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1 INTRODUCTION AND RESEARCH QUESTION

1 Introduction and Research question

In the previous year the discovery of the Higgs boson was hailed as one of the
greatest achievements that has been made in science. While its discovery is
certainly important it doesn’t solve all the problems that exist in the standard
model. The standard model is the theory in which the electroweak and strong
interactions of particle physics are unified. In fact with the discovery of the
Higgs boson some new problems, that were previously purely theoretical, have
revealed themselves. One of the problems can be found in the high energy be-
haviour of the Higgs potential. This problem is detailed in the article by J. Ellis,
J.R. Espinosa, G.F. Giudice, A. Hoecker and A. Riotto called "The Probable
Fate of the Standard Model” [7]. It concerns the evolution of the Higgs poten-
tial as a function of energy. For this evolution different scenarios are possible
depending on the mass of the Higgs boson, since this mass was determined last
year a prediction can be made about the evolution of the Higgs potential.

There are some theories beyond the standard model that solve these problems
like supersymmetry. But currently no experimental evidence has been found
for any of these theories. The goal of this thesis is to determine the influence
of standard model] parameters upon the high energy behaviour. In the SM all
parameters are included. But a simplified model of the SM is used, since the
complete SM is a complex system in which the effects of individual parameters
are difficult to determine. Furthermore, some constraints might be loosened to
determine their effects upon the high energy behaviour. This brings us to the
following research question:

Which parameters determine the high energy behaviour of the Higgs potential

To answer this question, some theoretical concepts need to be used. The most
important ones are explained in the second chapter. These include the Higgs
mechanism and renormalization. These concepts will be needed to analyse the
effect that a high energy limit has on the simplified model that is being used.
This is detailed in the third chapter. In the fourth chapter the conclusions of
the research will be given and a short summary of possible implications will also
be given.

In this thesis natural units (¢ =1 and h = 1) will be used.

1This will be abbreviated as SM in the rest of the thesis



2 THEORETICAL BACKGROUND

2 Theoretical Background

2.1 Gauge Invariance

One of the properties that has a great impact on the description of a physical
system is symmetry. When a system displays symmetry this means that a
certain transformation has no effect on the theory. For example, if a system
has translation symmetry it will stay the same even when shifted in spacetime.
In the following paragraph a quick introduction will be given of a symmetry
phenomenon known as gauge invariance.

There are two forms of symmetries: global and local ones.

A global one states that if this symmetry is applied uniformly in each postion of
spacetime the physics won’t change. To illustrate this let’s consider a Lagrangian
L that depends on a Dirac field ):

L = ipy"d, ) (1)
(2)

In this equation the repeared us of the spacetime index pu(0,...,3) implies a
summation over that index. This is called the Einstein convention and states
that an index that appears both as a lower index and as a upper index is
summed over all possible values. This leaves v*, 0,, and 1. Firstly 0y is the
derivative with the index denoting with respect to which spacetime coordinate
the derivative is taken. Secondly v* are a set of matrices known as the gamma
matrices of Dirac. Finally, 1/ is a shortened notation for ¢)T~% which is a specific
combination of the hermitian conjugate of our Dirac field ¢ and the gamma

matrix 7°.
Giving the field a global phase results in:
by = ey
L= iy 0, = i Q0P 90y = iy, = L (3)

Let’s quickly introduce the new variables, « is a real phase and ) can be con-
sidered to be akin to a charge.

Since 1) and 1) differ by a complex conjugate, the Lagrangian is gauge invariant
under a global phase transformation (gauge transformation).

The second type of symmetry is a local symmetry. The difference with the
global one is that the transformation may now depend on the position in space-
time. Thus in this example the phase becomes a(x) which depends on the
position. Clearly this will give a great difference with the global phase. The
derivative will act on the phase, now giving extra terms:

D) — D, = QYD 1 1+ iQe' Py (9,a(x)) (4)

Note that the second term would be zero in the global case. But in this case
the Lagrangian is no longer invariant under this transformation:

E/ _ Z‘e—iQa(x),lZ),yp,aﬂ (eiQa(w)¢)
Ll _ Z‘efiQa(a:)qzj,yp‘ (eiQa(z)au,w + waﬂ (eiQa(x))> (5)
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Assume now that similar to the global gauge invariance, the Lagrangian happens
to be also locally gauge invariant.
To achieve this, let’s introduce a new derivative D, in such a way that:

Dy — D) = '@ D,y (6)
This can be realized by defining D,, as
D, =0, +igQA, (7)

In this definition ¢ is a coupling constant (interaction strength) and A,, is a new
vector field that Lorentz transforms like d,,. Furthermore A, has the property
that its gauge transformation will cancel the extra term that was found in
equation ([B):

Ay~ AL = A, — éaﬂa(a;) (8)

Thus by replacing all d,, by D
this gauge transformation [10].
So what are the consequences of assuming a local gauge invariance? We intro-
duced a new vector field which had an interaction strength that is determined
by g. This means that this vector field can interact with our Dirac field, this
wasn’t the case earlier. Thus by assuming a local gauge invariance we can intro-
duce interactions between Dirac fields (particles) transmitted by vector fields.
This turns out to be a good method to describe most interaction in physics,
thus the postulate of local gauge invariance is an important tool in high-energy
physics.

us it’s ensured that £ is locally invariant under

2.2 The Higgs Mechanism

Consider a system with a massless complex scalar field ¢ in a potential V(¢')
similar to the one created by the Higgs field. The Lagrangian of this system
will be

L= (8,¢")1(0"¢) = V(¢') (9)
V() = 2619 + A1) (10)
With g and A real and positive parameters. When taking a closer look at the
potential V' (¢'), it reveals that its minimum isn’t at the origin ¢ = 0. It’s
shifted and that presents a problem. If the current field ¢’ is used to define
a groundstate, we don’t get the desired result. We want the groundstate to
have an expectation value of 0, but with ¢’ this isn’t the case, since its value
at the minimum of the potential isn’t 0. This also means that the particle
interpretation isn’t correct, only around a minimum can we correctly look at
the particle interpretation. The field must be shifted in order to find the correct
particle interpretation.
In figure ] the potential has been plotted. We define the distance between the
origin and the minima as % This value gives the expectation value for the
groundstate and can be derived to be

2
2 M
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This gives a ring of possible groundstates in the complex plane spanned by ¢'.
Since only one can be the real groundstate, the symmetry of our system has to
be broken. This is called spontaneuos symmetry breaking, nature chooses one
solution for the groundstate and breaks the symmetry.

