4π2

[
1

(2πL′
√
R)

1
2

]
+O

((
1

L′

)5/2
)}

−
∫ ∞

0

µ(L) dL eL
′√R

{√
R(L′)2I0(L

√
R)

L′2 − L2

 1

(2πL′
√
R)

1
2

1 +
1

L′
√
R

+
29

70
(
L′
√
R
)2




− L′
√
RLI1(L

√
R)

L′2 − L2

[
1

(2πL′
√
R)

1
2

(
1 +

−1

L′
√
R

)]}
.

(118)

Let’s consider the coefficients of eL
′√R

(L′)1/2
inW(L′). For legibility reason we use the notation

[
eL
′√R

L′1/2

]
W(L′)

to denote the coefficients.[
eL
′√R

L′1/2

]
W(L′) ≈ R

π
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[Z(R)] = 0.

(119)
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In equation (119), we have used the string equation (57). Note that equation (118) then simplifies to

W(L′) = eL
′√R

{
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√
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Let’s now consider the coefficients of eL
′√r

(L′)3/2
in W(L′),[
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L′3/2

]
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From equation (121) and equation (71) one sees that W(L′) v κ
(

1
L′

)3/2
for some κ ∈ R if and only

if Z ′(R) 6= 0, meaning that the leading term of W(L′) is
(

1
L′

)3/2
in the subcritical case.

It is also clear that in the generic critical case, that is to say, when Z ′(R) = 0 and the leading term of

Zµ(r) is (Rµ − r)2
, that the leading term of W(L′) is

(
1
L′

)5/2
Now to check for the non-generic critical case. In this case, we have a non-analytical integral∫∞

0
µ(L)I0(L

√
r)dL, leading to a c1 (Rµ − r)α−1/2

term where α ∈ (3/2, 5/2). For ease of reading set
γ = α− 1/2 ∈ (1, 2). Consider therefore equation (64), ignoring larger terms than (Rµ − r)γ
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where 0F̃1

(
γ + 2, 1

4L
2Rµ

)
is the regularized confluent hypergeometric function. Another way to write

it is
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(
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Note that by the previous analysis from this section the leading term of Iγ+1

(
L
√
R
)

is eL
√
R L−1/2
√

2πR
.

We therefore see that the leading term of W(L) is

W(L) v κ eL
√
RL

1−γ−1−1/2

√
2πR

= κ eL
√
RL
−γ−1/2

√
2πR

, (124)

for some κ ∈ R. Or even more simple, we see that W(L) v κ eL
√
RL−α, where α ∈ (3/2, 5/2) and

κ ∈ R.

We therefore see that in the hyperbolic surface case, we get similar critical exponents in the leading
terms of W(L) as L→∞ for subcritical, generic critical and non-generic critical weight functions, as
we get for W 2l in the l→∞ limit in Section 2.7.
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3.7 Laplace transform W•(z)

In the planar map model, the generating functions W• (z) and W (z) for respectively W
(2l)
• and W (2l)

were introduced in Section 2.6. This was mostly done to show the growth of the partition function
W (2l) in the l→∞ case. In this section, we will introduce the Laplace transformW•(z) (see Appendix
C) forW• (L). The Laplace Transform can be seen as a continuous analogue for a generating function,
meaning we can use it to show familiarity between W•(z) and the analytical form of W• (z) from the
planar map models.

Theorem 3.5. Let µ(L) be an admissible weight function. The Laplace transform of the cylinder
function W•(L) is given by

W•(z) =
Rµ

2 (z2 −Rµ)
−3/2

. (125)

Proof. Assume µ(L) is an admissible weight function. Using W•(L) defined by equation (63) and [56],
we get

W•(z) =

∫ ∞
0

exp(−L · z)W•(L)dL =

∫ ∞
0

exp(−L · z) L∂µ(L)F
WP
0 dL
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2
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21π−1/2Γ
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2

)√
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(
z2 −

√
Rµ

2
)−3/2

=
Rµ

2 (z2 −Rµ)
−3/2

.

(126)

Comparing equations (125) and (24), we indeed see that they have a similar form, except for the
multiplication by a constant Rµ and an extra

(
z2 −Rµ

)
term in the denominator in the hyperbolic

surface case .
It is clear from equation (68) and equation (62) that taking the Laplace transform of W (L) or
W (Li, Lj) is not as easy as for W• (L). One might be able to get the Laplace transform using
topological recursion, but that is outside the scope of this thesis to consider.

3.8 Probability densities and expected values

To introduce and analyze universality classes and how hyperbolic surfaces will look like, we will
introduce probability densities and expected value functions. These will build upon the partition
functions of hyperbolic surfaces with marked boundary components introduced in Section 3.4 and the
definitions for the different possible weight functions from Section 3.5.2.

3.8.1 Probability density for unmarked surfaces

For this section it is assumed that µ(L) is an admissible weight function. To get a feel for what kind
of surfaces we have in the different universality classes, we can define the probability of getting a
hyperbolic surface with n boundary components and the expected number of boundary components.
This will of course be done using the weight function µ(L) and the partition function FWP

0 from Section
3.3. The probability density is defined for n ≥ 3 as

pn (L1, ..., Ln) =
22−n

n!

∏n
i=1 µ(Li)

FWP
0

V0,n(L1, ..., Ln), (127)
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where n is the number of boundary components, L1, ..., Ln are lengths of the boundary component,
µ(L) is the weight function, V0,n(L1, ..., Ln) is the Weil-Peterson volume of the surface and FWP

0 is
the partition function of hyperbolic surfaces with boundary components. The n ≥ 3 constraint follows
from the Weil-Peterson volume.
The probability of having a surface with n ≥ 3 boundary components is given by

P(n) =

∫ ∞
0

...

∫ ∞
0

pn (L1, ..., Ln) dL1...dLn

=
22−n

n!

∏n
i=1

∫∞
0
dLi µ(Li)V0,n(L1, ..., Ln)

FWP
0

(128)

Using P(n) defined in equation (128), one can define the expected number of boundary components

E(n) =

∞∑
n=3

P(n) · n

=

∞∑
n=3

22−n

(n− 1)!

∏n
i=1

∫∞
0
dLi µ(Li)V0,n(L1, ..., Ln)

FWP
0

.

(129)

If P(n) scales with, for example, n−α, then it is easy to see from equation (129) that the term inside
the sum scales with n−α+1. This implies that for the right values of α, the sum is divergent, meaning
that E(n) =∞. In this case, the expected numbers of boundary components would be infinite, which
corresponds to a fractal hyperbolic surface. The way to get α such that P(n) v κ n−α, where κ ∈ R,
is to study FWP

0 . Note that we have only done analysis for the growth of Rx,µ. We will therefore
consider the case of surfaces with two cusps in Section 3.8.3.

3.8.2 Example: µ(L) =
∑d
i=1 xiδ(L− Li)

To illustrate how the expected number of boundary components looks like, we introduce a weight
function similar the the one discussed in Section 3.5.5. Let µ(L) =

∑d
i=1 xiδ(L − Li), where δ(x) is

the delta function, and xi are coefficients in R, such that µ(L) is admissible. The probability density
in equations (127) and the probability form equation (128) become

p(n,L1, ..., Ln) =
22−n

n!

∏n
j=1

∑d
i=1 xiδ(Lj − Li)
FWP

0

V0,n(L1, ..., Ln), (130)

P(n) =
22−n

n!

∏n
j=1
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0
dLj

∑d
i=1 xiδ(Lj − Li)V0,n(L1, ..., Ln)

FWP
0

=
22−n

n!

∏n
j=1

∑d
i=1 xiLj

FWP
0

V0,n(L1, ..., Ln).

(131)

In equations (130) and (131), n is the number of boundary components, L1, ..., Ln are lengths of the
boundary component, xi is the weight of the boundary component of length Li, V0,n(L1, ..., Ln) is the
Weil-Peterson volume of the surface and FWP

0 is the partition function of hyperbolic surfaces with
boundary components.
The expected number of boundary components is therefore

E(n) =

∞∑
n=3

22−n

(n− 1)!

∏n
j=1

∑d
i=1 xiLj

FWP
0

V0,n(L1, ..., Ln). (132)

It is clear that we can’t analyze equation (132) without getting more information about the expansion
of FWP

0 . We will therefore come back to an adapted version of this case in Section 3.8.4.
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3.8.3 Probability density for surfaces with two marked cusps

As shown in Section 3.8.1, the probability density for surfaces without marked boundary components
doesn’t give us a lot of information. We will therefore look at the case where the surfaces have two
marked cusps.
Using these definitions with the results for Rx,µ we got in Section 3.5.3, we get the following result

Theorem 3.6. Let µ(L) be an admissible weight function. Then the following holds for surfaces with
two marked cusps:

i. If µ(L) is subcritical, the expected number of boundary components is finite.

ii. If µ(L) is critical, the expected number of boundary components is infinite.

