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Abstract

This paper deals with sources for creating particles in quantum field theory.

Particle propagation through spacetime is to be restricted since time is one directional.
A simple source emits particles in both directions and one way propagators are needed.
Analysis of two-point correlation functions provides information about correlations with
future times only. This allows for constructing a source that emits particles one way
through time, without restrictions on the propagator.

Particles with localized positions and momenta allow for a classical view. A Gaussian
source however displays some difficulty with the calculation of the field. After creating
an alternative source and using a different approach to the Gaussian, a classical in-
terpretation of the emitted particles becomes possible. The kinematics of free particles
emitted on their mass shell appear to be described by Newton’s first law.



Foreword

As an undergraduate student I have done research in the field of quantum field theory.
It is a type of preliminary work that serves as the conclusion of my bachelor education.
The particular subject reflects the fact that I have an interest in theoretical physics and
want to follow a master program in it.

The research was done under the tutorship of Prof. Dr. Ronald Kleiss at the department
of Theoretical High Energy Physics, at the Radboud University of Nijmegen. One
primary source is used for describing the setting and purpose of this research: sections
1.2, 2.2 and 2.5 are based on [1]. Furthermore, section 1.3 is based on [2]. The remaining
sections contain material resulting from my work.

Throughout the paper several notations and conventions will be used:

• Fourvectors are simply denoted a and defined as aµ =
(
a0, ~a

)
, with ~a =

(
a1, a2, a3).

Inner products are evaluated as aµbµ = a·b = a0b0 −~a·~b; the square of a fourvec-
tor is given by a2 =

(
a0)2 − |~a|2.

• Planck’s reduced constant ~ is written when emphasis is desired and omitted
otherwise.

• Integrals run over all space, i.e. from -∞ to +∞.

• The Fourier transform F (k) of a function f (x) is defined as

F (k) = 1√
2π

∫
eik·xf (x) dx

where x and k are fourvectors. The inverse FT is then

f (x) = 1√
2π

∫
e−ik·xF (k) dk

although this is not used anywhere.
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Chapter 1

Particle creation and time flow

1.1 Introduction

In quantum field theory (QFT) physical activity is described using the notion of quantum
fields. These fields assign values to all points in spacetime and can represent the
existence and propagation of particles. The number of particles considered need not
be held constant, QFT allows particles to be freely created or destroyed. Creation of
particles is accounted for by the use of sources and will be the central topic of this
chapter. After being created the evolution of a particle is described by an object called
the propagator. The field representing the particle is dependent of both the source and
the propagator which are used. However, the domain of the field, Minkowski spacetime,
places no restriction on the direction in which particles evolve through time. The natural
condition that life evolves forward through time, rather than backward, must therefore
be enforced. For instance, this can be done using a retarded propagator. In this case
only evolution in one time direction is considered1.

The objective here is to define the direction of time flow using the source; an attempt
is made to construct a source that creates only particles that evolve in the natural time
direction, without restrictions on the propagator. First a simple source is considered to
illustrate the issue. Then the problem is analyzed by considering correlations between
fields and bases for creation and annihilation configurations. Next a possible solution
is proposed. Finally a further discussion about the results and the direction of time flow
follows.

1For more details, see the discussion at the end of the chapter.
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1.2 Simple source

In this section the issue of time direction for the evolution of particles is illustrated. For
this the propagator2

Πγ (x) = i
(2π)4

∫
d4k e−ik·x

k2 − m2 + iγ
is used, with γ > 0. This parameter γ is related to the lifetime of the particles. Now
consider a simple source that is active at one particular moment in time, say t = 0. With
x0 = ct the source can then be written as

J (x) ∝ δ
(
x0) .