The field can now be shifted, since the minimum of the potential is known.

Since ¢’ is a complex field it can be decomposed in two parts. We choose the
real part to be shifted giving us:

1
¢ = E(% + i)

¢ =¢) —v P2 = Py

From this shift the old ¢’ can be written into a new form consisting of the
transformed components:

_ 1 v+
¢>—ﬂ(¢>1+ + i) (12)

By inserting this shift into equation (IT]), a transformed potential can be deter-
mined:

V(¢') = —1M2(¢1 +v—ida)(p1 +v+ida)+ iA((% + v — i) (p1 + v+ ige))?

2
2
= (0 + )+ 501+ ) +2n + )63+ 63)
_22_,“2”2 543 4 2 2 212
= p oy 1 +4( v¢” + dvg19; + (91 + ¢3)7)
2.2 o :
= p o] 1 + Interactions (13)

The number of fields is important to determine what the various terms in the
potential represent. A term with 2 fields like ¢? is called a mass term. This is
a byproduct of the shift. The mass term has a negative sign in the Lagrangian.
However, our old field had the term —p?¢’¢'T, which would have a positive sign
in the Lagrangian. Now we have a new term with ¢; which is positive in the
potential and thus negative in the Lagrangian, just as we expect of a mass term.
The shift of the old field has given us a correct mass term.

All terms with more fields are called interactions and are left out in the final
formula. The last term is a constant term that doesn’t depend on any fields.
This can be considered to be some kind of vacuum energy

Let’s return to equation ([I3]), it can be seen that a mass term has appeared
for the field ¢1, while the field ¢o remains massless. The massless particle
represents the groundstate symmetry still present in the potential. But a gauge
transformation can be performedd to get rid of the massless field. When this is
done then only the massive particle remains. This process is called the Higgs
mechanism [3].

2This will be done in section 3.2.
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Figure 1: The Higgs potential [§]

2.3 High Energy Behaviour

One of the goals of a theory is to make predictions at energy scales that haven’t
been probed with experiments. A way to do this is to look at the high energy
behaviour of a theory. This can be done by looking at the evolution of parame-
ters as a function of energy. Therefore let’s look at a simple ¢*-theory for which
the Lagrangian looks like:

1 A
L= 50,00"6 — 36 (14)
In this Lagrangian ¢ is a real scalar field and A is the coupling constant of the
quartic interaction. To study the high energy behaviour we can study the pa-
rameter A and how it depends on energy.

How should this be done? Firstly, Quantum Field Theoryﬁ is based on pertur-
bation theory. This means that we can calculate the probability of a process by
using pieces of perturbation theory.

But before one can calculate a probability, a process should be specified. The
simplest process is scalar boson scattering, which can be represented by a Feyn-
man diagram that looks like the diagram depicted in figure 2l Now, how should

Figure 2: Lowest order Feynman diagram for scalar boson scattering

we interpret this diagram. Firstly the time axis is chosen horizontally from left
to right. Furthermore there are different representations for different types of
particles. The particles in figure [ are scalar bosons. Thus the diagram should
be read as two scalar bosons interacting and scattering to two scalar bosons.

3QFT
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The probability interpretation of a scattering process, is represented by its ma-
trix element M. The value of |[M|? is directly linked to the chance that the
process takes place. Therefore one of the goals of calculations in QFT is to de-
termine |M|2. As stated earlier, QFT is based upon perturbation theory. This
means that we should also consider higher order (quantum) corrections, which
can be represented by Feynman diagrams by including loops in the diagram.

In figure Bl an example is depicted of such a set of corrections. Diagrams with
3 1

Figure 3: One-loop corrections for scalar boson scattering

one loop correspond with a first order correction, two loops or more correspond
with even higher order corrections. Most of the time higher order corrections
can be ignored. This will also be the case in this thesis in which up to first order
corrections will be considered. These loop corrections are energy dependent and
will have a great impact on the high-energy behaviour of the theory.

2.3.1 Renormalization and Coupling

To determine the matrix element M for scalar boson scattering one needs to
integrate over all possible loop momenta p. But in a loop all momenta are
possible and thus one must integrate to infinity. Instead of taking the upper
bound of the loop momentum p as infinite, let’s cut off it’s components at an
arbitrary energy called A. This cut-off means that only length scales that are
bigger than % are taken into account. It’s assumed that down to this length scale
the theory is still correct. With this procedure the matrix element belonging to
the Feynman diagrams depicted in figures 2 and Bl can be determined. Suppose
the center-of-mass energy scale of the process is /s, then the matrix element
can be written as:

M A % 1 A 1 1 i 1
(s) =— +327T2<30g<5>+0g<sir12w)>+m+3> (15)
With A the quartic coupling constant and 6 the center-of-mass scattering angle.
From this equation it follows that X isn’t the coupling constant that is measured
in experimentﬂ. Apparently the quantum corrections are an important part
of the effective coupling that is measured with this process. This also means
that |M(s)|> depends on log(A?). This is a problem since it shouldn’t be that
observations depend on a parameter that can be chosen arbitrarily. Thus the
following constraint is made on the derivative of equation (IH):

41f it was, the result would be M = —A.
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This leads to the following equation:

0= P e 2 (3108 (M) brog (— L) wimss)] 4 25 L
T dAZ 1672 \° %8 s S \sin2(e)) 7" 3277 A2
+O(N?)