Proof. Let µ(L) be an admissible weight function. The probability density pn (L1, ..., Ln) given by
equation (127), where FWP

0 is changed into Rµ, meaning

pn (L1, ..., Ln) =
22−n

(n− 2)!

∏n
i=3 µ(Li)V0,n(0, 0, L3, ..., L4)

Rµ
. (133)

Note that the generating function for hyperbolic surfaces with two marked cusps is Rµ. Using equation
(54) we see

∂µ(0)∂µ(0)F
WP
0 = ∂µ(0)

∞∑
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n!

∫ ∞
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∫ ∞
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dLk µ (Lk)

)
V0,n (0, 0, L3, ..., Ln) .

= Rµ/2.

(134)

Equation (134) therefore gives us

∂µ(L)Rµ = 2∂µ(L)∂µ(0)∂µ(0)F
WP
0

=

∞∑
n=3

23−n

(n− 3)!

(
n∏
k=4

∫ ∞
0

dLk µ (Lk)

)
V0,n (0, 0, L, L4, ..., Ln) .

(135)

Note that the expected number of boundary components becomes

E(n) =
1

Rµ

∞∑
n=3

23−n

(n− 2)!

(
n∏
i=3

∫ ∞
0

dLi µ(Li)

)
V0,n(0, 0, L3, ..., Ln)

=
1

2Rµ

∫ ∞
0

dLµ (L) ∂µ(L)Rµ.

(136)

Looking at Section 3.5.1 and the definition of criticality, we see that the theorem holds, as partialµ(L)Rµ
diverges if and only if µ(L) is critical.
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Analogously we can analyze the expected total length of the boundary components, defined by

E(Ltot) =

∞∑
n=3

p(n,L1, ..., Ln) · [L1 + ...+ Ln]

=

∞∑
n=3

22−n

n!

∏n
i=1

∫∞
0
dLi µ(Li)

FWP
0

V0,n(L1, ..., Ln) [L1 + ...+ Ln]

(137)

Corollary 3.6.1. Let µ(L) be an admissible weight function. Then the following holds for surfaces
with two marked cusps:

i. If µ(L) is subcritical, the expected total length of the boundary components is finite

ii. If µ(L) is critical, the expected total length of the boundary components is infinite

The proof is analogues to the proof of theorem 3.6.

3.8.4 Example: µ(L) = cL′δ(L− L′)

Let us illustrate the previous results. We will consider the weight function µ(L) = cL′ δ(L− L′) from
Section 3.5.5. Specifically chose L′ = 0. Remember that we have already know the value of c∗0, the
value at which the weight function is generic critical.
Using equations (128) and (101), we can get the probability of getting a hyperbolic surface with only
n cusps,

P(n) =

∑∞
n=3

23−n

(n−2)!

(∏n
i=3

∫∞
0
dLi µ(Li)

)
V0,n(0, 0, L3, ..., Ln)

Rµ
=

JRx,µKcn0 (c∗0)
n

Rµ
v κ n−3/2, (138)

with κ ∈ R. This implies that E(n) =
∑∞
n=3

(
n−1/2 + o(n−1/2)

)
, which is a divergent sum, meaning

E(n) =∞. This means that the number of expected cusps is infinite if co = c∗0 from equation (97).

3.9 Universality classes

In this section we will give a brief overview of the results from previous sections. We will also show
how surfaces from different universality classes would look like, just like we did in the planar map case
(see Section 2.7). The universality classes are labeled by the critical exponents from Theorem 3.2.

3.9.1 The 3/2 universality class

Let’s consider the 3/2 universality class, which corresponds to a weight function µ(L) that is subcritical.
The next corollary holds:

Corollary 3.6.2. Let µ(L) be a subcritical weight function. The following holds:

i. For the generating function Rx,µ of hyperbolic surfaces with two marked cusps from equation (92)
we have

∑∞
n=1JRx,µKxnc

n <∞ for a c ∈ R>1.

ii. For the partition function for hyperbolic surfaces with one marked boundary component W(L)

from equation (68) one gets W(L) v κ exp{cL}L− 3
2 for L→∞, where c, κ ∈ R.

iii. The expected number of boundary components and the expected total boundary length for surfaces
with two marked cusps is finite.

At the moment the marked boundary component length is taken to the L→∞ limit, we still have
that the expected number of boundary components is finite. From the analysis of subcritical planar
map models (see Section 2.7.1), we know that the surface area in this context should be minimized, as
these hyperbolic surfaces are in the same universality class. This is why the surfaces from the α = 3/2
are not fractal and look like the surfaces on the left in Figure 16.
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3.9.2 The 5/2 universality class

If the 5/2 universality class is considered, the weight function µ(L) is generic critical. For this
universality class, the following corollary holds:

Corollary 3.6.3. Let µ(L) be a generic critical weight function. The following holds:

i. For the generating function Rx,µ of hyperbolic surfaces with two marked cusps from equation (92)
we have JRx,µKxn v c n−3/2, where c ∈ R>0.

ii. For the partition function for hyperbolic surfaces with one marked boundary component W(L)

from equation (68) one gets W(L) v κ exp{cL}L− 5
2 for L→∞, where c, κ ∈ R.

iii. The expected number of boundary components and the expected total boundary length for surfaces
with two marked cusps is infinite.

If we consider the marked boundary component length is taken to the L→∞ limit, we still have
that the expected number of boundary components is infinite. Using the generic critical planar map
models from Section 2.7.2, we see that the surface area is not minimized. This is why the surfaces
from the α = 5/2 case are fractal and look like the artist impression in the middle of Figure 16.

3.9.3 The α ∈ (3/2, 5/2) universality class

Let α be from the interval (3/2, 5/2). The corresponding universality classes consider hyperbolic
surfaces with a weight function µ(L) that is non-generic critical.

Corollary 3.6.4. Let µ(L) be a generic critical weight function. The following holds:

i. For the generating function Rx,µ of hyperbolic surfaces with two marked cusps from equation (92)
we have JRx,µKxn v c n−1/γ−1, where γ ∈ (1, 2) and c ∈ R>0.

ii. For the partition function for hyperbolic surfaces with one marked boundary component W(L)
from equation (68) one gets W(L) v κ ecLL−α for L→∞, where (3/2, 5/2) and c, κ ∈ R.

iii. The expected number of boundary components and the expected total boundary length for surfaces
with two marked cusps is infinite.

Similarly to the surfaces from the α ∈ (3/2, 5/2) universality class in the planar maps model, the
surfaces have holes. The holes one gets in these kind of surfaces are not diffeomorphic to a torus. They
are rather holes like the boundary components of the surface. Analogously to the previous section,
we expect the surface are to not be minimized if we consider the marked boundary component length
is taken to the L → ∞ limit. This is why surfaces from this universality class look like the artist
impression on the right of Figure 16.
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Figure 16: Artist impressions of hyperbolic surfaces for different criticalities in the L→∞ case. The
boundary component whose length is going to infinity is coloured blue in all the three cases. The
surface on the left is the subcritical case, the surface in the middle is the generic critical case and the
surface to the right is the non-generic critical case. In the subcritical case, the surfaces try to minimize
its area, causing a tree like structure. In the generic critical case, there is no minimization of surface
are and the holes in the surfaces (which are different boundary components) are small relative to the
blue boundary component. In the non-generic case, their is also no minimization of surface area and
the holes in the surface are large compared to the boundary component coloured in blue.

4 Conclusion and discussion.

Concluding, we are able to get the same universality classes for hyperbolic surfaces as for planar maps.
This is done by having restrictions on the weight function µ(L), just like we had restrictions on our
weight sequence q for the planar maps model. We see similar behaviour and characteristics, such
as (non)fractal behaviour, in the discrete model and continuous model we considered given that the
models are from the universality class.
If µ(L) is chosen, such that Z ′µ (Rµ) 6= 0, then the model lives in the α = 3/2−universality class. In
this case, the expected number of boundary components is finite, meaning that we don’t have a fractal
surface. In this universality class, we have that discrete surfaces are volume minimizing, meaning
they get tree like structures if the perimeter goes to infinity. For the hyperbolic surfaces from this
universality class, we expect the same behaviour when one of the boundary components goes to infinity.
If for µ(L) holds that Z ′µ (Rµ) = 0 and the radius of convergence of Zx,µ (r) is larger then Rµ, then
the model is part of the α = 5/2−universality class. In this case, the expected number of boundary
components is infinite, meaning that the hyperbolic surfaces are fractal. For the planar map surfaces,
the expected volume is infinite. This means that the surfaces one gets, when the perimeter goes to
infinity, is not tree like. In hyperbolic surface model that live in this universality class, we expect the
same behaviour when one of the boundary components goes to infinity.

If µ(L) has the property that Z ′µ (Rµ) = 0 and Zµ (r) for r around Rµ has leading term is (Rµ − r)α−1/2
,

where α ∈ (3/2, 5/2), then we are considering models from the α ∈ (3/2, 5/2)−universality class. In
both the hyperbolic and planar map surfaces we get holes in the surface. For the hyperbolic surface,
we get fractal behaviour from the fact that the number of expected boundary components ins infinite.
We also see fractal behaviour in the planar map models from this universality class, as the number of
expected edges is infinite.

