
Radboud University Nijmegen

Faculty of Science

Modelling the muon anomalous
magnetic moment with non-unified

sfermion masses
Exploring the possibility of split masses in the Minimal Supersymmetric

Standard Model

Bachelor Thesis Physics & Astronomy

Author:
Jelle Staals

Supervisors:
prof. dr. W.J.P. Beenakker

& J.W. Kip MSc

Second reader:
prof. dr. C.W.J.P.

Timmermans

June 2022





Contents

Contents ii

1 Introduction iv

2 Magnetic moment 1
2.1 Classical mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2.2 Quantum mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.3 Muon g-2 experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.4 The Standard Model and contributions to aµ . . . . . . . . . . . . . . . 4

2.4.1 Quantum electrodynamic contribution . . . . . . . . . . . . . . . 6
2.4.2 Electroweak and Hadronic contributions . . . . . . . . . . . . . . 7

3 Supersymmetry 9
3.1 Problems with the Standard Model . . . . . . . . . . . . . . . . . . . . . 9
3.2 MSSM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2.1 mSUGRA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2.2 Non-unified SUGRA . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.3 SUSY contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Computational program 14
4.1 SARAH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2 SPheno . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5 Results and Analysis 16

Conclusion 24

Bibliography 25

A Appendix 27

ii





1 Introduction

The Standard Model (SM) incorporates three of the four fundamental forces, i.e. the
strong, weak and electromagnetic forces, and is the best theory physics has to explain
the universe around us. The SM is a model of elementary particles and their properties
and interactions from which we can describe the universe. One of these properties is the
magnetic moment of particles that arises from the spin and interactions with the photon.
The muon is a particle with spin and interactions with photons and thus has a magnetic
moment. Without quantum corrections we would expect the spin magnetic moment
of the muon to be a factor 2 larger than the classical orbital magnetic moment of the
muon. Once quantum corrections are applied this factor is not exactly 2 anymore. The
deviation from the factor 2 indicated by g-2 is called the anomalous magnetic moment.
This anomalous magnetic moment is the only significant deviation between the SM and
experimental findings at present.

In 2001 the Brookhaven National Laboratory released their measurement of the muon
anomalous magnetic moment stating a discrepancy of 3, 3σ between the experimental
value and the theoretical prediction. Later in 2021 the Fermi National Accelerator Lab-
oratory released their measurement for the experimental anomalous magnetic moment
of the muon. The discrepancy between the experimental and theoretical value is now
4, 2σ. The experimental and theoretical values as of the writing of this thesis:

aexpµ = 116592061(41)× 10−11 (1.1)

aSM
µ = 116591810(43)× 10−11 (1.2)

It seems that the smaller the uncertainty of the experimental value and the smaller the
uncertainty of the theoretical SM prediction, the more significant the difference between
the two values becomes.

The threshold for new physics is 5σ. A deviation of 4, 2σ is therefore very close to being
a discovery. It is hence important to start developing physics beyond the SM (BSM) that
might be able to explain the deviation. One of the most promising BSM theories is the
theory of supersymmetry (SUSY). In this thesis we will be looking at a supersymmetric
extension of the SM and vary its parameters to determine if our specific implementation
of SUSY is a viable extension on the SM that can explain the difference between the
experimental and theoretical values.

We are going to use the minimal supersymmetric standard model (MSSM) with minimal
supergravity (mSUGRA) unification and non-minimal SUGRA unification to calculate
the contributions these models can add to the theoretical value for the muon anomalous
magnetic moment. The non-minimal SUGRA model will treat supersymmetric partners
of left-handed particles differently from supersymmetric partners of right-handed parti-
cles. We will be using SPheno to calculate the particle spectra and g-2 for both models.
We will then discuss if treating “handedness” of the particles differently will result in
better predictions of the anomalous magnetic moment.

In section 1 we will go over the theoretical background of the magnetic moment and the
origin of the anomalous magnetic moment. We will then shortly explain the SM and its
properties that give us the theoretical value of the muon anomalous magnetic moment.
In section 2 we will explain the concept of SUSY and the contributions it can make to
the anomalous magnetic moment. We will then introduce the models used to determine
g-2 and the key differences between them. In section 3 the computational programs used
will be explained as well as the parameter values. The results are shown and analysed
in section 4. In this entire thesis we will use natural units such that c = ℏ = 1.

iv





2 Magnetic moment

2.1 Classical mechanics

To understand what the g-factor represents we first need to discuss the origin of the
magnetic moment. This can be done in two different ways: the classical approach via
electrodynamics and the quantum mechanical approach using the concept of spin and
photon interaction.

The magnetic moment is the result of a current inside a system. When exposed to an
external magnetic field, the magnetic moment will create a torque to align the system
with the external magnetic field, thereby resulting in a precession. The magnetic dipole
moment µ⃗ is defined by:

µ⃗ ≡ 1

2

∫
V

r⃗ × J⃗ dV =
1

2

∫
V

r⃗ × (ρq v⃗) dV, (2.1)

where V is the volume over which we integrate, r⃗ the position vector and J⃗ the current
density inside the volume [1]. J⃗ can be written as the density of charge ρq times the
velocity v⃗ of the charge.
If we replace the current density with some loop of current I enclosing an area A, the
resulting magnetic dipole moment can be described by:

µ⃗ = IA u⃗r⃗×J⃗ ,

where u⃗r⃗×J⃗ is the unit vector normal to the area A [2]. In figure (2.1) such a loop with
magnetic moment is illustrated.
We can now relate the magnetic moment with orbital angular momentum L⃗ defined by:

L⃗ = m(r⃗ × v⃗) =

∫∫∫
V

r⃗ × (ρv⃗) dV,

so that combining it with equation (2.1) gives us:

µ⃗ =
q

2m
L⃗ = gl

q

2m
L⃗ , (2.2)

where q is the total charge of the system and m is the mass of the system which for
large numbers of particles can be written as the mass density ρ times the volume V .
The dimensionless quantity g is called the g-factor and for the classical case the g-factor
is equal to gl = 1.

