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1 Introduction

In 1948 Dutch physicist Hendrik Casimir predicted a force between two un-
charged perfectly conducting metallic plates, the origin of which lies in the vac-
uum energy of a quantised field. The thought experiment behind Casimir’s pre-
diction is relatively simple; two uncharged perfectly conducting metallic plates,
with surface A, are placed in a vacuum at a small distance d from one another
(where d << A such that A can be seen as infinitely large compared to d). As
a consequence of Heisenberg’s uncertainty principle, we know that the ground
state energy of a single (one-dimensional) harmonic oscillator is given by

which is non-zero. This implies that for an entire field of harmonic oscillators we
will find a non-zero ground state energy. In other words: the vacuum state has
non-zero energy as a consequence of the wave modes that constitute the field.
In a way the two plates will function as hard walls, meaning that the electric
field component parallel and the magnetic field component perpendicular to the
plates need to be zero on the surface of the plates. As a consequence of these
boundary conditions the wave modes propagating in between, as well as the
ones outside the plates have to terminate on the surface of the plates. Due
to the limited space between the plates, only waves with wavelength A\ = 2%
where m = 1,2, .. are allowed. Outside, however, there is an entire continuum
of allowed wavelengths. As the total energy of the field inside (outside) can be
found by summing (integrating) over all the allowed wavelengths, there will be
an energy difference between the vacuum state in between the plates and the
one outside, which gives rise to an attractive force between the two plates. This
is what has come to be known as the static Casimir effect. Even though Casimir
made his prediction in 1948 it wasn’t experimentally observed until 1998. The
reason for this is that the force goes with F oc d=* and is incredible small such
that one typically needs distances in the submillimeter range in order to detect
the attractive force. In 1948 they simply didn’t have the technology to realise
such a set-up.

The next step is then to allow the plates to move away such that the distance
between them changes, as was first proposed by Gerald Moore[I]. There are
roughly two types of displacement one can consider; an adiabatic displacement
where the vacuum state has time to adjust to the increased space between the
plates or a non-adiabatic displacement where the change in volume happens too
quick for the system to keep up. As a larger volume means there is a larger
range of allowed wavelengths, we can expect the vacuum to change. In the
adiabatic case the ground state ’extends’ in the sense that it will become a state
that allows larger wavelengths as well. This new state, however, will still be a
ground state and therefore it will still be a vacuum. In the non-adiabatic case
we expect that the ground state cannot simply ’extend’ as it cannot keep up
with the moving walls. Instead photons will be excited from the vacuum as a
reaction to field modes that have suddenly become available. We will come back
to the concepts of adiabatic and non-adiabatic displacement later on.

An experimental set-up often uses "tricks" to make it seem as if the walls are
moving. For example a superconducting circuit in combination with a SQUID
can result in the creation of photons [2].



In this thesis we will try to determine how many "photons" are being created
and whether or not it is possible to excite massive particles from the vacuum. As
a simplification these "photons" will be treated like massless spin-zero scalars.
For the massless case we expect to find the number of created photons to grow
with increasing speed of the walls and to decrease for high-energy field modes
(i.e. small wavelength modes). For the massive case we expect similar findings;
the number of created particles will grow with increasing speed of the walls and
decrease for higher masses.

In the next section we will start by analysing a paper by D. Dalvit, P. Maia
Neta and F. Diego Mazzitelli [4] and build further upon their results.

2 Massless scalar field

Instead of a system consisting of two walls we will consider a cavity C' with
perfectly reflecting walls that have dimensions L, L, and L,. For ¢t < 0 all
walls are at rest and for ¢ = 0 the wall located at z = L, will start to move
according to a given trajectory L,(t) that will be specified later on. The field
that defines the vacuum inside the cavity is denoted by ¢(x,t). It satisfies
the massless Klein-Gordon equation C¢(x,t) = 0 and the boundary conditions
O (X, t)|wanis = 0 at all times. At any given time ¢ the Fourier expansion of the
initial field can be written as

oi(x,t) = Z (dnun(x, t) + d;‘lu;fl(x,t)) , (1)

where uy(x,t) represents a complete orthonormal set of solutions of the wave
equations with vanishing boundary condition and ay,a) satisfy the bosonic
commutation relations

[Gn ] = {aL,aH =0 and [an,ajq,] = Gl 2)

For t < 0 the wall is at rest and every field mode is determined by the positive
integers ng,n, and n., represented by the three dimensional vector n:

un(x,t < 0) = = isin BaT isin Dy
i ~ V2 V I, L. L, L,
[ 2 p ,
X fz sin (’nll/:r Z> e_lwnta

2 2 2
where w, = 71'\/(27':) + (%) + (E—Z) . Note that we have used natural

units, for which A = ¢ = 1. For ¢ > 0 the wall in the xy-plane moves away, thus
expanding the volume of the cavity (Figure|l), and the corresponding boundary
condition on the moving wall becomes ¢(x,y,z = L,(t),t) = 0. To meet this
demand we consider the expansion of u,(x,t) with respect to an instantaneous




basis

2 My 2 My T
_ (n) : z : Y
un(x,t>0) = E Qm (t)ULz sm( I x) “Ly sm( I, y)

2 . m,m
L. (Lza) ) )
= Z lel)(t)@mm (@, La)om, (Ys Ly)m. (2, L2)