Calculating the response of the field yields

φ (x) = i
∫

d4yΠγ (x − y) J (y)

∝ −1
(2π)4

∫
d4yd4k e−ik·(x−y)

k2 − m2 + iγ δ
(
y0)

= −1
(2π)4

∫
d3~yd4k e−ik·x−i~k·~y

k2 − m2 + iγ

= −1
(2π)4

∫
d4k e−ik·x

k2 − m2 + iγ
(2π)3 δ3

(
−~k

)
= −1

2π

∫
dk0 e−ik0x0

(k0)2 − m2 + iγ
.

This integral has two poles at

k0 = ±
√

m2 − iγ ≈ ±
(

m − iγ
2

)
where it is assumed that γ � m2. For times later than t = 0 the contour can be closed
along the lower half of the plane, as in the picture.

2It has been suggested to include an introductory section on the theory of Green’s functions, i.e.
propagators. This would certainly make the paper more standalone and accessible. Being aware it would
be useful indeed, it is not my intention to explain this material in detail here. Instead I refer to standard
literature on this matter.
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Thus, for x0 > 0 we find
φ (x) ∝ e−imx0− γ

2m x0.

In general the field is given by

φ (x) ∝ e−im|x0|− γ
2m |x0|.

The probability of finding particles somewhere is related to |φ (x)|2. This is given by

|φ (x)|2 ∝ e− γ
m |x0| = e− |t|

τ

where τ = m
γc is the lifetime of the particles.

From this result it follows that the probability of finding particles anywhere decreases
exponentially for particles of finite lifetime. This is precisely what is expected for unsta-
ble particles. However, the probability to find stable particles (infinite lifetime) anywhere
does not decrease. Again as expected.

This result also demonstrates the anticipated problem. The probability of finding par-
ticles behaves just as desired for times in the future, relative to the moment of particle
creation. But this probability is also nonzero for times in the past. Particles are found
to propagate both forward and backward through time. In our normal view of the world
this means that we see particles coming together and disappearing into one point in
space, after which particles appear from it. The first part is unwanted and should be
removed.

1.3 Correlations

In order to gain insight into the problem we now investigate the concept of correlations.
Specifically we look at bases for creation and annihilation configurations and their
correlations with each other and with quantum fields. It appears that these correlations
are nonzero only from or until a specific moment in time. The goal is to shed light on
the cause of these future and past correlations.
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In this section the propagator will be taken as

Π (x) = i
(2π)4

∫
d4k e−ik·x

k2 − m2 + iε

with ε an infinitesimal number. This propagator works for stable particles, in contrast
to the propagator with the γ from before. The two-point correlation function for a field
is then

〈φ (y) φ (x)〉 = Π (y − x) .

At this point a basis for a creation configuration is introduced. It is written as3

a
(

~k, t
)∗

= −i
∫

d3~xe−ik·x
↔
∂0φ (x)

where the operator
↔
∂0 is defined by A

↔
∂0B = A∂0B − (∂0A) B. The corresponding anni-

hilation basis is given by

a
(

~k, t
)

= i
∫

d3~xeik·x
↔
∂0φ (x) .

Using the convention k0 = ω
(

~k
)

=
√∣∣∣~k∣∣∣2

+ m2 it can be shown that we have the right
linear combination of φ (x) and ∂0φ (x) to ensure no correlations with earlier (or later)
times occur. The correlation between the configuration bases is given by〈

a
(

~k ′, t′
)

a
(

~k, t
)∗〉

= 2ω (2π)3 δ3
(

~k − ~k ′
)

θ
(
t′ − t

)
where we see a unit step function for the time: θ (t′ − t). This result can be calculated

3It has been suggested to give more explanation of the material used here. On this I remark that the
new language in this section is not used further in this paper. This section serves to learn how to make
correlations with only earlier or later times.
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in the same way as the correlation of a field with the creation basis, which is given by〈
φ (y) a

(
~k, t

)∗〉
= −i

∫
d3~x

〈
φ (y) e−ik·x

↔
∂0φ (x)

〉
= −i

∫
d3~xe−ik·x

(
∂

∂x0 + ik0
)

