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Abstract

Two-dimensional quantum gravity (2DQG) can be seen as the continuum limit of discrete random surfaces.
Matter can be introduced in 2DQG by coupling it to a statistical system. Meanders are a combinatorial prob-
lem of non-intersecting, closed, self-avoiding loops and are conjectured to be a statistical system coupled to
2DQG. In the 90s, Di Francesco et al. made several predictions about the critical exponents of 2DQG coupled
to the statistical system of meanders in [1, 2]. In this work, the predictions of Di Francesco et al. are stud-
ied numerically using Markov chain Monte Carlo techniques for which a new flip move is developed. The
numerical simulations in this work use significantly larger system sizes than studied in previous research [1,
3]. The Hausdorff dimension, which describes the dimension and the string susceptibility which describes
the spikiness of the 2DQG surfaces were measured as a function of q. The new numerical evidence between
0.2 < q < 2 supports the predictions made by Di Francesco et al., however the transition to branched poly-
mers for q > 2 is smooth instead of sharp which could be due to discretization effects.
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CHAPTER1

Introduction

Figure 1.1: Google Earth image of the river Arno in Pisa.

A meander is typically a river that zigzags through some landscape like in Figure 1.1. Meanders are also a
combinatorial problem or statistical system. A question one might ask: how many unique loops can you
make using the four bridges in Figure 1.1? You are only allowed to pass every bridge once. This seemingly
simple question can only be solved by counting all the possible combinations. It has not (yet) been solved
exactly [2]. That is fascinating for a simple problem like this. The loop and the river in Figure 1.1 are drawn
more structured in Figure 1.2.

Meanders as a toy model of two-dimensional quantum gravity is quite an abstract title. In the 90s Francesco
et al. conjectured that Meanders are a model of two-dimensional quantum gravity (2DQG). How can one see
this intuitively? Quantum gravity aims to unify quantum mechanics and general relativity. General relativity
is a theory of geometry and quantum mechanics is a theory of probability and integrals over all possibilities.
Analytically the combination of these theories is quite complex. So one way of studying the combination of
them is by random geometry which is discrete and easier to study. Taking quadrangles as a building block
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Figure 1.2: Example of ameander of order 2, which has 4 bridges. The horizontal line is the river and the loop is the
road.

and glueing them together based on a meander gives a geometry. Taking the continuum limit of that surface is
conjectured to be 2DQG. The continuum limit is taking the size of the building blocks to zero and taking the
number of building blocks to infinity. One can also say, the continuum limit of random geometry decorated
by meander is conjectured to be 2DQG. 2DQG is a toy model of quantum gravity that allows for studying
quantum gravity in amore simplemanner. But whywould physics want to have a theory of quantum gravity?

In the 17th century, Isaac Newton transformed the way we think of gravity through his theory of Newtonian
gravity. Newtonian gravity gave accurate predictions of the orbits of planets. At the beginning of the 19th
century, Maxwell and Lorentz unified electricity and magnetism into Electromagnetism. In the 20th century,
Albert Einstein was intrigued by the principle of relativity, which means that physical laws are the same in
any inertial frame. Einstein thought that it was no coincidence to find the principle of relativity in both elec-
tromagnetism and classical mechanics. Based on theMichelson-Morley experiment, which proved that there
is no ether, Einstein came up with the theory of special relativity [4]. Later, he generalised special relativity
into general relativity by also considering accelerating inertial frames. General relativity predicts phenomena
like the bending of light around the sun and gravitational waves [5]. The big difference is that special relativity
and general relativity treat the 3-space dimensions on the same footing as the time dimension.

In the 20th century, another advancement wasmade in the field of quantummechanics. Quantummechanics
is about the microscopic interactions between particles. A major takeaway is the wave-particle duality: parti-
cles can be considered as waves or particles. Applying quantum mechanics to fields led to the quantum field
theories known as the standard model, which describes the electromagnetic, strong and weak interaction, as
well as matter [6].

We know that matter described by the standard model also curves spacetime, therefore one would like to
describe general relativity and quantum mechanics in a common framework, called quantum gravity (QG)
[7]. There are however more reasons for wanting quantum gravity. In the singularity of a black hole, general
relativity breaks down [8] which is an example that the current theoretical knowledge is lacking.

Setting up quantum gravity turns out to be quite hard analytically. One of the issues is, that gravity is pertur-
batively non-renormalisable. Perturbatively non-renormalisablemeans that there is amaximum energy up to
which a perturbative theory is valid [7]. So in the ideal case, youwouldwant to research quantumgravity non-
perturbatively. Studying quantum gravity non-perturbatively can be done using dynamical triangulations for
2D, and causal dynamical triangulations (CDT) for 4D. Dynamical triangulations (DT) are a form of random
geometry. Dynamical triangulations are originally inspired by how QCD is studied. QCD can be studied us-
ingMonte Carlo simulations after a lattice regularizationwhich is discretizing the problem onto a finite lattice
[6]. When studying quantum gravity using DT or CDT, the problem is not only put on a finite lattice but also
the lattice itself becomes variable.

2DQG is the continuum limit of randomgeometry andmore precisely the continuum limit of discrete random
surfaces of the 2-sphere. 2DQGaims to extendFeynman’s path integral to surfaces [9]. These randomsurfaces
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have fractal properties. Matter can be introduced to 2DQGby coupling it to a certain critical statistical system.
Meanders are such a critical statistical system. Therefore, meanders can be seen as matter coupled to 2DQG.
One of the main things studied in 2DQG is how the critical exponents of 2DQG react to coupling to matter. A
critical exponent is an observable that describes for example the dimension of a surface.

As mentioned earlier the meanders can be described as a statistical system coupled to 2DQG. In the 90s Di
Francesco et al. conjectured the critical exponents of the statistical system coupled to 2DQG. This thesis will
be about checking the predicted critical exponents using numerical simulations of discrete random surfaces
decorated with meanders. So far, previous research has only studied the predictions of the conjecture for
small systems, using a developed flip move for Markov chain Monte Carlo simulations larger systems can be
studied.

The conjectured critical exponents also make predictions about the asymptotic of the question asked in the
beginning: how many unique loops can you make using n bridges? This is why it can also be said that me-
anders are governed by matter coupled to 2DQG. The numerical simulations in this thesis will therefore also
somewhat contribute to the combinatorial meander problem.

In chapter 2, the theoretical background for understanding meanders and 2DQG is described. Also, the con-
jectures of Di Francesco et al. are described there in detail. In chapter 3, the methods for studying meanders
as a statistical system coupled to 2DQG are described, like the Markov chain Monte Carlo techniques. The
research question is introduced more formally in chapter 4, in chapter 5 the results are presented and lastly
in chapter 6 the results are concluded and discussed.
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CHAPTER2

Theoretical background

In this theoretical background, meanders and meander systems will be introduced formally in section 2.1. In
the introduction, it was already mentioned that 2DQG is the continuum limit of random surfaces. Random
planar maps are a way to study discrete random surfaces which will be introduced in section 2.2. It was also
mentioned that matter fields in 2DQG are conformal field theories which will be introduced in section 2.3.
These conformal field theories and 2DQG have scale-invariant properties which will be discussed in section
2.4. Lastly, 2DQG and observables in 2DQG will be introduced in section 2.5.

2.1 Meanders

Meanders can be regarded as a road and a river that cross each other at 2n points (bridges) or more gener-
ally speaking: two crossing self-avoiding loops. Meanders have several applications like the combinatorics of
folding polymer chains [2].

For the number of meander configurations no exact formula has been found so far. However, in the 90s Di
Francesco et al. conjectured that meanders are governed by the gravitational version of a two-dimensional
conformal field theory with a central charge of -4. The critical exponents that can be extracted from this con-
jecture, allows to approximate the number of meander configurations at large system size n.

2.1.1 Meanders as a combinatorial problem

A meander is a closed self-avoiding road that intersects an infinite line (river) 2n times [2].

Mn denotes the number of uniquemeanders (inequivalentmeanders)with a fixednumber of bridges. Next to
meanders there are meander systems that allow for more than one closed-road. A meander system is defined
by having one infinite river and multiple self-avoiding closed roads. Mk

n denotes the number of inequivalent
meander systems of order n with k non-intersecting closed loops. Meanders and meander systems are con-
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Figure 2.1: Example of a meander of order 2, which has 4 bridges.

sidered inequivalent when there is no smooth way of deforming them into each other without changing the
order of the bridges [10].

Meander systems are easier toworkwith than puremeanders, since some of their properties can be calculated
analytically using combinatorics. Later, some of these analytic properties will be used to check simulation
results. Meanders with just one road is such a specific case, that the name meander will often be used for the
more general meander systems.

Figure2.2:Meander that is symmetricwith respect to the river (horizontal line). One can calculateM (2)
2 = c2 = 2

by Equation (2.1).

Some meander systems can be seen as arches that can be reflected in the river, see Figure 2.2. For these types
of configurations the number of meander systems is given by

M (n)
n = cn =

1

n+ 1

(
2n

n

)
(2.1)

where cn is nth Catalan number [10].

The total number of inequivalent meander systems can also be calculated taking the product of two arch con-
figuration of size n:

n∑
k=1

M (k)
n = (cn)

2 (2.2)

since the number of arch configuration is counted by the Catalan numbers.
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2.2 Graphs and planar maps

Maps are away to describe discrete surfaces. There are several ways to definemaps (and the following are not
all): as the embedding of a graph on a surface, as the glueing of polygons or as permutations. In the following,
a few of the definitions for maps and other preliminaries will be introduced. The introduction is based on
Guillaume Chapuy’s lecture notes ”An introduction to map enumeration” [11] and ”Peeling random planar
maps” by Nicolas Curien.