Due to the limited scope of this thesis, some details were not discussed. The point of the following
sections is to highlight these details and give some possibilities for future research.
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4.1 Four-dimensional theories

One limitation of this thesis is that we have only considered two-dimensional theories for quantum
gravity. We know from general relativity that our universe is described by four dimensions, one time
dimension and three space dimension. We therefore want our principle to be generalized to higher
dimensions. It is however unclear how one would, for example, create four-dimensional building blocks
and ’glueing’ processes and get the right continuum limit. Also, the Weil-Peterson volume and the
generating function for the partition function is defined for hyperbolic (two-dimensional) surfaces.
Finding four-dimensional analogues would be difficult, as one would, for example, need to find an
analogue for pairs of pants decomposition and four-dimensional boundary components.

4.2 Higher genus models

In this thesis, only models with genus zero were considered. Both in the case of maps and hyperbolic
surface, one could consider higher genus models. In the maps case, you would fore example get an
embedding of bipartite graphs on the tori if the genus is one [58]. In this case, if you represent the
map on a flat plane, you would allow specific overlapping of edges. In the case of hyperbolic surfaces,
you can still use the Weil-Peterson volume, as pants decomposition and Frenchel-Nielssen coordinates
are still well defined for Riemannian surfaces with higher a higher genus [26]. The generating function
for the volumes however, would be much more difficult, except for the g = 1 model [55]. In this case
FWP

1 = − 1
24 log

[
∂µ(0)Rµ

]
. For higher genus models however, the marking of one boundary component

and taking its length to infinity, will be much harder to calculate.

4.3 Tree bijections

The way the bipartite planar maps were analyzed, was based on analysis from random walks created
by the function gq or the measure wq. There is however another way to analyze bipartite planar maps,
which uses trees. There is a bijection between bipartite planar maps and a specific subset of trees,
which was discovered by Bouttier, Di Fransesco and Guiter [59]. This bijection is called the BdFG-
bijection or BFG-bijection. It gives an explicit algorithm which can be used to go from bipartite planar
maps to mobiles and it gives an algorithm for the other way around.
The specific subset of trees are called mobiles. They are trees, such that the vertices are either labeled
with positive integer labels or no labels, each edge connects two vertices of different kind, and there
is at least one vertex of degree 1. Besides, for any unlabeled vertex the adjacent two labeled vertices
labels n,m consecutively clockwise follow the relation: m ≥ n− 1 [59].
This bijection can in turn be generalized to be between generalized mobiles and Eulerian maps [59].
Eulerian maps are rooted planar maps where the degree of the vertices is even. Generalized mobiles
are trees, such that every vertex is either coloured black, coloured white or labeled a positive integer
number. Every edge is either labeled on both sides with a positive integer number and connects two
differently coloured vertices, or is unlabeled and connects a labeled vertex with a white vertex. For a
black vertex, the edges connected to it have labels which are non-increasing when read clockwise and
two consecutive edges have non-decreasing labels. For a visualisation see Figure 17. For a white vertex,
the edges connected to it and neighbouring labeled vertices have labels which are non-decreasing when
read clockwise; at each edge crossing it is non-decreasing; decreasing by one after each labeled vertex
and stationary between a labeled edge and the next label. Lastly, there is a at least one side of an
edge which is labeled zero. For a visualisation see Figure 18.

The previously outlined bijections can be used to get more general results for planar maps. For
example, using the more general bijection, one can analyze and rewrite W• (z) [37]. Using the partition
functions of mobiles, combinatorial equations and definitions of generating functions, one gets

W• (z) =
1√

(z − c+)(z − c−)
. (139)
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Figure 17: A visualisation of the restrictions on the
labeling of the vertices and sides of the edges when
considering it from the viewpoint of a black vertex.
All letters n,m, p represent some positive integer
assigned to either a labeled vertex or labeled side
of an edge. Source: Bouttier, Di Fransesco and
Guiter [59].

Figure 18: A visualisation of the restrictions on the labeling of the
vertices and sides of the edges when considering it from the viewpoint of
a white vertex. All letters n,m represent some positive integer assigned
to either a labeled vertex or labeled side of an edge. Source: Bouttier,
Di Fransesco and Guiter [59].

It holds that c+ = −c− if and only if q is bipartite. This means that we get the generating function
for bipartite planar maps back when c = c+ = −c−.
There are multiple uses for either bijection. Firstly, it could be used to analyze more general (discrete)
surfaces models and their analogies between hyperbolic surface surfaces. Secondly, it might be possible
to find a bijection between a specific set of trees and hyperbolic surfaces. One possibility could be
the creation of trees created from ’shooting’ geodesics from the boundary components of a hyperbolic
surface. Instead of labeling the vertices, as for the trees created for Eulerian maps, we could label the
angles between edges. This encoding of hyperbolic surfaces as trees, might lead to new results with
respect to the partition function. These trees might then, analogously to the planar map case using
the BDFG-bijection, lead to a random walk. This could tell us how hyperbolic surfaces from different
universality classes look like in certain limits.
However, it is clear that the more general the planar maps are that you consider, the more difficult
it becomes to use the bijection. This follows from the fact, that there are more specific restrictions
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on the labeling of the vertices and edges of your trees. This can make it harder to find, for example,
results for the created random walks in specific limits you want to consider.

4.4 Irreducible planar maps

In this thesis, the length of every edge of the planar map is taken to be the same length. If one adds
lengths to the edge, one considers metric planar maps. These lengths could differ per edge and are
therefore continuous, meaning we have introduces a continuous parameter. Irreducible maps are maps
where cycles of specific length are not allowed. This gives restrictions on the perimeter of the building
blocks, as any building block has a cycle. These irreducible maps are interesting, as the generating
function of the Weil-Peterson volume for hyperbolic surfaces is the same as the generating function
for 2π−irreducible planar maps [55]. Also, there is a way to go from irreducible maps to planar
maps without the irreducibility constraint. This implies that we could study the relation between
specific planar maps and hyperbolic surfaces, without considering criticality. Further research could
be done between irreducible maps and hyperbolic surfaces, by analyzing the partition functions. This

is necessary as the calculations with respect to the partition function W (2l) and W
(2l)
2p change.

4.5 Peeling process

In this thesis, we haven’t discussed the peeling process of (finite) planar maps. The peeling process is
given by a peeling algorithm A, see for example [38] or [22, p. 61-75]. This peeling algorithm gives a
sequence of maps, by the glueing of, pinching of or adding of edges to a map. The probability of getting
a map is dependent on the weight sequence, as the chance of encountering certain faces is determined
by the weight sequence. The peeling process is a Markov chain, meaning that the probability of
something happening is only depended on the context left by the previous step.
The peeling process that Curien uses in [22] to show the critical exponents of the partition function
W 2l, has transition probabilities that are explicitly dependent on the partition function W 2l

• , W 2l and
the weight sequence q. Using probability analysis, one can define a probability measure ν on Z. This
probability measure defines a random walk. This random walk can in turn be used to analyze the
critical exponents of W 2l and how the planar maps look like in the l→∞ limit.
There is no real clear continuous surface analogue to the peeling process of planar maps. The closest we
have is the Mirzhakani recursion which sends geodesics form boundary components and analyzes the
length of the geodesic when it hits another boundary component (if the boundary component length
is 0, one can use horrocycles). Using this recursion , one might be able to use the same logic steps to
analyze the hyperbolic surfaces (in specific limits).

4.6 Pseudo-Riemannian manifolds

Solutions to the JT-gravity action from equation (7) are technically 1 + 1-dimensional surfaces [27].
This means that the solution has one time dimension. In this thesis we have treated the time dimension
as a space dimension. We know from special relativity that this should not be the case, as there is
a restriction on the structure of the surfaces. As nothing can travel faster than the speed of light,
the possibilities for the worldlines of particles is limited. These possibilities can be presented by
lightcones, as seen in Figure 19. The fact that the worldlines of two objects can’t cross the worldline
of a photon, means there is a constraint on causality, as two objects can only meet at the points where
their lightcones overlap [60]. There is therefore a dependency of your space dimension on your time
dimension. If one uses R4 and a Riemannian metric, all regions are accessible for every path, meaning
the lightcone structure is not taken into account [29].
Therefore, we can’t use Riemannian manifolds to describe the solutions. This is because you need a
negative sign for the time coordinate to have a geometry which is compatible with special relativity.
The lightcones consequently lead to scalar products to not always be positive. The tangent spaces TpM
(see Appendix E) therefore need to be divided into time-like, null and spaccelike vectors [61]. This
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implies that we should use pseudo-Riemannian manifolds. These are smooth manifolds with a pseudo-
Riemmannian metric g̃. These pseudo-Riemannian manifolds are more general then Riemannian
manifolds [28] and as discussed in Section 1, the JT-action is still well defined if we consider pseudo-
Riemannian manifolds.
Note that one then needs to find an alternative formulation for the Weil-Peterson volume, as it is
dependent on having a Riemannian metric. Consequently, one can’t use the generating function for
Weil-Peterson volumes, which was used to analyze hyperbolic (Riemannian) surfaces. This means that
further research could focus on trying to find a Weil-Person like volume and recursive formulation.
Another possibility for research is trying to find a specific link or bijection between pseudo-Riemannian
surfaces and (specific subsets of) planar maps.

