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1 Introduction

A galactic rotation curve describes how the rotation velocity of objects in the galaxy changes as a
function of the object’s distance to the center. As an example we will consider a central mass like a
black hole or a star with an other object moving on a circular path around this central mass. The
rotational velocity can in this example be determined from Newton’s gravitational equations and
the centripetal force:

F =
GMm

r2
=
mv2

r
⇒ v =

√
GM

r
(1)

where M is the central mass, m the test mass and r the distance between the central mass and the
test mass. The rotational velocity is represented by v. The mass of the galaxy is not distributed
in a central point, so we have to consider the actual distribution. The calculation for the galactic
distribution requires the integration of Newton’s gravitational equations with the entire distribution
taken into account. We still assume a circular motion of a test mass around the center of the galaxy.
The expected rotation curve would then increase quickly since the considered mass increases rapidly,
due to the high density near the center. Based on the visible mass the rotation curve is expected
to eventually drop off near the edge of the galaxy like 1/

√
r as in formula (1). This is however not

what is measured in astronomy. The rotation curves do not drop off according to Newton’s laws
but stay flat near the edge of the galaxies. An example of such a measurement for our own galaxy
is displayed in figure 1.

Figure 1: The measured rotation curve from the milky way. The data points are velocity measure-
ments of stars as a function of radial distance to the galactic center. The large error bars are due
to the difficulty of measuring stellar gas rather then stars, since the number of stars decrease when
the radial distance is increased. [1].
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In this thesis we will look at two possible solutions of this discrepancy between Newtonian
gravitational theory and the observations. The first idea is that of Modified Newtonian Dynamics.
This proposes that our understanding of Newtonian Mechanics is not complete for long distance
interactions and proposes a number of changes to Newton’s second law. The second solution is the
idea of Dark Matter. Instead of altering Newton’s laws, it introduces an extra component to the
mass distribution of the galaxy, which then changes the shape of the rotation curve.

The goal of the thesis is to develop a method that allows for a quick conversion of a mass distri-
bution to a rotation curve. To achieve this a numerical program has been written that calculates
the acceleration as a function of the distance to the center of the galaxy. The rotation curve is
then calculated from the acceleration. As an explicit example we will use a cylindrically symmetric
distribution that approximates the mass distribution of our galaxy. This automatically implies that
we will not be able to predict the wavy pattern in figure 1 since we do not take features such as
spiral arms into account.
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2 Mass Distribution

The used simplified mass distribution for visible matter in our own galaxy consists of three parts:
a thin disk, a thick disk and a bulge[2]. These distributions have cylindrical symmetry. The radial
coordinate r is the distance from the center of the galaxy in the plane of the galaxy. The z coordinate
is the height perpendicular to the plane of the galaxy.

2.1 The bulge

The mass distribution of the bulge consists of a product of a gaussian and a r−1.8 power law.
The gaussian has a characteristic length rcut = 2.1 kpc while the power law has a characteristic
length r0 = 0.075 kpc. The expression for the density is shown in formula (2). The central density
ρb,0 = 9.93 · 1010 M� kpc−3 is derived from the assumption that the bulge mass amounts to
Mb = 8.9 · 109M�, which can be estimated by the mass-to-light ratio. The other parameters are
the power of r: α = 1.8 and the axis ratio: q = 0.5. The axis ratio causes the distribution to fall of
faster in the z-direction than the radial direction:

ρb(r, z) =
ρb,0(

1 +

√
r2+(z/q)2

r0

)α e
−
(
r2+(z/q)2

r2cut

)
(2)

2.2 The disks

The mass distribution for the disk is split into two different distributions to account for a smaller,
more dense disk and a bigger, less dense disk. Both mass distributions consist only of an exponential
function:

ρd(r, z) =
σd,0
2Zd

e
−
(
|z|
Zd

+ r
Rd

)
(3)

The function is scaled by a characteristic surface density σd,0 and is divided by the characteristic
thickness Zd of the disk. The density falls off at different rates in the z and r-direction due to
different characteristic lengths. The values for these parameters are given in Table 1.

Disk σd,0 [106M� kpc−2] Rd [kpc] Zd [kpc]
Thin 816.6 2.6 0.3
Thick 209.5 3.6 0.9

Table 1: Parameters for the thick and thin galactic disks

2.3 Density maps of the mass distribution

The total mass distribution of the galaxy has been plotted as a heatmap, where the axes denote
the distance from the center and the color the density. The distribution is displayed from its side
in figure 2. The density is highest in the center of the distribution and then falls off when the
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distance from the center is increased. The density decreases faster in the z-direction than the radial
direction. This results in a flat disk in the plane of the galaxy. The distribution has a sharp feature
at either r = 0 or z = 0 because r can only be positive and only the absolute value of z features in
formula 3.