This still isn’t easy to solve, but at first order in perturbation theory it can be
approximated by:

1 i
3272 A2 T dA?
Instead of solving this directly, it is easier to make a short detour that will be
very useful for making remarks about the final solution.
Let’s take a look at another derivative:
1
dx
dlog A2

(16)

(17)

By rewriting equation (7)) it is possible to couple it to equation (IT). Doing
this gives:
1 1
dy  dyx dA

dlog A2~ d\ dlog A2

11 dA\"!

A2\ A2 d)

AT adx

A2 dA2

3
=——— 1
3272 (18)

This equation is known as a Renormalization Group Equation (or short: RGE)
. This gives us a result that describes the evolution of \ as a function of log A2.
Solving the previous equation gives the following evolution of A

1 1 3 A2

= — log —
NA2Z) T A(so) 3212 %s

(19)

Where A(sg) represents the initial condition of the RGE at the reference energy
scale \/sq.

There is a dependence on A2, this means that A(A2) still isn’t the coupling
constant that is ”observed” in an experiment. Let’s introduce a new coupling
constant )\, that is observable at an energy scale ,/sg. This means it is possible
to couple the new coupling constant to equation ([l and find out how M (s)
depends on \,:

2 2

A A 4 ,
M(S = S()) = _)\P ~ —>\ + W (310g (30> + log (Sin29> —+ + 3)
A2 A2 4
—0=-A 1 — 1 — ] A
0 +327r2 (3 Og(so)+0g<sin29>+m+3>+ P

— A=\, + aT 31 A +1 1 +im+3) +O(\)
=\ 3972 og 5 og ,29 s D

Sin
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This new expression was defined at a very specific energy scale /s = /s but
the goal is to be able to make predictions at any energy scale. Thus let’s return
to the standard expression for M given by equation We should obtain a
matrix element that is independent of A2, just like the observable \,,:

M()——)\+)‘—2 3lo A +1o ! +ir+3 ) +0(\3)
8= 3272 & S0 & sin? 0 "

3\2 A2 3)\2 A2
=), — —L log — 2 log — + O}
P 3272 8 S0 + 3272 8 s +O()
3)\2 s
=— L log = 2

This is a major improvement. The matrix element is no longer dependent on
A? and only depends on the energy scale at which it is measured. This means
that if M (s) is found in an experiment, it is possible to predict its value at a
higher energy scale. This process of eliminating A is called renormalization.

One more thing to notice is the fact that M(s) = —Acrs(s) also obeys equation

2
the RGE —dkeﬂ(s) = —3)\?52’(7’;2(8)% and thus that its evolution as a function of

energy is determined by the same equation.

All of this looks very strange, the infinities are still there and were only shifted
to a different place. Actually our starting point was incorrect. It was assumed
that the parameter A was the coupling constant that could be measured. But
there is no reason to assume that A\ was measureable. It was just a parameter
of the Lagrangian that was interpreted as the coupling constant. Only after we
did higher orders of pertubation theory was it discovered that A would go to
infinity. So a new parameter A, was defined in such a way that it represented
the physical observed coupling. This in turn gave us the evolution of our theory
as a function of the energy scale of the scattering process.

Perturbation theory is defined around the free particle theory in which the in-
teractions are switched off. But in QFT there can’t be a free-particle theory,
there are always interactions. These are represented by the corrections which
in turn created infinities. The starting point that was used for the perturbative
expansion was just wrong [11].

After renormalization was applied, we defined new parameters and our theory
became finite. The difference is that this time the corrections were a part of the
definitions. The corrections were considered from the start and thus the theory
became predictive again. Basically the starting point for the perturbative ex-
pansion was fixed to create a correct representation of the theory.

For the previous example the process of renormalization worked and produced
a predictive theory. However, this isn’t always the case, such theories are called
non-renormalizable. But even if a system can be renormalized this doesn’t solve
all the problems. It can even create some new problems. This is the case with
the Higgs field as we will see in chapter 3.
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2.3.2 Power Counting

The procedure that was done in the previous paragraph was quite long and if
the number of diagrams becomes larger it becomes quite a time consuming pro-
cess. However, there is an easy way to see whether a loop correction diverges,
and how it will behave if the cut-off of the energy is taken to infinity. This
trick is called power counting and uses the fact that Feynman diagrams are only
representations of the physics that determine the described processes. The main
ingredient for power counting is that every internal line (propagator) in a loop
contributes powers in loop-momenta to the matrix element. The powers differ
for different spins and are determined by the Feynman rules. For our purpose
only the number of powers is relevant and not the precise rules. Therefore the
only piece of information needed is that internal spin-0 (scalar) boson propaga-
tors give a factor p%, and that every fermionic spin—% propagator gives a factor %.

The high energy (cut-off) dependence of a loop integral is given by:

A
/ d*pxp" (21)

In this integral n is the number of negative powers determined via power-
counting. Since there are two bosonic propagators in the example in [ it’s
easy to determine that n = 4 in this case. The next step is to simply cancel out
the powers that arise from the integral that we need to perform to obtain the
matrix element against the powers that are obtained from power counting. For
this specific example it looks like they would cancel each other out completely.
But the integral is still there, thus it can’t be that all dp terms are canceled
(this is the same when using spherical 3D coordinates dp’ — [p]2d|p]). This
gives the following behaviour:

A
1

/dpf — log A (22)
p

Just as indicated in paragraph 2.3.1 the evolution of the scalar-boson scattering
process is given by a logarithmic dependence on the energy, which presents
a problem in the limit where the energy goes to infinity. Thus by using power
counting we can get a good idea which diagrams diverge and contribute strongly
to the energy dependence and which don’t.

