
Reduction of two-loop Feynman integrals

Rob Verheyen

July 3, 2012

Contents

1 The Fundamentals at One Loop 2

1.1 Introduction . 2
1.2 Reducing the One-loop Case . 3
1.3 Unitarity . 5
1.4 Expanding fi(q) . 5

2 Two and more loops 8

2.1 The Two-Loop Case . 8
2.2 The Relevant iGraphs . 9
2.3 Trivial Terms and Beyond . 10
2.4 Solving the Coe�cients . 11

2.4.1 Solvability . 11
2.4.2 Matrix Rank and Tensor Structures 12
2.4.3 Solving the Coe�cients 13

3 Methods of solving linear systems 14

3.1 Gaussian Elimination . 14
3.2 QR Decomposition . 15

3.2.1 Existence . 15
3.2.2 Householder Transformations 17

3.3 Singular Value Decomposition . 18
3.3.1 Existence . 19
3.3.2 Computation . 20

4 Results 22

4.1 Solvability . 22
4.2 Matrix Rank and Tensor Structure 23
4.3 Solving the coe�cients . 23
4.4 Unusual behaviour in two dimensions 24
4.5 Conclusions . 25

1

Chapter 1

The Fundamentals at One

Loop

1.1 Introduction

Experimental particle physics is currently a very active �eld of research. Par-
ticle colliders produced or are producing large amounts of data to be analysed.
To interpret these data, comparison with highly accurate theoretical results is
required. In particular, in order to calculate cross-sections, many contributions
from di�erent Feynman diagrams have to be computed. The corresponding
Feynman integrals become progressively complex as more loops appear in the
associated Feynman diagrams. Many authors have attempted to reduce several
of these integrals to more manageable forms. One of these methods will be
studied in this thesis.

We start by looking at Feynman diagrams with a single loop. An example of
such a diagram is given in Figure 1.1.

Figure 1.1: A general one-loop Feynman diagram. The particles in the loop can
be several things, such as an electron-positron pair

The general form of the relevant integral is

ˆ
A

D1D2...Dn
d4q (1.1)

2

CHAPTER 1. THE FUNDAMENTALS AT ONE LOOP 3

The numerator A can have many di�erent forms. For our reduction, we will
only focus on the denominator and leave A the same. The typical shape of Di is
Di = (q+pi)

2−m2
i . The integration variable qµ is the loop momentum. As this

momentum is unknown within a loop, it has to be accounted for by integrating
over all possible values. The constants pµi and mi correspond to the external
momentum1 and mass of particle i. Di is then what is called the propagator of
particle i. From now on, we refer to n (the total number of propagators) as the
order of the integrand.

These integrals do not necessarily correspond with a single Feynmann diagram.
Instead, we will consider the reduction in the most general way possible. To
visualize the integral, we use an integrand graph (or iGraph). Figure 1.2 is an
example of such an iGraph.

Figure 1.2: iGraph with 4 propagators

In general, there is no momentum conservation along the loop of the iGraph. For
instance, our integral may be a combination of several integrals corresponding
to di�erent diagrams. In that case, the resulting integral no longer corresponds
with any physical event, but it can still be reduced.

1.2 Reducing the One-loop Case

Our goal is to reduce the above integrals into a number of integrals that are
all easier to compute. We would therefore like to split up the integrand into
several smaller fractions. Consider an iGraph of order n. A reduction of the
corresponding integral would look like

1

D1D2...Dn
=

f1(q)

D2D3...Dn
+

f2(q)

D1D3...Dn
+ . . .+

fn(q)

D1D2D3...Dn−1
(1.2)

1Another, �xed momentum

CHAPTER 1. THE FUNDAMENTALS AT ONE LOOP 4

If we can indeed �nd functions f1(qµ), f2(qµ), . . . , fn(qµ) that satisfy equation
(1,2), we have found a reduction of the original integral. The reduction is just
a sum of integrands corresponding with iGraphs of order n-1. Rewriting (1,2),
we get

D1f1(q) +D2f2(q) + ...+Dnfn(q) = 1 (1.3)

Where we multiplied by D1D2 . . . Dn. We can attempt to reduce the integrand
trivially by just setting f1(q), f(q), . . ., f(q) to constants.

fi(q) = ci (1.4)

Filling in and substituting Di = (q + pi)
2 −m2

i in equation (1,3), we �nd

(q2 + p21 + 2qµp
µ
1 −m2

1) · c1 + . . .+ (q2 + p2n + 2qµp
µ
n −m2

1) · cn = 1 (1.5)

Writing out equation (1.5)

q2
n∑
i=1

ci + 2qµ

n∑
i=1

cip
µ
i +

n∑
i=1

ci · (p2i −m2
i) = 1 (1.6)

We can now easily see that this equation actually has the general form

a · q2 + bµqµ + d = 1 (1.7)

Where a and d are just constants, and bµ is a constant four-vector. We now
require this equation to hold for any qµ. This immediately implies that a = 0,
bµ = 0 and d = 1. To see this, consider a situation where for some qµ, equation
(1,7) holds for nonzero a. We can now always choose a di�erent qµ such that
a · q2 + d = 0, violating equation (1.7). The same argument can be used for the
individual components of bµ, and even for combinations of nonzero a and bµ, as
we can always change and scale qµto make (1.6) vanish. Thus, equation (1.7) is
in fact a system of equations

a =

n∑
i=1

ci = 0 (1.8)

bµ =

n∑
i=1

cip
µ
i = 0 (1.9)

d =

n∑
i=1

ci · (p2i −m2
i) = 1 (1.10)