Figure 2: The mass distribution of the galaxy as viewed from the side on a logarithmic density
scale.

The top view of the galaxy is shown in figure 3 on a linear density scale and in figure 4 on a
logarithmic density scale. Here it is clearly visible that the density is highest in the center of the
galaxy and decreases outward. The two parts of the disk are also visible: a sharp disk with a higher
density and a diffuse disk with a smaller density.
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Figure 3: The mass distribution viewed from the top on a linear density scale.

Figure 4: The mass distribution viewed from the top on a logarithmic density scale
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3 Gravitational force induced by the galactic mass distribu-
tion

To calculate the rotation velocity of a galaxy as a function of the distance to the center, we first
need to calculate the force on a test mass in a simplified disk shaped mass distribution. To do this
we will first look at a solid uniform disk with surface density σ. The symmetry of the problem is
displayed in figure 5. Due to the radial symmetry of the solid uniform disk and the distributions
mentioned in Section 2, we can choose our x- and y-axes freely. If we define the x-axis to be the
line through the center and the position of the test mass, only the force towards the center remains.
Now we only have to consider the distance x0 from the center.

Figure 5: A schematic view of the position of the test mass relative to a mass element in the disk.[3]

The gravitational force experienced by a test mass m sitting at a distance x0 from the center
due to a mass element with size dxdy at a distance r′ is given by:

d~F = −Gmσ dxdy ~r
′

r′3
with r′ =

√
(x0 − x)2 + y2 (4)

Due to symmetry the y-component of this infinitesimal contribution always cancels against the
contribution from the mass element that is obtained by reflection in the x-axis. The x-component
of the force can be written as:

dFx = −Gmσ cos θ dxdy
r′2

(5)

cos θ =
x0 − x√

(x0 − x)2 + y2
(6)

This function is integrated to give the total force on a test mass at x0, resulting in the following
formula:

Fx = −
R∫
−R

dx

√
R2−x2∫

−
√
R2−x2

Gmσ (x0 − x)dy

((x0 − x)2 + y2)
3
2

(7)
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The integral over the y-coordinate can be calculated analytically for a uniform distribution:

Fz = −
R∫
−R

2Gmσ
√
R2 − x2 dx

(x0 − x)
√
R2 + x02 − 2x0x

(8)

However this analytical solution cannot be used for the mass distribution of the galaxy which is
a function of x,y and z. The integral over the solid disk provides some useful insight into the
behaviour of the acceleration curve of the galactic mass distribution. The integral over the solid
disk has a singularity at the edge of the distribution which leads to an infinite acceleration at the
edge of the disk, as displayed in figure 6. This infinity leads to the decision to not integrate the
galaxy distributions to infinity but to a finite value instead. These values have been determined to
be R=150kpc and Z=15kpc, because in this volume the whole mass of the galaxy is contained.

Figure 6: Acceleration of a test mass in a solid uniform disk as a function of the distance to the
center. The disk has an arbitrary mass and size. At the edge x0 = 10 a singularity is visible.

To get the galactic acceleration curve from formula 7 we only have to drop the test mass m and
replace the surface density σ with an intergral of the volume density over the z-coordinate,

σ(x, y) =

Z∫
−Z

dzρ(x, y, z) (9)

where ρ(x, y, z) are the distributions mentioned in section 2. We drop the minus sign, which
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indicates that the acceleration is pointed inward, since we are only interested in its absolute value.

a =

∣∣∣∣∣∣∣
R∫
−R

dx

√
R2−x2∫

−
√
R2−x2

dy

Z∫
−Z

dz
G(x0 − x)

((x0 − x)2 + y2)
3
2

ρ(x, y, z)

∣∣∣∣∣∣∣ (10)

The function for the acceleration has been integrated numerically with an relative error of 10−3.
The errors in the input parameters[2], discussed in section 2, are of the order of 10%. The accuracy
of the results only depends on the errors in the input parameters since these are larger than the
numerical errors. The graph of the acceleration curve of our galaxy is plotted in figure 7. The
graph rises quickly and then drops off since the density in the bulge is large compared to that of
the disk.

Figure 7: The acceleration curve of the galactic mass distribution as a function of the distance to
the galactic center.

The rotation curve that results from this acceleration is plotted in figure 8. The curve again rises
quickly due to the high density in the center and then drops off, where we expect 1/

√
r behaviour.
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Figure 8: The rotation curve of the galactic mass distribution as a function of the distance to the
galactic center. The dotted red line represents 1/

√
r dependence.