10
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3 Research

3.1 The High Energy Behaviour of the Higgs Potential

The process of renormalization can be done for the Higgs boson while considering
the entire SM. Doing this results in some very different scenarios that may have a
great impact on the SM at high energies. Which scenario applies is dependent on
the mass of the Higgs boson. The different scenarios give a different evolutionof
the physically observable Higgs-boson coupling Ap as a function of the energy
Q. The evolution is roughly given by the RGE:

MNQ) 3
dlog@ — 2m2

(@2 + 0@ - 1) 29

In this equation the parameter f; is the coupling constant for the interaction
between the top-quark and the Higgs boson. Only this term is mentioned, since
it’s the heaviest particle in the SM, and therefore has the strongest coupling to
the Higgs boson. So by observing how A, behaves when only considering f:, a
good approximation is obtained for its high energy behaviour.

w

The parameter )\, has a relation to the mass of the Higgs boson via A = &5 =

JZ}% , since the mass of the Higgs boson roughly corresponds to % If this is
considered it gives three different solutions that depend on what the mass of
the Higgs boson actually is.

The first solution corresponds to the case that A> dominates equation @3l This
would correnspond to a large mass for the Higgs boson. Thus the other terms

can be neglected which would give a differential equation that looks like

d\p(Q) 3 15
dlggQ o2 A(@)

This differential equation can be solved giving an evolution that looks like:

Ap(80)
1_ SALSO) log (%2)

The parameter sg details an energy scale at which A, is known. Thus it serves
as a reference point from which A, evolves.

This scenario gives rise to a coupling that is going to blow up to infinity. Be-
Q*

S0

M(Q) =

cause there is a value for @) at which 1 — 3’\#(20) log( ) = 0, at this energy

scale the coupling would explode. This can’t be a proper theory because this
process would dominate every process involving the Higgs boson. Clearly this
isn’t what we want since the goal is to make predictions at every energy scale,
including the scale where the coupling goes to infinity. This would mean that
there must be new physics to prevent this singularity from occurring.

The second scenario is the opposite of the first. The equation is dominated
by the coupling with the top quark. This corresponds to a relatively small mass

11
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of the Higgs boson. In this scenario the differential equation is given by:

DuQ) 3
dlog Q 827t

3 2
— /\p(Q) = /\p(SO) - @fﬁ log (i)

This result is even worse. There’s the possibility that the second term becomes
larger than the first. This would lead to a negative A,. While this doesn’t seem
like a problem, the implications are enormous. A negative A\, would give an
inverse potential for the Higgs field. This can be seen in figure @l The second
scenario are thus all those cases in which the potential becomes negative.

Figure 4: The Higgs potential with a positive and negative A. The upper line
is a Higgs potential for a postive A, while the lower line is a potential for a
negative A\. The values on the axes are arbitrary

The real problem here is the fact that it has become impossible to define a
groundstate. The potential goes to negative infinity for |¢| — oo. It’s not
possible to find a minimum and thus a particle interpretation cannot be found.
This is called vacuum instability and gives problems for the universe in its early
energetic stage. Again this means that we expect new physics to prevent A from
becoming negative.

This leaves the last scenario in which no coupling dominates. This scenario
is harder to solve. The solution that results from this scenario is very appeal-
ing. The Higgs coupling may remain finite and positive, thus the theory remains
predictive. This might be the only solution that will leave the SM intact at high
energies. Therefore it’s the preferred solution from the SM perspective.

The question now is in which domain does the universe reside? Until last sum-
mer the answer wasn’t known. But with the discovery of the Higgs boson it’s
now known what scenario applies. The border between the third and second
scenario is ~ 130 GeV [6]. This is a problem since the mass of the Higgs bo-
son was discoverd to be 126 £ 0.8 GeV [I]. Apparently the second solution is
the valid one, but barely. In order to figure out how rigid this border between
scenarios 2 and 3 is, we will try to investigate what the ingredients are that
determine if A becomes negative or not.

12
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3.2 Simplified Model

To see if the problem with the Higgs potential can be better understood, it’s
convenient to take a look at a simplified model. This model consists of a scalar
boson given by the field ¢’, a fermion represented by the Dirac field v)’, a gauge
vector field Aj, and the Higgs potential represented by V(¢'). Interactions be-
tween the fermion and scalar boson are also allowed via a Yuwakawa interaction
o ' ¢'1)'. This won’t be gauge invariant, since the transformation of ¢ and v’
will cancel each other, leaving the transformation of ¢’ with charge Q = 1. To
solve this, split the fermionic Dirac field in two components 17 and ¢%. The
transformation of these components will differ and depend on their ”charge” @,
and Qg as stated in paragraph 2.1. If we take Qp +1 — Qr = 0, then a gauge-
invariant Yukawa interaction is possible. Doing all this gives a Lagrangian that
looks like:

L =ithg (x)y" DIl (z) + ivhy (x)y" DEy (2) + (Dud ()T (D" (z))
— V(¢ (2) - fi (VR (2)¢ (@)¥], (x) + b1 ()¢ (2)d ] () (24)

In this equation y* are the gamma-matrices, D, is the derivative defined in
equation (7)) with the addition that D[;’R = Oy + z'gQL’RAH. The Yukawa
coupling constant is indicated by f;, indicating that is is supposed to model the
interaction between the top quark and the Higgs boson. The way to shift the
field ¢’ was already detailed in section 2.2, where two bosons remained. But
only one boson should remain. To see which particle survives, choose a new
parametrization for ¢':