Figure 19: The x-axis represents one space
dimension. The y-axis shows the time. Two
observers have limited possibilities for their
worldline as the can’t go faster then the speed
of light. The cones that limit their worldlines
are shown in blue and green respectively. The
observers can only meet at the points where
the two cones overlap. This area is shown in
red.

Figure 20: Three different kind of vectors.
The x-axis represents one space dimension.
The y-axis shows the time. The light cone
is depicted by the two grey lines. The red
vector is a time-like vector. The blue line is
a null vector. The green vector is a space-like
vector.
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Appendix

The appendix contains calculations, definitions and background information used in my thesis.

A Graph theory

In this short section, some elementary definitions and notations with regards to graphs will be introduced.
Most of it is based on the work of Schrijver[40] .

Figure 21: To the left is the graph g, with V(g) = {1, 2, 3, 4, 5, 6} and E(g) =
{{1, 2} , {1, 3} , {2, 3} , {3, 4} , {3, 5} , {4, 5} , {5, 6} , {6, 6}}. Note that {6, 6} is called a loop.

A graph g consists of two sets V(g) and E(g) . The first set, V(g) = {v1, v2, ... }, consists of vertices
vi which can be thought of as points. The second set, E(g) = {{vi, vj} |vi, vj ∈ V(g)}, consists of edges
ek = {vi, vj} between two vertices for V(g) and can be thought of as lines between two points. When
{vi, vj} ∈ E(g) we say that vi is connected to vj (and vice-versa) or that vi and vj are each others
neighbours. An edge in a graph g is oriented from vi towards vj if the edge has a direction. These
oriented edges are denoted by (vi, vj) ∈ E(g). In this thesis we allow so-called loops, these are edges
that connect one vertex with itself, that is to say, these edges are given by {vi, vi}. See Figure 21 for
an example of a graph with a loop.
Two graphs g and g′ are called isomorphic, if there is a bijection h : V(g) → V(g′), such that:
{vi, vj} ∈ E(g) � {h (vi) , h (vj)} ∈ E(g′). This means that there is a bijection, which preserves the
quality of two vertices being neighbours. For an example of isomorphic graphs, see Figure 22. In this
thesis we consider graphs which are unique up to isomorphism.
The degree of a vertex, deg (vi), is the number of vertices vi is connected to. Or equivalently:
deg (vi) = |{vj ∈ V(g)| {vi, vj} ∈ E(g)}|. For an example, look at Figure 21, where one sees that
deg (v3) = 3. In this thesis, all vertices are of finite degree.
A path is an ordered set of vertices (v0, v1, ..., vk), such that: ∀i, j ∈ N : [[i 6= j]→ [vi 6= vj ]] ∧ ∀i :
[[0 ≤ i < k]→ [{vi, vi+1} ∈ E(g)]]. The length of the path is k−1. A path of length k−1 where v0 = vk
is called a circuit. A circuit is thus a path that starts and ends at the same vertex. A graph is called
a tree if it has no circuits. The distance d(vi, vj) between two vertices vi, vj ∈ V(g) is the length of
the minimal path between the two vertices. For an example, consider Figure 22, where d(3, 4) = 1 and
d(3, 6) = 1.
A graph g is non-intersecting if it can be drawn on a flat surface without any edges overlapping
except at the begin and endpoints of the edges. If this is the case, it is said that the graph can be
embbeded into the plane or into the sphere. Note that it can be possible that a graph that is initially
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Figure 22: To the left is the graph g, with V(g) = {1, 2, 3, 4, 5, 6} and E(g) =
{{1, 2} , {1, 3} , {2, 3} , {3, 4} , {3, 5} , {4, 5} , {5, 6} , {6, 6}}. To the right is the non-intersecting graph
g′, with V(g′) = V(g) and E(g′) = E(g). Note that g and g′ are clearly isomorphic via h = Id.

drawn as intersecting, can actually be drawn as non-intersecting. See Figure 22 for an example.
Consider an edge {vi, vj} ∈ E(g). We can make it an oriented edge: (vi, vj). If the area to its left or
right is encircled by a circuit (v0, v1, ..., vk−1, v0) of minimal length k, the area is called a face. The
circuit is of minimal length if it is not possible to create another circuit that starts with the same two
vertices, is oriented the same way and has a smaller length. A face will be denoted by f , and we say
that the face is of degree k if the length of the minimal circuit is k. Equivalently, we can say that the
degree of a face is the number of edges in the minimal circuit. For an example, see Figure 23.

Figure 23: To the left is the graph g, with V(g) = {1, 2, 3, 4, 5, 6} and E(g) =
{{1, 2} , {1, 3} , {2, 3} , {3, 4} , {3, 5} , {4, 5} , {5, 6} , {6, 6}}. An example of a circuit which encompasses
a face is coloured in dark blue: (3, 4, 5, 3). The face f1 encircled is highlighted with a light blue colour.
Note that deg (f1) = 3.

A graph can be coloured by assigning a colour to every vertex of a graph, such that two neighbouring
vertices do not get the same colour. Bipartite graphs are graphs which can be coloured with two
colours. Figure 24 shows an example of bipartite graph. In the context of non-intersecting graphs, the
graph being bipartite is equivalent to having only faces with even degree.
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Figure 24: An example of a bipartite graph/bipartite planar map. Note that every pair of adjacent
vertices don’t have the same colour and all the faces are of even degree . Here a face of degree 0 is
taken to also be a face of even degree.

B Generating functions

Generating functions are used in this theses to analyse sequences, such as the sequence of partition
functions W 2l

• . The definitions of this section are based on the book by Mazur [62].
Consider a number sequence {ak}k≥0, such that ∀i ∈ N : ai ∈ R. The generating function
of this sequence is defined as

∑
k≥0 akx

k. The convergence radius ρ ∈ R is the value such that if
x ∈ R is chosen such that the sum of the generating function converges, then |x| < ρ. Note that
not every generating function might have a convergence radius. If the sum converges, the form to
which it converges is called the analytical form of the generating function. A well-known example is
{ak}k≥0 = {1}k≥0, whose generating function is∑

k≥0

xk =
1

1− x
, (140)

which holds for |x| < 1. The radius of convergence is thus 1. The form 1
1−x is the analytical form of

the generating function
∑
k≥0 x

k. As we see in sections 2.6.1, one is able to analyze the sequences by
looking at the analytical form.
Another way to use a generating function is to solve a recurrence relation. If the sequence {ak}k≥0 is
given by a regressive formulation, one needs to know {ai}i<n to be able to get an. For large n, this can
be too tedious to do by straightforward calculations of all ai for i < n. Using the generating function
for this recursive sequence, one is sometimes able to get an analytical form. This analytical form is
often linked with a generating function for which the number sequence is known. One is then able to
get the value of an for any n ∈ N. This is why the Tutte-equations from Section 2.5 are so powerful.
An example of this technique is the sequence given by a0 = 1, ak = 3ak−1. The generating function is
then given by

f(x) =
∑
k≥0

akx
k =

∑
k≥1

akx
k

+ a0 =

∑
k≥1

3ak−1x
k

+ 1

= 3x

∑
k≥1

ak−1x
k−1

 = 3xf(x)− 1

(141)

This implies f(x) = 1
1−3x . As one can see, the other generating formula which has the same analytical

form is given by substituting x = 3x in equation (140). This means that an = 3n. We will introduce
the following notation: an = Jf(x)Kxn , where f(x) is the analytical form. Alternatively it can be used
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if f(x) can be approximated by a power series. In this context cn = Jf(x)Kxn = [xn] f(x), meaning
that it is the coefficient of xn of the power series. In the case discussed in equation (141) it would
be: an = J 1

1−3xKxn = 3n. This method of finding the coefficients will be used to analyze the partition

function W (2l) in Section 2.6.4.

Note that defining the generating function W(Li, Lj) of hyperbolic surfaces with two marked
boundary components of length Li and Lj as a (functional) derivative of the more general generating
function FWP

0 makes sense. Let’s take a random element from the generating function FWP
0 : JFWP

0 Kµ(0)n

gives the number of surfaces with n cusps. After taking the derivative with regard to µ (0), there is
now an n term in front of the coefficient, standing for the n ways one cusp can be chosen to be marked.
The n− 1 in the exponent of µ (0) now stands for the number of unmarked cusps.