= QW (t)om(x, L:(t)),

where ¢ (x, L, (t)) satisfies the orthonormality condition:

o dxpm(%, L ()93, L(8)) = G with Jpdix = [ do [ dy [2 dz de-
noting the spatial integral over the cavity.
From the definition of ¢m(x, L.(t)) it is clear that this expansion satisfies the

L

Figure 1: Cubic cavity with walls at « = L., y = L, and z = L.(t)

boundary conditions. To assure that un(x,?¢ > 0) is continuous at ¢ = 0, we
impose the following initial conditions:

gy = L 51 (0) = gy ) “m(0)
Qm’(0) %o (0) dmn and Qn’(0) t D)
We now have to demand that w, satisfies the massless wave equation, but we
can expect to find a set of coupled equations as there will be mixing between
the different field-modes. To make this apparent we let the d’Alembertian, [J,
work on an expansion of the form of in terms of the field-mode j and project
it on the field modes m later on. This yields,

Omn- (5)
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where wj(t) = w\/(ﬂ) + (%) + (Lzz(t)) is now time dependent. Using

Op; _ Op; dL, _ 1 Oyj . _ L, _:
that =21 1 = L.57> and defining \ = 7= gives

t ~— OL, dt
(n) >3% (m) 0 dj
Oun(x,t) = ZQ 0+ 2AL. ZQ +ZQ ( 8LZ>
+Zw Q(n)%}

_ZQ(H)QOJ“'Q)‘L ZQ H)ago.l +/\L ZQ(H a‘PJ

+/\ZQ(“)8( a%>+2w Q5™ ;.

We can rewrite the first term on the last line to

n) 0 0 0
ZQ() ( %) AZQ ( a?)
n 3 3

Now we plug this back in, equate Ouy (X, t) to zero and project onto the set
¢m to find how the different field-modes mix. This gives

/Cdxzééﬁ“)szom /dxzw ™ 00m
0 . 0
= —2\(t /deQ(n) (p" - / ZQ(H) %
) O 0
_)\2 /dXZQ ) 9 ( ()af‘])w

As [ Y |@jom| < oo and [ ]57 O Lom| < 00, we can use Fubini’s theorem to
interchange integration and summatlon. Besides that we can exploit the fact




that ¢; as well as ¢y belong to an orthonormal set, i.e. fc dxpjom = d5,m to
find

QE;’Wwil(t)Q&I‘:):—%(t)ZLZ(t / ng o
LCDM / S )"

390 (n)
LY i) (n)

To further s1mphfy the differential equation we define

aL Spm = G"]?m = _anj = gjz"”z(sjm"nw(sjymy’ (6)
where L)
* O0v; (z,L,(t
b = L) [ a2 ), )
0 z

By defining G7,,, as above all mixing of modes is now captured in one variable.
Plugging in G3,,, results in

OM 4 w2 (O™ — 2x(t ZG QM At ZG Q™

3@ (n)
Y J (n)

The last eyesore is now the integral in the last line. To bring this term into the
same form as the rest of the equation, we rewrite it and apply the completeness
relation

_)\2
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L. ( )BLJ)%“QJ
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:fX"(t)ZLz(t) Laxgr (p055 0m) 04"
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Analysing the dimensions of the first term in the last equality, proves that the
expression within the integral becomes independent of L.(t) after integration.
Therefore the derivative of the integral yields zero, leaving only the second term.

Plugging in A\%(t) >-51Gh flejgn) = —\%(t) 251 anlejQJgn) finally results in

QR () + wm(NQR (1) ZG §Q7 (1) + At ZG Q5™ (®)

,)\2 ZGZ IG Q(n) ) (9)

Eq.(@ shows how the massless scalar field changes in time. Before the
wall starts its trajectory (¢ < 0), we are dealing with a free situation where
particles are being created and annihilated by al respectively a,. When the
wall stops moving at ¢ = t;, the system has changed and we are yet again
dealing with a free situation. With this "new" system we can associate a
different particle interpretation, by means of a new set of creation and anni-

hilation operators ¢f,,ém. The relation between the new and the old set of
operators can be found through a Bogoliubov transformation [6]

m =Y (Onmln + Bimalh)

(10)
el = 3 (Ohmh + Buméin)-

n

In order to find apm and Bnm we need to define the field belonging to the new
free situation (¢ > t;). The equivalent of Eq. (3) for the new situation becomes

Um(x,t > tp) = ¥,/isin <mz7rx> 2 Gin (myw )
ma ! \/2wm(tf) Lw Lw Ly Ly Y

2 Siﬂ( =7 z
L.(ty) L.(tf)
1

«/2wm(tf)<pm(

which leads to the new field

X

) o im(t) (1)

x, L (t))e om0,

IWhere the differentiation can be pulled out of the integral since
Aps
Lo (t) 52 mlamr.(t) = 0



¢r(%,1) = Y [bmtm(x, 1) + lyuly (x,1)]
-y o {éme_i“’m(tf)(t—tf) + élne“m(t”(t‘tf)} om(x, L:(ty))
oV Zwm(tf)
:§:44i——[mm@m+mm@k”%ﬁﬂ“”ﬂ%M&wa»
oV 20m(tr)
1 .
+ 3 ——— [(Omith + Bamin)e =] o (x, L (t))
;‘: V2wm(tr)
_ (n —iwm (tf)(t—ts) iwm (ty)(t—ty)
; 7\/m [Oénme + Bame :| ¥Pm (X7 L, (tf))
al . )
£ et [ ) e ] o (x, L (2).
)