Let’s start with surfaces. A surface S is homeomorphic (bijective image) to the sphere with g handles (holes),
where g is the genus [11]. An example of a genus 1 surface is a donut and an example of a genus 0 surface is the
2-sphere. All surfaces in this workwill have genus 0, and therefore the surfaces associatedwill be the 2-sphere
S, like in Figure 2.3.

Figure 2.3: S0 surface

Secondly, a graph G is defined as a structure consisting of vertices V , edges E and faces F , where each edge
consist of two half-edges [12]. The half-edges can also be called oriented edges because they point in opposite
direction, see Figure 2.4. Two half-edges that form an edge are defined as each other’s adjacent.

Figure 2.4: Edge consisting of two oppositely oriented half-edges.

The degree of a face is defined as the number of incident half-edges [12]. A face of degree of 4 is called a
quadrangle. The degree of a vertex is defined as the number of incoming half-edges.

The different definitions of a map

A map, m can be defined as the embedding of a graph,G, into a surface S. The embedding refers to drawing
the graph in such a way on the surface S that the edges do not cross. In Figure 2.5, a planar map is drawn. A
planar map is defined as a map of genus 0 [11]. For the embedding onto the plane, the planar map had to be
rooted. Rooted planar maps have a root edge and root face. In Figure 2.5, the root edge is represented using
the arrow and the root face is the white area right of the root edge. The root face is sent to infinity to draw this
planar map on a plane [11].

Maps can also be seen as the glueing of polygons. In Figure 2.6, quadrangles are glued together along their
edges. The quadrangles are glued together along their edges such that the half-edges are oriented in opposite
direction. The result is a quadrangulation which is defined as a map with faces of degree 4.
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Figure 2.5: Embedding of a planar map into a flat plane with a root edge, denoted by the edge with the arrow. The
face right of the root edge is the root face. The root face is the white region, thus the page is also a face.

Figure 2.6: Quadrangles are being glued into a cube.

Lastly, maps can also be described using permutations [13]. There can be cycles n that represent the faces
and cycles a that represent the adjacent edges. The cycles n encode what is the ’next’ half-edge on a face. For
example 2 is the next half-edge with respect to 1 in Figure 2.6. Here the cycles for the glued cube in Figure 2.6
are given by

a = (4 5)(10 3)(8 9) · · · (2.3)

n = (1 2 3 4)(5 6 7 8)(9 10 11 12) · · · (2.4)

Additional preliminaries

The dual map is defined as the map build out of the vertices on every face of the original map and links the
new vertices together by making new edges perpendicular to the original edges. Duality changes faces into
vertices and vertices into faces [11]. The idea of a dual map is sketched in blue in Figure 2.7.
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Figure 2.7: The dual map is represented with the blue edges and blue vertices.

A graph is defined to be bipartite when the vertices can be divided into two subsets of black and white ver-
tices where every edge connects a white and black vertex [14, 15]. This also means that the graph is bicol-
orable.

2.3 Conformal field theory

Conformal field theories don’t care about distances, but only angles. Conformal field theories (CFTs) are
quantum field theories that are invariant under conformal transformations. The property of these confor-
mal transformations is that they conserve the angles between vectors [16, 17]. A more formal way to describe
a conformal transformation is by considering this change of coordinates: xα → x̃α(x). Under a conformal
transformation the metric changes by

g̃αβ(x) = Ω2(x)gαβ(x) (2.5)

whereΩ2(x) is an arbitrary non-vanishing function of coordinates xα [16, 17].

An operator for CFTs is the central charge, c. The central charge is a measure for the number of degrees of
freedom in a CFT and therefore an important and useful property of a CFT [17]. One example of a CFT is the
free scalar field. The free scalar field has a central charge, c = 1. N non-interacting free scalar fields will give
c = N [17].
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2.4 Universality

Scale-invariance has a central position in physics. One example of scale-invariance in physics are conformal
field theories discussed in section 2.3.

In the theory of phase transitions there are so-called critical exponents, these exponents are observables that
qualitatively describe the critical behavior of a system near a phase transition [18]. It turns out that these criti-
cal exponents are often not fully independent of each other. The critical exponents may depend on only a few
characteristics of a certain system. Characteristics may be microscopic or macroscopic [18]. A critical expo-
nent that depends just on a few characteristics results in different systems having the same critical exponents.
Systems that display the same critical behavior, thus have similar critical exponents, are said to be in the same
universality class.

An explanation for the origin of the universality classes is found when considering correlations on a micro-
scopic level. If the correlations are large enough to influence macroscopic properties then local/microscopic
details are irrelevant [18]. So when one changes a microscopic detail of a system to get a new system, but the
macroscopic properties do not change, then the two systems are in the same universality class. Even tough
they are different on amicroscopic scale. If a change inmicroscopic details does change themacroscopic prop-
erties then the new system is in a different universality class [19].

In figure 2.8 someplots can be seen of discrete surfaces of different sizeswhere themacroscopic characteristics
match for 2.8a, 2.8b and 2.8c and for 2.8d, 2.8e and 2.8f. It is clear that 2.8d, 2.8e and 2.8f show a branched
structure. It can be said that these surfaces are in the branched polymer universality class. The surfaces of
2.8a, 2.8b and 2.8c look smooth instead and are in a different universality class.
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(a) n = 100, q = 1 (b) n = 500, q = 1 (c) n = 1000, q = 1

(d) n = 100, q = 20 (e) n = 500, q = 20 (f) n = 1000, q = 20

Figure 2.8: 3D visualisation surfaces of the 2-sphere using a spring layout embedding. Geometries (a), (b) and
(c) correspond to two-dimensional quantum gravity to a conformal field theory with a central charge of−2 and the
continuum limit of spanning tree decorated quadrangulations. Geometries (d), (e) and (f) show ’branched polymer’
behavior.
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2.5 Two-dimensional quantum gravity

Two-dimensional quantum gravity can be defined via two routes: via the scaling limit of discrete random ge-
ometries or via Liouville quantum gravity [20]. The two routes both try to solve performing the path integral
over metrics on a surface. Two-dimensional quantum gravity as the scaling limit of discrete random geome-
tries originates from doing a lattice discretization to solve the path-integral [20]. In the lattice discretization
also the lattice itself is variable which is why planar maps are used. Liouville quantum gravity can be seen as
an analytic interpretation of two-dimensional quantum gravity, and it is conjectured to be the scaling limit of
discrete random geometries [21].

Two-dimensional quantum gravity without matter is called ’pure gravity’ which is a universality class with
certain critical exponents. Matter can be introduced in two-dimensional quantum gravity by dressing/cou-
pling the geometry to a critical statistical system with a certain central charge [20]. The coupling changes the
critical exponents and thus allows for discovering other universality classes. Note that the statistical system
is the matter field, so the matter is quite abstract [22].

Liouville quantum gravity is characterized by its coupling constant γ. The ’pure gravity’ universality class
corresponds to the coupling constant γ =

√
8/3 [20, 21]. (Undecorated) uniform quadrangulations in the

continuum limit are an example of ’pure gravity’. Adding matter fields changes the coupling constant, γ, of
Liouville quantum gravity.

Two-dimensional quantum gravity will be coupled to meanders. Specifically, quadrangulations will be dec-
orated by meanders which will change the universality class of the system. Critical exponents can then be
measured to find out the universality class of those systems. These critical exponents which are observables
will be described in the following section. Also, the KPZ formula will be introduced which describes the crit-
ical exponents when a statistical system with a certain central charge is coupled to 2DQG.

Actually, the quadrangulations will be built based on meander configurations. It is a common thing in 2DQG
to build discrete surfaces based on a statistical system. In [22] by Budd and Castro, random surfaces are for
example built by knitting trees which also allows creating random surfaces of a certain universality class.

2.5.1 Observables

The critical exponents are observables of 2DQG. Two critical exponents that will be considered are the Haus-
dorff dimension and the string susceptibility. The Hausdorff dimension describes how geodesic distances
grow on a surface and the string susceptibility describes the roughness or spikiness of a geometry.

String susceptibility

The string susceptibilitymeasures the fractal structure of two-dimensional quantumgravity (2DQG). It quan-
tifies the roughness of a surface [23, 24]. The method to find the string susceptibility is by taking a discrete
surface and counting thenumber of spikes of a certain size,more formally called thenumber of babyuniverses.

A baby universe is like a balloon on a surface connected through a minimal neck, like in Figure 2.9. The
minimal neck is the smallest possible loop in a geometry. More formally, a babyuniverse is defined as a simply
connected area whose boundary length is much smaller than the square root of its area [24]. The area of the
baby universe can be denoted by n and the area of the total geometry by N . The area n of a baby universe
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must satisfy n < N/2.

In the case of quadrangulations the smallest loop or minimum neck is equal to 2 and in the case of triangula-
tions the smallest loop is equal to 3. A baby universe connected through a minimum neck is called a mimbu
short for ’minimum neck baby universe’ [24].

Figure 2.9: Sketch of a geometry with 2 minimal necks indicated by the dashed lines. For the rightmost minimal
neck, the baby universe is indicated in red.

An interesting measure to look at, is the distribution describing mimbu’s of size n. When the genus is set to
zero, g = 0, the partition function of random surfaces in two-dimensional quantum gravity generally grows
asymptotically withN as

Z(N) ≈ eµcNNγs−3 (2.6)

where γs is the string susceptibility. Using this partition function one can approximate the probability for a
mimbu of size n on a geometry of sizeN , given by

p ≈ nZ(n)(N − n)Z(N − n)

NZ(N)
= (n · (1− n/N))γs−2 (2.7)

For calculating the probability of a mimbu of size n on a geometry of sizeN , it is used that a geometry of size
N will be made out of a geometry of size n and a geometry of sizeN − n.