B.1 Proof of Theorem 2.2

Proof. Let q be an admissible weight sequence. This means that W
(2l)
• <∞, meaning we will be able

to use equation (15), where p = 0. We therefore have

W• (z) =

∞∑
l=0

W
(2l)
• z−2l−1

=

∞∑
l=0

2−2l−1

(
2l

l

)
clqz
−2l−1

=
1

2z

∞∑
l=0

(
2l

l

)(
4z2

cq

)−l
=

1

2z

1√
z2−cq
z2

=
1

2
√
z2 − c

,

(142)

where the following standard identity for the generating function is used
∞∑
i=0

(
2i

i

)
x−i =

1√
x−4
x

, (143)

which holds for |x| > 4. This means that we need to show that z > 2. This follows from the fact that
z > cq. Note that cq = 4Zq, and Zq is the smallest solution for

1 +

∞∑
k=1

qk

(
2k − 1

k

)
xk. (144)

This implies that Zq > 1, meaning z > 4.

C Laplace transform

The Laplace transform is in essence just a basis transformation [63]. It transforms a function with a
real variable (t in equation (145)) to a complex valued function (denoted in equation (145) by s). In
the general case, this is written as

F (s) = (L(f))(s) =

∫ ∞
0

exp(−s · t)f(t)ds (145)

The Laplace transform can be seen as a continuous analogue for the generating function and we will
therefore use to compare the hyperbolic surface models with planar map models in Section 3.7.
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D Measure theory

A small introduction to measure theory will be given in this section, so one can define the σ-algebra
on M using the weight sequence q in Section 2.2 and show the intuition behind Theorem 2.5. The
idea of a measure is to give a volume to subsets Ai of a space X. The definitions are based on the
book by Cohen [64].

D.1 Algebras

Let X be a set. A collection of subsets of X, denoted by A = {Ai|Ai ⊂ X}, is called an algebra on
the set X if:

X ∈ A (146)

∀Ai ∈ A : Aci ∈ A (147)

∀n <∞ : [[A1, ..., An ∈ A]→ [∪ni=1Ai ∈ A]] (148)

∀n <∞ : [[A1, ..., An ∈ A]→ [∩ni=1Ai ∈ A]] (149)

The collection of sets A is called a σ−algebra if in equation (148) and equation (149) n is replaced
with ∞.

Lemma D.1. Let M be the set of all finite planar maps , the set A = P (M) is a σ−algebra on M.

This follows trivially from the definition of a power set.

D.2 Measure

Let X be a set, let A be a (σ-)algebra on the set X. A measure is a function ν : A → [0,+∞], that is
countably additive and satisfies ν(∅) = 0. A function is countably additive if for disjoint A1, A2, ... ∈ A

ν (∪∞i=1Ai) =

∞∑
i=1

ν (Ai) . (150)

A measure ν is called σ−finite if X = ∪∞i=1Ai for some disjoint A1, A2, ... ∈ A, where ∀i ≥ 1 we have
that ν (Ai) <∞.
An example of a measure is wq (m) =

∏
f∈F(m) qdeg(f)/2, where for two different maps m and m′ the

following holds

wq (m ∪m′) =
∏

f∈F(m)

qdeg(f)/2 +
∏

f∈F(m′)

qdeg(f)/2. (151)

More generally, let A′ = ∪∞i=1Ai for disjoint sets A1, A2, ... ∈ A, then the following holds

wq

( ⋃
m∈A′

m

)
=

∞∑
i=0

∑
m∈Ai

∏
f∈F(m)

qdeg(f)/2 (152)

D.2.1 Proof of Theorem 2.1

Proof. Let wq (m) be given as in equation (11). Let A be given as in lemma D.1.
Firstly, note that it is clear from the definition of wq that wq (∅) = 0. Secondly, it clear that the
countably additive requirement from equation (150) holds, as for disjoint A1, A2, ... ∈ A, we define
A′ = ∪∞i=1Ai and see that

wq (∪∞i=1Ai) = wq (∪∞i=1 ∪m∈Ai m) = wq (∪m∈A′m)

=

∞∑
i=0

∑
m∈Ai

∏
f∈F(m)

qdeg(f)/2 =

∞∑
i=1

wq (Ai) .
(153)
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Meaning it is clear that wq is a measure.
To proof that it is a σ−finite measure, note that M =

⋃∞
l=0M(2l), where ∀l ∈ N : M(2l) ∈ P (M).

By assumption there is an l such that W (2l) < ∞. Equation (9) then implies that wq

(
M(2l)

)
< ∞.

From [22, p. 55], we know that ∃l ∈ N : W (2l) <∞ implies that ∀l ∈ N : W (2l) <∞. Using this fact,
we get ∀l ∈ N : wq

(
M(2l)

)
<∞, which means that wq is a σ−finite measure.

D.3 Measure space

The combination of a set X, an (σ−) algebra A, and a (σ−)measure ν is called a (σ−) measure space
(X,A, ν). A measure space is finite if ν(X) < ∞. For finite measure spaces, one has a measure ν,
such that ν : A → [0,+∞).

Corollary D.1.1. Let M be the set of all bipartite planar map and let wq (m) for m ∈M be given by
equation (11), then (M,P (M) , wq) is a σ-measure space.

Proof. This follows from combining lemma D.1 and theorem 2.1, with the fact that M =
⋃∞
l=0M(2l),

as ∀l ∈ N :M(2l) ∈ P (M).

D.4 Integration

We want to be able to analyze how planar maps will look like by getting a formulation of the expected
number of edges in the planar map. This will be done by firstly introducing integration and then
defining the concept of a probability measure.
Before we can define integration, we need to introduce the concept of measurable functions. Let (X,A)
be a measure space and let A ∈ A. A function f : A→ [−∞,∞] is called measurable with respect to
A if ∀ t ∈ R : {x ∈ A|f(x) < t} ∈ A.
Let ν be a measure on (X,A). Let f : X → R be anA−measurable function, such that f =

∑m
i=1 ciχAi .

Here ci ∈ R≥0, A1, ..., Am ∈ A are disjoint subsets of X and χAi : X → R is the characteristic function
of Ai defined by

χAi(x) =

{
1 if x ∈ Ai
1 if x /∈ Ai

}
. (154)

We can define the concept of an integral of f with respect to ν by∫
fdν =

m∑
i=1

ci ν(Ai). (155)

D.5 Probability measure

A probability space is a measure space (X,A, ν), such that ν (X) = 1. A measure ν for which this
holds, is called a probability measure [65].

Corollary D.1.2. Let M(2l)
2p be the set of all rooted bipartite planar maps, with target face of degree

2p and perimeter of length 2l. Let wq (m) for m ∈ M(2l)
2p be given by equation (11). Let P(2l)

2p (m) be
defined by

P(2l)
2p (m) =

wq (m)

W 2l
2p

. (156)

Then
(
M(2l)

2p ,P
(
M(2l)

2p

)
,P(2l)

2p

)
is a probability space.

Proof. It is clear that P
(
M(2l)

2p

)
is a σ-algebra for M(2l)

2p .

From corollary D.1.1, we know that (M,P (M) , wq) is a σ-measure space. This implies that wq is
measure on M, thus

P(2l)
2p (∅) =

wq (∅)
W 2l

2p

= 0. (157)
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Let A1, A2, ... ∈ P
(
M(2l)

2p

)
⊆ P (M) be disjoint, using theorem 2.1 we know that

P(2l)
2p (∪∞i=1Ai) =

wq (∪∞i=1Ai)

W 2l
2p

=

∑∞
i=1 wq (Ai)

W 2l
2p

=

∞∑
i=1

P(2l)
2p (Ai) , (158)

meaning P(2l)
2p

(
M(2l)

2p

)
is also a measure. To show that it is a σ-finite measure, one can follow the

proof of Theorem 2.1 while substituting M with M(2l)
2p and M(2l) with M(2l)

2p [n].

As
(
M(2l)

2p ,P
(
M(2l)

2p

)
,P(2l)

2p

)
is a σ-measure space, we know that

P(2l)
2p

(
M(2l)

2p

)
=
wq

(
M(2l)

2p

)
W 2l

2p

=
wq

(
∪∞n=0M

(2l)
2p [n]

)
W 2l

2p

=

∑∞
n=0 wq

(
M(2l)

2p [n]
)

W 2l
2p

=

∑∞
n=0

∑
m2p[n]∈M(2l)

2p [n]

∏
f∈F(m2p[n])\fr qdeg(f)

W 2l
2p

=
W 2l

2p

W 2l
2p

= 1,

(159)

meaning that the corollary holds.

One can analogously define P(2l) for M(2l) and P(2l) [n] for M(2l) [n].