These six2 equations yield constraints that apply to the values of ci. As they
are all linear in ci, we can ful�ll them if we have six or more ci, or iGraphs of
order 6 or higher. In general dimension d, we can thus reduce the iGraph if
it has order d + 2 or higher. Of course, if we want to reduce iGraphs of order

2Equation (1.9) actually represents 4 equations

CHAPTER 1. THE FUNDAMENTALS AT ONE LOOP 5

larger than d + 2, we can just keep reducing untill we hit the situation where
every iGraph has d+ 1 propagators.

It should be noted that this process does not yet solve the coe�cients ci. For
that, one has to calculate them through a process we will see later on and check
if they hold true for any value of qµ. This test is called the '1 = 1 test', which
refers to �lling in equation (1.3) with random values for qµ, and checking if it
adds up to 1. We can use random values for qµ because the reduction should
be valid for every value of qµ.

We will now consider how we can improve this method by expanding the func-
tions f1(q), f(q), . . ., f(q) with terms of higher order in qµ. However, before
expanding the functions with larger and larger terms, one might wonder what
the limit of this reduction is.

1.3 Unitarity

We have seen that we can already reduce iGraphs in dimension d to integrals
of order d + 1 by only using constant functions f1(q), f(q), . . ., f(q). One
would expect the reduction to go further if we expand the functions. Unfortu-
nately, there is a fundamental limit on how far we can carry reductions with
this method, related to unitarity.

Consider a Feynman integral of order d. To further reduce this integral, the
relevant equation to solve is

D1(q)f1(q) +D2(q)f2(q) + . . .+Dd(q)fd(q) = 1 (1.11)

Where Di has explicitly been written as a function of q. But qµ was the inte-
gration variable of the Feynman integral. Therefore, we can freely choose every
component qµ without changing the content of the integral. For an iGraph of or-
der d in particular, we can choose qµ in such a way that every Di vanishes. This
would violate equation (1.11), and as such the conclusion is that no reduction
further than order d can be possible.

1.4 Expanding fi(q)

We now expand the functions f1(q), f(q), . . ., f(q) by adding linear terms

fi(q
µ) = ci +

d∑
j=1

ci,jq
j (1.12)

The additional terms are linear in every component of q. Instead of n, there are
now (1+d)·n coe�cients to ful�ll equations (1.8) through (1.10). Unfortunately,
these equations now also recieve extra terms.

CHAPTER 1. THE FUNDAMENTALS AT ONE LOOP 6

(q2+p21+2qµp
µ
1−m2

1)·(c1+

d∑
j=1

c1,jq
j)+. . .+(q2+p2n+2qµp

µ
n−m2

1)·(cn+

d∑
j=1

cn,jq
j) = 1

(1.13)
In a similar fashion as before, equation (1.13) splits up into several parts gov-
erned by the powers of q.

q2
n∑
i=1

ci = 0 (1.14)

2qµ

n∑
i=1

(cip
µ
i + cµi · (p

2
i −m2

i)) = 0 (1.15)

q2qµ
n∑
i=1

ci,µ = 0 (1.16)

2qµq
ν

n∑
i=1

ci,νp
µ
i = 0 (1.17)

n∑
i=1

ci · (p2i −m2
i) = 1 (1.18)

Every one of the equations determines a value of our coe�cients. Therefore, to
count how many restrictions on the coe�cients there are, we just have to count
the amount of tensor structures. In this situation, we see that equation (1.14)
is already contained in equation (1.17), and should therefore not be counted.3 .

In total, we then have 0 +d+d+ d·(d+1)
2 + 1 = 1

2d
2 + 5

2d+ 1 independent tensor
structures.4

Reduction with trivial terms was possible until iGraphs of order d + 1, and
unitarity restricts reduction of order d. The only relevant reduction left is that
of order d+ 1 to order d. Filling in n = d+ 1 in the expression for the amount
of coe�cients, we �nd (d+ 1) · (d+ 1) = d2 + 2d+ 1. Comparing this with the
amount of tensor structures, it is clear that for d > 1 the amount of coe�cients
surpasses the amount of tensor structures. It would seem that the reduction is
possible.

However, we have to consider that we may be unable to ful�ll equations (1.14)
through (1.18) with the coe�cients we have. The reason for this is that it might
happen that coe�cients only appear in certain combinations. Consider a system
of equations

3q2is in fact spread out over the equations in (1.17) where µ = ν
4Equation (1.17) only accounts for

d·(d+1)
2

tensor structures because it is symmetric.

CHAPTER 1. THE FUNDAMENTALS AT ONE LOOP 7

x+ 2y − z = 3

−2x− 4y + 3z = 5

If we rewrite the second equation as 2(x+ 2y) + 3z = 5, it is clear that variables
x and y only appear in a set combination, and should be considered as a single
variable. If this happens, one of the coe�cients is called dependent on the other.
The same may happen to the system (1.14)-(1.18), resulting in dependent c's.
In fact, it has to happen, because any coe�cients that would be left over after
applying (1.14)-(1.18) can be chosen freely, and are therefore dependent. We
conclude that the amount of independent coe�cients has to be equal to the
amount of independent tensor structures. If this is the case, the reduction is
possible.