Features such as spiral arms were not taken into account in the distribution. This results in a
smoother curve when compared to the measurement in figure 1, which displays some wavy patterns.
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4 Modified Newtonian Dynamics

Modified Newtonian Dynamics (MOND) was introduced to eliminate the apparent mass discrepancy
between observed matter and the matter derived from rotation curves. This theory assumes that our
understanding of Newtonian dynamics is incomplete at low accelerations. A number of relativistic
theories have been proposed that can be reduced to MOND. MOND consists of two modifications
to Newton’s second law which are denoted by the Simple and Standard Interpolation functions, see
formulas (12) and (13)[4]:

F = maµ
( a
a0

)
(11)

Simple: µ
( a
a0

)
=

(
1 +

a0
a

)−1
(12)

Standard: µ
( a
a0

)
=

(
1 +

(a0
a

)2)−1/2
(13)

where a0 is a fitting parameter. MOND does not predict the value of a0, we use a0 = 1.22 · 10−10

m/s2 [4]. The modified version of Newton’s second law can be solved for a, which leads to the
following expressions for both interpolation functions:

Simple: a =
1

2

(
an ±

√
a2n + 4ana0

)
(14)

Standard: a =

[
1

2

(
a2n ±

√
a4n + 4a2na

2
0

)]1/2
(15)

Here an is the standard Newtonian acceleration: an = |F |/m. The modified acceleration curves
are displayed in figure 9. To determine how this modification changes the dependence of the
acceleration on the distance from the center, we look at the low acceleration (long distance) limit.
When |an| � a0, which happens at a long distance from the center, the terms proportional to a2n
can be neglected compared to terms proportional to ana0. This results in the following expressions
for the new acceleration.

Simple: a ≈ 1

2

√
4ana0 =

√
ana0 (16)

Standard: a ≈
[

1

2

√
4a2na

2
0

]1/2
=
√
ana0 (17)

Using the fact that the Newtonian acceleration can be written as:

an =
C

r2
(18)

this leads to the following proportionality for both interpolation functions in the low acceleration
limit:

a =

√
Ca0
r

(19)
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From this we can conclude that Modified Newtonian Dynamics change Newton’s second law in such
a way that the acceleration falls off with 1/r instead of 1/r2, which is visible in figure 9

Figure 9: Both acceleration curves for Modified Newtonian Dynamics compared with the unmodified
version. In the low acceleration limit both modified versions converge to the same but slower decay
rate than the unmodified one.

This change in acceleration has a significant effect on the shape of the rotation curve, as displayed
in figure 10. The Modified curve levels off and stays flat, where the Newtonian curve starts to decay.
This modification changes the rotation curve to better match to the observed curves. The standard
interpolation function induces a smaller change than the simple interpolation function, because for
a > a0 the effect of the standard interpolation function is smaller than for the simple one. This
means that the modification also has an effect closer to the center of the galaxy for the simple
interpolation function, while the standard interpolation function only modifies the curve near the
edge of the galaxy.
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Figure 10: The rotation curves for both the modified and unmodified Newtonian dynamics.

The solution that MOND provides works well for a static system like our own galaxy. MOND
cannot completely eliminate the apparent mass discrepancy when applied to a more complex system
like a cluster of galaxies[4]. In that case the difference between visible mass and expected mass
from measurements can only be reduced.
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5 Dark Matter

The idea of Dark Matter does not modify the gravitational laws like MOND, but proposes that
there is extra matter that is as yet unobserved. This idea is also supported by gravitational lensing
experiments[6]. Dark Matter is not allowed to have electromagnetic or strong interactions, otherwise
it would have been observed. It is allowed to have weak and gravitational interactions and seems
to behave frictionless. Due to this frictionless behaviour, Dark Matter is predicted by N-body
simulations to be distributed in spherically symmetric halos. A number of different distributions
have been proposed[7]:

NFW: ρNFW(x) = ρ0
r0
x

(
1 +

x

r0

)−2
(20)

Einasto: ρEin(x) = ρ0e
−2
α

((
x
r0

)α
−1

)
(21)

Isothermal: ρIso(x) =
ρ0

1 + (x/r0)2
(22)

Burkert: ρBur(x) =
ρ0

(1 + x/r0) (1 + (x/r0)2)
(23)

Moore: ρMoo(x) = ρ0

(r0
x

)1.16(
1 +

x

r0

)−1.84
(24)

Here x is the distance from the center of the galaxy, r0 is the characteristic length and ρ0 is the
characteristic density. These parameters are listed in table 2.