The work done by the disk due to the magnetic moment results in a change in potential
energy. If we call θ the angle of misalignment between the normal vector u⃗r⃗×J⃗ and the

magnetic field B⃗, we can now express the potential energy U in terms of µ⃗, B⃗ and θ[3]:

U =

∫
τ⃗ · dθ⃗ =

∫
(µ⃗× B⃗) · dθ⃗ = µB

∫
sin(θ)dθ = −µ⃗ · B⃗ , (2.3)

where the integration is done with respect to an arbitrary reference point. In figure
(2.2) it is shown how a torque is generated by the magnetic moment of a disk. The disk
will keep rotating towards the field lines of the magnetic field till the magnetic moment
is parallel or anti-parallel with the direction of the magnetic field. The disk will always
rotate towards the direction that decreases the misalignment angle. A misalignment
angle of 0 means there is no work done and the disk will not rotate anymore.
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Figure 2.1: Circular motion of a neg-
ative charge q enclosing an area A at
distance r, with a velocity v⃗. The
resulting current creates a magnetic
moment µ⃗ and angular momentum L⃗
perpendicular to the surface. Source:
MikeRun [4]

Figure 2.2: Torque τ⃗ created by the
magnetic moment µ⃗ with misalign-
ment angle θ between the disk and
magnetic field B⃗. Source: S. Zurek
[5]

2.2 Quantum mechanics

To find the g-factor in quantum mechanics we have to look at wave functions that govern
the states of particles. The Schrödinger equation is a linear partial differential equation
that represents the time evolution of a physical system in quantum mechanics. The
general time-dependent equation is given by:

iℏ
∂

∂t
Ψ(t) = ĤΨ(t) ,

where |Ψ(t)⟩ is the state vector. The Schrödinger–Pauli equation is a modification of
the Schrödinger equation that includes the interactions of a spin-1/2 particle with an
external electromagnetic field. For a spin-1/2 particle with mass m and charge q in a
static electromagnetic field the Schrödinger–Pauli equation is [6]:

iℏ
∂

∂t
|Ψ⟩ =

[
1

2m

[
(ˆ⃗p− qA⃗)2 − qℏσ⃗ · B⃗

]
+ qψ

]
|Ψ⟩ , (2.4)

where ˆ⃗p = −iℏ∇ is the momentum operator in position space, ψ the electric scalar
potential, A⃗ the magnetic vector potential and σ⃗ = (σx, σy, σz) a vector representation
of the Pauli matrices. This Schrödinger–Pauli equation is the non-relativistic limit of
the Dirac equation including EM interactions, so that all relativistic effect are neglected.
We are looking for the effects of a magnetic field on a particle and in equation (2.4) this
effect is nicely isolated with only some constants and the inner product between the
Pauli matrices and the magnetic field. This term has a similar shape as equation (2.3)
and since the Pauli matrices can be written in terms of the spin angular momentum

operator
ˆ⃗
S as:

ˆ⃗
S =

ℏ
2
σ⃗ ,

we can construct an intrinsic magnetic moment such that:

µ⃗s =
qℏ
2m

2

ℏ
S⃗ =

q

m
S⃗ (2.5)
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If we take equation (2.2) and (2.5) we get the total magnetic moment:

µ⃗tot = µ⃗l + µ⃗s =
q

2m

(
glL⃗+ gsS⃗

)
. (2.6)

We already have gl = 1 and can now see from equations (2.5) and (2.6) that gs = 2.
This value for gs is the simplest interaction between the magnetic field and the particle.
Interactions involving virtual particles cause deviations to the dimensionless magnetic
moment gs. We are only interested in the deviations to gs so we can define the anomalous
magnetic moment a as:

al ≡
gs − 2

2

Here the l denotes the lepton we are interested in, e.g., aµ for the muon anomalous
magnetic moment.

2.3 Muon g-2 experiment

To be able to use the anomalous magnetic moment as an indicator of BSM physics we
need to know both the theoretical and experimental values and their uncertainties for al.
Since the contributions to al can be approximated as proportional to m2

l /Λ
2
NP , where

ΛNP is the mass scale of the ”New Physics” model (NP) or BSM physics. We can see
that the larger the mass of the lepton the bigger the contribution to al [7]. This makes
the tau lepton a priori the best candidate to measure the effect of NP. However the tau
lepton is too short lived, making it hard to precisely measure the experimental value
of aτ . The next best option is the muon lepton with a (mµ/me)

2 ∼ 4, 2 · 104 relative
increase of the sensitivity to NP contributions to g-2 as compared to the electron. To get
the theoretical value one needs to keep adding higher orders for smaller uncertainties,
but the experimental value by definition has all higher-order corrections embedded. By
decreasing the statistical and systematic uncertainties of the experimental value, the
discrepancy can be more visible and if the experimental anomalous magnetic moment
exceeds the SM prediction by more than 5σ, it can be considered a discovery.

In 2017 Fermilab started the E989 (Muon g-2) experiment, which uses the same muon
storage ring and magnet as in the earlier E821 muon g-2 experiment conducted at
Brookhaven National Laboratory (BNL), but has a better injection method and longer
running time to reduce the uncertainty to four times smaller than observed by BNL.
The E821 magnet creates a highly uniform magnetic field in the muon storage ring
which is very precisely known. The antimuons used in the E989 experiment get injected
as a beam into the storage ring. These antimuons have the same anomalous magnetic
moment as muons.
As shown before, a magnetic moment creates a torque. Because the antimuons travel
in a circle and inside a uniform magnetic field, the torque in turn creates a precession.
Because antimuons decay into neutrinos and positrons, we can measure the amount of
positrons detected as a function of time to measure the precession of the antimuon before
decay. Longer running time increases the precision of the measurements, thus reducing
the uncertainty. The frequency of the precession caused by the magnetic moment is the
difference between the spin precession and the relativistic cyclotron precession of the
antimuon. The relativistic cyclotron precession is along the magnetic field and does not
change over time, meaning it stays in the direct of B⃗. The resulting frequency is given
by [8]:

ω⃗a = −g − 2

2

qB⃗

mµ
= −aµ

qB⃗

mµ
(2.7)

3



Figure 2.3: Muons travelling in a circular ring with the momentum
vector in blue and the spin vector in red. On the left there is no mis-
alignment for g = 2. Once the g-factor is larger than 2 the misalign-
ment after one rotation is measurable as shown on the right. Source:
E. Valetov [11]

It is clear that for g = 2 the frequency will vanish. Because the cyclotron frequency does
not deviate from the direction of the magnetic field we can see that the misalignment of
the spin precession results in a non-zero ω⃗a. This is schematically represented in figure
(2.3).