¢ = (vt Hx)e ™ (25)

V2

In this new parametrization v is the same v as defined in section 2.2. Further-
more for small field values H(x) =~ ¢1(x) and w(z) ~ ¢a(x). Now we use the
Taylor expansion for the exponent and neglect all orders higher than w(z). Do-
ing this gives the same field we got when shifting the field in section 2.2. The
advantage is that w(x) is now a phase in our field parametrization. This means
a gauge transformation can be chosen to cancel it, leaving one boson, as was
stated earlier:

w(x)

§(2) — d(z) = e (1) = (v + H(2)) (26)

V2
But ¢/(z) isn’t the only field to change under the gauge transformation. Also

Al (z) changes according to equation (§)) and ¢} (z) according to ¥}, p(x) —
Yr r(z) = e QLR e Y7, (). This gives a new transformed vector field A, ()

that has the following form:

Au(x) = A, + giv@uw(x) (27)

This gives a new Lagrangian in terms of the just defined new fields:

L =ipp(x)y" Divr(x) + it (2)y* Dvr(z) + (Dug(a)) (D ¢(a))

+12(@)9" () = Md(2)¢' (2))* = fi(dr(@)d(@)yr(2) + i ()¢ (2)yr(x))
(28)

13



3.3 Feynman Diagrams and Power Counting 3 RESEARCH

By inserting the new field ¢(z) the following equation is obtained:

L =ithp (2)v" (0, +igQr A (x)Yr () + ih (@)Y (0, + igQrA,(2)) YR ()

(0 + z‘gAm))%(H(x) o) (@ + z’gAﬂ(w»%(H(x) +v))

i @) — Mo+ (@) — = @) o+ H@)) (29

L
V2

This can be written in such a way that it looks less intimidating:

£ =@ 0ja6(w) + 50 H @) H(x) ~ pH @)} = = froi(w)i (o)

1
+ ZM%Q + int. (30)
In this compact equation all the mass and kinetic terms were seperated from
the interactiondd which are simply denoted as ”int.” . These interactions are:

int. = — gQ L (2)y" AL (2)¢r (@) — gQrYR(2)V* Au(2)br(z) — MH (2)?

1 _
- \ﬁftH(x)w(x)w(m)

For our purpose it isn’t useful to consider an extra vector field. It was just
needed to make a proper gauge transformation. Since this has been done it
isn’t needed anymore and can be removed from the equations. This can be
done by choosing g << 1, so that it is possible to neglect any term with g in it.
This would make sure that the vector field can be neglected. That is also why
we have not implemented any kinetic term for the vector field in the Lagrangian.
In this way only the interactions among the scalar bosons and the fermion are
left:

+ LA () A (@) (0 + H@)? — JAH (@)’

1

V2

These three interactions are all the interactions in our simplified model, which
implies that there are only three vertices for the Feynman diagrams.

mn:—MH@f—iMﬂ@4 FoH (2)d(2) () (31)

3.3 Feynman Diagrams and Power Counting

The next step is to determine all diverging contributions in the quantum cor-
rections. This is possible since the vertices that can be used were determined in
the previous paragraph. The amount of diagrams we have is increased by the
amount of loops that will be considered. For practical purposes only diagrams
with one loop will be considered. Besides the number of loops another factor
that increases the number of diagrams is the fact that the number of interacting
particles isn’t limited. It’s possible to have an arbitrary number of incoming
and outgoing particles. Clearly there is a need to limit the number of particles
that can interact, and with it the number of diagrams that are possible.

To do this we limit the number of incoming and outgoing particles to four. This

5For those that are paying close attention: yes there is a non-interacting term in the
interactions. This is for a reason that will become clear later
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reduces the number of diagrams to a manageable magnitude.

These restrictions leave only three groups of diagrams. The first group has one

incoming and one outgoing particle. A possible diagram is seen in figure Bl
It’s logical that this group is the smallest one since the number of interac-

Figure 5: A possible diagram with one incoming and one outgoing particle. The
solid lines denote the fermions, with the arrow indicating the particle flow. As
before, the dashed line denotes the scalar boson.

tion is limited. Furthermore permutations of the particles don’t yield any new
diagrams. This won’t be the case for the other two groups, giving us more dia-
grams.

The second group consists of diagrams with two incoming and one outgoing
particles. An example can be seen in figure [6

There’s a difference with the diagram in figure Bl In figure [6] there is a loop of
b1

N\
N\
\

I
l -=—= p1+p2
p2+1

7/
/7
/

2
Figure 6: An example of a diagram with two incoming and one outgoing particles

fermionic particles. In contrast to the Higgs boson for fermions there is a dif-
ference between the particles and the antiparticles. Thus replacing all fermions
with their antiparticles gives a new diagram, displayed in figure [7
The difference between figure [ and figure [ is that the arrows have been
p1

\
\
\

p1+1
l -—--- p1+Dp2

/ l—p2
/
/

%)
Figure 7: The loop with antiparticles

Swhose antiparticle is the Higgs boson
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reversed. This is the same as interchanging the momenta of the incoming par-
ticles. This means that not all different permutations give new diagrams. In
some occasions swapping the particles with antiparticles gives the same result
as a permutation of momenta. Of course in our simplified model this is only
relevant for diagrams that contain fermionic loops.
The last group of diagrams are the diagrams with two incoming and two out-
going particles. Again a diagram is drawn as an example in figure

This group contains the largest number of diagrams since the number of per-

N 7
N 7

7 N
7 N
7 N

Figure 8: An example with two incoming and outgoing particles

mutations is the largest. For example, the diagram in figure [§ has six different
permutations and thus six diagrams of its kind have to be considered for the
RGESs.