Next, we need to know what the old field ¢;(x,t) looks like for ¢ > ¢;. When
the wall stops moving @D reduces to a simple harmonic oscillator, with solutions

QS’I‘:) (t>t;) = Agl)eiwm(tf)t + Bgl)e—iwm(tf)t’ (11)
with this the old field can be written as
Gi(x,t > tp) = Y (amun(x,t > tg) + abul(x,t > t))
= Z Qn {Ag)eiwm(t”t + Bgl)e_iwm(tf)t} om(x, L:(ty))

+ Y0l [Agretemet 4 B om0 o x, L. 1))

As ¢;(x,t) for t > t; needs to be equal to ¢(x,t), we can deduce that

Bum = 2t ) AR — o (e AR
Onm = \/2wm (tg) BWe™wmtt = [oun (ty) BER'.

The average number of particles created in the mode m is the expectation
value of éf ¢y with respect to the old vacuum state |0;), defined by Gm |0;) = 0.
Which results in



(0] efam 105) = 05 (O 1/ 20m(tg) BE 0 + /2w (t;) AL an)
n
<Y (/2w (t)) BRY s + ([ 2w0m(t) AR %6, [0;)
n/

= > 2um(t) BE BE (01 b [0) + 3 2 () B AR (0] aha, [0,)

+ 3 2w (b)) AR BEY (0i] Gntns [05) + D 2wm () AR AR (0;] anaf, 10;)
- Z 2wm(tf)A$1?)/Ag:,)’*5n,n’
n,n’

=D 2wm(ty) AR AR

= 2wty AR

(12)
From the equation above we can see that the number of created particles
depends on the energy of the field modes m at ¢t = ¢ty and the absolute value

of some constant |A£;,1)|. The exact form of this constant can be derived from
the boundary conditions at ¢t = ¢y. To do this we need to solve the differential
equation (9) .

3 Three-dimensional expansion

Up till now we’ve been dealing with a three dimensional system expanding in
one direction (z-direction). This means that w(t) has the form of a square root
of three components where only one of those components is time dependent. As
a consequence we cannot pull the time dependency of w(t) out of the root and it
becomes rather tricky to solve the differential equation. In order to simplify the
problem we will therefore consider a system that expands in three directions.
To be more specific we define

La(t) = Ly(t) = L.(t) = L(t). (13)

By doing so we are able to write
8 My My T
n t — (n) t . T . Yy
Un(x,t > 0) Em Q. (t) 500 sin (L(t) x) sin (L(t) y>

sin MZ (14)
X (L(t) )
= QW (1) om(x, L(1)).

Of course the transition from a one dimensional displacement to three dimen-
sions will change the differential equation as well. By following the same proce-
dure as before we arrive at

10



AW + W2, (QE = 22(1) > Cumj@™ + A1) G @™
J J

)\2(t)JZL(t) /0 " 85@ (L(t)%?) Q™. (19
where
Gmi = —Gim = L(1) /0 " dng&’) ;. "

Rewriting the last term on the right-hand side of (|15) and applying the com-
pleteness relation leads to an expression similar to (8)):

L(t) .
O [ acg (1053 ) end)”

L) .
= —22(1) ZL(t)a% </O de(t)%‘?%> Q™ (17)

+ 22 (t) Z Gj]Glej(n).
Jil
In we used that the derivative with respect to L,(t) of the integral in the
first term on the right yields 0. It turns out that the same applies to , as
the higher dimensions in L(t) are being taken care of by the three dimensional
integral. Checking whether this is really the case is easily done (see section
and we find

Which leads to the three dimensional form of (9]

QW (1) + w2 QW () = 2X(1) Y Ceng @™ (1) + A1) Y Groy Q5™ (1)

— X)) G GyQS™ (8), "
il
where
oo (F5) + () - (F) -

3.1 Massive scalar field

So far only the creation of massless particles has been considered. In order to
determine whether it is possible to excite massive particles from the vacuum,

11



one needs to add a mass term to the energy of our system. In this section
we will build the mathematical framework necessary to generalise the previous
calculations to a massive scalar field. The only difference between the massless
and the massive case is basically that for massive particles there is an extra

'source’ of energy. That is, wy(t) = 74/ nizr;i?;)rnz should be replaced by wy, (t) =

g n2+n24n2 9 . . .
T(yt) + M?, with M the mass of the particle to be. Taking a closer

look at the formulas from which we started out, there are a few observations to
be made. Equivalent to and we can write

i 0= g o (20 o (35
)

' (x,t > 0) ZQ Mt \/751n<?$x> L?t)sin<?é7;y>

R <T€£ ‘)
= ZQ’(“) (x, (1)),

™

and

where the spatial part, om(x,L(t)), remains the same but the temporal part,

(n)( t), changes. This last field now has to satisfy the Klein-Gordon equation
(m? VZ+M 2) »(x,t) = 0 and thus our differential equation transforms
into

G+ (alt) + M?) QY = R + w2 (e
=2X\(t) ) G @™ + A1) Z ijQJf(“ — 2203 GGy Q™.
Jj Jj Ji1

Following exactly the same steps as before we find that for ¢t > t;

QI (t > t) = AW i)t | B =ittt

This can be used to do another Bogoliubov transformation which eventually
leads to the average number of massive particles

(Nim) = (0:] eyl [07)
=D 2w (t)| AR

=372y Juz () + M2 AP

Yet again we will need to plug in Ag:), this time however we will need the AE:)
corresponding to massive particles.