In [1] the amount of independent coe�cients is calculated using a method called
cancellation probing. The results presented there show that reduction of iGraphs
of order d + 1 is indeed possible with linear terms. This completely solves the
reduction of Feynman integrals in a single loop. We will be able to reproduce
this result with a method used for reduction of integrals with two or more loops.

Chapter 2

Two and more loops

2.1 The Two-Loop Case

Now that we �nished decomposition of iGraphs with a single loop, we are ready
to consider diagrams with two or more loops. While these diagrams yield higher
order terms, making them smaller than those of the one-loop diagrams, they still
represent contributions that are not negligible. The general form of the Feynman
integral for two loops is similar to equation (1.1)

ˆ
1

D1D2...Dn
d4l1d

4l2 (2.1)

There are now two separate loop momenta l1 and l2 that both have to be
integrated over. The expression for the propagator changes to Di = (l1 + pi)

2−
m2
i , Di = (l2 + pi)

2 −m2
i or Di = (l1 + l2 + pi)

2 −m2
i . That is, a propagator

can have momenta l1 , l2 or both l1 and l2. A two-loop iGraph must have at
least one of each of these propagators, If one is missing, we can consider the
iGraph as a combination of two one-loop iGraphs. We can uniquely represent
the corresponding iGraphs with the expression (n1, n2, n3), where n1 represents
the amount of propagators with l1, n3 those with l2 and n2 the amount of shared
propagators. Then n = n1 +n2 +n3 is the total number of propagators. Figure
2.1 displays an example of an iGraph with two loops.

8

CHAPTER 2. TWO AND MORE LOOPS 9

Figure 2.1: An iGraph with con�guration (3,2,3)

When we try to reduce two-loop iGraphs, we will generally use functions f1(l1, l2),
f2(l1, l2), . . ., fn(l1, l2) that have terms depending on both l1 and l2. For exam-
ple, if we would try reduction with linear terms, the functions would consist of
terms that are linear in l1 and other terms that are linear in l2.

2.2 The Relevant iGraphs

Fortunately, the amount of di�erent reductions to consider is limited. First of
all, we notice that the integral in equation (2.1) is just a product of the inverse
of propagators. Therefore, if either n1 or n3 is r > d, we can simply write the
integral as

ˆ
1

D1D2...Dr
· 1

Dr+1 . . . Dn
d4l1d

4l2 (2.2)

We now easily see that because the �rst r propagators only depend on one loop
momentum, we can simply apply our knowledge of the reduction of one-loop
integrals, reducing the expression to

ˆ {
f1(lµi)

D2D3...Dr
+

f(lµi)

D1D3...Dr
+ . . .+

fn(lµi)

D1D2D3...Dr−1

}
· 1

Dr+1 . . . Dn
d4l1d

4l2

(2.3)
When the relevant loop momentum is li. In fact, because we can freely choose
the path of our loop momentum along the iGraph1, we can use the same pro-
cedure in case n2 > d by just rede�ning how l1 and l2 move along the iGraph.
These simple observations immediately tell us that any two-loop iGraph of order
n > 3d is reducable.

1As long as it's a closed loop

CHAPTER 2. TWO AND MORE LOOPS 10

Furthermore, we should consider unitarity for the two-loop iGraphs. Rewriting
equation (1.11), we �nd

1 = D1(l1)f1(l1) + . . .+Dn1(l1)fn1(l1)+

Dn1+1(l1 + l2)fn1+1(l1 + l2) + . . .+Dn1+n2(l1 + l2)fn1+n2(l1 + l2)+

Dn1+n2+1(l2)fn1+n2+1(l2) + . . .+Dn(l2)fn(l1) (2.4)

If all ni ≤ d, we can again shift l1 and l2 such that 2d of the propagators vanish.
This implies that equation (2.4) cannot be true for all l1 and l2 if we have
n = 2d. Therefore, reduction is not possible with this method. We conclude
that we are looking to reduce two-loop iGraphs between orders 3d and 2d.

2.3 Trivial Terms and Beyond

We again start with functions that are just constants

fi(l1 + l2) = ci (2.5)

Analogously to the previous process that resulted in equation (1.3), we �nd

n1∑
i=1

ciDi(l1) +

n1+n2∑
i=n1+1

ciDi(l1 + l2) +

n∑
i=n1+n2+1

ciD2(l2) = 1 (2.6)

Again, because equation (2.6) has to hold for every l1 and l2 , we can count the
number of tensor structures to �nd the amount of restrictions on the coe�cients.
The possibilities are lµ1 , l

µ
2 , l

2
1, l

2
2, l1µl

µ
2 and the constant term. In total, this adds

up to d+ d+ 1 + 1 + 1 + 1 = 2d+ 4 conditions for the coe�cients ci. Therefore,
for every con�guration, an iGraph of order 2d+4 can be decomposed to iGraphs
of order 2d+ 3.