Now that the groups of diagrams are clear, it’s time to look at which diagrams
have a divergent high energy (cut-off) dependence. In paragraph 2.3.2 the pro-
cedure of power counting was introduced. This will now be used to determine
which diagrams converge and which diverge.

An example of a converging diagram is seen in figure @l With the use of power

Figure 9: A converging diagram

counting it’s easy to see that the diagram in figure [0 has a contribution of 8 in-
verse powers of energy. This means this particular diagram is highly convergent
and doesn’t effect the RGE of the Higgs potential. But the diagram in figure
is divergent and thus does impact the RGE of the Higgs potential through
the coupling .

Again with the use of power counting its impact can be determined. For the
diagram in figure [[0 the contribution is quadratically divergent. This diagram
is highly divergent. This means that it’s expected that this diagram will greatly
impact the evolution of A\ as a function of energy.

An overview of all possible diagrams with the number of permutations and an
indication whether they are divergent or convergent can be seen in the Ap-
pendix.
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Figure 10: A diverging diagram

Before going to the RGE of the Higgs potential, let’s return to the problem of
the unlimited number of Feynman diagrams. This was solved by limiting the
number of incoming and outgoing particles. But was information lost in this
process?

If information was lost this would be disastrous. Since there is an infinite number
of diagrams it’s easy to imagine that a great deal of information was neglected
by limiting the number of diagrams. Let’s look at a new diagram of three in-
coming and two outgoing particles that was not considered before. By this we
mean a diagram that does not contain a loop diagram with less than 5 particles
as building blocks. Such a diagram is called 1-particle irreducible. First let’s
take a look at the most likely candidate for a diverging diagram. Since fermions
have a 1 dependence while bosons have a p% dependence, it’s logical to expect
the most diverging diagram to consist fully of fermionic lines. The correspond-
ing diagram can be seen in figure [[T]

But with power counting it can easily be seen that this diagram is converging.

Figure 11: A Feynman diagram with 3 incoming and 2 outgoing particles

As was previously said this was expected to be the diagram with the greatest
chance of being divergent. Thus it can be expected that all 1-particle irre-
ducible diagrams with 5 particles are convergent, and they are. Obviously the
same holds for more than 5 particles. Thus the conclusion can be drawn that
1-particle irreducible diagrams with more than four particles are all convergent.
This conclusion also means that no information was lost for the RGE by limiting
the number of particles.

With the diagrams determined, it’s now possible to calculate the renormalization
group equations that are needed to determine the evolution of the parameters
in the Higgs potential. The deriviation of this equation will not be shown in
this thesis, only the outcome will be noted and used in the next section.

17



3.4 Renormalizing the Higgs Potential 3 RESEARCH

3.4 Renormalizing the Higgs Potential

By using the procedure that was explained in paragraph 2.3 and the diagrams
that are listed in the abstract, it’s possible to determine the RGE for the pa-
rameter A:

ax 9 A2 ONfP I

AN A 32
dlog @ 8772+47r2 82 (32)

The evolution of A is now determined by the combination of two constraints.
Firstly the relative size of f; and secondly the value of s, the value of A\ at
energy scale \/sg. Changing either value gives a different evolution. In figure
the evolution of A is plotted while the value of A\s is changed and f; remains
constant.

In figure it’s clearly seen that a larger value for A; implies a possible

A
35¢F
30
25
20
15¢F
10

0.5

Figure 12: The evolution of X for 3 different values of As. The blue line is
As = 0.13, the green line Ay = 0.3 and the red line Ay = 0.5. Futhermore f; is
kept constant at f; ~ 1

growth of A\. This corresponds to the observations made in paragraph 3.1. If
the A term dominates, this would lead to a positive evolution. If the range of
the energy is large enough, a singularity is expected to appear. This can already
be seen from the red line.
In contrast, a small value of Ay gives a negative evolution. Again this matches
our observations from paragraph 3.1. Thus it can be said that changing the
value of A\g has a clear impact on the evolution of A. But f; also has an impact
as can be seen in figure [[3

In contrast to a variation of A\ a larger f; corresponds to a faster decline of \.
This isn’t surprising since it’s possible to use the same reasoning we used earlier.
The observations in paragraph 3.1 told us that for increasing f; the evolution
will go through zero at a decreasing energy scale.

With the effects of f; and Ag now known, all that is needed are the correct
values to determine the evolution of \. However there is one more bump in the
road, and it’s quite large. In paragraph 2.3.1 we treated f; as a constant, i.e.
we had only one RGE. But now there are in fact two RGEs, the second one
corresponding to fi:

dfe 517
dlog@  32w?2

(33)
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Figure 13: The evolution of A for 3 different values of f;. The blue line is f; = 1,
the green line f; = 1.2 and the red line f; &~ 0. This time A, is kept constant at
A = 0.13

This means that the previous analysis is incomplete, since the evolution of f;
needs to be taken into account. But the evolution is still governed by A; and
now also the initial condition for f; called f; o which plays the same role as the
constant f;.

To get a complete picture of the evolution of A both RGEs need to be combined,
since the evolution of f; will change the evolution of . Instead of computing the
result analytically it can also be solved numerically by using Mathematica [12].
Before this can be done, the parameters Ay and f; o need to be determined.
Luckily these values are easily determined via the masses. In equation (B0) the
lowest prder connection between the parameters \g, fo and the masses of the
Higgs boson and the top quark can be seen:

MY = 2\0° (34)
1

my = ﬁvftﬂ (35)

This leads to the following values of A\ and f; .