On April 7, 2021 Fermilab National Accelerator Laboratory (FNAL) released the first
results for the experiment. The measured muon anomalous magnetic moment is:

aFNAL
µ = 116592040(54)× 10−11 ,

with the uncertainty of the last two digits in parentheses. This agrees with the BNL
E821 result and corresponds to 3, 3σ difference with the SM prediction.

Combining the FNAL E989 result with the BNL E821 result we find the combined
experimental average and theoretical SM prediction to be [9][10]:

aexpµ = 116592061(41)× 10−11 (2.8)

aSM
µ = 116591810(43)× 10−11 (2.9)

The difference, ∆aµ = aexpµ − aSM
µ = (251± 59)× 10−11, has a significance of 4, 2σ.

2.4 The Standard Model and contributions to aµ

The SM is a theory that contains all known elementary particles and describes three of
the four fundamental forces in the universe. The fundamental forces integrated in the
SM are the electromagnetic, the weak and the strong force. It is the most accurately
tested theory to date in particle physics. The elementary particles can be categorised
into fermions governed by Fermi-Dirac statistics and bosons governed by Bose-Einstein
statistics. The interactions of elementary particles are described by a gauge theory
where the gauge bosons act as mediators of the interactions between fermions.

Fermions are half-integer spin particles and are the basic building blocks of matter.
There are twelve fermion types: six leptons and six quarks. The leptons and quarks
can be further subdivided into three generations or families. The first generation quarks
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Standard Model of Elementary Particles
three generations of matter
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1
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Figure 2.4: The Standard Model of elementary particles: the
twelve fermions and five bosons. The fermions shown in pur-
ple and green split into the quarks and the leptons respec-
tively. The bosons shown in red and yellow split into vector
bosons and the scalar Higgs boson respectively. Source: PBS
NOVA [12]

are the up and down quarks. The second generation quarks are the charm and strange
quarks and the third generation consists of the top and bottom quarks. For the leptons
we have the first generation electron and electron neutrino, the second generation muon
and muon neutrino and the third generation tau and tau neutrino. All fermions have
an associated antiparticle with opposite charge and lepton/baryon number.

Bosons are integer-spin particles and are known as the force carriers that mediate inter-
actions. The bosons can be categorised into different spins. The bosons with a spin of
1 are called gauge/vector bosons. The known gauge bosons are the photon, W± and Z
boson, and the gluons. The boson with a spin of 0 is called the (scalar) Higgs boson and
is responsible for giving mass to the fermions and the W± and Z bosons via the Higgs
mechanism. All bosons are their own antiparticle except for the W boson that changes
sign, W+ is the anti particle of W− and vice versa. All elementary particles with their
mass, charge and spin are shown in figure (2.4).

The Higgs mechanism explains the generation of mass for the W± and Z bosons as
caused by a property of the Higgs potential. The Higgs potential has a minimum with a
non-zero vacuum expectation value (vev). This vev permeates all of spacetime and the
coupling to this vev gives mass to the bosons. The combination of the electromagnetic
interactions and weak interactions is called the electroweak (EW) sector. This EW
interaction has a SU(2)L ⊗ U(1)Y symmetry, with L denoting the left-handed chirality
and Y denoting the weak hypercharge. Due to the shape of the Higgs potential and the
non-zero vev, the EW gauge group has to spontaneously break its symmetry: the gauge
symmetry SU(2)L ⊗ U(1)Y breaks to U(1)EM .
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This results into the generation of mass for the previously massless bosons, the W± and
Z bosons are created. Since the gauge symmetry U(1)EM is left unbroken the boson
related to this symmetry, the photon, does not acquire a mass.

The SM contributions to the anomalous magnetic moment can now be split into three
parts [13]:

aSM
µ = aQED

µ + aEW
µ + aHadron

µ (2.10)

The QED (quantum electrodynamic) term includes all photonic and leptonic (e, µ, τ)
loops represented in Feynman diagrams. The EW term includes all loops involving the
heavy W±, Z or Higgs particles. The last term incorporates all hadronic (quark and
gluon) loop contributions to aµ, related to the SU(3)C gauge group with C denoting
the colour charge of quarks and gluons.

2.4.1 Quantum electrodynamic contribution

The dominant contributions to the muon anomalous magnetic moment come from the
QED corrections, with the one loop contribution as the largest correction to aµ. This
contribution is due to fluctuations arising from muon-photon interactions and was pro-
posed by Schwinger in the 1940’s. For the one loop contribution we get a correction to
the g-factor of [14]:

aQED
µ =

α

2π
,

with the fine-structure constant α = e2/(4πϵ0ℏc).
To find the higher loop-level contributions we can write aQED

µ into a more general form:

aQED
µ = A1 +A2

(
mµ

me

)
+A2

(
mµ

mτ

)
+A3

(
mµ

me
,
mµ

mτ

)
, (2.11)

where me, mµ and mτ are the masses of the electron, muon and tau, respectively. The
term A1 contains only photons and muons and is independent of electron and tau mass.
The terms A2 and A3 are functions of the mass ratios mµ/me and mµ/mτ and are
generated in diagrams containing electrons and taus. Each of the Ai (i = 1, 2, 3) in
equation(2.11) can be expanded as an infinite power series in α/π [15]:

Ai = A
(2)
i

(α
π

)
+A

(4)
i

(α
π

)2

+A
(6)
i

(α
π

)3

+A
(8)
i

(α
π

)4

+ . . . .