DM Profile α r0 [kpc] ρ0 [106M� kpc−3]
NFW 24.42 4.82
Einasto 0.17 28.44 0.86
EinastoB 0.11 35.24 0.55
Isothermal 4.38 36.3
Burkert 12.67 18.6
Moore 30.28 2.75

Table 2: The parameters for the Dark Matter density profiles.[7]
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Figure 11: A logarithmic plot of the dark matter profiles

These profiles have two constraints. They are anchored at a distance of 8.33 kpc, which is the
distance from the center of our galaxy to the sun. The second constraint is the total predicted
mass of the distribution inside a radius of 60 kpc. This mass has been predicted to be M=4.7·1011

M�. The differences between the profiles are made visible in figure 11. The profiles follow a similar
shape when the distance from the galactic center is larger than that of the sun. The profiles differ
more towards the center of the galaxy. The Burkert and Isothermal profiles become constant and
approach their charateristic density, while the NFW and Moore profiles go to infinity. The Einasto
profiles approach their characteristic densities scaled by a factor e

2
α . This profile is parametrized by

α, where a smaller α leads to a higher density at the center and a steeper slope. This new additional
component to the mass distribution can be taken into account by simply adding a spherical integral
over the dark matter profile ρDM (x) to the component from the visible matter, as discussed in
section 3:

a =

R∫
−R

dx

√
R2−x2∫

−
√
R2−x2

dy

Z∫
−Z

dz
G(x0 − x)

((x0 − x)2 + y2)
3
2

ρ(x, y, z) +
G

x20

x0∫
0

4πx2ρDM (x)dx (25)

The effect of this additional term on the acceleration curve is plotted in figure 12. It shows sim-
ilar graphs as obtained for MOND, the curves fall off with a distinctly slower slope than in the
unmodified case.
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Figure 12: The acceleration curves of the mass distribution with the added dark matter profiles.

The rotation curves that result from these new acceleration curves are plotted in figure 13. The
new rotation curves are flatter than the original one when the distance from the galactic center is
increased. The different profiles change the rotation curves in different ways dependent on their
shape and the total mass added. The EinastoB profile for example falls off faster than the others,
which is expected from figure 11. In figure 11 it has the least amount of mass added at a large
distance from the galactic center where the correction is most necessary. The Burkert profile does
the opposite, it adds the least amount of mass near the center and more towards the edge compared
to the other profiles. This is made visible in figure 13 where the rotation curve of this profile does
not peak somewhere around 5 to 10 kpc but continues to rise and flattens off near the edge. The
Isothermal profile is similar to the Burkert profile since its distibution is also shifted further towards
the edge. The difference is that it starts higher than the Burkert profile but falls off quicker. This
difference causes the Isothermal profile to have a peak near ∼8 kpc and then decrease slightly before
flattening off near the edge.
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Figure 13: The rotation curves of the mass distribution with the added dark matter profiles.

The new rotation curves better match observed curves like in figure 1. Which of the profiles
is most suitable remains unclear and probably also depends on the shape of the visible mass dis-
tribution as well, since visible matter accumulates at high dark matter densities and vice versa.
Dynamical problems may also be easier to solve with dark matter than with MOND, because dark
matter seems to behave frictionless. For example in a collision between galaxies the dark matter
distribution will most likely remain undisturbed or very similar to the shape before this collision.
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6 Conclusion, Discussion and Outlook

The two modifications of the galaxy rotation curves from both Modified Newtonian Dynamics and
the addition of Dark Matter change the curve in the desired way. Modified Newtonian Dynamics
changes the r-dependence of the acceleration from r−2 to r−1 in the long distance limit. This change
to Newton’s second law results in a rotation curve with a shape that is more similar to the measured
curves. However this modification is only a static solution that works on simple systems. When
applied to a more complex system the modification does not solve the entire problem of the mass
discrepancy and only manages to reduce the difference. The solution that Dark Matter provides is
to add unobservable additional matter to the mass distribution. This idea of extra unseen mass is
also supported by gravitational lensing experiments[6]. There have been a number of propositions
for the shape of the dark matter distribution, since this is unknown. These different propositions
all lead to similar rotation curves with minor differences. Some rise quicker and decrease faster,
like the EinastoB profile, others rise slower but flatten off instead of decreasing, like the Burkert
profile.

Figure 14: The rotation curves from the dark matter profiles and MOND compared with the
unmodified curve.

Dark Matter seems to be a better solution since it is more clear as to where the mass should
be added, but the shape of the Dark Matter distribution is unknown and the amount of mass that
needs to be added is large compared with the mass of the galaxy itself. By contrast, for MOND the
solution is static and the modification should change the curve a long distance away from the center,
however this does not solve the problem for more complicated systems. Another idea is to solve
the problem with a combination of these two solutions. Dark Matter can be added to complement
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MOND, when MOND alone is not sufficient. However the idea of introducing dark matter seems
to remove the motivation of MOND, which tries to solve the problem without resorting to adding
mass.

The numerical program written for this thesis can be used to quickly evaluate certain mass
distributions. When a new mass distribution or a GR-motivated modification of Newton’s gravi-
tational law is proposed, the corresponding rotation curve can quickly be evaluated to see if this
distribution has the desired shape. This will only work as long as the proposed distributions have
a spherical or cylindrical symmetry.
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