In [1], it is shown that functions with linear terms

fi(l1 + l2) = ci +

d∑
j=1

ai,j l
j
1 +

d∑
j=1

bi,j l
j
2 (2.7)

can be used to reduce iGraphs up to order 2d+1. Additionally, quadratic terms

fi(l1+l2) = ci+

d∑
j=1

ai,j l
j
1+

d∑
j=1

bi,j l
j
2+

d∑
j,k=1

di,jkl
j
1l
k
1+

d∑
j,k=1

ei,jkl
j
1l
k
2+

d∑
j,k=1

fi,jkl
j
2l
k
2

(2.8)
allow for reduction to order 2d exclusively for d = 2. When adding cubic terms

CHAPTER 2. TWO AND MORE LOOPS 11

fi(l1+l2) = ci+

d∑
j=1

ai,j l
j
1+

d∑
j=1

bi,j l
j
2+

d∑
j,k=1

di,jkl
j
1l
k
1+

d∑
j,k=1

ei,jkl
j
1l
k
2+

d∑
j,k=1

fi,jkl
j
2l
k
2+

d∑
j,k,m=1

gi,jkml
j
1l
k
1 l
m
1 +

d∑
j,k,m=1

hi,jkml
j
1l
k
1 l
m
2 +

d∑
j,k,m=1

ii,jkml
j
1l
k
2 l
m
2 +

d∑
j,k,m=1

ji,jkml
j
2l
k
2 l
m
2

(2.9)

it was shown that reduction to order 2d was possible for d = 3 as well. Addi-
tionally, it was suspected that cubic terms are also su�cient to reduce d = 4
to 2d. This was not proven, because the numerical method used in [1] met its
limits.

2.4 Solving the Coe�cients

In order to tackle the problem of reducing iGraphs of order 2d+ 1 for d > 3, we
�rst introduce the general method of �nding the required coe�cients. We have
already seen that we should take into account that equation (2.4) has to hold
for any l1 and l2. To do this, we randomly generate a vector lµ1 and lµ2 for every
coe�cient. For d = 4 and reduction of an iGraph of order 2d + 1 with cubic
terms, this requires 1485 randomly generated l1 and l2. We then use random,
but �xed values for mi and p

µ
i to �ll in equation (2.4) .2 We use random values

for mi and p
µ
i because this eliminates any chance of picking values that might

lead to special cases. If that occurs, reduction may be possible, while it is not
in the general case. Of course, we are just trying to show that a reduction is
possible. If one is trying to calculate the coe�cients for speci�c values of mi

and pµi , those would have to be used.

It is now possible to formulate the problem as a system of linear equations that
have to be solved.

Ax = b (2.10)

Where x represents the vector with all coe�cients, A is the matrix contains the
randomly generated set of linear equations we produced, and b is just a column
vector with 1 everywhere. In order to prove reductibility, several conditions
have to be met.

2.4.1 Solvability

First of all, the system of equations has to be solvable. To check the solvability of
a system of equations, one usually computes matrix ranks. A matrix is solvable
if and only if

rk(A) = rk(A|b) (2.11)

2The same values of mi and p
µ
i for every di�erent value of l1 and l2

CHAPTER 2. TWO AND MORE LOOPS 12

where A|b means the matrix

 a11 . . . a1n b1
...

. . .
...

...
an1 . . . ann bn


To see this, note that when computing the product Ax, we are just making
linear combinations of the columns of A. That is, the columns of A generate
the image of A. If Ax = b is solvable, the image of A contains b and it can be
expressed as linear combination of columns of A. But then, if one adjoins b as a
column of A, the rank of the matrix does not change. If we are using numerical
methods to solve systems of equations, this condition can be used to check if
there is a point in attempting to �nd a solution.

2.4.2 Matrix Rank and Tensor Structures

The second condition con�rms the reductibility of the iGraph. It was mentioned
before that the number of independent coe�cients has to be equal to the num-
ber of tensor structures. If this is the case, equation (2.4) is solvable and the
reduction is possible. In our matrix notation, the notion of independent coe�-
cients relates to the rank of the matrix. If every single one of our coe�cients
would be independent, it would mean the system A fully determines them. If
there are dependent coe�cients, this has to be re�ected in A in the form of
linear dependance in the matrix rows. It just means that some of the equations
in A are linear combinations of others, and therefore give no additional infor-
mation about the solution of the coe�cients. Every dependent row therefore
corresponds with a dependent coe�cient, and to check reductibility, we need to
compare the matrix rank with the amount of tensor structures.

One might now wonder what would happen if we added even more equations
than we already have by just generating more random values for l1 and l2. For
every single l1 and l2, the new equation would just be linearly dependent on
those we already had. This has to be the case, because if it was not, we could
keep adding equations untill the system is overdetermined, and no reduction
would be possible at all.

Counting the amount of tensor structures is a straightforward exercise. One
just writes down all possible combinations3 and substracts all structures that
are contained in others. A formula for general dimension d is given in [1] for
the case of cubic terms with d > 2.4

T (d) =
2

3
d4 +

22

3
d3 +

71

6
d2 +

1

6
d+ 1 (2.12)

3Similar to what we did in (1.7)
4For d = 2 the amount of tensor structures turned out to be slightly lower than expected.