From equation (2.7) one can see that the string susceptibility is easily retrieved by measuring p and then
performing regression on ln p versus ln (n · (1− n/N)). The slope should then measure γs − 2.

Hausdorff dimension

Hausdorffdimension,dH is a critical exponentwhichdescribes thedimensionof a geometry. Forflat geometry
Rd, the dimension d is equal to dH [25]. For self-similar, fractal geometry the Hausdorff dimension is less
trivial. One way to define the Hausdorff dimension is by the scaling of the number of vertices in a geodesic
ball of size r where

V ∼ rdH (2.8)

for the number of edgesn → ∞. The number of vertices on a surface of a geodesic ball grows then like rdH−1

for n → ∞ [26].
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rdH ∼ πr2

rdH−1 ∼ 2πr

Figure 2.10: R2 surface with a circle of area rdH ∼ πr2 and the number of vertices at the distance r is equal to
rdH−1 ∼ 2πr.

A trivial example is the Hausdorff dimension of a circle, see Figure 2.10. The area of the circle πr2 which
should be proportional to the number of dots (vertices) in the circle. Comparing this to equation (2.8) yields
a Hausdorff dimension of dH = 2. The same can be concluded when counting the number of vertices at the
border of the circle which scales like 2πr and thus also yields a Hausdorff dimension of 2.

TheHausdorffdimension can bemeasured using the relations for the number of vertices at a distance r. It will
however be difficult to measure accurately because it is only valid when 1 ≪ r ≪ N1/dH and would thus
require huge system sizes [13]. Away to get around that is by using finite size scalingwhich allows tomeasure
the Hausdorff dimension accurately [13]. The idea of finite size scaling is to rescale the distance profiles in
Figure 2.11 such that they overlap. Finite size scaling will be more practically introduced in section 5.3.2.

0 25 50 75 100 125 150 175 200
r

0.00

0.02

0.04

0.06

0.08

0.10

n(
r)

n = 128
n = 256
n = 512
n = 1024
n = 2048
n = 4096
n = 8192
n = 16384
n = 32768
n = 65536
n = 131072

Figure 2.11: Histogram of ρn(r) of meander decorated geometries with q = 1.
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2.5.2 Relation string susceptibility, Hausdorff dimension and central charge

As mentioned earlier, the critical exponents of two-dimensional quantum gravity change when coupled to a
critical statistical system with a certain central charge c. Here the relations between the central charge, Liou-
ville coupling constant γ, string susceptibility and Hausdorff dimension will be given.

Central to studying the critical behaviour of statistical systems is the KPZ formula founded in the 80s by
Knizhnik, Polyakov and Zamolodchikov [9]. The KPZ formula tells how the critical exponents of the original
statistical system on a flat, regular (Euclidean) system are related to the critical exponents of the statistical
system coupled to 2DQG [9]. Coupling the statistical system to 2DQG can be seen as studying the statistical
system on a random planar lattice [9]. The KPZ formula is a widely used application of Liouville Quantum
Gravity [21]. It is however a conjecture and not rigorously proven [9]. More details about the KPZ formula
can be read in [9] by Christophe Garban.

Using theKPZ formula, the string susceptibility γs can be related to the central charge of the statistical system
by

γs =
c− 1−

√
(c− 1)(c− 25)

12
(2.9)

which is valid for c ∈ (−∞, 1] [20].

The coupling constant γ ∈ (0, 2] of Liouville quantum gravity is related to the central charge by

c = 25− 6

(
2

γ
+

γ

2

)2

(2.10)

where again c ∈ (−∞, 1] [20]. The string susceptibility γs is related to the Liouville coupling constant γ by

γs = 1− 4

γ2
(2.11)

One of the challenges in the field is obtaining a relation between the Liouville coupling constant γ and the
Hausdorff dimension. In [20] Barkley andBudddid numerical research into the relation. Numerical evidence
and earlier derived bounds supports

dH = 2 +
γ2

2
+

γ√
6

(2.12)

proposed by Ding and Gwynne in [27]. Liouville quantum gravity only describes the coupling of a statistical
system to random geometry for c ∈ (−∞, 1] [20] instead of the older Watabiki formula [20]. There is the
c = 1-barrier beyond which the random geometries degenerate into branched polymers, like in Figures 2.8d,
2.8e and 2.8f. This branched polymer phase (shaded in light blue in Figure 2.12) for c > 1 is characterized
by Hausdorff dimension dH = 2 and string susceptibility γs =

1
2 [25]. It is interesting to note that dH = 2

would suggest flat geometry, although branched polymers are not flat geometry [28]. The string susceptibility
γs and the Hausdorff dimension dH are plotted as a function of the central charge c in Figure 2.12.

For c = 0, there is the ’pure gravity’ universality class with the Liouville coupling constant γ =
√

8/3, γs =
−1

2 and dH = 4 [20, 21]. A Hausdorff dimension of 4 is quite high, usual surfaces have a fractal dimension
of 2, so ’pure gravity’ is very fractal [29]. c = −2 corresponds to the universality class of quadrangulations
decorated by a spanning tree [20].
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Figure 2.12: The string susceptibility γs and the Hausdorff dimension dH as a function of the central charge c of
the coupled statistical system are plotted. The highlighted red dots indicate at c = 0 ’pure gravity’ and at c = −2 the
spanning tree decorated quadrangulations universality class. The branched polymer phase, c > 1, is shaded in light
blue. For the Hausdorff dimension equations (2.12), (2.11) and (2.10) were used and for the string susceptibility
equation (2.10).

Being able to sample large and independent random surfaces of a certain universality class can help to col-
lect numerical data on the relation between the Hausdorff dimension and the Liouville coupling constant γ.
Meanders are a statistical system that could possibly to collect numerical data of that relation.
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2.6 Meanders as a conformal field theory coupled to two-dimensional quan-
tum gravity

Matter can be introduced to 2DQG by coupling 2DQG to a statistical system, like meanders. Meanders are
conjectured tobea conformalfield theory coupled to two-dimensionalquantumgravity (2DQG).DiFrancesco
et al. introduced this conjecture in [2] and later numerical evidence and theoretical arguments were put for-
ward in references [1, 3]. Thebasic idea is that themeanders canbe seen as two fully-packed loops on a random
geometry. In the continuum limit, these fully-packed loop models are described by a conformal field theory.
In the following section, the background of meanders as a CFT coupled to 2DQG will be discussed. The goal
is to explain how the central charge of that CFT is derived by Di Francesco et al. Using the KPZ formula in-
troduced in section 2.5.2, the central charge can be used to predict the critical exponents of meanders coupled
to 2DQG.

First, fully-packed loop models on a regular lattice will be introduced in section 2.6.1, then in section 2.6.3,
the two fully-packed loop models will be coupled to 2DQG, which will then be called GFPL2 model. The
two fully-packed loop models are denoted by the FPL2 model. By taking the limits of parameters of the fully-
packed loop model coupled to 2DQG, one can recover meanders and meanders systems. These steps are also
displayed in Figure 2.13.

The intuitive idea of the following section is that the central charge is an indication for the number of degrees
of freedom. The type of lattice and the properties of meanders influence the number of degrees of freedom
and therefore the central charge. Coupling to 2DQG is a change of lattice for the CFT that was first defined
on a regular lattice. Studying a theory in its gravity-form is studying it on a random lattice instead of a regular
lattice.

FPL2(q1, q2)-model GFPL2(q1, q2)-model

Multimeanders

Meanders

2DQG
q1 → 0

q2 → 0

Figure 2.13: Steps to relateFPL2-model tomeanders. TheFPL2-model can be transformed into theGFPL2-model
by coupling themodel to two-dimensional quantum gravity. The coupling is realised by replacing the square lattice of
theFPL2-modelwith randomquadrangulations of the 2-sphere. TheGFPL2-model can again be related tomeanders
and meander systems by taking the parameter q1 → 0 and q2 → 0.
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2.6.1 Fully-packed loop models

The connection ofmeanders to two-dimensional quantumgravity starts by discussing fully-packed loopmod-
els. Fully-packed means that every vertex is visited. In the case of fully-packed loop models, all vertices are
visited by a self-avoiding random walk exactly once [30, 31]. Here fully packed loop models will be studied
on a square lattice which can be seen in Figure 2.14a. The procedure described here is based on the work of
Jacobsen and Kondev and Di Francesco et al. [1, 30].

(a) (b)

Figure 2.14: (a) Square lattice (b) FPL2-model short for two-flavored fully packed loop model. The red loops refer
to roads and the blue loops refer to the rivers. Note: the lattices have periodic boundary conditions in up/down and
left/right directions.

a b

Figure 2.15: Vertices of the fully-packed loop model, (a) ”crossing” vertex and (b) ”avoiding” vertex.

Meanders have twodistinct types of loops, a river and a road, in otherwords twoflavors of loops. It is therefore
natural to look at the two-flavored fully-packed loopmodel (FPL2-model). The FPL2-model can be described
on a square lattice in which two loops visit every vertex once, so two fully-packed loop models. At every
vertex the loops can avoid or cross, see the two vertex types in Figure 2.15. Moreover, two weights q1 and q2
are assigned to the river and the road loop respectively [32]. The model is critical for weights 0 ≤ q1, q2 ≤ 2,
within this area every point (q1, q2) has different universality class when coupled to 2DQG. By assigning
weights to the river and road loops results in the following partition function:

ZFPL2(q1, q2) =
∑

fully-packed loop configurations

qk11 qk22 (2.13)
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where q1, q2 are interpreted as the weights assigned to rivers and roads respectively [1].

Equation (2.13) describes a more general case of meanders where the number of roads and rivers are variable.
The partition function for meander systems is recovered by taking q1 → 0which gives:

Z(q) =
∑

configurations

qk (2.14)

where q = q2 is the weight assigned to the roads and k = k2 is the number of roads. From equation (2.14),
the partition function of meanders is recovered by taking the limit q → 0.