〈φ (y) φ (x)〉

= 1
(2π)4

∫
d3~xe−ik·x

∫
d4l

(
∂

∂x0 + ik0
)

e−il·(y−x)

l2 − m2 + iε

= 1
(2π)4

∫
d3~xd4l

(
il0 + ik0) e−i(k−l)·xe−il·y

l2 − m2 + iε

= i
2π e−ik0x0+i~k·~y

∫
dl0 l0 + k0

(l0)2 − (k0)2 + iε
e−il0(y0−x0)

= i
2π e−ik0x0+i~k·~y

∫
dl0 e−il0(y0−x0)

l0 − k0 + iε

This integral has one pole at l0 = k0 − iε. An integration contour can be closed along
the lower half of the complex plane.

The result of this integral is found by applying residue calculus for simple poles. After
taking the limit ε ↓ 0 we find〈

φ (y) a
(

~k, t
)∗〉

= e−ik·yθ
(
y0 − x0)

for the correlation.

This result contains a unit step function in time coordinates θ
(
y0 − x0), resulting from

the demand that the (infinitely large) curved part of the contour does not contribute to
the integral. It means there is only a correlation when y0 > x0. From the derivation
one can see that this is the consequence of the cancellation of one pole before the
integration over l0. Since there are no poles in the upper half of the complex plane,
closing the integration contour along the upper half gives a zero correlation for y0 < x0.
More precisely, the pole was removed by a specific linear combination of the field φ (x)
and its derivative ∂0φ (x). In the next section we will apply this idea to our source.
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1.4 Special source

Armed with new insight into time correlations in this section we return to our original
quest. The objective is to construct a source that creates particles, such that the fields
now have correlations only with future times, relative to the moment of creation. To
achieve this we use the idea of cancelling a pole for the last integration, which can be
done by choosing a specific linear combination of the original source and its derivative.

As before the propagator will be

Πγ (x) = i
(2π)4

∫
d4k e−ik·x

k2 − m2 + iγ

with γ > 0. In this case the source is constructed as a linear combination of the simple
source and its derivative. With this combination hopefully the field will only show
activity after the moment of particle creation. The source thus becomes

J (x) =
(

A d
dx0 + B

)
δ

(
x0)

with A and B coefficients. To perform the integration the delta is represented by the
limit of a Gaussian function as

δ (x) = lim
ε↓0

1
2
√

πεe−x2/4ε.

Calculating the field yields

φ (x) = i
∫

d4yΠγ (x − y) J (y)

= −1
(2π)4

∫
d4yd4k e−ik·(x−y)

k2 − m2 + iγ

(
A d

dy0 + B
)

δ
(
y0)

= −1
2π

∫
dy0dk0 e−ik0(x0−y0)

(k0)2 − m2 + iγ
lim
ε↓0

1
2
√

πε

(
− A

2εy0 + B
)

e−(y0)2/4ε

= −1
2π

∫
dk0 e−ik0x0

(k0)2 − m2 + iγ
lim
ε↓0

1
2
√

πε

∫
dy0

(
− A

2εy0 + B
)

e−(y0)2/4εeik0y0.

After integrating over y0 and taking the limit ε ↓ 0 we have

φ (x) = i
2π

∫
dk0 Ak0 + iB

(k0 − λ) (k0 + λ)e
−ik0x0
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with λ =
√

m2 − iγ. Choosing A = 1 and B = −iλ gives a field of

φ (x) = i
2π

∫
dk0 e−ik0x0

k0 − λ

This integral has one pole at k0 = λ, which lies in the lower half of the complex plane.
An integration contour can be closed around this half.

Finally the field is found to be

φ (x) = e−iλx0θ
(
x0) .

The probability of finding particles anywhere is proportional to |φ (x)|2. This is given by

|φ (x)|2 ≈ e− γ
m x0θ

(
x0) = e− t

τ θ (t)

where τ = m
γc is the lifetime.