However, this only occurs for d = 2

CHAPTER 2. TWO AND MORE LOOPS 13

2.4.3 Solving the Coe�cients

Obviously, the last requirement is to solve and test the coe�cients. Several
methods of solving systems of linear equations exist, which we will deal with in
chapter 3. To test our solution, we need to require that the coe�cients obey
equation (2.4) for any value of l1 and l2. Numerically, we can test this by
generating new random values for l1 and l2 and �lling them in in equation (2.4)
together with the solved coe�cients. If the result is equal to one for several
randomly generated l1 and l2, we can safely say we have found a reduction.

Chapter 3

Methods of solving linear

systems

3.1 Gaussian Elimination

The �rst and most straightforward method of solving systems of linear equations
we try is Gaussian elimination. We write down the matrix A|b as a11 . . . a1n 1

...
. . .

...
...

an1 . . . ann 1


which is just the matrix corresponding to the system of equations we intro-
duced earlier. Adjointed is the column of solutions, which is just 1 for every
equation. We now perform elementary row operations to reduce the matrix to
upper triangular form

a11 · · · · · · a1n 1
0 α22 · · · α2n α2(n+1)

...
. . .

. . .
...

...
0 · · · 0 αnn αn(n+1)


where αii indicates changed values from aii. We can see this process as system-
atically adding and substracting multiples of equations from others.

When the matrix is singular, as is the case here, pivoting has to be used to fully
reduce the matrix. The process of elimination includes division by the elements
on the diagonal. If these values are zero, the elimination fails. We can prevent
this by interchanging rows when necessary. If there is no available row with a
nonzero element on the relevant diagonal, the row should just be skipped.

14

CHAPTER 3. METHODS OF SOLVING LINEAR SYSTEMS 15

When the matrix is in upper triangular form, we can aquire the solution to our
coe�cients by backward substitution. One uses the last row to determine the
last coe�cient, then substitutes it to solve the second to last equation. This
can be repeated untill all coe�cients are solved.
Additionally, the matrix rank is equal to the amount of nonzero elements on the
diagonal. This becomes apparent when performing backward substitution. At
any time, when a diagonal element is zero, the corresponding coe�cient is not
determined by the equation, and is therefore linearly dependent.

While Gaussian elimination is one of the fastest ways to solve a system of
equations, it has turned out to be numerically unstable. Reasons for this include
the large amount of divisions that have to be successively computed on the
elements of the matrix. Our algorithm needs a way to determine if a diagonal
element is zero. Inevitably, because of stacking rounding errors, this requires
a limit on a low number below which we consider numbers as zero. This is
a slippery slope for matrices, as more rounding errors requires a higher limit,
which induces more errors. We will use a di�erent method to both calculate the
matrix rank and solve the system of equations.

3.2 QR Decomposition

3.2.1 Existence

Instead, we look at a process called QR decomposition. It allows us to decom-
pose any matrix A as

A = QR (3.1)

where Q is an orthogonal matrix and R is an upper triangular matrix. We �rst
prove that this decomposition always exists.

Consider an arbirary matrix A. For any vector y, call y? = Ay. Then yTATAy =
y?T y? = |y?|2 > 0. Therefore the matrix ATA is always positive de�nite.

Additionally, ATA is symmetric, because (ATA)T = ATAT,
T

= ATA. We now
need to prove that we can write the matrix ATA = RTR where R is upper
triangular and has positive diagonal elements.

This proof is by induction in the order of the matrix ATA, which we call B. If
the order is 1, A = R works as an upper triangular matrix. Let's now assume
we can write B? = R?TR? for B? of order n− 1. Then, we create the matrix B
of order n

B =

(
B? b
bT β

)
(3.2)

In this notation, B? is the previous matrix of order n − 1. Therefore, b is a
vector and β is a scalar. This notation is possible because B is symmetric.
Given the upper triangular matrix R?, we can similarly choose R as

CHAPTER 3. METHODS OF SOLVING LINEAR SYSTEMS 16

R =

(
R? r
0 ρ

)
(3.3)

which is still upper triangular. Now, we need to show that R exists and is unique
as a decomposition for B. We write out B = RTR explicitly.(

B? b
bT β

)
=

(
R?T 0
rT ρ

)(
R? r
0 ρ

)
(3.4)

This results in the following 4 equations

B? = R?TR? (3.5)

b = R?T r (3.6)

bT = rTR? (3.7)

β = rT r + ρ2 (3.8)

We do not have to worry about equation (3.5), as it is covered by our initial
inductive assumption. Obviously, equation (3.7) is just the transpose of equation

(3.6). Additionally, it follows that r = RT
−1

b, which uniquely determines r.

Equation (3.8) yields ρ =
√
β − rT r which is unique and real1 as a consequence

of the positive de�nitiveness of the matrix B. Therefore, through induction,
writing ATA = B = RTR with R upper triangular is possible for any A.

Now, we can chooseQ = AR−1. Q is then orthogonal asQTQ = R−1TATAR−1 =

R−1TRTRR−1 = I. Obviously, QR = AR−1R = A, and therefore, we have
found a decomposition A = QR.

When the matrix is decomposed, the matrix rank is again equal to the amount
of nonzero diagonal elements in R. Filling in the substitution for the matrix
equation (2.13)

Rx = QT b

we can again �nd the solution for x by backward substitution.

There are several ways to obtain matrices Q and R, including the well-known
Gram-Schmidt process. Numerically, the most stable method uses Householder
transformations2.