12



4 Linear movement

Now that we have a three dimensional form of the differential equation, we can
try to find a solution for the massless case. To this end we write L(¢) in a more
definite form. Let’s consider a constant velocity such that

L(t)=a+ vt

Lt)=v

L(t)=0

A®) = a—&l-)vt

Alt) = RCETTE = —\%(t)

If we momentarily simplify @ by neglecting the sums and indices and use that
A(t) = —A2(t), then the type of differential equation to solve becomes

Q)+ ()Q(t) = 2A(1)GQ(H) = N ()GQ(H) — N ()EG?Q(t).  (21)
Now let Q(t) = eGln(Lg))f(t) with f(t) some function we need to determine.
For the first and second derivative we find

O = x6Q) + 29 o)

10

3() = AHGO(H) — N2 0 oy 4 10

Q1) = AOGQ() — MG + ANG 7 QD) + 55 QW
[2]

= 2(1)GQ() — X (H)GQ(1) — X (1)G*Q(t) + ;Eg@(t),

from which it follows that

Rewriting w(t) yields

2
where w(0) = @ By setting x = (WU(O)) we need to find f(¢) such that

%3:—&(3—1—02.

2Note that \(1)G 1D Q(1) = A(O)GQ(1) - X(1)G>Q(1)

13



As an ansatz we take f(t) = C' (% + t)a/z, where C' is some constant to be
determined by initial conditions. With this ansatz we find

Dividing by (2 +t) ~? and solving for a

a?—2a+4k=0
=sa=1+t+V1-—4k.

The expression for Q(t) now becomes

Lt L1+VI—dk
Q(t) = S ( é))c(g +t) . (22)
To find C' we ensure that Q(t) satisfies the (unlabelled) initial conditions
1
O =
A =
(23)
. . Jw(0
Q) =i/,

given that v = 0 for ¢ < 0. This means that each field mode and its derivative
will be continuous functions at ¢ = 0. Then

anN 1£vI—dk 1

Q) =C (;) = /200

1 (a>—%(li\/l—4n)

v/ 2w(0)

The second condition implies a relation between ? and w(0), according to

=C= —
v

, 1 a - (1FVI=TR) v [ay 3(1EVI=R)
Q) =€ 51 =VT=1x) () + oG (%)
1 —l+vi=dr) 1 —3(1FVI—1r)
— (2) CZ(2G + 1+ V1 —4k) (9)
2w(0) \v 2 v
_G—&-%:I:% 1—4rk v . Jw(0)
2w(0) a 2
1 1 aw(0)\? B
N w(0)v — oo
a

which means that the second boundary condition isn’t satisfied for the individual

solutions (22).



4.1 Adiabatic limit

The term adiabatic displacement refers to the walls moving away at a low enough
speed such that the field can keep up. To quantify this we define the external
velocity veq: of a system to be the velocity with which the external influences
change and the internal velocity v;,: as the velocity corresponding to the in-
ternal changes of a system. With this we can express the adiabatic limit as
Vint >> Vezt and the non-adiabatic limit (i.e. the internal changes of a system
can not compete with the external influences) as v, << veze. In our specific
case it will prove beneficial to express the above limits in terms of time scales.
Let T;,: be the time scale on which internal changes take place and T¢,; the
time scale corresponding to external changes. In terms of these time scales the
adiabatic limit becomes T— >> —— and the non-adiabatic limit T— << 7
As we are dealing with an expandlng cavity, the external influence is deﬁned
by the movement of the wall and the corresponding inverse time scale is Telu =

% = )\( ) while the internal time scale is related to the energy of the field

modes =— = w(t). In case of the linear displacement described in the previous
section 1t is possible to write ﬁ = A\t) = 45 and ﬁ = w(O)% =
w(O) a-ﬁvt'

For the individual solutions we can recognise the condition we found for Q(0)
as the adiabatic limit

a v
=V 0)——
tw( )a+vt>> a+ vt

=V, W(O)a:\/g>>1
v

which means that

Tewt  w(0)a
— = =00
Tint v
corresponds to the extreme adiabatic limit where v — 0 or w(0) — oco. Unfor-

tunately this means that the simplified differential equation reduces to
Qt) + oﬂ(t)@(t) = 20(H)GQ() — N (HGQ(1) — N ()G*Q(1)

wz( )
A(t)

as Sy = 0. The only information we can extract from this equation is that for

a disappearing velocity (i.e. the wall is stationary) we are left with the harmonic
oscillator corresponding to a free situation.

As for the non-adiabatic limit, x < 1, we find even in the limit where v = ¢
and w(0) takes the lowest allowed value (m; = my, =m, = 1) that

VE = awv(O) = @ > /3. (24)

This means that x < 1 will never be satisfied and the system cannot reach
the non-adiabatic regime. As a consequence our system will either be in the
adiabatic regime or close to it, which we will exploit in what follows.

15



4.2 Linear combination

There is another possibility to solve that we haven’t tried. As the differ-
ential equation is linear in Q(¢) we can try to find a solution that satisfies
the initial conditions by constructing a linear combination of the positive and
negative roots ax = 1 4+ /1 — 4k by writing

Q(t) = CLQ4(t) + C_Q_(2)
_ C+6G1n(L£f)) (9 +t)

Gl (%) (9 +t> ?
v

For t = 0 this yields

aw=c. ()7 e ()7
—F, +F_.