1 M
A= gy ~0.13 (36)

v
fro= \/i% ~ 0.994 (37)

Here v is the expectation value of the groundstate with a value of v = 246 GeV,
My is the mass of the Higgs boson with a value of My = 125.3GeV and my is
the mass of the top quark with a value of m; = 172.9 GeV.

By inserting these values into the computer code the coupled RGEs can be
solved nummerically. Doing this results in the following evolution.

While both lines go through zero the difference is quite big. When only the
A-RGE is considered, A becomes negative for a relatively large energy. However
with the combined RGEs A\ declines much faster. This results in a negative A
well before the Planck scale, which is situated around log ¥ = 16. The Planck
scale is a scale where new physics is expected, since gravity plays a significant
role at such energies. Therefore, if the SM can be extended to the Planck scale
that might be an indication that there is no new physics before this scale.

This analysis isn’t complete of course. There are other contributions that are
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Figure 14: The evolution of A\. The brown line is the evolution of A\ without the
RGE of f;. The blue line includes the RGE of f;

ignored here, like the ones corresponding to the other particles in the SM. What
are the expected consequences of these contributions?

One could imagine that the extra particles in the SM might save the Higgs
potential but unfortunately most of these contributions are negligible in com-
parison with the top quark contribution.

However there are some possiblities to tweak the evolution and there is one
sector of the SM that can’t be ignored.

3.5 Tweaking the Evolution

In the previous paragraph it was shown that the simplified model exhibited the
same general evolution of A as the complete SM. The next step is to try and
change this evolution without the introduction of new interactions or new parti-
cles. So what can be changed? One of the logical scenarios is to lose one of the
SM constraints to gain more freedom in choosing our solution. For this thesis
a model was considered in which equation ([IIl) was allowed to become energy
dependent. In terms of the parameters v and A it means that they may evolve
independently of each other. This would give a third RGE and thus possibly
new solutions.

The renormalization of v has a surprising effect. By renormalization the value
of v is shifted, but as a result of this shift new terms arise in the RGE that shift
the renormalized value of v back to it’s original value before renormalization.
The RGE of v apparently has no new information, even if v is allowed to change,
its renormalized value will remain constant and equation (1) will hold [9]. The
value of v was an indication of the position of the minimum of the potential.
That it remains constant under renormalization means that the minimum won’t
change position if the energy scale is increased.

Another possibility is that the wrong values were taken for the masses of either
the Higgs boson or the top quark. These particles have known error margins
on their measured masses and it’s possible to study the change in the evolution
within these margins.

First let’s insert the error margins for the Higgs boson. As seen in figure
the impact on the evolution can barely be seen. Mostly the starting point is
changed but the general evolution stays the same. The next thing that can be
done is changing the evolution of f; by varying f; ¢ within the measurement
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Figure 15: The evolution of A for different values of M. The thick line is the
evolution of A for the Higgs boson mass without measurement error and the
dashed lines represent the error margins

error margins. Again the effect isn’t significant in figure The energy at

A

£

Figure 16: The evolution of X for different values of m,. The thick line is the
evolution of A for the top quark mass without measurement error. Again the
dashed lines represent the error margins

which A\ becomes negative is of the same order of magnitude as in figure
The difference is that the evolution is now clearly impacted after the starting
point. Thus maybe by combining these two different evolutions an effect can be
found. In figure [I7 the combined effect of the error margins can be seen. The
error margins have been combined to be the most effective. This means that the
largest value of My is combined with the smallest value of m; and vice versa.
From the earlier analysis in paragraph 3.1 it’s expected that the former is the
most likely candidate for keeping A positive at higher energies. Unfortunately
even this optimal combination becomes negative well before the Planck scale.
This is because the effect of the error margins on the mass of the Higgs boson
are so small. The combined evolution looks like the evolution in figure [ and
can barely be distinguished from the evolution without the error margins in the
Higgs mass as seen in figure It should be noted that this analysis isn’t a
correct statistical analysis. Its only goal is to see what the elbow room is for
changing the evolution within the simplified model.

Before dismissing all chance of keeping A\ positive within the SM, let’s look for
more options to try. The masses that we inserted in the previous analysis where
the measured masses. But these masses are measured from the particle reso-
nances. Only at lowest order are these masses related to the coupling A and
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Figure 17: The evolution of A for different values of My and m;. The thick
line is the evolution of A for the masses without measurement errors. The lower
dashed line indicates the combination of the largest m; value with the smallest
My value within the error margins. The upper dashed line combines the largest
My value and smallest m; value.

fi according to equations B4] and But the whole point of the RGEs was
to include the higher order correction into the definitions of the couplings. We
shouldn’t look at the masses but at the couplings. These can be calculated
from the masses including higher order corrections. The new initial couplings
are A\ = 0.12577+0.0014 [5] and f; o = 0.937£0.016 [2]. The difference between
these values and the values used earlier is quite large. These new parameters
will be called the running mass input. With these new parameters a new plot
can be made. From figure [I§ it’s clear that the use of the running mass input

Figure 18: The evolution with the running mass input. The black thick line is
the standard fit with the previous values. Again the extreme error margins are
denoted by the dashed lines.

has a huge impact on the evolution. Previously the point where A became zero
was around 10" GeV, now this point is 10" GeV.

Already we have seen quite an impact from including the evolution of extra
parameters in this simplified model. The inclusion of the evolution of f; had a
great effect and after using the correct input values the evolution changed again.
This raises the question whether the Planck scale can be reached by expanding
the model with other relevant interactions. The most likely candidate is the
strong interaction since it will dominate in the beginning of the evolution.
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3.6 Adding the Strong Interactions

Up until now only the interactions between the Higgs boson and the top quark
have been considered. But at the start of the evolution, the coupling of the
strong interactions is the largest. This means that for a better model one should
also consider the strong interactions. This will introduce new diagrams that will
alter the RGE of both A\ and f;. Furthermore it will introduce a new coupling
which will be called gs. The derivation of the new RGE will not be shown here
and was determined with the help of [4].