1And obviously positive
2Also called Householder re�ections

CHAPTER 3. METHODS OF SOLVING LINEAR SYSTEMS 17

3.2.2 Householder Transformations

The method of Householder transformations uses a series of matrices Pi to
gradually reduce the matrix A to upper triangular shape R. The product of all
these Pi eventually form the orthogonal matrix Q. Individually, every Pi reduces
the elements below the diagonal in ith column to zero. For P1

P1


a11 a12 · · · a1n
a12 a22 · · · a2n
...

...
. . .

...
a1n an2 · · · ann

 =


α11 α12 · · · α1n

0 α22 · · · α2n

...
...

. . .
...

0 αn2 · · · αnn


Repeating this process, we have

PnPn−1 . . . P2P1A = QTA =


α11 α12 · · · α1n

0 α22 · · · α2n

...
...

. . .
...

0 0 · · · αnn

 = R (3.9)

Such that QR = A with R upper triangular. To perform this process, we need
to �nd the shape of Pi and have to prove all these matrices are orthogonal.3

We de�ne a Householder matrix H as

H = I − π−1vvT (3.10)

where v is a vector and π = 1
2 |v|

2. The normalization is normally written this
way because it skips taking a square root. A Householder matrix is symmetrical

HT = (I − π−1vvT)T = IT − π−1vT
T

vT = I − π−1vvT = H

Then, orthogonality follows as

HTH = (I−π−1vvT)2 = I+π−2(vvT)(vvT)−2π−1vvT = I+π−2v2πvT−2π−1vvT

= I + 2π−1vvT − 2π−1vvT = I

Householder matrices work on a corresponding vector x, if v is chosen correctly,
as

Hx = −σe1 (3.11)

where e1 is the unity vector and σ = ±|x|. To show this, we take v = x+ σe1.
Then

π =
1

2
(x+ σe1)T (x+ σe1) =

1

2
(xTx+ 2σx1 + σ2) = σ2 + σx1 (3.12)

3Because products of orthogonal matrices are orthogonal

CHAPTER 3. METHODS OF SOLVING LINEAR SYSTEMS 18

Because xTx = σ2 and x1 is just the �rst component of x. We now calculate
Hx using equation (3.12)

Hx = x− π−1uuTx = x− (σ2 + σx1)−1(x+ σe1)(x+ σe1)T

= x− (σ2 + σx1)−1(x+ σe1)(xTx+ σe1) = x− (x+ σe1) = −σe1

Proving (3.11). Returning to our decomposition, we consider the k-th step where
we have

Ak =

(
Rk rk Bk
0 ck Dk

)
(3.13)

Rk and rk are already part of the �nal matrix R.4 Bk and Dk are just arbitrary
matrices, and ck is the vector we are looking to transform. To do that, we
choose

Pk =

(
Ik 0
0 Hk

)
(3.14)

With Hk de�ned as before with corresponding vector ck. Notice that Pk is also
orthogonal. Now

Ak+1 = PkAk =

(
Ik 0
0 Hk

)(
Rk rk Bk
0 ck Dk

)
=

(
Rk rk Bk
0 Hkck HkDk

)
=

(
Rk rk Bk
0 σe1 HkDk

)
(3.15)

bringing the reduction one step further. Eventually, An = R is upper triangular
and A1A2 . . . An = Q. Aditionally, since products of orthogonal matrices are
orthogonal, Q is orthogonal because Pi is orthogonal.

The large advantage of this method is that we do not actually have to calculate
a matrix product of order n every step. From equation (3.15), it is clear that
the only product to be calculated is HkDk, which becomes progessively smaller
as k increases. Additionally, the transformation matrices H1, H2, . . . Hn do not
have to be calculated and stored individually, because for any matrix A of the
size of Hi

HiA = (I − π−1vvT)A = A− 2π−1v(AT v)T

Showing that we only need to store v to compute any of the transformations.

3.3 Singular Value Decomposition

Singular value decomposition (SVD) is a more advanced method of decomposing
a matrix. It has the possiblity to produce much higher accuracy, but requires

4Capitals stand for matrices, lower case are vectors

CHAPTER 3. METHODS OF SOLVING LINEAR SYSTEMS 19

more computing power. Although QR decomposition is su�cient in most cases,
SVD is preferred for very large matrices.5 If computing power is not a problem,
SVD is superior.

3.3.1 Existence

Again, we �rst have to show the singular value decomposition actually exists.
For any matrix A, the singular value decomposition is

A = UTSV (3.16)

where both U and V are orthogonal matrices and S is a diagonal matrix with
nonnegative, so called singular values on it's diagonal. As will be proven, sin-
gular value decomposition is similar to eigenvalue decomposition, but is not
limited to only matrices that are diagonizable.

As we have seen before, for any arbitrary matrix A, the matrix ATA is symmet-
rical and positive de�nite. We now show it also has nonnegative eigenvalues. Let
u be an eigenvector and λ the corresponding eigenvalue of ATA. Additionally,
call Au = b. Now

|b|2 = uTATAu = uTλu = λ|u|2

Then |b|2 ≥ 0 and |u|2 ≥ 0 implies λ > 0. We now have all the tools to prove
the existence of the singular value decomposition. Rewriting the decomposition

V TAU =

(
Σ 0
0 0

)
(3.17)

Where Σ is the diagonal matrix with the nonzero singular values.