If we now apply the first initial condition then F_ can be expressed in terms of
F according to

iﬁl_l/‘l — F+.

1
T TV

The exact form of F; can be found from the second initial condition:

Q0= (5) 7 o+ ) () o ]

PG+ S+ 2F 6+ 5]
<a+ ga_F++\/§/€_l/4 [G_i_‘);—})
—u/@ z\/an/‘l.

Using that “*5%= = /1 — 4k we find F to be
2 +

Qe ol

F+:

)

o |l wPHGAg
2v 2 V1—4k

which gives for C'y and C_

oo L |l w24 Gs (o) =
TV Vit |
LI PGl oy
CV(0) 2 VI-ds | \v
c =L, 14_% (g)wgw
BRE 27 Vi—4w | \v
I IO
2w(0) |2 V1—idr U
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and we find the solution to our differential equation to be

(1) =L [a+vt]a+2 Ol w2+ G ]
C2u(t) a 2 VI—ix

a_ —1
n a+uvt] 2 +G 1+m1/2+G—|—%
2 V1—4k

The next step is then to take the limit ¢ 1 ¢y and compare with to determine
the coefficient A:

ay —1
Qt1ty) = 1 [a—!—vtf}ngG 1 w'/2+G+1
7 2w(ty) a 2 V1-—4k

a_—1

+[a+vtf] E +G[1 1H1/2+G+%

_|_
2 V1—4k

a

t ’ ’
As A corresponds to the positive frequency part of the solution and e* JoT w(tat”

et ol EU _ mmin L) - LO)] — [Ltjtfrm we find that
A= 1 [aJrvtj} BERAC 172/11/2—1-61-&-% (26)
V2wt | e 2 V1 — 4k

Evaluating we see that for 1 — 4k < 0 and /1 — 4k = 11/4k — 1 there will
be a singularity for k = i. Fortunately, by a similar comparison as , we find

that 1v/4k — 1 > 23/1272 — 1 ~ 10,8 and thus the singularity lies well below
the allowed region of values for x.

4.2.1 Adiabatic limit

It is also possible to evaluate the adiabatic limit in the case of our linear com-
bination of solutions:

1 S 1
T'im‘, Temt

=kKk>1,

thus v/1 — 4r ~ £21x'/2 and we find (choosing the positive solution)
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-l 1/2 1
1 a+ovt] 2 1wt/ +G+35
2 V1—4k

a

1+m1/2+G+§
2 V1—idk

—arl/
k1 1 {awtr ”(HG+§)
2w(t) a 21 /k

1 {a—&—vt}g-‘_mm (_GJr%)
2w(t) a 2k )’

where the last term corresponds to the positive frequency part (e’ Js “’(t/)dtl),
which falls off with ﬁ = % indicating that the production of particles with
a high energy (large w(t)) compared to a relatively low external velocity (small

A(t)) is, as expected, suppressed.

a_—1

{a + vt} z 1¢

Jr
a

5 Labelling

The next step towards properly solving @D is to figure out how to incorporate the
correct labels. To do this we don’t only need to know how the modes m, j and 1
interact with each other but also how they relate to the original modes n. The
integral contained in G;j contains information about the projection of modes
m and j. Or more explicitly, g,,,;. does. To extract this information we will
now calculate g,,,;,. Realising that the integral as well as the differentiation
are both with respect to the z-component, the x- and y-components will be
temporarily left out in order to keep the following calculations more structured:

gm.j. =Lz(t)/cdzaa<p]zz Pi.
—L.(t) /c dz {L;(t) sin (%z) sin ( L]g) z) 27)
g () (257)]

z

Substituting v = 0 leads to

1 1
Omaj. = — / dv sin (m,7v) sin (j,mv) — 2wm, / dvv cos (m ) sin (§,7v)
0 0

=1+11.
(28)
The integrals I and II will be solved separately and added later on. The
first integral contributes
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1
I= 7/ dv sin (m,7v) sin (j,7v)
0

1t _ .
=5 [ dvteosrm. +3.)0) = cos (m(m. = 1. )0)

. . 1 (29)
_ 1 (sin (mr(my + j.)v) _ sin (r(m, — ]Z)v)>
2 m; +j: m, — J, 0
1 [sin(x(m:+j) sin(w(m; —j2))
_27T< my + Jz my — J >

As both m, and j, are positive integers, the first sine-term will always yield
zero. The second term only contributes when m, = j,. Hence we find

1 =g, et i) 1

— = .- 30
2T 2]z m. 7jz 9 zJz ( )

mz=jz

So I contributes —% when m, = j, and zero otherwise. Rewriting I7 gives
1
I = —27Tmz/ dv v cos (m,7mv) sin (j,7v)
0

= —sz/o dv v (sin (m(my + j,)v) —sin (m(m, — j,)v))