An n-loop Feynman diagram can be seen in the 2nth-order of the perturbation series of
QED. For every additional loop the number of vertices is increased by 2. We can now
see that the one loop contribution is the evaluation of the lowest order contribution:
A1 = 1/2 and A2 = A3 = 0. This can also be seen in figure (2.5). In figure (2.6)
all two loop Feynman diagrams that contribute to g − 2 are shown. As of 2022 all
contributions up to the three-loop QED corrections are known analytically. For the
four-loop corrections more than a thousand Feynman diagrams are needed to evaluate
the contribution to aQED

µ and only a few of those are known analytically. The rest is
computed numerically.

Summing the known terms in the perturbative QED expansion, we obtain the following
QED contribution to the muon anomalous magnetic moment [10][16]:

aQED
µ = 116584718.931(104)× 10−11 , (2.12)

where the uncertainty is a sum of uncertainties due to the uncertainty on the tau mass,
the fine-structure constant α and higher-order QED in order of increasing errors respec-
tively.

6



μ μ μ μ

γ

γ

Figure 2.5: The Feynman diagram at one-loop. There is only
one one-loop diagram. The straight and wavy lines represent
lepton and photon propagators respectively.

Figure 2.6: The Feynman diagram at two-loop. There
are seven distinctly different two-loop diagrams. The time-
reversed diagrams for (a) and (c) are not shown. Furthermore
(e) has a vacuum polarization containing short-lived virtual
particle–antiparticle pairs. The straight and wavy lines rep-
resent lepton and photon propagators respectively.

2.4.2 Electroweak and Hadronic contributions

The EW contribution is a combination of all contributions made by the W±, Z and H
bosons. The EW one-loop contribution is given by[17]:

aEW (1)
µ =

GF√
2

m2
µ

8π2

[
5

3
+

1

3
(1− 4s2W )2

]
= 194.79(1)× 10−11 ,

where GF is the Fermi constant and s2W = (1 − m2
W /m2

Z) = sin2(θW ) involves the
weak mixing angle θW and is defined by the masses of W± and Z bosons. Because the
contribution is proportional to the inverse of the masses we can see that the Z and H
boson are more suppressed in the contributions than the W± boson. We can write the
contribution in a different way:

aEW (1)
µ ∝ α

4πs2W

m2
µ

m2
W

We now see that the contribution gets suppressed by the small mass ratio m2
µ/m

2
W ≈

10−6. If we write the total computed EW contribution as a sum of all n-loop contri-
butions we see that the one-loop contribution is by far the largest contribution. The
contribution of the electroweak interaction is [13]:

aEW
µ = aEW (1)

µ + aEW (2)
µ + aEW (≥3)

µ = 153.6(1.0)× 10−11 (2.13)

Here the a
EW (≥3)
µ term indicates all diagrams with three or more loops that have been

computed.

The hadronic contributions are complicated to calculate and give rise to the biggest
uncertainty of the theoretical prediction. The contribution is described by quantum
chromodynamics (QCD) and cannot be calculated using conventional computational
methods. In figure (2.7) the one loop diagrams for the EW and hadronic contributions
are shown.

7



Figure 2.7: A one loop Feynman diagram with electroweak Z-
boson exchange (left), electroweak W-boson exchange (mid-
dle) and hadronic vacuum polarization exchange (right).
Source: Cern [19]

The hadronic contributions can be split in the hadronic vacuum polarization (HVP)
and hadronic light-by-light (HLbL) contributions. With experimental measurements
the hadronic contribution is determined to be [18]:

aHadronic
µ = aHV P

µ + aHLbL
µ

= 6845(40)× 10−11 + 92(18)× 10−11

= 6937(43)× 10−11 (2.14)

If we know fill in equations (2.12), (2.13) and (2.14) in (2.10) we get the result for the
SM prediction given in equation (2.9).
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3 Supersymmetry

As shown above the difference between the observational and theoretical muon anoma-
lous magnetic moment is 4, 2σ. If observation and theory differ by 5σ we call it a
discovery and new physics is needed to explain the difference. Although the deviation is
not yet 5σ, a fairly robust hint towards sew physics is present. Including BSM physics
could match the theoretical prediction to the experimental observations of aµ.

There are many BSM theories that are an extension of the SM and one of the most
prominent theories is SUSY. SUSY can solve multiple problems at the same time due to
its introduction of new particles and concomitant parameters. The principle is straight-
forward, each fermion has a bosonic superpartner (sfermion) and every boson has a
fermionic superpartner (bosino). This would make the theory symmetric regarding
fermions and bosons, solving certain problems with the SM. The SUSY theory that will
be discussed and used in the modelling and plotting will be a constraint variation of the
Minimal Supersymmetric Standard Model (MSSM). The new supersymmetric particles
(sparticles) that are important in this thesis are shown in table (3.1).

Sparticle Superpartner Description

Sfermion

Charged slepton (ℓ̃±)
The superpartners of the charged leptons (elec-
tron, muon, tau). The charged sleptons are la-
belled from lightest to heaviest: ℓ̃±1 , ℓ̃

±
2 , ℓ̃

±
3 .

Sneutrino (ν̃L)
The superpartners of the neutrinos. There are
only left-handed sneutrinos. The sneutrinos are
labelled from lightest to heaviest: ν̃1, ν̃2, ν̃3.

Bosino

Chargino (χ̃±)
The superposition of the superpartners of the
Higgs boson and W boson. The charginos are
labelled from lightest to heaviest: χ̃±

1 , χ̃
±
2 .

Neutralino (χ̃0)

The superposition of the superpartners of the
Higgs boson, Z boson and photon. The neutrali-
nos are labelled from lightest to heaviest: χ̃0

1, χ̃
0
2,

χ̃0
3, χ̃

0
4.

Table 3.1: The added sparticles of the MSSM and their descriptions.