The new RGEs are:

d\ 9N NfIA NS}

— - 38
dlog@ 8?2 472 82 (38)
NZ-1
dlog@Q 3272 82
dys g2 11
=9 (2N, 42 40
dlog O 8n2 ( 6 et ) (40)

In these equations N, is the number of colours. In the case of the SM this means
N, = 3. If N, =1 is taken this yields our previous model. It can be seen that
for A only some factors have changed but the overall equation has stayed the
same. This can’t be said for f; for which an extra term appeared. This is to
be expected since the strong interactions will only "talk” to the Higgs boson
via the massive quarks, in this case the top quark. Having learned from past
mistakes g5 is immediately taken as a running coupling.

The largest effect is observed for the evolution of f;, as can be seen in figure [[9]
The blue line in figure [[9] represents the previous model while the black line is

L L L I Q
5 10 15 9 v

Figure 19: The evolution of f; with and without the strong interactions. The
black line includes the strong interactions while the blue line doesn’t

the new model with the strong interactions. The difference is quite clear. Where
ft used to grow as a function of energy, now it decreases. This is due to the
effect of g5 on the RGE of f; . However, g, itself becomes smaller with energy.
Thus one could conclude that in the high energy limit g5 has a small effect on
fi. But the crucial part is that at the start of the evolution f; is dominated by
gs and thus decreases. At a higher energy f; is smaller in such a way that g,
still dominates. As can be seen in figure 20l the shape of the evolution for A is
changed radically from the evolution in figure[[7l Another effect of introducing
the strong interaction is an increased sensitivity to the variation in My and my
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Figure 20: The evolution of A with and without the strong interactions. The
black line includes the strong interactions while the blue line doesn’t
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Figure 21: The error margins on the evolution of A, which are again represented
by the dashed lines

as can be seen in figure 211

To truly see the difference let’s compare the model with the strong interactions
to the model without the strong interactions. It can be seen from figure
that the spread in the evolution trajectories is much greater when the strong
interactions are activated. This can be explained by the greater sensitivity
to the measurement error margins. Fortunately the old crossing ared] is still
contained within the new crossing area. The main effect is a lowering of the
lower crossing scaldd. Thus overall the expected energy at which \ becomes zero
has decreased.

Before drawing conclusions, let’s look at the evolution of the other couplings
in the SM. Since they all evolve following a different trajectory.

The different evolutions of the couplings are shown in figure[23l It can be clearly
seen that the strong coupling dominates at low energy scales. Furthermore we
indeed observe that f; (called y; in reference [|Degrassi) is suppressed by gs.
At high energies the strong interaction doesn’t dominate anymore. Instead the
electromagnetic coupling takes over while the weak interactions also get more
noticeable. It’s therefore safe to say that for a better picture a complete analysis
of the SM RGEs must be made before any definitive conclusions can be drawn
about the evolution of A.

“the area in which \ goes through zero
8The energy at which the crossing area begins
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Figure 22: Comparison between both models. The error margins are again
represented by the dashed lines
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Figure 23: The evolution of the couplings in the SM taken from reference [5]

4 Conclusion

By using a simplified model with only the top quark, Higgs boson and an inter-
action between these two particles, it was determined that the evolution of the
Higgs potential parameter \ can’t be changed radically within the SM. If we
drop the constant-v restriction on the evolution, the theory still gives a constant
renormalized v independent of the energy. This means all parameters have a
defined evolution since p is coupled to A via the constant v. It should be noted
that the use of the correct input values is paramount since these values do have
a noticeable effect on the evolution. The only large impact on the evolution is
obtained by adding a new coupling. This was performed for the strong interac-
tions, which impacted the model severely. From this reasoning it seems logical
to make a complete analysis of the evolution of A\ within the SM. Especially
since the strong interactions don’t dominate in the high energy limit, further
study is required. Since the electromagnetic interaction becomes the dominant
interaction at higher energies, it is important to include the RGE of this inter-
action in the analysis.

With the use of the correct values for the input parameters and the inclusion
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of the strong interactions, it can be concluded that new physics is expected
before 10'? GeV, well before the Planck scale. The value found in the literature
is around 10'° GeV [5]. The difference can be explained by the fact that in
reference [B] higher order corrections are used, as well as more sophisticated
programming.

The fact that A goes to zero isn’t a problem, some theories of inflation after the
Big Bang even need a A close to zero. However, in all theories a A that becomes
negative is a big problem. At the moment there are several new theories like
supersymmetry or heavy righthanded neutrinos that prevent this from happen-
ing [5L[6]. These theories are currently being researched at the Large hadron
Collider in Geneva. By improving the analysis of the evolution of the Higgs
potential in the SM, the energy scale at which such new physics theories should
appear can be better predicted.
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5 APPENDIX

5 Appendix

In this table all possible diagrams in the simplified model are listed. The number
of permutations denotes the number of diagrams possible for this diagram. The
column with Powercounting gives the amount of negative powers each diagram
provides. The final column states whether the diagram is divergent and, if that
is the case, what kind of divergence it has.

Diagram Number of Permutations | Powercounting | Divergence
~ 4
1 3 Logarithmic
_____ < . :_ —_————
1 4 Logarithmic
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Diagram Number of Permutations | Powercounting | Divergence
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Diagram Number of Permutations | Powercounting | Divergence
7 B v
\,\/ :
AN A
6 6 Convergent
1 5 Convergent
|
|
|
|
|
2 5 Convergent
2 6 Convergent
2 7 Convergent
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