1

— e (_cos (w(ms +jz)v)  cos (m(m. —jz>v>>

m(m: + jz) m(mz = j2) 0
1 . .
+7rmz/ o ( cos (m(m, +'jz)v) 4 o8 (m(m, .]Z)U))
0 W(mz +J2) m(m. _JZ)
. . (31)
— —m (COS (m(m. — j)) _ cos (m(m. JF]Z)))
- (mz — jz) (m, + JZ)
(sin (r(m, —j.)v)  sin(7(m, —i—jz)v)) !
me — i\ 2
7T(Tnz Jz) m(m, +JZ) 0
o <cos (m(m. +j2))  cos(m(m. — j:))
‘ (mz +]z) (mz - ]z)
sin (m(m. — jz))  sin (w(m —l—jz))>
7T(WLZ - jz)2 7r(Tnz +jz)2 .
Just as with I we consider m, = j, and m, # j,. In the first case we find
_ cos (m(m, +j.)) cos(m(m, —3j.))  sin(x(m, —7.))
II|m —G. z B - B + - \2
= (m +32) (m. —j2) m(m, — jz)
_sin (m(m —l—jz))>
m(m, +j2)? Jr—
()t
M \om, ) T 2
(32)
So for m, = j, we find gy, ;. = f% + % = 0. In the m, # j, case I does not

contribute and if we use yet again that m, and j, are both positive integers,
then
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ng-jz#mz = II
(_1)mz+jz B (_1)mz_jz

z m; + J, m; — Js (33)
i —2m.j.
= (—1)mz+ﬁz —_—
m? — j?

With this anj with m, # j, becomes

szj = 9m.j. 6mzj:c 6myjy
2mzjz (34)

) mzjzémyjyu

—Jz

which is indeed independent of L., (t) as stated before.
Likewise we need to determine (G?)y;. From (8) we can derive that

ZGJIGle ) = ZL2 / 6? (;pL Q()

Evaluating the integral in the above equation solely for the z-components (i.e.
My # jp and my, , = jy ) yields

— (_1>mz+Jz

L2(t) / 13 025 0Pm mazsn o . osin(m(my = jGy)) sin (z(m- - j.))

X == M. - -
c OL 0L w(my — jy) m(m, — jz)
sin (w(my — jz)) cos (m(my + jo)) . cos(m(myg — ji))  sin(mw(mg — jz))
x ; +2 —5 T 2 N2 3 - \3
W(mz — Jz) 7T2(mz +Jm) ™ (mw - Jm) ™ (mm - ]w)
= 2mw]w |: : + : 6my jy 6mz j 2
(m:c +]z)2 (mz - ]m)Q ! /
. i 2m2 4 252
= 2m1j1(—1) ztJja W my]yémzjz
My +ja mi]w S My+ja ngl’ S
= 4(_1) (mg _jg)Q(smyjy mzjz + 4(_1) (mQ _]1)2 My jyPmzj.
mg + iz
= ~29m,j, <mz_j2> Oy gy Om. .

The = and y-components give similar expressions. In the case of the single G
-term it was not possible to find a contribution to the integrals when m; = j;.
The squared G-term does not have this problem. For m; = j; with i = z,y, 2
the above calculation (for all three components) becomes

690 Opm m;i =5 3 7T2 w2 2

Lastly there will be mixing terms of the form g, ;, gm,;, which can be calculated
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from

/d 095 0pm masy #isn o - sin(mw(ms —j.))

dL L e

cos (m(mg — ja))  cos(m(ma + ja))
% |: W(ml—jl) W(mw +.71) :|

cos (n(jy —my)) o8 (x(jy + 1))
. { T(Jy — my) m(Jy +my) ]
My W(mz - ]z)

cos (m(my —jy))  cos(m(my + jy))
x |: w(my — jy) m(my + jy) ]
y {cos (7(ju — my)) _ cos (m(Joe + mm))}

7(Jo — my) 7(jz + M)

= (gmzjzgjymy + mejygjwmz) Om.j.
= —20m,j, Imy i, Om.j.

Taking all the terms under consideration we find
Op; D 3 w2
2 m 2 2 2
t) L dxai‘[;]aT = (4 + ?(miﬂ + my + mz) 6771:5]1 67nyjy57”zjz
+

2 -2 2
my +J J
- QQmTJT <m§ . ]§> 5m’,’/j?/6mzjz - 2gmyjy ( g Jy> mmjm[;mzjz (35)
T x U Yy

2 -2
m; + )
= 29m.j. <m§ — ];) Omauje 5myjy
z z

-2 (ng]zgmyjyémzjz + gmz]zgmzjzémyjy + gmyjygmzjzémzﬂz) .

We can double check these results by comparing the above calculations with
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the gmigi; term found in @ Focusing on the (¢%),,, ;. term we find

§ Imule9jale = — § Imal. 9l s
Ly le

_ 12
=1 2 ersmE

loFjz My
35 3
i Myl My )y
= (—1)jetma (—4 e +4 2 )
B N [ ety R e )

= 3 () - ()

0 S (s ) -0 ()

loH#je mz _]m)(]z _m:%)
Bl (qygatms (3 4 ) 4 (—ierme (g ede 4y :
2 - J% (m3 —j2)? mi =gz (mi—j3)?
:( 1)Jz+mz4 7721%]% m2 +]T
mg ]z my jz

m2 + j2

= _29m j
zJx 2 _ 427
my — Jz

The same analyses can be applied to the m; = j; term to find that

Iy

272
- Y imate
2-B)(mi - 13)

laFmy z
. 4m? 4myy
T \meeE) -y
4m?
*l;m (m2 - 12)?
1 1 1 1
=3 2
+mzl¢m (mgp_lgg mI+jw)<m,;—l$ m$+jw)
2 1 1
=3+2 L +ml < + >
2 2 x 2 _ 2
Lgm, e Iz Lo Em. (Mg + 1) (my — 1)
[4] 3, 11 1 1
:3—7 —_— — = —
e - k2 m2  4m?2 k2
Y =%, 3, mmd | 1 'md
2 6 4 6
_1+772m§
4 3’

for m an integer.[7]

3Where it was used that 3732, kot WM =-72 3
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which gives indeed the required term when the y and z components are taken
into account as well.