2.6.2 Finding the CFT describing the continuum limit of the FPL2-model

The continuum limit of the FPL2-model can be described by a conformally invariant effective field theory.
The goal is to find the critical exponents of this conformal field theory, which can be done by describing the
FPL2-model using a height model. A height model defines a height h at each lattice site [33]. The height can
be for example a scalar, but here the height will be considered a vector.

Every face in the lattice ofFigure 2.14b is given aheighth. In otherwords, theheighth is assigned to vertices of
the dual map of Figure 2.14b. Now one needs to come up with a set of height rules that define how the height
h changes when going to a different faces (or vertices in the dual map). Firstly, the vertices of Figure 2.14a
need to be bicolorable and for that the map needs to be bipartite (see section 2.2). This can be easily realized
for the square lattice, since a checkerboard pattern easily allows to divide the graph up into two subsets where
only vertices of a different color will neighbor each other. The bicoloring is visualised in Figure 2.16a.

(a) (b)

Figure 2.16: Visualisation of (a) bipartite square lattice with two vertex colors: filled and empty (b) FPL2-
model with orientation of the edges indicated by the arrows and bicolored vertices. The red loops refer to roads and
the blue loops refer to the rivers. Note: the lattices have periodic boundary conditions in up/down and left/right
directions.

Secondly, the loops can be assigned an orientation, like in Figure 2.16b. The orientation and the bicoloring
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allows to define the height rules given in Figure 2.171.

(a) h1 − h2 = A (b) h1 − h2 = B (c) h1 − h2 = C (d) h1 − h2 = D

Figure2.17: The four height rules that determine how the height changeswhen going to an adjacent face by crossing
one of four types of edges. The height rules are drawn as crops of a square lattice with one type of edge. h1 is the
vector-height associated with the face below the edge and h2 with the face above the edge.

The height rules have to be well-defined. In other words, when one makes a closed walk, there should be no
net height change. Making a simple walk around a vertex like in Figure 2.18 results in the following condition
on the height values:

A + B + C + D = 0 (2.15)

which can de derived by applying the height rules defined in Figure 2.16. The procedure is simple, by starting
at h1 one gets h2 = h1 − D, h3 = h1 − D − A, h4 = h1 − D − A − B, h1 = h1 − D − A − B − C which
ultimately results in equation 2.15.

Figure 2.18:Walking around a vertex to ensure that the height is well-defined. h1,h2,h3 andh4 indicate the height
of the face and−D,−A,−B and−C next to the blue dashed line indicate the change of height in the direction of the
arrow.

FromA+B+C+D = 0 can be concluded that there are 3 degrees of freedom and thus the height,h ∈ R3, is
a 3-vector. In the continuum limit, this height model was therefore argued to become a 3D scalar field (CFT)
with the following central charge [1, 30, 34]

1Note that there is a certain ambiguity in choosing the height rules. The height rules are however chosen in such a way that one
should get A + B + C + D = 0 when walking around a vertex. This is the same convention as in references [1, 2] by Di Francesco
et al.
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c = 3− 6

(
e21

1− e1
+

e22
1− e2

)
(2.16)

where e1 and e2 are related to q1 and q2 by:

qi = 2 cos (πei) (2.17)

where q1 and q2 are the weights assigned to the river and road respectively and ei is constrained by 0 ≤ ei ≤
1/2. The derivation of the central charge is rather technical and can be found in detail in [30] by Jacobsen and
Kondev.

2.6.3 Coupling the FPL2-model to gravity

Taking the limit q1 → 0 and q2 → 0 of the FPL2-model does not give meanders [1, 3]. The correct statisti-
cal system can be retrieved by coupling the FPL2-model to gravity, which is then called the GFPL2-model.
Coupling the FPL2-model to gravity means that the square lattice is changed to a random planar four-valent
graph, i.e. random quadrangulations. This change is not trivial, since not every planar four-valent graph is
bicolorable and so the height rules must change. When the bicolorability of vertices is removed, the first two
edges and last two edges in Figure 2.17 will be the same. The new height rules are given in Figure 2.19.

(a) h1 − h2 = A (b) h1 − h2 = B = −A (c) h1 − h2 = C (d) h1 − h2 = D = −C

Figure2.19: The four height rules that determine how the height changeswhen going to an adjacent face by crossing
one of four types of edges. Note however that there are effectively only two edge types because the vertices are not
bicolored. The height rules are drawn as crops of a square lattice with one type of edge highlighted. h1 is the vector-
height associated with the face below the edge and h2 with the face above the edge.

From the height rules one can also see that the new conditions to keep the height model well-defined are
A + B = 0 and C + D = 0. Now the height model has only two degrees of freedom, resulting in a central
charge of

c = 2− 6

(
e21

1− e1
+

e22
1− e2

)
(2.18)

where one sees a c → c− 1 shift with respect to the former central charge given by Equation (2.16) [1].

Losing the bicolorability means that the ”avoiding” vertex in Figure 2.15b, will become irrelevant for the
GFPL2-model. It is argued in [1] by Di Francesco et al. that the disappearing of this ”avoiding” vertex is not
problematic. One of the reasons is that meanders with this ”avoiding” vertex, called tangent meanders, have
exactly the same universality class as meanders. So the ”avoiding”/tangency points can just be neglected.
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Nowone can take q1 → 0 in Equation (2.18) to get to the case of one-infinite river, i.e. meander systems. This
corresponds to e1 = 1

2 which gives

c = −1− 6

(
e2

1− e

)
(2.19)

where e2 = e is substituted and q = q2 = 2 cos (πe)where q is the weight assigned to roads in the meander
systems.

Now several remarks about meanders and multi-meander systems can be made. First, 0 ≤ q ≤ 2 which
translates to c ∈ [−4,−1]. A geometry decorated with a multi-meander system can therefore be tuned such
that it corresponds to a CFTwith a central charge c ∈ [−4,−1] coupled to 2DQG. For the puremeander limit
q → 0, one finds 2DQG coupled to a CFT with central charge c = −4.

2.6.4 Critical exponents of meanders

Now that the central charge of the statistical system coupled to 2DQG is known, theKPZ formula can be used
to extract the critical exponents. In Figure 2.20b, the critical exponents γs and dH are plotted as a function of
q using Equation (2.9) and Equation (2.19). Note however that those conjectured formulas are only valid up
to q = 2. For q > 2, Di Francesco et al. made several predictions. For 0 ≤ q ≤ 2 every point is expected to be
in a different universality class. This can be clearly seen because between 0 ≤ q ≤ 2 the string susceptibility
and Hausdorff dimension change continuously as a function of q. This red shaded region also corresponds
to the red region in Figure 2.20a with the only difference the x-axis. For q > 2 the model is no longer critical
and corresponds to the branched polymer phase shaded in blue. At q = 2, a phase transition to the branched
polymer phase is predicted.
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(a) (b)

Figure 2.20: (a) Central charge of coupled system versus the string susceptibility γs and the Hausdorff dimension
dH . For theHausdorff dimension equation (2.12)was used. Shaded in red are the central charges theGFPL2-model
can achieve by tuning theweightq. (b)The string susceptibilityγs and theHausdorff dimensiondH are plotted versus
the weight q. The red shaded area corresponds to the same range of universality classes. The same goes for the blue
area. The red dots in the red shaded region correspond to the same universality class (spanning tree) with c = −2 in
both plots. Note that the vertical-axis is the same for both plots.
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2.6.5 Studying the GFPL2-model

There are two non-rigorously proven steps used above. Firstly, the KPZ formula is not rigorously proven.
Secondly, the connection between meanders and the fully packed loop model coupled to meanders is also not
rigorously proven but made based on reasonable arguments made above and more presented in [1, 2]. A sys-
tem that is similar to theGFPL2(q1, q2)-model are randomquadrangulations. In the following the connection
between the GFPL2(q1, q2)-model and random quadrangulations will be made.

The GFPL2(q1, q2)-model can be studied using random quadrangulations [3], in the following section will
be argued why this approach is correct. Firstly, one takes a square lattice and four-colors (1, 2, 3, 4) all the
vertices, like in Figure 2.21a. The square lattice here is also face bicolorable. On this lattice, the height rules of
Figure 2.21b can be chosen and for a consistent height model A = −B and C = −D. This change of height
is equivalent to the GFPL2(q1, q2)-model [3].

(a) (b)

Figure 2.21: (a) Quadrangulations of which the vertices are four-colored and the faces bicolored. (b) Height rules

As seen in section 2.2, maps can be built by glueing polygons. Here a quadrangle with the ”avoiding” vertex
in Figure 2.22 is taken as the polygon/building block. The horizontal half-edges in Figure 2.22 are called the
shore half-edges because the road indicated with the red dashed line crosses them.

Glueing rivers to rivers results in a row of quadrangles and then one can glue the roads based on a certain
meander configuration resulting in a quadrangulation, see Figure 2.23a. Embedding the systemon a flat plane
then results in Figure 2.23b.
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Figure 2.22: The building block for building a quadrangulations of the 2-sphere. Road indicated by the red dashed
line and the river indicated by the blue dashed line.

(a) (b)

Figure 2.23: (a) Drawing of a quadrangulation based on a meander configuration. (b) Embedding of the quadran-
gulation of Figure a on the flat plane.
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2.7 Predicting the string susceptibility for multi-meanders

(a) (b)

Figure 2.24: (a) Sketch of how quadrangles can be glued into a geometry using a meander configuration as the glue
rule. The baby universe/mimbu is indicated in red. (b) 2D representation of the planar map of the geometry. Here it
is clear that the faces painted red are only connected to the rest of the geometry through a minimum neck of size 2.
The minimum neck is indicated by the red edges. The root edge is indicated by the arrow and the root face is the face
right of the root edge.