3.1 Problems with the Standard Model

One problem of the SM is that it does not include gravity, which means at some high
energy scale new physics takes over to account for gravity. The consequence of this is
the accumulation of mass by the Higgs boson due to quantum corrections. This creates
a new problem: the Higgs boson mass has been measured to be around 125 GeV, while
the predicted Higgs boson mass due to BSM physics has to be at least an order of
magnitude higher. To solve this problem, it is thus needed for the BSM theory to
incorporate a mechanism that counters the large corrections on the Higgs boson mass.
SUSY protects the Higgs boson mass from large corrections via counter terms that cancel
out the corrections.
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Another interesting consequence of SUSY is the possibility of unification of the three
coupling constants, which is not present in the SM. If we plot the strength of the
fundamental forces against energy for only the SM we see the forces nearly intersecting
in a single point at very high energies, as shown in figure (3.1). This could be an
indication of BSM physics. SUSY naturally unifies the forces at high energy, making it
a very strong argument that SUSY is the right extension of the SM.

Besides the difference in spin between particles and their sparticles, the SM particle and
its superpartner have another property that differs called R-parity. In SUSY the lepton
and baryon numbers do not have to be conserved. R-parity is a property that ensures
that protons cannot quickly decay to lighter particles by exchanging sparticles. The R-
parity of particles is +1, while sparticles have an R-parity of −1. In the MSSM R-parity
is required to be conserved, hence in any decay of a SUSY particle one sparticle needs
to remain. If R-parity is preserved a lightest supersymmetric particle (LSP) exists that
does not decay. This LSP is therefore a strong dark matter candidate. Because dark
matter candidates should be neutral and only interact through weak interactions and
gravity, it is clear that the best candidate of dark matter in the MSSM is the neutralino.
SUSY could thus be a good extension explaining the light Higgs mass, Grand Unification
and dark matter.
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Figure 3.1: The strength of the three fundamental forces in-
corporated in the Standard model as a function of energy.
The red lines unify in a single point at the GUT energy scale
due to SUSY. The yellow line indicates the energy scale at
which SUSY starts to take effect.

3.2 MSSM

The symmetry that SUSY introduced predicts that the masses of the sparticles are equal
to the masses of the SM partner particles. Because the masses of the SM particles are
known and can be measured using colliders, we would have been able to measure and
find theses sparticles. This is not the case, which means that at some scale between
the GUT energy and the energy of SM particles the symmetry has to break. This soft
symmetry breaking can be described using the soft SUSY breaking Lagrangian, one of
the main parts of the MSSM Lagrangian.
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The MSSM is a model that realises SUSY as an extension to the SM and uses the
minimal number of parameters consistent with experimental findings [20]. Even though
the model uses the minimal number of parameters, due to the unknown mechanisms for
symmetry breaking at lower energies the MSSM has 105 free parameters. Since we will
be looking at SUGRA as breaking mechanism not all 105 parameters are needed. This
constrains the available low-energy parameter space, since it will constrain the individual
masses of the sparticles. We cannot freely choose the masses of the sparticles.

3.2.1 mSUGRA

A lot of theories were created to explain the phenomenon of soft-SUSY breaking that
produces the desired sparticles with masses above 100 GeV. One of the most researched
model explaining soft symmetry breaking is the minimal supergravity model (mSUGRA).
This model uses the basis of MSSM, but only needs 4 free parameters and a sign to pre-
dict the masses of the sparticles. The model uses a method where SUSY breaking is
communicated through gravitational interactions called supergravity [21]. We won’t
explain this model in detail in this thesis.

The set of parameters needed in mSUGRA are summarised in table (3.2). We can use
these parameters to predict the masses of the sparticles using the mSUGRA model and
compute the contribution to aµ. The parameters are input values at the unification
energy scale.

Symbol Description

m0 The universal scalar mass at GUT energy scale

m1/2 The universal gaugino and higgsino mass at GUT energy scale

A0 The universal trilinear coupling

tan(β) The ratio of the vacuum expectation values of the two Higgs doublets

sign(µ) The sign of the Higgs/higgsino mass parameter

Table 3.2: The free parameters and sign of mSUGRA.

3.2.2 Non-unified SUGRA

The weak interaction is the only interaction of the four fundamental interactions that
violates the parity-symmetry. This results in the weak interaction acting only on left-
handed particles and right-handed antiparticles. In the m0 parameter the left-handed
and right-handed sparticles have equal mass and are treated equally. We now propose
that left-handed and right-handed sparticles have different masses, splitting m0 into two
new free parameters. This splitting might give a bigger contribution to the anomalous
magnetic moment, since the left-handed sparticles get treated differently by the weak
force than the right-handed sparticles. The splitting of the m0 parameter gives us:

m0 =


m0L , for left-handed sparticles

m0R , for right-handed sparticles

m0H =
√
m0L ·m0R , geometric average of m0L and m0R

11



The left-handed and right-handed m0 only affect the sfermions because the bosinos
have spin-1/2 and thus will come from m1/2. The charged sleptons are left-handed and
right-handed, while sneutrinos are only left-handed. For the muon this means there is
a µ̃±

L and µ̃±
R, but only the left-handed ν̃µL

. The mass parameter m0H is the geometric
average of m0L and m0R and will make sure that the Higgs boson mass will be within
the acceptable theoretical bounds, which will be discussed in Section (4.2). Since m0H

depends on m0L and m0R, it is not a free parameter. The non-unified model thus has
five free parameter and a sign.

3.3 SUSY contributions

If we consider SUSY to be the extension of the SM, then the effects of SUSY on the muon
anomalous magnetic moment will also be of importance. Just like how the QED, EW
and hadronic contributions were needed to accurately determine the theoretical value of
aµ, we now need to construct the Feynman diagrams of supersymmetric contributions to
predict the aµ value. To find out which first-order diagrams have the biggest contribution
we must first briefly look into the propagator of the diagrams.