Now that we know how the different modes relate to one another we can
focus on solving the differential equation including the proper labels. For the
linear case we know that the non-adiabatic regime is off limits due to constraints
imposed by the range of the integers m,, m, and m,. Consequently we’ll focus
on the adiabatic regime. As was shown in[4.1]the extreme adiabatic limit allows
one to neglect virtually all mixing terms generated by Gp,y,. Continuing this line
of thought we’ll first apply an adiabatic approximation to @D to find out whether
there are any terms that can be neglected under all (adiabatic) circumstances.

Including labels we find up to zeroth order in Ky,

QW (t) + wi (HQW () = 0.
Similar to before we write the solution as
QAm+/2 m—/2
Q® (1) = ™) (% + t) o (% + t)

where ay+ = 1£++4/1 — 4kyy,. Considering the adiabatic limit ap,+ > 1 including
1

labels, we find oy ~ +2152, + 1. Demanding that QS:) (t) satisfies the labeled
boundary conditions gives the solution

1
2
Smn L(t)\ "™ L)\ ™"
Q0 = gz |t (HO) T (1o ) (29)
2wn(t) |4k2 \ @ Ak2 a
—zné
 Omn <L(t)>
2un(t) \ a ’
up to zeroth order in 1//km. If we now wish to apply a first order correction

then we need to include the QJ{“) (t) term (which is first order in 1/,/Kj;) such
that the equation to solve becomes

QW (1) + wZL QW (1) — 2A(1) Y Gm@Q™ (1) = 0. (37)

Next we need to add a correction to our zeroth order solution such that Qg: ) (t) —
le‘)(o)(t) + Qg‘)(l)(t), where the first term is the zeroth order solution and
the second term a first_order correction that we want to determine. While sub-
stituting QEE) (t) into one should keep in mind that if we wish to solve the
first order differential equation the first part of the differential equation now
requires the full form of and not just the zeroth order approximation. For
the second (additional) term the zeroth order solution will suffice. Discarding
any terms other than first order yields

QWD (1) + w2 QWM (1) —22(1) Y G Q™ (2) =
J

Qg)(l)(t) + w?ﬂﬂ(t)@&‘)(l)(t) — 2)\(t)Gan£f‘)(0) (t)=0.

4The addition of the sums yield two sums of the type Zz‘;:l 1%2 where I, = 0and I, = ms

need to be subtracted.
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To solve this equation for Q,(rr?)(l)(t) we need to demand once again that Q,(ﬂ?) (t)

satisfies the boundary conditions. However, we already know that len)(o)(t),

Q,(an)(o)(t) alone produce the right terms for t = 0. In that case we can determine

the proper boundary conditions for S;:)“)(t):

Q) = QRO (0) + QD) = QP O(0) = =2

2wm (0)
=Q™M(0) =0
Q0) = QO (0) + QV(0) = @ O0) =~/ D5y

=M (0) = 0.

With the help of Mathematica the solution of the first order correction is found
to be

LT drm
L(t 2
CYYmn(l - 21\/ K’n) 2 (L)

(1) (4) — : . n
Qu (D) 2wn (t) V1 —4km (V1 —4km — 20y/Kn)
3VI-dkm —1y/Fn
L(t)\?2 L(t)
2 (T) 4 (T)

VI—=4km (V1 —4km + 20\/kn) (V1 —46m — 203/En) (V1 — 46m + 20y/Fn)

which gives for the total solution

R w =
()"

a

{5 (1 K > B 4Gmn(1 — 20\/Ky)
2won(t) L0 4 /fn) (V1= 4km — 20/Fn) (V1 — 4km + 20\/Fn)

(%)Z " 10

NROING

2Gmn (1 — 214/Kn) N
V200 (VT = 4km | VI —46m — 20/kn V1 —46m + 20\/kn

+

a a

(&)%m (&)%m

Formally one should expand the exponent of the zeroth order term up to order

2
1/4/Fn, but as the exponent will drop out during the calculation of ‘Agﬂl)’ we

will leave it out. We see then that the solution constitutes of a part where the
delta function requires m = n and a part that only contributes when m # n as
imposed by G- The positive frequency solution that we need in order to de-

n 2y/Fn 1 /1T 4k
termine AEn) is hidden in the combination of the (M> and (L(t)> :

a a

24



terms. Using the adiabatic approximation once more we can write

L(t))_z\/a

a

0= L i (- ) - 2/

(@)l "‘" 16,
V2o Wrm ()

Wt (59 ()7

2O/ | Vim — e A A |

+

which gives for Afﬂ)

Al = 1y/knGmn . 10mn .
ol o an + Jw) Aol

Now that the coefficient, A,(f;;) has been determined we can calculate the average
number of produced particles by plugging into (12)):

(Nm) = 3 2um(ty) | AQ

(39)

2

_ w (Gmn)” Kn Omn
"2 ity <2wn<tf>nm<m+ VP 32wn<tf>"fn>

B VFn (Gmn)? 1
=2 e Ym v T

I s

(40)

m|(m| + [0])2 2 1672 [m[°’

where it was used that wy(tf)km = /KnkmWwm (tf).