We now rename the eigenvalues of ATA as σ2, which is possible because they
are positive. We label them in descending order σ2

1 ≥ σ2
2 ≥ . . . ≥ σ2

n. Addi-
tionally, let U1 = (u1, . . . , ur) be the matrix of eigenvectors corresponding with
eigenvalues σ2

i > 0, and let U2 = (ur+1, . . . un) be the matrix of eigenvectors
corresponding with σ2

i = 0. Note that U2 is not unique, and therefore the
decomposition will not be unique. Σ is then de�ned as diag(σ1, . . . , σr).

Now UT1 A
TAU1 = Σ2 per de�nition. Rewriting, Σ−1UT1 A

TAU1Σ−1 = I. Fur-
thermore, UT2 A

TAU2 = 0. We now choose V1 = AU1Σ−1. Then V1 is orthog-
onal, because V T1 V1 = Σ−1UT1 A

TAU1Σ−1 = I. Finally, choose V2 such that
the matrix (V1, V2) is orthogonal, which we can always do. Filling in equation
(3.17)

5For 3 or more loops, or dimensionality of 8 or higher

CHAPTER 3. METHODS OF SOLVING LINEAR SYSTEMS 20

V TAU = (V1, V2)TA(U1, U2) =

(
(V T1)AU1 V T1 (AU2)
V T2 (AU1) V T2 (AU2)

)
=(

(Σ−1UT1 A
T)AU1 V T1 (0)

V T2 (V1Σ) V T2 (0)

)
=

(
Σ 0
0 0

)
Proving the decomposition exists. In the last two steps, we have used some of
the identities showed earlier, orthogonality and eigenvalue relations.

3.3.2 Computation

We will only brie�y sketch the current method of computing the SVD of a
matrix. In reality, the process of computation is much more complex, because
of the existence of many di�erent techniques and transformations that can be
applied to the initial matrix that make the computation both faster and more
accurate. We will only describe some of the more prevalent of these techniques.

We have previously determined that computing the SVD of a matrix is just an
eigenvalue problem for the matrix ATA. There are di�erent methods to calculate
eigenvalues of large matrices, some faster or more accurate than others. We
decribe a popular one based on QR decomposition. The method is usually called
the QR algorithm and relies on successive applications of QR decompositions.

Consider a arbitrary matrix B, and call it B0. On step k, the QR algorithm
decomposes Bk = QkRk by regular QR decomposition. Then we de�ne Bk+1 =
RkQk and start by decomposing again. Note that

Bk+1 = RkQk = QTkQkRkQk = QTkBkQk

Because Qk is orthogonal, all Bk are similar, meaning they have the same eigen-
values. The shape of Bk converges to a so-called Shur form, where the matrix
is upper triangular with it's eigenvalues on the diagonal. When n iterations
are completed, we can write B0 = QTBnQ with Q = Q0Q1 . . . Qn. With the
eigenvalues known, calculating the eigenvectors of the matrix Bn is quite easy,
as it is upper triangular. If xi are eigenvectors of Bn, the eigenvectors of the
original matrix B0 are Qxi.

Practically, this algorithm is quite expensive. There are some techniques to
reduce the amount of calculations by manipulating the matrix before the algo-
rithm is applied. First, the matrix is usually transformed into upper Hessenberg
shape as

H =


h11 · · · · · · h1n

h21
. . .

...
. . .

. . .
...

0 hn(n−1) hnn



CHAPTER 3. METHODS OF SOLVING LINEAR SYSTEMS 21

This is achieved with Householder transformations similar to what is done when
computing QR decomposition. It turns out that this transformation signi�cantly
speeds up the QR algorithm.

The more the QR algorithm is applied, the more accurate the eigenvalues and
eigenvectors can be calculated. However, it can mathematically be proven that
the eigenvalues converge faster when there is a larger separation between them.
Therefore, several shifting methods are used to shift eigenvalues in order to
compute them more easily. Once the shifted eigenvalues are computed, they
can be shifted back to �nd their actual values.

Chapter 4

Results

Having described some methods to calculate solutions to large systems of equa-
tions, we are now ready to tackle our problem. We will discuss all points dealt
with in section 2.4

4.1 Solvability

To check solvability of the relevant systems of equations, we use the condition

rk(A) = rk(A|b) (4.1)

In our case, the matrix A is the matrix of equations described in chapter 2, and
the solution vector b is just a column of ones.

For con�rmation, both QR and SVD were used to calculate the results listed
in Table 4.1. The program was written in Python. Numpy, which is a library
within Python, allowed for easier handling of large array-like object such as the
matrices and vectors required. Withing Numpy, the linalg package was used to
calculate both QR and SVD of the matrix. This package is a wrapper around
LAPACK1, which was originally written for Fortran. The package includes
many di�erent state-of-the-art methods of various calculations within the �eld
of numerical linear algebra, including extremely fast and precise algorithms for
QR and SVD. The matrix rank was distinctly visible with both methods, even
with the largest matrices.