In section 2.5.1, the string susceptibilitywas introducedwhichmeasures the roughness of a surface. Amimbu
corresponded to a minimum neck baby universe, i.e. a piece of the geometry only connected through a mini-
mum neck of size 2. For meanders the equivalent of a mimbu is an area of the meander that is only connect-
ed/contained via the river to the rest of the structure and has no roads leaving. It is a meander system that
you could take out and replace with another meander system without changing the rest of the structure. For
clarity, such a ’meander baby universe’ is drawn in Figure 2.24. It is clear in Figure 2.24 that the red baby
universe is connected only through 2 edges which is the minimum neck. For q = 1, the total amount of me-
ander configurations of size n is given by Equation (2.2). This allows to calculate the probability for finding
a ’meander baby universe’ of size n and ultimately make predictions about the string susceptibility at q = 1.
The probability for a ’meander baby universe’ of size n defined as p is given by:

p =
2(cn)

2(cN−n)
2

(cn)2
(2.20)

where cn are the Catalan numbers. It should be noted that N and n in this case correspond to the order of
the meander. This means that the number of faces of the geometry is always even, because there is one face
per bridge and a meander of orderN has 2N bridges. The mimbu’s therefore also need to consist of an even
number of faces, because it must be possible ’to take a mimbu out’. There will however still be 2N possible
starting positions for the ’meander baby universe’ of order nwhich explains the factor 2 in the numerator.

From theprobability defined inEquation (2.20), one can try tofind the asymptotic behavior and then compare
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it to Equation (2.7) to find the analytic string susceptibility.

In order to expand the Equation (2.20), the asymptotic approximation of the Catalan numbers is used

cn =
4n

√
πn3/2

(
1 +O

(
1

n

))
(2.21)

which when substituted into Equation (2.20) gives

p =
2

π

N3

n3(N − n)3

(
1 +O

(
1
n

))2(
1 +O

(
1

N−n

))2

(
1 +O

(
1
N

))2

=
2

π
(n · (1− n/N))−3

(
1 +O

(
1
n

))2(
1 +O

(
1

N−n

))2

(
1 +O

(
1
N

))2

(2.22)

Comparing the (n ·(1−n/N))−3 term in Equation (2.22) to (n ·(1−n/N))γ−2 in equation (2.7) describing
the probability of finding a baby universe of size n, gives for the string susceptibility a value of γ = −1 for
q = 1, which corresponds to the critical exponents found in section 2.6.4.

Equation (2.22) can be used to fit the string susceptibility by substituting−3 by γs − 2which gives

p =
2

π
(n · (1− n/N))γs−2

(
1− c(n)−d

)2 (
1− c(N − n)−d

)2
(
1− c(N)−d

)2 (2.23)

where alsoO
(

1
n

)
is substituted by−cn−d and c anddwill be fit parameters determined by fitting. The signs

in front of the free parameter have been determined by comparing the approximation (Equation (2.23)) to the
analytic result and setting the free parameters such that for q = 1, c > 0, d > 0 one gets the best fit. The
approximation can be seen in Figure 2.25 where γ = −1, c = 1 and d = 1.

From Figure 2.25, it is clear that the probability for a mimbu of size n approaches the analytic probability for
meanders with a mimbu in the asymptotic. Furthermore, the same goes for the approximation of the analytic
result.
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Figure 2.25: Plot of p versus n
(
1− n
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)
on a logarithmic scale. The measured data in the plot is taken from a

meander system of n = 128 and q = 1. The analytic graph is Equation (2.20) with exact values for the Catalan
numbers cn. The approximation is based on Equation (2.23) with γ = −1, c = 1, d = 1. The probability for
mimbu of size n is based on the approximation from Equation (2.20).
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CHAPTER3

Methods

3.1 Markov chain Monte Carlo Techniques

In order to study the conjectures by Di Francesco et al. about meanders, geometries decorated with meanders
will be generated using Markov Chain Monte Carlo Techniques. Markov chain Monte Carlo was introduced
by Nicholas Metropolis et al. in 1953 [35]. The main goal of Markov chain Monte Carlo techniques is sam-
pling a certain probability distribution π(x).

In Monte Carlo techniques there are actually two main directions, direct sampling and Markov chain sam-
pling. The latter will be used here. With the former, direct sampling, one can for example calculate the area
of a circle by generating random coordinates in a square and checking whether the distance to the origin is
smaller than 1 [36]. An example is given in Figure 3.1 where using a 1000 samples π is approximated to be
3.16.

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0

Figure 3.1: Direct Monte Carlo sampling with 1000 samples estimates π ≈ 3.16.
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Markov chain sampling will be used here because it doesn’t sample all configurations or states but only the
states most relevant which makes it more efficient than direct sampling [37]. Markov chain Monte Carlo is
based on a Markov chain. The Markov chain can be represented by X1, X2, X3, · · · ∈ Γ, Γ is a state space
andXi can be seen as a state in the Markov chain. The defining property of the Markov chain is the Markov
propertywhich states that the probability of the next configuration,Xi+1, only depends on the preceding con-
figuration,Xi [13, 36]. A nice way of saying this: ”The future depends on the past only through the present”
by Joseph [38].

For a Markov chain to have the desired stationary distribution π(x) there are two requirements: ergodicity
and detailed balance. Ergodicity says that all possible configurations have to be reachable in the Markov
chain if the Markov chain is run for sufficiently long [37]. Detailed balance says that the probability current
between two states ν and µ should be equal. The detailed balance condition is given by

π(ν)P (ν → µ) = π(µ)P (µ → ν) (3.1)

where P is the transition probability. Using the transition probability, one can define a stationary distribu-
tion as the distribution that satisfies

π = P · π (3.2)

whereP is theMarkovmatrix or transitionmatrix that encodes the transition probabilities between the differ-
ent states [38]. In other words, the distribution π(x) is in equilibrium when it is an eigenstate of the Markov
matrix.

The goal is to use these Markov chains to calculate useful properties. For that one can define an observable
f : Γ → R. So the function f translates the sampleXi into a real number.

Metropolis-Hastings algorithm

The Markov chain converges to the correct distribution π(x) when detailed balance and ergodicity are sat-
isfied. One needs to find an algorithm to generate a new configuration Xi+1 out of Xi that satisfies detailed
balance and ergodicity. The Metropolis-Hastings algorithm is suitable for this. The Metropolis-Hastings al-
gorithmconsists of two steps: proposing and accepting, visualised inFigure 3.2. First the ”proposer” generates
a new configuration ν from the original configuration µ with probability g(µ → ν). The new configuration
ν is then rejected or accepted based on a certain acceptance probabilityA(µ → ν). So g(µ → ν) quantifies
the preference or bias that the algorithm has to generate a configuration ν fromµ. The acceptance probability
A(µ → ν) fixes the probabilities in order to satisfy detailed balance. Also, one should make sure that the
”proposer” satisfies ergodicity.

But what should one choose as the acceptance probabilityA(µ → ν)? The first step is to split the transition
probability P (µ → ν) (from Equation (3.1)) up into P (µ → ν) = g(µ → ν)A(µ → ν). Now one can
calculate the ratio of the transition probabilities as

P (µ → ν)

P (ν → µ)
=

g(µ → ν)A(µ → ν)

g(ν → µ)A(ν → µ)
,
π(ν)

π(µ)
=

g(µ → ν)A(µ → ν)

g(ν → µ)A(ν → µ)
(3.3)
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Proposer
g(µ → ν)

Acceptor
A(µ → ν)

ν νµ

Figure 3.2: Algorithm

where the detailed balance condition (Equation (3.1)) is used to go from the transition probability to the ratio
of the probability distribution. Rewriting Equation (3.3) gives

A(µ → ν)

A(ν → µ)
=

π(ν)g(ν → µ)

π(µ)g(µ → ν)
(3.4)

To satisfy Equation (3.4) the acceptance probability can be chosen as

A(µ → ν) = min
(
1,

π(ν)g(ν → µ)

π(µ)g(µ → ν)

)
(3.5)

which makes sure detailed balance is satisfied.
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3.1.1 The flip algorithm

(a) n = 3 (b) n = 3

(c) n = 3 (d) n = 3

Figure 3.3: Sketch of the algorithm to propose new meander configurations. (c), (d) is the map that one gets when
(a), (b) are embedded on a flat plane. The algorithm transforms (a) into (b) and (c) into (d). The blue dashed line
represents the road and how the quadrangles should be glued together. The river flows perpendicular to the blue edges.
The red outlined lined vertex indicates the relevant vertex for the flip and v is the number of shore edges connected a
red-lined node. The red and dark grey are the shore edges. The shore edges are perpendicular to the road (they can
also be seen as the ’bridge pillars’). In (a),

Here the algorithm to propose a newquadrangulationXi+1, decoratedwith ameander system, from the origi-
nal configurationXi will be introduced. In Figure 3.3a, the flipmove can be regarded as cutting the two arcs at
the locations indicated with the red crosses. Then in Figure 3.3b, the red shore edges are glued back together
but switched. The computer understands the quadrangulations as a combinatorial object described by cycles
of the next and adjacent edges. For finding the exact proposal algorithm, one should look at Figures 3.3c and
3.3d. The interpretation of the move in Figures 3.3c and 3.3d is described in the following.
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In Figure 3.3c, a shore half-edge i is selected by randomly sampling one of all the shore half-edges. Shore
edges are indicated by the red and dark grey lines in Figure 3.3. The shore edges are perpendicular to the
roads and roads are indicated by the blue dashed line. There are a total of 4n shore half-edges and therefore
the shore half-edge with index i is selected with a probability 1

4n . In Figure 3.3c, the dotted red half-edge
pointing to the red outlined vertex is the initially selected shore half-edge. From the other half-edges pointing
to the redoutlinedvertex, a newshore edge j is randomly selected. InFigure 3.3c, thenon-dotted redhalf-edge
is the newly selected shore edge. There are v − 1 other shore half-edges pointing to the vertex and thus the
probability for picking a shore half-edge j is 1

v−1 . The amount of shore half-edges pointing to the red outlined
vertex in Figure 3.3c is equal to v = 3.