As before the probability of finding particles anywhere decreases exponentially for un-
stable particles and remains constant for stable particles. However, the presence of the
time step function cures the problem of the nonzero probability for past times. In fact,
for t < 0 the field itself shows no activity and the probability of finding particles equals
zero. Further discussion follows in the next section.

Note that the calculation of the field can be greatly simplified using the following
theorem on the Fourier transformation, [3] eq. 3.55:

LF
[
f ′ (x0)]

= −ik0LF
[
f

(
x0)]

= −ik0F
(
k0)

Here LF denotes the Fourier transform operator. When Fourier transforming the deriva-
tive of a function this theorem may conveniently be applied. With this trick, representing
the delta as the limit of a Gaussian function would have been unnecessary. The theorem
will be used in the next chapter.
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1.5 Discussion

In this chapter the issue of time correlations of quantum fields was investigated. A simple
source that emits particles both into the future and the past was presented first. Through
analysis of correlations between fields and creation and annihilation configuration bases
the condition was found for future or past only activity. This was then used to adapt the
simple source into a special source for the creation of only particles that evolve forward
through time, without placing any restriction on the propagator.

The main point to be made is that the forward-only propagation is now determined
completely by the source. The reason to let the source define the time direction of
propagation is that the source may be seen as an actual physical object. Therefore it
makes sense that this object defines all the properties of the particles it emits. This
includes their mass and lifetime, but also their direction of evolution through time. With
the result that the probability of finding (unstable) particles anywhere decreases as time
goes by, we may now also say that the source defines the direction of time flow. It flows
in the direction in which particles disappear rather than appear.

This can be set in contrast with the use of a one way propagator. For forward propagation
it is also possible to use a retarded propagator

Πret (x) = Π (x) θ
(
x0) .

This definition ensures that particles can only propagate for t > 0. Backward propaga-
tion can be enforced using an advanced propagator

Πadv (x) = Π (x) θ
(
−x0)

which only allows propagation for t < 0. When such a one way propagator is used it re-
stricts the direction in wich the particles can propagate. Effectively only one propagation
direction is being considered.
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Chapter 2

Kinematics and Newton’s first law

2.1 Introduction

Quantum field theory (QFT) allows particles to be described by representing them as
fields. In this view particles are subjected to all the conditions that any quantum theory
implies, such as Heisenberg’s uncertainty principle. In the classical limit these conditions
are less restrictive. For instance, it is possible to measure times and energies, and
positions and momenta, simultaneously with infinite precision. In order to consider
particles as classical they need to be localized in both position and momentum space.
Thus a restriction is placed on the source that emits the particles. The source must emit
particles at positions, and with momenta, centered around certain values.

The goal in this chapter is to find a source that emits particles that are localized in
position and momentum space, such that it allows a classical interpretation of these
particles. The first attempt is a Gaussian source, but this gives difficulty with the calcu-
lation of the field integral. An alternative source is presented that does not suffer from
this difficulty. Then the Gaussian case is studied in a different manner. After describing
these sources a classical law of motion is derived for any physically acceptable source:
Newton’s first law. At last the classical validity of sources and the kinematic results are
further discussed.

2.2 Gaussian source

As the first candidate source to allow a classical interpretation this section considers
a Gaussian source. It is a reasonable choice, since the Gaussian function is a typical
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function with localization properties. The source is taken as

J (x) ∝ e
− (x0)2

4σ2
0

− |~x|2

4σ2 − i
~ (p0x0−~p·~x)

which is active around t = 0 and ~x = 0, with σ0 and σ standard deviations. Its Fourier
transform

J (k) ∝ e
−σ2

0

(
k0− p0

~

)2
−σ2

(
~k− ~p

~

)2

shows that it emits particles with wavevectors kµ =
(

k0, ~k
)

centered around pµ

~ with
momentum pµ =

(
p0, ~p

)
. Using the standard propagator

Π (x) = i
(2π)4

∫
d4k e−ik·x

k2 − m2 + iε

we obtain the field expression

φ (x) = i
∫

d4yΠ (x − y) J (y)

= −1
(2π)4

∫
d4k e−ik·x

k2 − m2 + iε J (k)

∝ −1
(2π)4

∫
d4k eA(k)

(k0)2 − ω2 + iε

with

A (k) = −ik0x0 + i~k · ~x − σ 2
0

(
k0 − p0

~

)2

− σ 2
(

~k − ~p
~

)2

.