6 Results and Conclusion

Taking a closer look at we find it consists of two parts. Before we discuss
the individual terms we can make the overall observation that for increasing ve-
locity, v, of the walls the average number of created particles increases as well.
As we are working with an adiabatic approximation v will always be relatively
small compared to 7 |m|. This brings us to the second term, which is rather
straightforward; it only contributes when |n| = |m| and it decreases quadrati-
cally with |m| as was predicted. The first term requires a deeper analysis.

For the low energy modes |m| < |n| we see that the denominator goes with
Im| |n|? (for increasing |n|) and the numerator with [n| (Gmn)?. The Gmn term
itself behaves approximately as Gpn ~ % In that case the first term itself

will behave as ~ %%
In the exact opposite limit where the m modes are highly energetic compared

to n we find that the denominator goes with |m|3 while the numerator goes with
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[n|

In| (Gmn)®>. Here the Gin will behave approximately as fm]- Thus we find that

n|(Cmn)® »*  [nf® o2

|m|3 w2 ‘m‘S T2

this first term goes as ~

The case where |m| and |n| are of similar order gives some interesting fea-
tures. As we are working with integers, similar order means n; = m; + 1
for [ a small integer value. In that case we find that the individual compo-

2 Amp ((2) §(2) _ m2s(2) £(2)
nents of Gmn behave as (Gon)™ ~ =20 120m, 5, 0m.i. = 7 0m,j,0m.;. for
large values of m,, with similar terms for y and 2. Plugging this in the first

term of and using that > ,_; # = %2 we find our sum becomes finite:

Z In|(Gmn)® 22 o v 2 Z ml,—i-mz—i-mi _
n m[([m|+n))2 72 = 72 4[m|2 =1 12 12
|m|(|m|+[n]) |m|

Average number of created particles for m;=50
0.008 T T -

0.007 | P .

0.006 | 1
0.005 §
Z 0.004 created particles  + R
0.008 i
0.002 | 1

0.001 | 1

50 100 150 200
n;

Figure 2: Number of particles N created for the mode m, = m, = m, = 50
and v = 0.3 while the range n; of the n,,n, and n, sums in increases.

Figure shows the number of created particles as a function of the max-
imum value n; for the summation indices n,, n, and n,, while the mode m is
kept fixed. In this specific case we chose v = 0.3 and indeed the value conve

40)

2

to ‘1’—2 =~ 0.0075. We see then that the lowest contribution to the sum in (
comes from the case where the modes n are much smaller than the modes m
of the particles we want to create (|n| < |m|). The opposite situation has a
slightly higher contribution (|n| > |m|) but the largest contribution comes from
the case where the modes m and n are roughly equal (around n; = 50 in figure
(2)). Intuitively the above result is what can be expected. The creation of
particles depends mainly on (Gmn)2 which peaks around m; = n; for i = x,y, z
as mixing of modes occurs predominantly for modes that have similar spatial
properties. The last 'region’ corresponds to the energy of mode |m| < |n| and
we see the creation rate saturates, as for |[m| < |n| the first term in goes as

[m| 2

Il 72 and is thus suppressed. This would mean that it is possible to create

7{—; particles for every sufficiently large mode m (the modes |m| < |n| contribute
less). However, there is an infinite amount of modes m and thus the possibility

26



to create an infinite amount of massless particles. To explain this infinity we
have to take a closer look at our original setup.

Before the wall acquired a velocity the system was free. At ¢ = 0 the
walls instantly moved away with a velocity v for a time interval At = ¢y, thus
expanding the initial vacuum. When the walls stop moving the system is free
once again and we find a different vacuum. However, this 'new’ vacuum does
not only differ from the initial vacuum by the new modes that are now allowed,
but also by the particles that have been created for every mode m during the
expansion. This means that besides a shift in the (formally infinite) vacuum
energy we can expect a correction term appearing in the energy of the new
system that accounts for the energy required to create particles. To calculate
this shift in energy we consider the differential equation for o) (t) = Omn (),
Thus, we only consider those modes m that were already present before the
walls started moving. In that case we find

QW (1) + W20 (1) = ~N(1) (67),,, QP (1)
as the other terms yield zero due to Gnn = 0. From (35) we know (G?) =

nn
,% _ %2(712 + ni +n?), which yields

.. 2 31}2
@) +w2) (1- 2 - 22

= QW (1) + @R (HQYY (1) = 0.

We see then that wy(t) is shifted to wn(t) as a result of the movement of the
walls and consequently the mixing of modes. We can use @y () to calculate the
shift in the vacuum energy. Using a conventional factor % yields in the adiabatic
approximation

) QM (1)

3 472 |n|2

wn(t) _ wn () \/1 v? 3v?

The first term corresponds to the new vacuum energy (wy(t) ~ ﬁ) The sec-

ond term gives a redshift correction proportional to —%; that should correspond
to the energy extracted from the initial vacuum to create particles, which we
indeed found as the first term of (40).

Future research could focus on finding different forms of L(t) for which the
differential equation can be solved exactly. Besides that there is still the issue
of creating massive particles. Unfortunately we were unable to find a solution
for the massive Klein-Gordon equation in the case of a linear displacement of
the walls. The use of a different form of displacement might solve this problem
as well.
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