D.5.1 Notes on Theorem 2.5

Having defined a probability measure on appendix D.5, we are able to define the expected value of

edges in a planar map. This is done by using integration defined in Appendix D.4. Let m ∈ M(2l)
2p be

a rooted bipartite planar map with a target face of degree 2p and perimeter 2l, the expected number
of edges is given by

E (|m|) =

∫
dP2l

2p(m) · |m|. (160)

It is clear that |.| : M
(2l)
2p → R≥0 is measurable with respect to P

(
M(2l)

2p

)
, meaning the integral

in equation 160 is well defined. Besides, from corollary D.1.2 we know that P2l
2p(m) is a probability

measure, so we know that the integral gives the expected number of edges for the planar map m ∈M(2l)
2p .

The formulation of theorem 2.5 is therefore a reformulation of theorem D.2.

Theorem D.2. Let q be an admissible weight sequence. Let m ∈ M
(2l)
2p . The weight sequence q is

critical if and only if
∫
dP2l

2p(m) · |m| =∞

The formulation of theorem D.2 makes it intuitively clear how the proof of theorem 2.5 is dependent
on the random walk defined by gq. The criticality condition on fq gives a condition on gq, which
translates to a condition for the random walk Yn. From the random walk Yn, one is able to analyze
the behaviour of W 2l

2p and therefore P2l
2p(m).

E Riemannian manifolds

In this section, we will recall some definitions and propositions from differential geometry. This is
necessary to define lengths of curves on surfaces, orientation preserving maps, integration on a manifold,
etc. Fur further reading, see [25] [46] and [47].

62



E.1 Topology

Before we are able to define a manifold, we need to introduce the concept of a topology. Let M be a
set. A topology on M is a collection T = {Ui|Ui ⊆M} of subsets of M , such that

M, ∅ ∈ T , (161)

∀F = {Ui|Ui ∈ T } : ∪Ui∈F Ui ∈ T , (162)

∀n ∈ N : [[U1, ..., Un ∈ T ]→ [∩ni=1Ui ∈ T ]] . (163)

The topology T ofM is the set consisting of the open sets ofM . When T fulfills the above requirements,
we say that (M, T ) is a topological space [66].
We will introduce the concept of a basis for the topology so we can define manifolds in Appendix E.2.
A collection B = {Bi|Bi ∈ T } is called a basis for the topology on M , if⋃

Bi∈B
Bi = M, (164)

∀B1, B2 ∈ B : [[x ∈ B1 ∩B2]→ [∃B3 ∈ B : x ∈ B3 ⊆ B1 ∩B2]] . (165)

For the introduction of the Weil-Peterson volume the concepts of homotopy and equivalence
relations need to be revisited. Let (M, TM ) , (N, TN ) be two topological spaces. A useful tool in
our kit would be generalizing the idea of continuity on R to topological spaces. A function f : M → N
is continuous if ∀ U ∈ TN : f−1 (U) ∈ TM . This means that f , reaches only open subsets of the set N
if the input is an open subset of the set M . Consider two of such continuous maps between topological
spaces f0, f1 : X → Y . A homotopy from f0 to f1 is a continuous map F : X × [0, 1] → Y , where
F (x, 0) = f0 (x) and F (x, 1) = f1 (x). If such an F exists between f0 and f1, f0 and f1 are called
homotopic [67]. This means that one can continuously map one function to another function. For an
example see Figure 25. A relation v on a topological space X is called an equivalence relation if

Figure 25: An example of a homotopy F between two continuous functions g, f : X → Y . Source:
Smeets [66]

i. ∀x ∈ X : x v x ,

ii. ∀x, y ∈ X : x v y =⇒ y v x ,

iii. ∀x, y, z ∈ X : [x v y ∧ y v z] =⇒ x v z .

An equivalence relation partitions X into equivalence classes [x] = {y ∈ X|x v y}. The collection
of these equivalence classes is called the quotient and is denoted by X/ v [68].
Note that by the first characteristic of an equivalence relation, we have that X/ v is a partition of
X. This means that the equivalence relation can be used to group together points from a topological
space, that due to some shared characteristics are considered to be too similar to be considered on
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their own, in some context. In the context of the Teichmüller space of hyperbolic surfaces, two pairs
(X, f), (Y, h) of a hyperbolic surface and an orientation preserving diffeomorphism from Σg,b,n to the
surface are seen as ’too similar’, when one can have an isometry between the two surfaces X and Y ,
such that mapping Σg,b,n to X using f followed by mapping X to Y using m and mapping Y back to
Σg,b,n can be continuously mapped to the identity. In the context of Weill-Peterson volume we also
use homotopy classes of continuous functions, which are equivalence classes where the equivalence
relation between two function is that they are homotopic to each other.

E.2 (Smooth) Manifolds

A topological manifold of dimension n is a topological space such that

i. M is a Hausdorff space: ∀p, q ∈M ∃ U, V ∈ T : [U ∩ V = ∅ ∧ p ∈ U ∧ q ∈ V ].

ii. M is second-countable: ∃ B = {Bi}i∈N : B is a basis for the topology of M.

iii. M is locally Euclidean with dimension n: ∀p ∈M ∃ U ∈ T :[
p ∈ U ∧ ∃ Û ⊆ Rn ∃ φ : U → Û : φ is a homeomorphism

]
.

Where φ : U → Û being a homeomorphism, means that φ is a continuous bijective map, with a
continuous inverse φ−1 : Û → U . These definitions give us the ability to characterize some of the
properties of manifolds, such as when a set is open or compact [46]. However, one can not yet do
calculus on these manifolds. To do this, one needs to introduce a ’smooth’ structure. This will be done
in the next paragraph.
A (coordinate) chart (U, φ) on a manifoldM consists of an open subset U ofM and a homeomorphism
φ : U → φ (U) ⊆ Rn. A collection of charts whose domain covers M is called an atlas A. An
atlas is smooth if any two charts are smoothly compatible. Two charts (U, φ) , (V, ψ) are smoothly
compatible if and only if U ∩ V = ∅ or ψ ◦ φ−1 : φ (U ∩ V )→ ψ (U ∩ V ) is a diffeomorphism. A map
ψ ◦ φ−1 being a diffeomorphism means that ψ ◦ φ−1 is a smooth homeomorphism with a smooth
inverse. The pair (M,A) is a smooth manifold if M is a manifold and A is a smooth atlas on M .

E.3 Vector fields

Before we can introduce the Riemannian metric and integration, we need to define vector fields using
the tangent space. The tangent space TpM of p ∈M , also called the set of derivatives at p ∈M , is
defined by: TpM = {(p, v) |v : C∞ (M) → R ∧ ∀f, g ∈ C∞ (M) : [v (fg) (p) = v(f)g (p) + f (p) v(g)]}.
Alternatively, we write (p, v) = vp. The tangent space of M is defined by TM =

⊔
p∈M TpM and

consists of finite-dimensional real vector spaces [47]. Note that the tangent space itself is not a vector
space. Defining the dual space TM∗ of the tangent space is therefore done by taking the dual vector
space of every TpM . Also note that there is a natural projection of TM on M given by π : TM →M ,
where π (p, v) = p.
A (smooth) vector field on M, often denoted by X, is a (smooth) section of the natural projection
of TM on M . The fact that X is a (smooth) section, means that X is a continuous (smooth) map
X : M → TM , such that π ◦X = IdM . Notation-wise, we can set X (p) = Xp. The set of these vector
fields, X (M) = {X : M → TM |X is a vector field} is a vector space under point-wise addition and
scalar multiplication, and it’s a module over the ring C∞ (M) [46].

E.4 Riemannian manifolds

In this section we introduce the Riemannian metric, which allows us to define the geometry of the
manifold. This will be done by defining an inner product for any tangent space.
Having defined the tangent space in the previous section, we can define a set of covariant 2-tensors on its
cotangent bundle TM∗: T 2 (TM∗) =

⊔
p∈M T 2 (TpM), where T 2 (TpM) = {αp : TpM ⊗ TpM → R},
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with αp being a multi-linear real-valued function. Lastly, we define a space of sections of the covariant
2-tensor sets: Γ

(
T 2 (TM∗)

)
= {A : M → T 2 (TM∗) |A is a smooth section}. Where A is a smooth

section with respect to π : T 2 (TM∗) → M , where π (αp) = p. Now we can define a Riemannian
metric on a smooth manifold M . A smooth covariant 2-tensor field g : M → T 2 (TM∗) is a
Riemannian metric, if g (p) = gp : TpM ⊗ TpM → R is an inner product. This means that it satisfies

∀v, w ∈ TpM : gp (v, w) = gp (w, v) , (166)

∀v ∈ TpM : gp (v, v) ≥ 0, (167)

∀v ∈ TpM : [gp (v, v) = 0� v = 0 ∈ TpM ] . (168)

A Riemannian manifold is a pair (M, g), where M is a smooth manifold and g is a Riemannian
metric [25].