The procedure to generate configuration ν from µ is done by un-glueing the initially selected shore half-edge
and the new selected shore half-edge from their adjacent edges and then re-glueing to the adjacent edges
switched. In Figure 3.3d, the resulting new configuration ν is drawn. The un-glueing and re-glueing is demon-
strated in Figure 3.4 where i is the initially select half-shore edge, a(i) is the adjacent half-edge of i, j is the
new half-shore edge and a(j) the adjacent half-edge of j. The glueing changes from i ↔ a(i), j ↔ a(j) to
i ↔ a(j), j ↔ a(i), where a(i) and a(j) refer to the old glueing.

Figure 3.4: Detailed drawing what happens around the flip vertex indicated by the red outlined vertex. The drawing
is a part of Figure 3.3c and Figure 3.3d with the same meaning to colors and dotted edges. On the left is the initial
state µ, in the middle the un-glued state and on the right the re-glued new state ν.

The probability for selecting a certain new configuration ν is g(µ → ν) = 1
4n

1
vµ−1 where v is the amount

of shore half-edges pointing to the red outlined vertex. The probability for going from state ν to state µ is
similarly given by g(ν → µ) = 1

4n
1

vν−1 .

With the introduced information about the proposing algorithm, the acceptance probability can be derived.
TheMetropolis-Hastings acceptance probability fromequation (3.5) can be used to sample based on the prob-
ability distribution π(x) [13]. The partition function for the meander systems from section 2.6.1 is given by

Z =
∑

configurations

qk (3.6)
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and the probability distribution is then given by

π(x) =
1

Z
qk(x) (3.7)

where k is the number of components and q is the weight of the roads. Substituting g and π into Equation
(3.5) gives

A(µ → ν) = min
(
1, qkν−kµ · vµ − 1

vν − 1

)
(3.8)

which is the acceptance probability to accept or reject a proposed configuration.

The algorithm proposed in this section allows generating Markov chains of these meander configurations
where q, the weight assigned to the roads, is variable.
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3.1.2 Practical Markov-Chain Monte Carlo

One can only perform measurements when the probability distribution is stable, and the samples should be
independent of one another to get accurate error estimates. The analysis of Markov chain Monte Carlo data
involves several steps: finding the equilibration time, finding the correlation time and estimating the error.
These practicalities will be described in this section.

It is best to start with small system sizes on which many flips can be performed in little time. This way, one
can check that the Markov chain is discovering the entire state space and thus ergodicity holds [38].

Convention and notation

MCMC
sampler

Observable
f : Γ → R

Collector
(x1, x2, . . . , xN ) ∈ D

Xi ∈ Γ xi ∈ R

Figure 3.5: Performing aMarkov chainMonte Carlo Experiment

As defined in section 3.1, the Markov chain can be represented byX1, X2, X3, · · · ∈ ΓwhereXi is a state
in the Markov chain. One can perform measurements on these statesXi using an observable f : Γ → R, for
example f(Xi) = kcomponents(Xi). For simplicity from here on, xi shall refer to a sample of an observable in
the datasetD ofN measurements. The idea is sketched in Figure 3.5 where xi = f(Xi) ∈ D.

The values of a variable xi will be distributed according to a certain probability distributionP (x). One prop-
erty to characterise this probability distribution is the standard deviation, σ, which is the square root of the
variance. · · · indicates an average overN data points and ⟨· · ·⟩ indicates the average over a distribution. The
mean is then defined asµ ≡ ⟨x⟩ and the standard deviation isσ2 ≡ ⟨(x−⟨x⟩)2⟩ [39]. This notation is based
on a summary by Peter Young about data analysis [39].

The goal is estimate µ and σ using the data points. For that the sample mean, x̄, and sample variance, s2, are
defined by:

x̄ =
1

N

N∑
i=1

xi (3.9)

s2 =
1

N

N∑
i=1

(xi − x̄)2 (3.10)

whereN is the number of data points [39].

Performing many repetitions of the experiment gives the best estimate of the mean µ as

µ = x̄ (3.11)

and the best estimate for the variance, σ2, by
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σ2 =
N

N − 1
s2 =

1

N − 1

N∑
i=1

(xi − x̄)2 (3.12)

which follows from equation (3.10).

One can now define the standard error, Sx̄ which is the standard deviation on the mean, x̄ given by

µ = x̄± Sx̄ (3.13)

where, if all xi and xj are statistically independent, Sx̄ is given by

Sx̄ =
σ√
N

=
s√

N − 1
(3.14)

Sx̄ =

√√√√ 1

N(N − 1)

N∑
i=1

(xi − x̄)2 (3.15)

where σ is the standard deviation and N is the number of data points [39]. Equation (3.15) follows from
equation (3.14) by substituting equation (3.12). The standard error given by equation (3.15) is unbiased [39].
The notation Sx̄ is chosen to really emphasize that it is a statistical error or standard deviation of the mean
and NOT the standard deviation. For a detailed and clear derivation of the quantities described have a look
at [39] by Young.

Equilibration time

Since a Markov chain depends on its history and the initial conditions, the chain has to equilibrate. The
unequilibrated part of the Markov chain must be removed in order to only work with a properly equilibrated
chain. This means that the equation to calculate the expectation value for the observable f must be slightly
changed to

f =
1

n− b

n∑
i=b+1

f(Xi) (3.16)

whereXi is a state in the Markov chain and where b is the cut-off.

The first variable to find is the equilibration time τeq and choose bwell above the equilibration time τeq. Time
in theseMarkov chains are the number of performed flips. For simplicity, this can be expressed in the number
of sweepswhich is the average number of flips per element of the system. In the case ofmeanders, the number
of sweeps will be defined as the average number of flips per bridge. So a sweep will be defined as 2n flips.

1 sweep = 2n flips (3.17)

wheren refers to the order of the meander. A sweep corresponds performing on average one flip per bridge or
face.
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Correlation time

The Markov chain is statistical method that uses randomness to approximate a certain distribution. The
Markov-chain changes when one performs flips. Performingx flips can be interpreted as a time-axis and sam-
ples on this time-axis are correlated. The correlation means that the state Xi and Xj in the Markov chain
are correlated, and thus not statistically independent. The standard method of estimating the statistical error
given by equation (3.15) is invalid for a Markov chain.

For an observable f , one can quantify this correlation by the autocorrelation function. The autocorrelation
function is the normalized autocovariance given by

Γa =
1

N − a

(N−a)∑
k=1

(fk − ⟨f⟩)(fk+a − ⟨f⟩) (3.18)

and the autocorrelation function is given by

ρa =
Γa

Γ0
(3.19)

The normalized sample autocovariance that estimates the normalized autocovariance is given by

γa =
1

N − a

(N−a)∑
k=1

(xk − x̄)(xk+a − x̄) (3.20)

where xi ∈ D and the sample autocorrelation function is then given by [13, 38]

ρ̄a =
γa
γ0

(3.21)

The autocorrelation function can be approximated by an exponential exp (−t/τ)where τ is the so-called au-
tocorrelation time. One method of determining the autocorrelation time is therefore by fitting an exponential
to the autocorrelation function [13]. The other method is using τint which is the integrated autocorrelation
time given by [38]

τint =
1

2
+

M∑
a=1

ρa (3.22)

Taking M → ∞ would give a high uncertainty since we would consider the autocorrelation over a small
section of the Markov chain (as can be seen from equation (3.18)) which causes a higher variance. To get
around this problem a cut-off should be chosen [38]. One can chooseM as the firstM that satisfies

M ≥ 4τint + 1 (3.23)

for which τint is the autocorrelation time, so τint = τ .

Fitting an exponential to the autocorrelation function is demonstrated in Figure 3.6a. In Figure 3.6a, the eas-
iest method is for fitting an exponential is used: namely by checking where the exponential intersects with
1/e. This works because at t = τ , e−t/τ = 1/e. The other method is using least-mean squares/regression
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and transform to a logarithmic scale for that, however a cut-off should be implemented since the tail of the
autocorrelation function will be noisy [37]. In Figure 3.6b, fitting based on the τint-method is demonstrated
by finding the firstM for whichM ≥ 4τint + 1.
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Figure 3.6: Measurements of the autocorrelation time τ in sweeps. (a) The autocorrelation time is measured by
finding the intersectionwithγ/γ0 = 1/e. (b) The autocorrelation time is fitted using the τint-method. Themeasured
autocorrelation times by averaging 24measurements are (a) τ = 0.498±0.006 and (b) τ = 0.516±0.008. The
different measurements are indicated with the dotted lines.

Using the autocorrelation of an observable of the Markov chain, the statistical error of the Markov chain can
be studied. The promise of this method is to be more effective than binning strategies which will be later
introduced [38].

The statistical error Sx̄ for an observable f with a correlated dataset (x1, x2, . . . , xN ) ∈ D is given by

Sx̄ =

√√√√√1 + 2τ/∆t

n− 1

 1

N

N∑
i=1

(xi − x̄)2

 (3.24)

where τ is the autocorrelation time that was defined earlier and ∆t is the measurement interval. The mea-
surement interval is introduced such that the information saved is less ambiguous because themeasurements
will be less correlated. Equation (3.24) has some properties, if the autocorrelation time τ is very small, one
finds the usual definition for the statistical error, like in equation (3.15). When τ ≫ ∆t and n ≫ 1, equation
(3.24) can be simplified. First, use n ≫ 1 and n = tmax

∆t which gives

Sx̄ =

√
∆t(1 + 2τ/∆t)

tmax
s2 (3.25)

and now use τ/∆t ≫ 1 resulting in
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Sx̄ =

√
2τ

tmax
s2, Sx̄ =

√
2τ

n∆t
s2 (3.26)

where it must be emphasized that this formula is only valid under the assumptions: n ≫ 1 and τ ≫ ∆t,
i.e. many samples per autocorrelation time τ and the measurement interval must be way smaller than the
autocorrelation time. Equation (3.26) shows that one can choose the most convenient measurement interval
∆t. We should however keep the assumptions in mind [37].