1Linear Algebra PACKage

22

CHAPTER 4. RESULTS 23

Dimension 2 3 4 5 6

Propagators 3 4 5 5 6 7 7 8 9 9 10 11 11 12 13

Order 1 " " " $ $ $ $ $ $ $ $ $ $ $ $

Order 2 $ $ " $ $ $ $ $ $ $ $ $ $ $ $

Order 3 $ $ " $ $ " $ $ " $ $ " $ $ "

Table 4.1: Solvability for several dimensions, amounts of propagators and order
of terms

Note that only the number, and not the con�guration of propagators is a relevant
coe�cient. All con�gurations of propagators have been tested, and it never
made any di�erence. From these results we can already draw some signi�cant
conclusions. In [1], it was conjectured one would need higher order terms for
higher dimensions. Instead, these results indicate that d = 2 is a special case.
For higher dimensions, there is a strict pattern where the last possible reduction
by unitarity is solvable, but only with terms of order 3.

4.2 Matrix Rank and Tensor Structure

To con�rm that we can indeed reduce iGraphs of order 2d+1 with cubic terms for
d > 2 as the above results suggest, we compare the amount of tensor structures
with the matrix ranks calculated with both QR and SVD. To calculate the
tensor structures, equation (2.12) is used. Results are listen in Table 4.2

Dimension 3 4 5 6
Tensor Structures 360 831 1631 2876
Matrix Rank 360 831 1631 2876

Table 4.2: Comparison of matrix rank and tensor structures for order of terms
3 and propagators 2d+ 1

In every case, the matrix rank is equal to the amount of tensor structures. This
indicates that terms of order 3 are enough to reduce any reducible iGraph with
two loops. Because we now know these reductions are possible, we can explicitly
solve them.

4.3 Solving the coe�cients

To de�nitively con�rm the reduction of iGraphs of order 2d+1 with cubic terms,
we solve the corresponding linear systems. In order to check if the calculated
coe�cients apply globally to all values of l1and l2, we check them against ran-
domly generated l1 and l2 as described in section 2.4.3. Table 4.3 shows the
result of a numerical computation of the coe�cients which are checked against

CHAPTER 4. RESULTS 24

random l1 and l2.
2 These were done in d = 4 with cubic terms.

Propagators 8 9

Random l1 and l2 0.999999997206 -0.599001394349
0.999999999578 3.458581682780
0.999999999534 0.827390263649
1.000000000169 0.406886263765
1.000000000652 1.323267241981
1.000000000233 0.184702651816
0.999999999523 0.719414617007
1.000000000559 0.157197961494
0.999999999522 1.341094285732
1.000000000093 1.218648200823

Previous l1 and l2 0.999999999534 0.733363900901

Table 4.3: Numerical checks of calculated coe�cients against random l1 and l2
for 8 propagators (left) and 9 propagators (right)

Clearly, the reduction exists for 9 propagators, but fails with 8. Note that we
also check against one of the equations from the original system in the last line.
For 8 propagators, we see that the computed solution is not an actual solution
to the equations in the system, which is consistent with the results from section
4.1 where we saw the 8 propagator case is not solvable.

4.4 Unusual behaviour in two dimensions

In our proces of reducing several iGraphs, there have been some unusual prop-
erties that only appeared in the case of d = 2. The �rst one shows in Table 4.1.
There, we see that the pattern of solvability is very di�erent in d = 2. This also
re�ects in the fact that we only need quadratic terms to fully reduce two-loop
iGraphs, while in higher dimensions we need cubic terms. Additionally, in [1] it
was mentioned that the number of tensor structures is lower than expected in
d = 2, while for higher dimensions it is exactly as expected.

Figure 4.1 displays a Feynman diagram with �ve propagators.

2Shows results were calculated with QR decomposition. SVD obviously yields identical
results, but with slightly higher accuracy

CHAPTER 4. RESULTS 25

Figure 4.1: Feynman diagram of a special case in 2 dimensions

Normally, the corresponding iGraph should be reducable in d = 2 with quadratic
terms. However, it turns out that in this speci�c case, it is possible to choose
values for lµ1 and l

µ
2 such that all propagators vanish. As such, for this speci�c

case, reduction is actually not possible.

4.5 Conclusions

We have explored the possibilities of reduction of iGraphs with one and two
loops. We have shown that the number of reducible iGraphs is limited by
unitarity, and we have seen that we can carry out all possible reductions in two-
loop iGraphs with cubic terms. To do this, we have used e�cient programming
to solve the associated large systems of equations with the described techniques
of QR and SVD. We can now consider both the one-loop and two-loop cases
solved.

Unfortunately, the techniques used here are not suitable for practical use. While
our method of solving the coe�cients is straightforward, it is also not fast enough
to be used for actual calculations. Finding a way to calculate the associated
coe�cients for speci�c integrals is the next step that can lead to much faster
computation of Feynman integrals.

Additionally, iGraphs with three or more loops have not yet been fully solved.
While these iGraphs represent smaller contributions to the calculation of cross
sections, they cannot be ignored. To show if reduction is possible, it is possible
to use the same method as above, but one would expect to require more time
and faster computers to solve the large systems of equations that result from
these larger iGraphs.

Bibliography

[1] Ioannis Malamos, Reduction of one and two loop Amplitudes at the Integrand

level

[2] G.W. Stewart, Introduction to matrix computations, Academic Press 1973

[3] Gene H. Golub, Charles F. Van Loan, Matrix computations, The Johns Hop-
kins University Press 1996

[4] The used Python script can be found at: http://codepad.org/mrlYkkIe

26