In the most simple terms a relativistic propagator gives the amplitude of a particle
travelling between two spacetime points. Propagators Ψ(x − x′) are solutions to the
Klein-Gordon equation: (

□x +m2
)
Ψ(x− x′) = −iδ(x− x′) , (3.1)

where x and x′ are points in spacetime, m the mass of the particle and □x = ∂2/∂t2−∇2

the d’Álembertian operator acting on x. To find Ψ(x−x′) we preform a Fourier transform
to momentum space and see:

Ψ(x− x′) =

∫
d4p

(2π)4
e−ip·(x−x′)Ψ(p) , (3.2)

where p · (x− x′) is the 4-vector inner product. Now solving equation (3.1) using (3.2)
we can see that the propagator has the form [22]:

(−p2 +m2)Ψ(p) = −i

Ψ(p) =
i

p2 −m2
(3.3)

We can see that the propagators are inversely proportional to the square of the mass of
particles. Lower masses will thus result in a bigger contribution to aµ.

The only two one-loop Feynman diagrams that have a loop involving sparticles are
the chargino and neutralino loops shown in figure (3.2). These diagrams include the
sleptons, specifically the smuon, the sneutrinos, specifically the muon sneutrino, and
the chargino and neutralino bosinos.
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Figure 3.2: All Feynman diagrams with one-loop SUSY
contributions. (a) The Feynman diagram involving the
neutralino-smuon exchange. (b) The Feynman diagram
involving the chargino-sneutrino exchange. Source: D.
Stöckinger [23]

13



4 Computational program

To calculate the contribution of the unified MSSM and the non-unified model to the
muon anomalous magnetic moment, the particle spectrum has to be calculated. In
the Lagrangian all terms are related to each other and have an influence on the particle
spectrum, making it difficult to predict the spectrum given a certain parameter set. Even
only considering five parameters will already be too difficult to predict what the particle
spectrum will be. Since doing so manually is impractical and unfeasible, computing
programs are required

4.1 SARAH

SARAH is a program written in Fortran that provides code for SPheno such that SPheno
can compute the particle spectra for a given SUSY model. It creates a model file with
input parameters that can be used by spectrum-generator programs like MicrOmegas,
WHIZARD and most importantly for us SPheno [24]. SARAH automatically computes
the Lagrangian and the evolution of parameters from high to low energy scales, you only
need to specify the parameter input values. Since the program does not need the values
itself, it will simply compute the relevant equations and necessary files that SPheno
needs. It is important to later on select the model points that are important to us, like
model points with a good Higgs mass corresponding to the observed value.

SARAH generates template files called Les Houches files for all SUSY models. In table
(4.1) the parameter ranges for the five parameters are given. In case of the unified
MSSM model the left-handed and right-handed universal scalar mass is equal so that
m0L = m0R = m0.

Parameter Parameter range

m0L [0,4000]

m0R [0,4000]

m1/2 [0,4000]

A0 [-4000,4000]

tan(β) [1,50]

sign(µ) ± 1

Table 4.1: The free parameters and their ranges. All values were chosen at random with
a uniform distribution. The sign of µ has an even chance of being positive or negative.

4.2 SPheno

SPheno is short for Supersymmetric Phenomenology and uses the source code generated
by SARAH together with experimental data such as the masses of SM particles and
their contribution to the anomalous magnetic moment to calculate the SUSY spectrum
at energies below the SUSY scale [25]. SPheno can be used for multiple things, but one
important feature is the calculation of the Higgs boson mass, which includes two-loop
diagrams. In figure (4.1) a visual representation is given of the evolution of high-scale
variables to low energies, that is energies below electroweak symmetry breaking (EWSB
scale). From the output files of SPheno we can extract the masses of the sparticles as
well as the muon anomalous magnetic moment corrections.
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Figure 4.1: A visual representation of SPheno’s spectrum
generator for (a) the unified MSSM model and (b) the non-
unified model. The spectrum produces the masses of spar-
ticles around the energy scale of 100 GeV, at which we can
measure particles in colliders.

Since SPheno simply calculates the values for the sparticle masses and generates the
model spectra, all model spectra created by SPheno are valid. However, valid spectra
are not by definition good spectra, because theoretical predictions constrain the values
for the sparticle masses. To only select the good spectra we add two extra constraints
to the models.

The experimental value for the Higgs mass is 125, 3(0, 6) GeV. Because the theoretical
SUSY uncertainty of the Higgs mass is larger than the experimental uncertainty, the
value of the Higgs mass generated by SPheno has to fall between the values 122 GeV and
128 GeV. SPheno considers a maximum of two-loop corrections to the Higgs mass, while
in reality higher-order loop corrections can theoretically cause significant deviations to
the Higgs mass and the evolution from high energies adds additional uncertainties.
Since we are also interested in the LSP as a candidate for dark matter, as discussed in
Section (3.1), the neutralino needs to be the lightest sparticle. We can disregard spectra
that do not conform to these two constraints.
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5 Results and Analysis

Using the valid spectra that SPheno calculated we can now look at the contributions of
adding SUSY to aµ. In Section (3.2.1) and (3.2.2) we looked at the free parameters and
their importance, where it is expected that m0L, m0R provide the largest impact since
we will be changing from a unified m0 to the non-unified model.

In figure (3.2) we saw the two Feynman diagrams that have the biggest contribution to
the muon anomalous magnetic moment. It features the sleptons, sneutrinos, charginos
and neutralinos, making these sparticles the most important sparticles to look at. Espe-
cially the slepton and sneutrino are of interest due to their relation with m0, which we
split for the non-unified model. We are hence interested in the plots for the slepton and
sneutrino mass and their contribution to aµ as they should show the difference between
the unified and non-unified model.

All plots shown below plot the standard unified MSSM and the non-unified model on
top of each other. As is shown in figure (5.1) the SUSY contribution to the anomalous
magnetic moment is plotted against the mass of the chargino. In this plot the difference
between experimental and theoretical muon anomalous magnetic moment ∆aµ is shown
in grey with a bandwidth of 2σ. This means that any points inside the grey band
have a satisfactory contribution to the anomalous magnetic moment to explain the
difference between theory and experiment. It is pretty clear that no model points lie
in the grey band. Therefore it is more informative to rescale the y-axis to the region
with model points, between δaµ = 0 and δaµ = 60 · 10−11. Furthermore we will only
show positive contributions since the plots are symmetric and negative contributions will
only decrease aµ. A total of 20.000 spectra were generated in the first run, with 10.000
spectra for each model. Subsequently for the second run we sampled around points with
the largest contribution to aµ (δaµ > 35 · 10−11) using a normal distribution around the
free parameters. After the second run a total of 50.000 spectra, 25.000 for each model,
were generated with which the plots below are made. The highest contribution to the
muon anomalous magnetic moment is δaµ = 63 · 10−11.