Taking themeasurement interval∆t to be equal to2τ is themost natural definition of statistical independence
[37]. This follows from taking∆t = 1 in equation (3.26) which results in

Sx̄ =

√
2τ

n
s2 (3.27)

Taking∆t = 2τ would have resulted in the standard formula for the statistical error of the observable f . This
is not true, since ∆t = 2τ does not satisfy τ/∆t ≫ 1. The correct error for samples taken at ∆t = 2τ can
be derived from equation (3.24), which yields

Sx̄ =

√
2σ2

n
=

√
2
(
S

statistically independent
x̄

)2
(3.28)
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3.1.3 Error analysis

In this section binning, bootstrap, stationary bootstrap and jackknife will be introduced as another way to
estimate statistical errors.

Blocking, binning, bunching or batching

The binning method, also known as blocking method or batching method, splits the Markov chain into Nb

equal sized bins of length m [13, 36, 37, 40]. By taking the average of each bin, one can interpret the Nb

averages as performing the experiment Nb times. The opinion about binning for estimating errors is mixed.
Although, with the right procedures and checks, binning can give good results. As described by Krauth in
[36], it is useful to do binning for different bin sizes. In the case of working below the correlation time of the
Markov chain the error will be underestimated since the averages of the bins will then also be correlated. For
bin sizes larger than the autocorrelation time, one expects to find the same and correct error. This can be seen
in Figure 3.7where the error flattenswhen the bin sizem is sufficiently large. For very large bin sizes the error
of the error will increase because the total number of binsNb will be low. The batching method will thus give
good results for bin sizes way larger than the autocorrelation time (while still having sufficient bins to get an
accurate statistical error).
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Figure 3.7: Demonstration of the binningmethod on aMarkov chain. The observable is the number of components,
k. The statistical error versus the bin sizes is plotted in the diagram. We can clearly identify the statistical error
increasing for larger bin sizes and thus fewer bins. The region where bins are independent can also be identified. The
properties of the system: a measurement interval∆t = 1, size n = 128 and number of samplesN = 227 =
1, 34218 · 1018. Smallest bin sizem = 2 and smallest number of binsNb = 32.
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Bootstrap method

The bootstrap method is a resampling method of a dataset D of size n, x1, x2, x3, . . . , xn, one samples ran-
domly n data points resulting in a new dataset xRNG(1), xRNG(2), . . . , xRNG(n). In the new dataset, there can
beduplicate elements, on average63%will be duplicates. From this new resampled dataset, one can again cal-
culate the average denoted by ci [37]. Typically, one resamplesm times, som new datasets andm averages,
c1, c2, . . . , cm. Lastly, the final statistical error is calculated by:

Sx̄ =

√√√√ n∑
i=1

(ci − c)2 =

√
c2 − c̄2 (3.29)

The Bootstrap method promises to also handle correlated data [37].

A slightly modified version of the Bootstrap method is Stationary bootstrap. Stationary Bootstrap adds a
resampling probability p. The resampling probability results in resampling subsequences of typical lengths
1/p of the original data [13]. Here insert.....[41].

Jackknife method

The jackknifemethod, somewhat similar to leave-one-out cross-validation, createsndatasets from theoriginal
data set, but the ith element of the original dataset is left out. The averages of these datasets can be called ci.
The error estimate is then given by [37]

Sx̄ =

√√√√ n∑
i=1

(ci − c)2 =

√
c2 − c̄2 (3.30)

Jackknife is best fit for smaller datasets since it creates n new datasets from one dataset of length n. Jackknife
only works with uncorrelated data [37]. Jackknife is typically used to calculate the statistical error of the final
results of an experiment conducted 10 times.
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3.1.4 Performing Monte Carlo simulations

In the previous section, it was discussed that Markov chains are correlated. Storing information about every
state in the Markov chain is inefficient. It is best to measure at a rate r, as described in Figure 3.8.

Two good variables to control are the number of sweeps and the number of measurements per sweep. These
two variables have a natural relation with the autocorrelation and statistical error and thus one can intuitively
change the accuracy. Here these quantities are related to each other.

Markov chain

Total number of sweeps

b r r r . . .

X1 X2 X3 X4 Xn

Figure 3.8: Markov chainMonte Carlo simulation setup, where b ≥ τeq

ρsamples is the number of measurements per sweep (density). This translates to a rate r = 2n
ρsamples

and a total

number of measurements nmeasurements =
nsweeps2n

r .
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3.2 Phase transitions

Measuring and identifying phase transition is an important problem in physics. First one must introduce an
order parameter, ϕ, which is a local observable of the system that is ϕ = 0 for q > qc and ϕ ̸= 0 for q < qc.
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Figure 3.9: Made-up plot of histogram of k-components of meander configuration in a Markov-chain double that
shows a double-peak structure at qc.

At the critical point qc of a phase transition, onewould expect to find configurations of both phases at the phase
transition. In the case of aMarkov chainMonteCarlo simulation, theMarkov-chainwill then contain samples
from both phases, which results in a histogram with two peaks, in other words a double-peak structure like in
Figure 3.9. The Markov chain then jumps between two metastable states [25].

InFigure3.9, thedoublepeak structure is clearlyvisible. That ishowevernot always the case and thereforeone
needs a tool to measure deviations from a Gaussian distribution. For that, one can use the Binder cumulant.
The Binder cumulant is defined as

U4 = 1− ⟨f4⟩
3⟨f2⟩2

(3.31)

where ⟨f⟩ is the order parameter.

When thedistribution isGaussian the relation: ⟨f4⟩ = 3⟨f2⟩2, will cause theBinder cumulant to go to zero. If
the Binder cumulant is calculated for different system sizes versus a parameter (take theweigth q for example)
then the graphs of the different system sizes should cross at a point qc [42, 43]. For large systems sizes, the
Binder cumulant,U4, should beU4 → 0 for q > qc andU4 → 2/3 for q < qc for system sizeL → ∞[44].
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CHAPTER4

Research question, goals and setup

Di Francesco et al. conjectures that meanders are governed by a conformal field theory (CFT) coupled to
two-dimensional quantum gravity (2DQG). Several predictions are made about the phases and the associ-
ated critical exponents of 2DQG coupled to meanders, see section 2.6.4. This also leads to a general research
question: is there numerical evidence that verifies or falsifies the conjecture that meanders are governed by
CFT coupled to 2DQG?

From this the following goals and research questions can be formulated:

• The goal is to study the predicted phase transition to the branched polymer phase for q > 2. This
phase transition is however quite special since there are not two distinct phases. Instead, the phase is
predicted to change continuously for 0 ≤ q ≤ 2 and jump to a branched polymer phase for q > 2.

• Can the phase transition at q = 2 be measured using the Binder cumulant with the number of roads/-
components as the order parameter?

• Does the predicted string susceptibility as a function of q match the numerical results? The string sus-
ceptibility will be explicitly looked at for q = 2 where Di Francesco et al. report deviations from their
numerical simulations in [3] and [1].

• Does the predicted value Hausdorff dimension as a function of q match numerical results? The predic-
tions for theHausdorffdimension are calculated from the string susceptibility. The string susceptibility
γs is related to the Liouville coupling constant γ which can be related to theHausdorff dimension using
the Ding and Gwynne formula, see Equation (2.12).

Numerical studies of the critical exponents of meanders have been done in the past. In [1] by Di Francesco
et al. in 2000, all meanders were enumerated up to n = 24 [1] which allowed to measure critical exponents.
In [45] by Golinelli in 2000, meanders were sampled up to n = 400 using a Monte Carlo method which was
based on a recursion relation. In [46] by Jensen and Guttmann in 2000, all meanders were enumerated up
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to n = 48 using a new algorithm that they developed. In [46], they also show that the conjectured critical
exponent predicted for semi-meanders (one road does not cross the river but instead goes around the river)
could be incorrect [46]. A review [47] byLegendre in 2014mentions a new algorithm from2012 to enumerate
semi-meanders and open meanders by [48]. For this work however only closed meanders will be studied.

Little to no numerical work has been done on large size (n > 1000) closed meander systems. This work
will try to fill this knowledge gap using the in section 3.1.1 developed Markov chain Monte Carlo flip. The
Markov chainMonteCarlomethod allows generating configuration up ton = 262144 and evenhigherwhich
are sizes never studied before. Also, the Hausdorff dimension has never been measured for random surfaces
decorated with meanders. Using these novel techniques, the aim is to find new numerical evidence about the
conjecture that meanders are governed by 2DQG.
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4.1 Setup

Performing the Markov chain Monte Carlo simulations is done by writing a C++ program that implements
the flip algorithm developed in section 3.1.1. The implementation contains a few non-trivialities in order to
optimize the performance such that the time-complexity of the flip algorithm scales likeO(logn)where n is
the system size of the meander.

For calculating the acceptance probability, it is required to know the number of roads of the meander system.
The number of roads are tracked using ”dynamic permutations” that can be cut and linked inO(logn) time.
The dtree library by David Eisenstat (www.davideisenstat.com/dtree/) is used, which implements dynamic
sequences based on Splay trees. Splay trees are invented by Sleator andTarjan in 1985 [49]. The dtree library
byDavid Eisenstat library is used because it already implements a lot of the functionality required formaking
”dynamic permutations” possible. The dynamic sequences of the library were used to implement ”dynamic
permutations”, in other words permutations that can be cut and linked inO(logn) time.