Using g one can define the length of a vector. Take (p, v) ∈ TpM : |v|g := gp (v, v)
1/2

. Let γ : I → M
be a smooth curve on M with I = [a, b] ⊆ R. This means that ∀t ∈ I ∃ γ′ (t) ∈ Tγ(t)M . The length

of the curve is defined by: Lg (γ) :=
∫ b
a
|γ′ (t) |gdt. One can define the distance between two points on

the manifold using the definition of the length of curve:
dg (p, q) = inf {Lg(γ) | γ is an admissible curve starting at p and ending at q}. A smooth curve is
called a geodesic, if the distance between any two points on the curve is the same as the length
of the curve between two points: ∀s, t ∈ I : dg (γ (s) , γ (t)) = Lg(γ|[s,t]) [25].

E.5 Curvature

To define what hyperbolic manifolds are, we need to define curvature. To do this, we need to introduce
the connection, which is a map ∇ : X (M)× X (M)→ X (M), such that

∀f, g ∈ C∞ (M) ∀ X1, X2, Y ∈ X (M) : ∇fX1+gX2
Y = ∇fX1

Y +∇gX2
Y, (169)

∀a, b ∈ R ∀X,Y1, Y2 ∈ X (M) : ∇X (aY1 + bY2) = a∇XY1 + b∇XY2, (170)

∀f ∈ C∞ (M) ∀X,Y ∈ X (M) : ∇X (fY ) = f∇X (Y ) +X (fY ) . (171)

Conventionally, ∇X (Y ) is called the covariant derivative of Y in the direction X. Using this idea of
taking a covariant derivative in the direction of a vector field, we introduce a new map R by

R : X (M)× X (M)× X (M)→ X (M)

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇XY−Y XZ,
(172)

which is a (1, 3)−tensor field on M . We can now introduce the Riemannian curvature tensor
Rm : X (M)⊗ X (M)⊗ X (M)⊗ X (M) → R, where Rm (X,Y, Z,W ) = g (R (X,Y )Z,W ), which is a
covariant tensor. We say that a manifold is flat, if the Riemannian curvature vanishes, that is to say
if: ∇X∇Y Z −∇Y∇XZ = ∇XY−Y XZ for all X,Y, Z ∈ X (M).
Having introduced the Riemannian curvature tensor, one can define the Ricci curvature Rc. It is
a covariant 2−tensor field Rc : X (M) ⊗ X (M) → R, where Rc (X,Y ) = Tr (ψX,Y ). Here, ψX,Y :
X (M) → X (M) is defined by ψX,Y (Z) = R (X,Y )Z. The scalar curvature S is defined using the
Ricci curvature: S = Tr (Rc). Hyperbolic manifolds are manifolds with constant scalar curvature
of −2 [25].

E.6 Orientation

The Weil-Peterson volume is defined as an integral over the Moduli space of certain surfaces. To define
the signs of the integration and the coordinate system used for the integration, one needs to define
orientations on a smooth n−dimensional manifold.
A (smooth) local frame for M is a tuple of (smooth) vector fields (E1, ..., Ek) defined on an open
set U ⊆ M , such that ∀q ∈ U : (E1 (q) , ..., Ek(E1 (q)) is a basis for TqM . It is a (smooth) global
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frame if we have U = M .
Choose a frame (E1, ..., Ek) for an open set U ⊆ M . Let p ∈ U and look at TpM . Another basis

(Ẽ1 (p) , ..., Ẽk (p)) is called called consistently oriented if there is a transition matrix B, such that
B has positive determinant and Ei (p) = Bji Ẽj (p), where we use the Einstein summation notation.
This gives us exactly two equivalence classes on the set of ordered bases of TpM . The bases belonging
to the same equivalence classes as (E1, ..., Ek) are called positively oriented. The bases that do not,
are called negatively oriented. A pointwise orientation of M is therefore defined as the choice of
orientation ∀p ∈M . A pointwise orientation of M is continuous if there is an oriented global frame.
An orientation of M is then a continuous pointwise orientation of M .
A map F : M → N is called orientation preserving if the isomorphism dFp : TpM → TF (p)M takes
an positively orientated base of TpM to anther oriented base in TF (p)M . Where dFp : TpM → TF (p)M
is defined by: ∀v ∈ TpM ∀h ∈ C∞ (N) : dFp (v) (h) = v (h ◦ F ) [46].

E.7 Differential forms and integrating

To define the Weil-Peterson volume, one makes use of wedge products and sympletic forms, as this is
used to define integration.
Let F : V ∗ × ... × V ∗ → R be covariant k−tensor. The tensor is called alternating if the value
changes when two different arguments are interchanged, meaning:
F
(
v∗1 , ..., v

∗
i , ..., v

∗
j , ..., v

∗
k

)
= −F

(
v∗1 , ..., v

∗
j , ..., v

∗
i , ..., v

∗
k

)
. The alternation of F is defined by

(Alt F ) (v∗1 , ..., v
∗
k) =

1

k!

∑
σ∈Sk

sgn (σ) F
(
v∗σ(1), ..., v

∗
σ(k)

)
, (173)

where sgn (σ) is the sign of the permutation σ, which is +1 if the permutation can be written as
a composition of even number of transpositions, and −1 if it can be in an odd number. Using the
alternation, we can define the wedge product. Let ω ∈ Λk (V ∗) and η ∈ Λl (V ∗). The wedge product
for these alternating tensor is defined by

ω ∧ η =
(l + k)!

l!k!
Alt (ω ⊗ η) . (174)

Let M be a smooth manifold of dimension n. An alternating tensor field on M is called a differential
k−form. Let

(
xi
)

be smooth coordinates on M . A smooth differential k-form ω can be written as

ω =
∑

j1<...<jk

ωj1...jkdx
j1 ∧ ... ∧ dxjk . (175)

A sympletic form is a 2−form ω that is non-degenerate, meaning: ∀p ∈M ∀vp ∈ TpM :
[∀up ∈ TpM : ωp (vp, up) = 0]→ [vp = 0] The exterior derivative of a k-form ω is defined by

dω =
∑

j1<...<jk

n∑
i=1

∂ωj1...jk
∂xi

dxj1 ∧ ... ∧ dxjk . (176)

Let M be an oriented smooth n−dimensional manifold with boundary and let ω be a compactly
supported smooth (n− 1)− form on M . Let {(Ui, φi)}ki=1 be coordinate charts of M , such that the

domains cover the support of ω. Let {ψi}ki=1 be a smooth partition of unity, subordinate to the cover

given by {(Ui, φi)}ki=1. The integration of ω over M is defined by [46]

∫
M

dω =

k∑
i=1

∫
φi(Ui)

(
φ−1
i

)∗
(ψi ω) . (177)
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F Bessel functions

The Bessel equations Jn(x) is the solution for y to the differential equation: x2y′′+xy′+(x2−n2)y = 0
[69]. Jn(x) is called the Bessel function of first kind of order n. A Bessel function of second
kind of order n is denoted by In(x) and is related to Jn(x) by

In(x) = exp
{
i
nπ

2

}
Jn(x · exp

{
−iπ

2

}
)

= iJn(−ix).
(178)

Having defined the Bessel functions, some of its characteristics will be discussed in the following
sections.

F.1 Approximations

Let’s start with approximations for Assuming n ∈ N, the following equation holds around x = 0 [70]

Jn(x) =

∞∑
s=0

(−1)s

s!(s+ n+ 1)!
(
x

2
)2s+n. (179)

Note that equations (179) and (178) imply

In(x) =

∞∑
s=0

1

s!(s+ n+ 1)!
(
x

2
)2s+n. (180)

These approximation can be used to find the Laplace transform of the cylinder function and are
implicitly used in Section C. There is also an approximation around x ≈ ∞, which we will use in
Section 3.6,

In(x) =
ex

(2πx)
1
2

∞∑
s=0

(−1)s
as(n)

xs
, (181)

where

as(n) =

∏s
i=0(4s2 − (2i+ 1)2)

(s+ 1)!

s∑
j=0

1

4s2 − (2i+ 1)2
. (182)

F.2 Derivatives

Let’s consider the derivatives of Jn(x) with regard to x. They will be denoted by Jn(x)′. The following
properties hold [57]

Jn(x)′ =
1

2
[Jn−1(x)− Jn+1(x)], (183)

Jn(x)′ =
n

x
Jn(x)− Jn+1(x). (184)

Note that equation (184) can be calculated from differentiating equation (179). Equation (183) comes
from differentiating x−nJn(x).
Combining equation (183) and (184), one gets

n

x
Jn(x)− Jn+1(x) =

1

2
[Jn−1(x)− Jn+1(x)]

n

x
Jn(x) =

1

2
Jn−1(x) +

1

2
Jn+1(x)

2n

x
Jn(x) = Jn−1(x) + Jn+1(x).

(185)
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Alternatively, this gives us

Jn(x)′ =
2n

x
Jn(x)− Jn+1(x), (186)

which we will use for calculating the disc partition function for hyperbolic surfaces.

F.3 Integration

We also know some integrals [71, p. 659-749], we will mainly use∫ z

0

xJ0(x)dx = zJ1(z). (187)

Note that equation (178) implies ∫ z

0

xI0(x)dx = zI1(z). (188)

The following more general integral is also known∫ z

0

zFn(kz)Fn(lz)dz =
z
{
kFn+1(kz)Fn(lz)− lFn(kz)Fn+1(lz)

}
k2 − l2

. (189)

In equation (189), Fµ and Fν are cylinder functions of order n. As Bessel functions of the first and
second kind are cylinder functions, equation (189) holds for them as well.