Figure 5.1: The δaµ dependence on the chargino mass in GeV
for the first run. The 1σ and 2σ bands for aµ are shown in
grey.
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m0L vs m0R

The plot depicting the first run distribution of m0L with respect to m0R is shown in
figure (5.2). The parameters were scanned uniformly. The distribution looks uniform for
all m0L and for m0R > 500 GeV. Below 500 GeV we did not find any right-handed m0

that give valid spectra. In figure (5.3b) it is clear to see that the unified model does not
have model points for m0 below 500 GeV. The left-handed m0 in the non-unified model
can go below 500 GeV due to the asymmetry when regarding the purely left-handed
sneutrino.

Figure 5.2: The relation between m0L and m0R for the first
run. Both masses are sampled uniformly and model points
with wrong Higgs masses and lightest neutralino mass that is
not LSP are removed.

m0

In figure (5.3) we can see the dependence of δaµ on the high-energy mass parameter
for sfermions for left- and right-handed sparticles. Just like in figure (5.2) it is clear
to see that the left-handed mass term can be lower than the right-handed mass term,
most likely due to the asymmetry of left- and right-handed sparticles. We can see
that the plots for m0L and m0R look similar but shifted, this can be explained by the
geometric average mass m0H . The unified model mass m0 stays strictly above 500 GeV.
Because we are using m0H =

√
m0Lm0R for the non-unified model, the m0R is able to

compensate for the low mass of m0L. This is important because we typically need m0 to
be heavy to get the correct Higgs mass. The lower masses for m0L do seem to have some
small effect on δaµ compared to m0, but not enough to explain the discrepancy in the
anomalous magnetic moment. In later plots it will become clear why this dissimilarity
in handedness is of significant importance to the contributions.
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Figure 5.3: The dependence of δaµ on the universal scalar
masses m0, m0L and m0R in GeV in the unified and non-
unified model for all runs.

Slepton mass

In figure (5.4) the dependence of δaµ on the lightest slepton mass is shown. In purple
the non-unified model is shown while the unified model is shown in orange. Immediately
one can see the difference between the two models. Namely, the non-unified model has,
compared to the unified model, a larger contribution to aµ. We can see that for lower
slepton masses both models show better results, which is to be expected due to the m−2

relation between the contribution to aµ and the mass of sparticles given in equation
(3.3). We can observe the plot points of the second run located below a mass of 1500
GeV and around δaµ = 40 · 10−11. These points correspond to fairly low values of m0L

and m0R. Because we have taken a normal distribution around the points with high
contributions for the second run, the clustering is simply a scanning artefact.

Figure (5.5) shows the same x- and y-axis as in figure (5.4), but with a logarithmic
y-axis. This allows us to see the σ bands and how far the models are from these bands.
It might be possible to reach the 2σ band around ∆aµ if the slepton mass is sufficiently
small, but this might be impossible due to multiple restrictions on the mass of the
slepton, such as the limitations that it has to be higher than the neutralino mass. Due
to our choice of symmetry breaking the Higgs boson mass also drives up the mass of
the slepton, making it harder to get smaller masses for the slepton while still having the
correct mass for the Higgs boson
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Figure 5.4: The dependence of δaµ on the lightest slepton
mass in GeV in the unified (orange) and non-unified (purple)
model for all runs.

Figure 5.5: The dependence of the logarithm of δaµ on the
lightest slepton mass in GeV in the unified (orange) and non-
unified (purple) model for all runs.

Sneutrino mass

The plots depicting the lightest sneutrino mass are shown in figures (5.6) and (5.7).
The plots look similar to the plots for the slepton mass, which is to be expected since
they follow the same mass relation and their diagrammatic contributions are similar.
However, there is a difference between the slepton and sneutrino plots. The non-unified
model plot has a significantly smaller sneutrino mass than the unified model plot for
the sneutrino. This is due to absence of right-handed sneutrinos. In the plots for the
slepton mass, the model points of the two models were on top of each other, this is not
the case with the sneutrino. The model points of the non-unified model are not on top
of the model points of the unified model, instead model points of the second run of the
non-unified model have lower masses than model points of the unified model. This shift
shows the impact of splitting m0 more clearly than the plots for the slepton, because
there are only left-handed sneutrinos to make contributions to δaµ.
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Figure 5.6: The dependence of δaµ on the lightest sneutrino
mass in GeV in the unified (light blue) and non-unified (green)
model for all runs.

The logarithmic plot of the sneutrino tells us a similar story as the logarithmic plot of
the slepton. The unified model does not go below the 500 GeV threshold because m0

needs to be sufficiently large, while the non-unified model can have lighter sneutrino
masses. As a consequence we can see higher contributions for the non-unified model.
Even though the contribution is higher for the non-unified model, it will still be difficult
to reach the 2σ band. It might be possible with multiple new runs for the model points
with the highest contributions.

Figure 5.7: The dependence of the logarithm of δaµ on the
lightest sneutrino mass in GeV in the unified (light blue) and
non-unified (green) model for all runs.
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Chargino mass

In figures (5.8) and (5.9) the relation between δaµ and the first chargino mass is illus-
trated. Just like the previous graphs the overall trajectory follows the M−2

χ̃±
1

relation.