The integral over k0 now has two poles at

k0 = ±
√

ω2 − iε = ±
(
ω − iε′)

where k0 ≈ +ω =
√∣∣∣~k∣∣∣2

+ m2 is the relevant pole for x0 > 0. At this point we would
like to apply the method of contour integration using the contour as depicted.
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We realise however that the integrand does not vanish everywhere along the curved
part of the contour; when the (negative) imaginary part of k0 becomes large the term
−σ 2

0

(
k0 − p0

~

)2
in A (k) becomes large and positive. This means it is not clear whether

the contribution of the curved part to the integral vanishes. Closing the contour this
way would therefore be unreliable; it is unclear what meaning to assign to the result.

The Gaussian source leads to a field expression for which the method of contour integra-
tion seems to fail. Without an explicit result of the integration over k0 it is impossible to
ensure that the source leads to an acceptable field expression. For this the integration
over ~k should not diverge. In the next section an alternative source is presented, which
does not suffer from this calculation difficulty.

2.3 Alternative source

We are looking for a possible source that allows for a classical interpretation of the
emitted particles. For this it is required to be localized in both x-space and k-space.
In addition we would like to ascertain that the field integral does not diverge.

Here we consider the source

J (x) ∝ a
a2 + (x0)2 e− |~x|2

4σ2 − i
~ (p0x0−~p·~x)

which is centered around t = 0 and ~x = 0. The positive parameter a describes the width
of the time component of the distribution; the spatial part is left Gaussian and has σ as
standard deviation. The Fourier transform is given by a combined exponential/Gaussian
function

J (k) ∝ e
−a

∣∣∣∣k0− p0
~

∣∣∣∣−σ2
(

~k− ~p
~

)2

.

At this moment we take a break to apply our knowledge from chapter 1. Consider the
expression

J (x) ∝
(

d
dx0 − iω

) (
a

a2 + (x0)2 e− |~x|2

4σ2 − i
~ (p0x0−~p·~x)

)
with ω =

√∣∣∣~k∣∣∣2
+ m2. Here we invoke the theorem on the Fourier transformation

LF
[
f ′ (x0)]

= −ik0LF
[
f

(
x0)]

= −ik0F
(
k0)

that was introduced at the end of section 1.4. Using this theorem the transform of the
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source becomes

J (k) ∝
(
k0 + ω

)
e

−a
∣∣∣∣k0− p0

~

∣∣∣∣−σ2
(

~k− ~p
~

)2

.

Although it is not essential for investigating the classical kinematics, we now have a
source that defines the direction of time flow for the particles. Calculating the field gives

φ (x) = i
∫

d4yΠ (x − y) J (y)

= −1
(2π)4

∫
d4k e−ik·x

k2 − m2 + iε J (k)

= −1
(2π)4

∫
d4k e−ik·x

(k0 − ω) (k0 + ω) + iε J (k)

∝ −1
(2π)4

∫
d4k eB(k)

k0 − ω + iε

with
B (k) = −ik0x0 + i~k · ~x − a

∣∣∣∣k0 − p0

~

∣∣∣∣ − σ 2
(

~k − ~p
~

)2

.

The integral over k0 has one pole at k0 = ω − iε and an integration contour can be
closed around the lower half of the complex plane.

Now the contour integration works and after taking the limit ε ↓ 0 we have the field

φ (x) ∝
{

i
(2π)3

∫
d3~keC(~k)

}
θ

(
x0)

with
C

(
~k
)

= −iωx0 + i~k · ~x − a
∣∣∣∣ω − p0

~

∣∣∣∣ − σ 2
(

~k − ~p
~

)2

.