F.4 Calculations

Some small calculations have been repeated in the main section. To make the main section of thesis
more readable and stop clutter from piling up, some calculations have been moved to the following
subsections.

F.4.1 Calculations for Zµ (r)

The functional derivative of Zµ with respect to µ(L′) is given by

∂µ(L′)(Zµ(r)) =
∂Zµ(r)

∂µ(L′)
= − ∂

∂µ(L′)

∫ ∞
0

µ(L)I0(L
√
r)dL

= −
∫ ∞

0

I0(L
√
r)
∂µ(L)

∂µ(L′)
dL = −

∫ ∞
0

I0(L
√
r)δ(L− L′)dL

= −I0(L′
√
r).

(190)

Using equation (190), the functional derivative of the square of Zµ gives us

∂µ(L′)(Zµ(r)2) = 2Zµ(r)∂µ(L′)

[
Zµ(r)

]
= −2Zµ(r)I0(L′

√
r).

(191)

Using equations (57) and (191) then gives us

∂µ(L′)(Zµ(R)2) = 0. (192)
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F.4.2 Calculations: W(L′)

In equation (65), the following calculation has been used∫ R

0

√
r

L′
J0(2π

√
r)I1(L′

√
r)dr =

∫ R

0

1

L′
J0(2π

√
r)

∂

∂L′
I0(L′

√
r)dr

=
1

L′
∂

∂L′

∫ R

0

J0(2πx)I0(L′x)xdx

=
1

L′
∂

∂L′

2
√
R
{
L′J0(2π

√
r)I1(L′

√
R) + 2πJ1(2π

√
R)I0(L′

√
R)
}

L′2 + 4π2
,

(193)

where x =
√
r.

In equation (66), the following identity has been used

1

2
L′
√
R {I0(L′

√
R) + I2(L′

√
R)} J0(2π

√
R) = L′

√
RI0(L′

√
R)− I1(L′

√
R), (194)

which follows from filling in x = L
√
x into equation (186)

L
√
x

2

{
I0(L
√
x) + I2(L

√
x)
}

= L
√
xI0(L

√
x)− I1(L

√
x). (195)

F.4.3 Calculations: Analyzing R

Using equation (186), one gets

d

dr

[√
r

π
J1(2π

√
r)

]
=

1

2π
√
r
J1(2π

√
r) +

√
r

2π
[J0(2π

√
r)− J2(2π

√
r)] · 2π · 1

2
√
r

=
1

2
[J0(2π

√
r) +

2

2π
√
r
J1(2π

√
r)− J2(2π

√
r)]

=
1

2
[2 · J0(2π

√
r)] = J0(2π

√
r).

(196)

G The transfer theorem

The transfer theorem is used multiple times in this thesis to show what the leading terms are of some
functions. The theorem goes as follows [72]:

Theorem G.1. Let A(z) be a (complex) function that has its smallest singularity at z = ρ and

A(z) = a0 + a1(1− z
ρ )−α + o((1− z

ρ )−α+1), then: JA(z)Kzn = a1
nα−1

Γ(α) ρ
−n[1 + o(1)]

The small o-notation in theorem G.1, should not be confused with big O-notation. Using small
o-notation for a function f(n) to compare it to a function g(n), means that f(n) is ultimately smaller
than g(n). Mathematically speaking, this means that if we write f(n) = o (g(n)) we mean that

limn→∞

[
f(n)
g(n)

]
= 0. In the case where g(n) = 1, limn→∞

[
f(n)
c

]
= 0 for a non-zero constant c ∈ R.

If one uses big O-notation to compare a function f(n) to the function g(n), it means that f(n)
is of the same order as g(n). To be more exact, if we write down f(n) = O (g(n)) we mean that

limn→∞

[
f(n)
g(n)

]
= c for a constant c ∈ R. For the case where g(n) = 1, we have limn→∞

[
f(n)
c

]
= 1 for

a non-zero constant c ∈ R [73, p. 537-538].

The previous notation is be used to describe, for example analyze, the disc function in a specific
limit (see Section 3.6). In this context we also use the notation f(n) v g(n), which means that
f(n) = g(n) + o (g(n)) or equivalently f(n) = g(n)(1 + o (1)).
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G.1 Note on Theorem 2.3

In this theorem we have used the transfer theorem for z → ∞. This is technically not correct, if we
look at theorem G.1. However, if we substitute z with 1

x and change the radius of convergence to 1
cq

,

we get the same results as stated in the proof, while being consistent with the wording of the Transfer
theorem G.1.

H Second way calculating W(L′)

There is a second way to calculate equation (64). Unlike in Section 3.4.2, we do not use partial
integration. Instead, we substitute the variable L2 = 2πi in equation (65). With equations (178),
(189) and (196), one gets∫ R

0

√
r

π
J1(2π

√
r)I0(L′

√
r)dr =

∫ R

0

2
√
r

2π

[
−iI1

(
2πi
√
r
)]
I0(L′

√
r)dr = 2

∫ R

0

√
r

L2
I1(L2

√
r)I0(L′

√
r)dr

=
2

L2

∂

∂L2

∫ R

0

I0(L2

√
r)I0(L′

√
r)dr

=
2

L2

∂

∂L2

[
2
√
R{L′I0(L2

√
r)I1(L′

√
R)− L2I1(L2

√
R)I0(L′

√
R)}

L′2 − L2
2

]
.

(197)

Just like we did in equation (66), we calculate the derivative using equation (195)

∂

∂L2

[
2
√
R{L′I0(L2

√
r)I1(L′

√
R)− L2I1(L2

√
R)I0(L′

√
R)}

L′2 − L2
2

]
=

4L2

√
R
[
L′I0(L2

√
R)I1(L′

√
R)− L2I1(L2

√
R)I0(L′

√
R)
]

(L′2 − L2
2)2

+ 2
√
R

[
L′
√
RI1(L′

√
R)I1(L2

√
R)

L′2 − L2
2 −

1
2L2

√
R {I0(L2

√
R) + I2(L2

√
R} I0(L′

√
R)

L′2 − L2
2

− I0(L′
√
R)I1(L2

√
R)

L′2 − L2
2

]
=

4L2

√
R
[
L′I0(L2

√
R)I1(L′

√
R)− L2I1(L2

√
R)I0(L′

√
R)
]

(L′2 − L2
2)2

+ 2
√
R

[
L′
√
RI1(L′

√
R)I1(L2

√
R)− L2

√
RI0(L2

√
R)I0(L′

√
R)

L′2 − L2
2

]
,
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implying

2

L2

∂

∂L2

[√
R{L′I0(L2

√
r)I1(L′

√
R)− L2I1(L2

√
R)I0(L′

√
R)}

L′2 − L2
2

]
=

−
8
√
R
[
L′I0(L2

√
R)I1(L′

√
R)− L2I1(L2

√
R)I0(L′

√
R)
]

(L′2 + 4π2)2

+
4
√
R

L2

[
L′
√
RI1(L′

√
R)I1(L2

√
R)− L2

√
RI0(L2

√
R)I0(L′

√
R)

L′2 + 4π2

]
.
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Using equations (64), (67) and (199), one gets

W(L′) =
L′

2

∫ R

0

drZµ(r)I0(L′
√
r)

=
L′

2

{∫ R

0

√
r

π
J1(2π

√
r)I0(L′

√
r)dr +

∫ R

0

I0(L′
√
r)
[ ∫ ∞

0

µ(L)I0(L
√
r)dL

]
dr

}

= +
4L′
√
R
[
L′I0(L2

√
R)I1(L′

√
R)− L2I1(L2

√
R)I0(L′

√
R)
]

(L′2 + 4π2)2

+
2L′
√
R

L2

[
L′
√
RI1(L′

√
R)I1(L2

√
R)− L2

√
RI0(L2

√
R)I0(L′

√
R)

L′2 + 4π2

]

−
∫ ∞

0

µ(L) dL W(L′, L).

(200)

Numerically checking equations (68) and (200) shows that the results are the same, giving us a proof
that the expressions from the two methods are the same. This gives us evidence that the expression
given in equation (68) is indeed correct.
This belief is strengthened by the fact that the results also comply with similar results given in the
literature, more specifically from [55, p. 9]

L′∂x1
FWP

0 = L′
{
− 4

2π
√
RJ1(2π

√
R)I0(L′

√
R) + L′J0(2π

√
R)I1(L′

√
R)

(L′2 + 4π2)2

+
2πRJ0(2π

√
R)I0(L′

√
R)− L′RJ1(2π

√
R)I1(L′

√
R)

π(L′2 + 4π2)
+

d∑
i=0

xi∂x1
∂xiF

WP
0

}
.
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