The chargino unified-model plot looks similar to the slepton and sneutrino plots in fig-
ures (5.4) and (5.6) and just like those plots the lowest first chargino mass lies roughly
at 500 GeV. The non-unified model plot does look a bit different; it has two clusters
of points between 25 · 10−11 < δaµ < 60 · 10−11. One of the clusters is located at a
first chargino mass of 500 GeV, while the other is located around 900 GeV. Because

Figure 5.8: The dependence of δaµ on the first chargino mass
in GeV in the unified (yellow) and non-unified (red) model for
all runs.

the second run was done with a normal distribution around multiple points with higher
δaµ contributions, the resulting spectra are also expected to have similar masses for
charginos and similar contributions. The normal distribution also determines how close
the generated points are to the used seeds of the second run. In the previous plots
the seed masses were close enough to make the generated model points form one big
group, while with the chargino the seeds had a bigger difference in mass between seeds.
Therefore the generated points will emerge around the seeds and form multiple groups.
The same clustering can be seen in figure (5.3). The overall trend does stay the same as
for the slepton and sneutrino, in the sense that we can see that the non-unified model
has lighter first chargino solutions and bigger contributions to δaµ. The fact that the
two groups do indeed follow the same trend as seen before in the slepton and sneutrino
plots is better represented in figure (5.9), where the two groups are compressed together
due to the logarithmic scale on the y-axis. When comparing the plots with each other
the same shape can be seen.
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Figure 5.9: The dependence of the logarithm of δaµ on the
first chargino mass in GeV in the unified (yellow) and non-
unified (red) model for all runs.

Neutralino mass

The last sparticle to consider is the first neutralino, which is the lightest sparticle. We
thus expect the mass of the neutralino to be lighter than the other three sparticle masses.
This can be seen in figures (5.10) and (5.11). Simply looking at the scale of the x-axis
already shows us that the mass of the first neutralino is in general lower compared to the
other sparticles. The unified model seems to reach a minimal first neutralino mass value
of 250 GeV, while the non-unified model has lower-mass solutions. These lower masses
can have higher contributions to the anomalous magnetic moment than with the unified
model. Apart from this feature the graph does not show anything significantly different
than what we have discussed before. This is to be expected since the neutralino, apart
from being the lightest sparticle, does not have any properties particularly different
compared to other sparticles.

Figure 5.10: The dependence of δaµ on the first neutralino
mass in GeV in the unified (pink) and non-unified (blue)
model for all runs.
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Figure 5.11: The dependence of the logarithm of δaµ on the
first neutralino mass in GeV in the unified (pink) and non-
unified (blue) model for all runs.

Other relations

There are many other relations that can cause small contributions to the anomalous
magnetic moment, such as the strength of the vertex couplings or the composition of
the sparticles. In this thesis we have only looked at the relations between the sparticle
mass and δaµ, but it is still interesting to plot a couple of other relations to see what type
of trends we can notice in those plots. The impact of these parameters and their relation
to δaµ is beyond the scope of this thesis, and hence we will refrain from commenting on
them. We will show two plots each, normal and logarithmic, for the tan (β) parameter,
the trilinear coupling A0 and some others in Appendix A.
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Conclusion

We have discussed some of the effects of SUSY on the muon anomalous magnetic moment
using the unified MSSM and the non-unified MSSM. The unified model uses mSUGRA
to break the symmetry, while the non-unified model uses a split SUGRA model with
m0 split into left-handed and right-handed terms. In this thesis we have shown how
contributions arising from both SUSY models could increase the theoretical value of
the muon anomalous magnetic moment. The unified model that we studied was not
able to explain the deviation between the theoretical and experimental value of g-2 in a
satisfactory manner. Even though the non-unified model showed some model points with
a higher aµ, these were not high enough to explain the deviation between theoretical
prediction and experimental values.

During both the first and the second run it proved to be difficult to maintain a correct
mass for the Higgs boson. The unified model has to have a high m0 value to get the
correct Higgs boson mass, which was the reason we split them0 into two terms. The left-
handed m0L was able to decrease in value because the right-handed m0R compensated
for this. This subsequently meant that the sparticles, especially the sneutrino, were
able to decrease in mass and create higher contributions to aµ. Further decreases in
m0L could create model points that have better contributions, but this would then
make it increasingly difficult to maintain the Higgs boson mass. We could use other
models outside of SUGRA to break the supersymmetry, but they would also create
other limitations that decrease the contribution to aµ.

There is still a lot to discover and research when it comes to the field of SUSY and
in future research looking further into SUGRA could prove to be effective when com-
puting the contribution to the anomalous magnetic moment. In this thesis the analysis
and scans of the parameter space are not comprehensive due to time and simplicity
constraints. The MSSM model has a total of 105 parameters, while we only used five
parameters that then in turn generate many others via the high-scale to low-scale run-
ning. For this thesis we have relaxed the constraint of m0, but this could be done even
more in future research: m0 could be relaxed even more by splitting it for squarks and
sleptons. If the program would take higher-order corrections to the Higgs mass into
account it would become even more difficult to find good model points that have a high
contribution to aµ. Higher-order Feynman diagrams for supersymmetric particles could
also increase the contribution to the anomalous magnetic moment, but these contribu-
tions tend to be substantially lower than for the one-loop SUSY Feynman diagrams.

In this thesis we have shown that SUSY, specifically the non-unified MSSM model, does
not explain the deviation between theoretical and experimental values sufficiently. In
2024 the J-PARC centre in Japan will conduct new research increasing the accuracy of
the experimental value, likewise the theoretical uncertainty will also keep decreasing as
more numerical corrections for higher orders get computed. If the experimental value
stays the same while the error decreases, the deviation will become significant enough
to call for new physics. Even though the models in this thesis did not explain the g-2
discrepancy sufficiently, we have shown that the non-unified model can better contribute
to the muon anomalous magnetic moment than the unified model.
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A Appendix

In this appendix a couple of graphs are placed that show the relation between different
parameters and δaµ.

Figure A.1: The dependence of δaµ on the trilinear coupling
in GeV in the unified (grey) and non-unified (black) model
for all runs.

Figure A.2: The dependence of δaµ on tan(β) in the unified
(grey) and non-unified (black) model for all runs.
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Figure A.3: The dependence of δaµ on the Higgs mass in GeV
in the unified (grey) and non-unified (dark grey) model for all
runs.

Figure A.4: The dependence of the logarithm of δaµ on the
Higgs mass in GeV in the unified (grey) and non-unified (dark
grey) model for all runs.
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