The integration over ~k is not straightforward, since ω also depends on ~k . However,
we can remark that the integration over ~k will converge. This conclusion can be drawn
without calculating the actual result, because the modulus of the integrand exponentially
(i.e. fast) goes to zero at infinity.
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Essentially the phase of the integrand e−iωx0+i~k·~x is not relevant for this convergence.
For the sake of argument it may well be taken to be stationary. Then it comes out of
the integral and leads directly to a field expression for a free particle. This in fact leads
to Newton’s first law, as will be shown later.

Now it is clear that this source leads to a field that may be interpreted as a particle.
Furthermore, due to the localization of the source, the field may be interpreted as a
classical particle. Note that this argument holds for any value of the mass m.

2.4 Back to the Gaussian

In the case of the Gaussian source we found that our favoured method of contour inte-
gration fails. This was due to the fact that the contribution from the curved part of the
contour does not seem to vanish. After finding a different source for which contour inte-
gration does work, we now analyze the Gaussian source again. The objective is to prove
convergence of the field integral, which has not been achieved by contour integration.
Here we will use a different approach, based on the complex error function.1

Here we will examine the field expression

φ (x) ∝ −1
(2π)4

∫
d4k eA(k)

k0 − ω + iε

with

A (k) = −ik0x0 + i~k · ~x − σ 2
0

(
k0 − p0

~

)2

− σ 2
(

~k − ~p
~

)2

.

For simplicity only one pole is used, in the same way as demonstrated in the previous
section. To simplify life further the phase of the integrand e−ik0x0+i~k·~x will be taken

stationary. The mass shell relation k0 =
√∣∣∣~k∣∣∣2

+ m2, however, follows from the pole
of the integrand and will still be found. Now we require convergence of the remaining
integral over k . The latter part is

∫
dk0 e

−σ2
0

(
k0− p0

~

)2

k0 − ω + iε .

1This section was added after the previously described source had been constructed as an alternative
to the Gaussian. With the aid of the complex error function and graphic demonstration by computer, the
Gaussian case now seems to work after all, leaving the alternative source as a nice exhibition.
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According to [4] (7.1.4) an integral of this type can be rewritten using the expression

w (z) = i
π

∫ ∞

−∞

e−t2dt
z − t

where w (z) is the complex error function (Faddeeva function) and =z > 0. By substitu-
tion of variables u = σ0

(
k0 − p0

~

)
the integral becomes

∫
du e−u2

u + σ0

[
p0

~ − ω + iε
]

and by another careful substitution t = −u we find∫ e−t2dt
z − t

with z = σ0

(
p0

~ − ω
)

+ iσ0ε. This expression meets the requirement =z > 0 and the
integral over ~k becomes ∫

d3~ke−σ2
(

~k− ~p
~

)2 π
i w (z) .

The exponential term will definitely not cause divergence. For the function w (z) we
can turn to graphical illustration. In appendix A details are given and fortunately there
appears to be no sign of diverging tendencies.

From the chain of arguments in this section we may now conclude that the Gaussian
source is acceptable after all. We found that it gives a non-divergent field that can be
interpreted as a classical particle.

2.5 Newton’s first law

After considering possible sources for creating localized particles, now we investigate the
classical kinematics that follow for the particles. For any acceptable, localized source
J (x) with Fourier transform J (k) the field expression is

φ (x) = i
∫

d4yΠ (x − y) J (y)

= −1
(2π)4

∫
d4k e−ik·x

k2 − m2 + iε J (k)
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where the source is active around t = 0 and ~x = 0. In fact, we may as well use

φ (x) = −1
(2π)4

∫
d4k e−ik·x

k0 − ω + iε J (k)

since we know how to remove the other pole. This integral has a pole near

k0 = ω
(

~k
)

=
√∣∣∣~k∣∣∣2

+ m2.

This means the integral gets its most important contributions from wavevectors around
this value. However, if particles are emitted with wavevectors k centered around p

~ , the
contribution is only appreciable when the momentum p behaves the same, so

p0

~
= ω

(
~p
~

)
.

Relating the zero component of the momentum to energy as

p0 = E
c

we find the energy momentum relationship

E =
√

|~p|2 c2 + M2c4

with m = Mc
~ . This is the mass shell condition with M the mass of a particle moving

freely through spacetime with energy E and momentum ~p.

When a particle is emitted on its mass shell however, the field integral is not yet
automatically large. The point is that the imaginary part of the factor e−ik·x may lead to
rapid oscillatory behaviour of the integrand and an essentially vanishing result, except
when the phase of the integrand is stationary. Assuming that the term J (k) does not
add to the oscillatory behaviour, this happens if

∂
∂~k

(
−k0x0 + ~k · ~x

)
= ∂

∂~k

(
−ω

(
~k
)

x0 + ~k · ~x
)

= −
~k

ω
(

~k
)x0 + ~x = 0.

Realising that ~k
k0 = ~p

p0 it follows that φ (x) is appreciable on a line in spacetime with

~x = ~p
p0 ct .
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Starting at t = 0 and from ~x = 0, the (free) particle moves along a straight line with
constant velocity ~p

p0 c. This is Newton’s first law!

2.6 Discussion

This chapter dealt with classical aspects of quantum field theory, especially finding a
source for creating localized particles. A Gaussian source that shows some difficulty
with field calculation was considered first. Then an alternative source was studied and
found to allow a classical interpretation of the emitted particles. After some further
consideration the same thing happened for the Gaussian case. Finally a classical law of
motion, Newton’s first law, was derived for particles emitted by any acceptable, localized
source.

The central idea is that sources were found that allow for a classical interpretation of
the particles. This is interesting because considering the classical limit is a good test
for a quantum theory; being the more general theory it should reduce to something
familiar from classical physics. In this case the kinematics of free particles turned out
to be described by Newton’s first law. Another advantage of considering this limit is
that a classical view is easier to understand. It may help to see better what the theory
actually describes.

Finally, a hypothetical word about integration. For the Gaussian source use was made
of the complex error function to show convergence of the field integral. This was an
alternative to the, in this case failing, method of contour integration. However, it seems
very restrictive that a contour can be closed at infinity only when the integrand vanishes
everywhere along the path. Perhaps circumstances may exist in which any contribution
picked up along the curve is ’magically’ cancelled by another contribution somewhere
else. Then the residue theorem could be applied to such cases as well.
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Appendix A

Complex error function

For Gaussian functions there does not exist a closed analytic form for the indefinite
integral. Usually such an integral can be expressed using the error function. In the case
of integration with a pole the function needs to be treated complex; the error function
then becomes the so called complex error function. It is defined in [4] as

w (z) = e−z2erfc (−iz)

and is also known as the Faddeeva function. By the expression

w (z) = i
π

∫ ∞

−∞

e−z2dt
z − t

with =z > 0, it is related to the Gaussian integral with a simple pole.

For purposes in this paper here some properties of the complex error function are demon-
strated here, by graphical methods. From the definition we first look at the part e−z2 .
The modulus of this, for complex z looks like
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where the imaginary part of z is kept small and positive. We here do not need to look at
greater imaginary parts, although nothing very interesting happens anyway; the peak
just shifts a bit. The modulus of the second factor in the definition, erfc (−iz), looks like

for the same range of z. It is seen that the two factors making up the complex error
function act against each other. The first part falls off to zero, the other goes to infinity,
i.e. as a function of the real part of z. It is now interesting to see what happens to the
function w (z) in the same range of z. Its modulus looks like

and is seen to fall off to zero.

Practically, this result can be applied in the following sense. Imagine an integral of the
type ∫

dxw (z)

where z = x + iy for some (small) constant y. This integral is now easily seen to
converge, because of the properties of w (z) displayed in the last picture above.
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