In C++ also routines for measuring distance profiles and finding baby universes were implemented. The pro-
gram also handles the creation of labeled files encoded in JSON [50]. Managing the compilingwas done using
CMake and the GNU GCC 9.4.0 compiler was used to compile the sources on the clusters. Catch2 was used
to write some unit tests for testing different sizes and measuring the performance.

The implementation of the algorithm has a performance of 18.8 ms for 10000 flips at system size n = 100.
For system size n = 1000000, it takes about 80 ms to perform 10000 flips. The implementation therefore
scales reallywell in terms of performancewhen increasing the system size. This allows to study largemeander
systems.

The data analysis took place in Python (Anaconda3-2022.05 and Python 3.9.12) using mostly Numpy, Pan-
das, Scipy and Scikit-learn.
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CHAPTER5

Results

UsingMarkovchainMonteCarlo simulationsquadrangulations gluedbasedonmeander configurations/quad-
rangulations decorated by meanders were sampled. The numerical results are presented in the following
sections and contain the number of components, Binder cumulant, string susceptibility and the Hausdorff
dimension. For the number of components, a detailed analysis was done of the different error estimation
techniques for Markov chain Monte Carlo. Note that if not otherwise noted the system size n refers to the
order of the meander system.

5.1 Number of components

To study the predicted phase transition, the number of components k is studied as a function of the order of
the meander system n and the weight q. The number of components k is the number of roads in a meander
system. Also, the Binder cumulant is calculated to further investigate the predicted phase transition.

5.1.1 Preliminaries

Thermalization time

As described in Figure 5.1, the Monte Carlo sampler requires a measuring rate k at which the Markov chain
will be measured and the total number of measurements nmeasurements that need to be performed. The goal is
to only save to the disk what is needed. It will be assumed that the order of magnitude of the thermalization
time will be around 10− 100 sweeps. It is therefore also assumed that the thermalization time scales linearly
with the system size.

For the following measurements, the sample density, was chosen to be ρsamples = 64 samples per sweep. The
number of values for a 1000 sweep run is therefore limited to a maximum of 64.000 samples independent of
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Figure 5.1: Setup for measuring thermalization time

the system size n. Now the thermalization time can be determined using Figure 5.2. Based on Figure 5.2, a
very safe thermalization time is chosen of 512 sweeps. The assumption that the thermalization time grows
linearly with the system size is also true based on Figure 5.2. The following safe thermalization time given by

τeq = 512q ≈ 512 · exp (abs(log (q))) (5.1)

which is chosen by also taking into account the thermalization graphs for different values of q.
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Figure 5.2: Markov chain of the number of components k. The measurements are taken at q = 1 for different
system sizes n. A sweep corresponds to 2n flips.. Note that not all data is visible in this plot. The sampling rate is
1
64 sweeps.

Unfortunately, the thermalization cannot be compared to an analytic average number of components for me-
anders, which would be given by

⟨k⟩ =
∑
k

k · M
(k)
n

Mn
(5.2)

since there is no analytic formula forM (k)
n . Next up the autocorrelation of the Markov chain should be calcu-

lated. This allows to estimate a measuring rate for sampling uncorrelated/independent samples.
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Autocorrelation time

In Figure 5.3, the autocorrelation time is plotted determined by the τint method, see section 3.1.2.
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Figure 5.3: Measurements of the autocorrelation time τ in sweeps for different system sizes as a function of the
weight q. The autocorrelation time is fitted using the τint-method.

Now all the variables to measure the number of components systematically are collected.
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5.1.2 Error analysis

The goal is to estimate the error with an accuracy of 20 − 30% of the correct error. For the k-components
simulation, six methods were used to estimate the standard error (see Table 5.1). The dataset consists of mea-
surements of the number of components, k, every 2τ autocorrelation times. The methods for estimating the
error were introduced in section 3.1.3. The first method ”Standard mean error” refers to simply using the
standard deviation and dividing by the square root of the number of data points, the autocorrelation is then
neglected. The second method uses the autocorrelation and Equation (??) to correct the statistical error of
the first method. The third, fourth, fifth and sixth methods are binning, jackknife, bootstrap and stationary
bootstrap respectively. They are described in section 3.1.3.

Error estimates of the different methods are displayed in Table 5.1. One can observe that the ”Standard mean
error” estimate equals the ”Jackknife” estimate. The standard error of the ”Autocorrelation”, ”Binning”, and
”Stationary Bootstrap” are similar. The ”Bootstrap” estimate is somewhere in the middle with respect to the
other error estimates.

Table5.1: Error estimates,Sk̄ , of the differentmethods introduced in section 3.1.3. The observable isk-components
of ameander system. Themeasurements are taken at 2τ autocorrelation times and theN = 131072measurements
and theMarkov chain consists ofN = 2.7 · 108 flips. The measuring rate, r = 2τ = 2048.

Method Sk̄

Standard mean error 0.037
Autocorrelation 0.052

Binning (m = 1024) 0.050
Jackknife 0.037
Bootstrap 0.039

Stationary bootstrap (p = 0.005) 0.045

For binning, a plot is made in Figure 5.4 of the standard error Sk̄ versus the bin size m. In the plot, one can
see that the error flattens from around a bin size ofm = 1024. The bin size should therefore be at leastm =
1024. Note that the measurements are taken at 2τ autocorrelation times, thus having 2048 autocorrelation
times worth of data yields reliable binning estimates. 2048 autocorrelation times for q = 1 are equivalent to
1024 sweeps.

The error estimated using the standard mean error and jackknife doesn’t take into account the correlation
of the data, contrary to binning and the autocorrelation method. Autocorrelation and binning give the most
accurate results and Figure 5.4 allows to check the hypothesis that the data is correlated, but if the bins are
large enough the data becomes uncorrelated and the statistical error stops increasing.

For the stationary bootstrap, the data is resampled at sequences of about 1/pwhich is typically chosen on the
order of the autocorrelation time. For this dataset, which is sampled at every 2τ , one should choose p = 1
which is the regular bootstrap estimate. By trail and error p = 0.005 or 1/p = 200was chosen since this best
resembled the errors found with the autocorrelation and binning methods. It must be noted that 1/p = 200
has the same order of magnitude as the start of the flattening for the binning analysis which will most likely
explain the better results.

In conclusion, the valid methods are: binning with a bin size of m = 1024, stationary bootstrap and auto-
correlation. The stationary bootstrap will however not be used anywhere for two reasons: estimating an extra
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Figure 5.4: Example of binning analysis with the standard error Sk̄ of the number of components k versus the bin
sizem. Parameters: system size n = 1024 and weight q = 1.0. The total length of the Markov chain isN =
131072. A bin size of 1 corresponds to measurements taken every 2τ autocorrelation times with autocorrelation
times from section 5.1.1.

parameter p adds unwanted complexity and the randomness involved in the resamplingmakes the error non-
deterministic.

Now the question arises for binning: what is the minimum amount of data required to get an accurate error?
In Figure 5.5, a comparison between the binning and autocorrelation method was made. The different lines
indicate different experiments with different system size n and weight q. The y-axis is the ratio between the
error by the binning, Sbinning divided by the error by autocorrelation, Sautocorrelation. On the x-axis, the dataset
is increased, while keeping the bin size (m = 1024) the same. The most important observation is that all
the lines converge to 1 when the number of bins/the amount of data in the data set is increased, thus the
autocorrelation and binningmethod give consistent results for a large enough dataset. The convergence of the
lines in Figure 5.5 is also quite symmetric. The same plot for m = 512 would show convergence to a value
below 1 because the error would then be underestimated by binning.

In Figure 5.6, the standard deviation is calculated by σ = Sk̄ ·
√
N . The

√
N correction makes the plot inde-

pendent of the number of data points, but it will allow to study the fluctuations of the error when the number
of data points increases. In Figure 5.6, one can clearly see that independent of the number of measurements
the autocorrelation gives very consistent results. Binning is more fluctuative but it converges to the autocor-
relation for larger data sets. The stationary bootstrap is also reasonable, but does not converge as much as
”Binning”. One could however conclude that the autocorrelation method produces accurate errors even with
small datasets.

Figure 5.7 shows the amount of error estimates within the 30%-goal. The x-axis is the size of dataset and the y-
axisSbinning divided bySautocorrelation. Figure 5.7measures the deviation of the binning error from the autocor-
relation error, so it is assumed that the autocorrelation error is the best error which is a reasonable assumption
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Figure 5.5: On the x-axis one can find the number of measurements and the number of bins between these two
quantities is a constant factor ofm = 1024 which is bin size of for binning error estimate. The y-axis is the ratio
between the error by the binning divided by the error by autocorrelation. The different lines correspond to different
experiments of the k-components. The lines are made from a combination of q = 1.0, 2.0, 2.5, 3.0 and n =
256, 512, 1024, 2048, 4096, 8192 totalling 24 lines.

basedonFigure5.6. Theexperimentwasdone for24Markovchainswith sizesn = 256, 512, 1024, 2048, 4096, 8192
and weights q = 1.0, 2.0, 2.5, 3.0. The amount of calculated binning errors that reach the 30%-goal are 84%
for 8 − 16 bins, 92% for 16 − 32 bins, 95% for 32 − 64 bins, 100% for 64 − 128 bins, 100% for 128 − 256
bins. So at least 64 bins are required for accurate binning errors when performing measurements every 2τ ,
i.e. at least 65536measurements at a rate of 2τ .

The conclusionof this analysis: autocorrelation is averypowerful tool to estimate errors and the errors are con-
sistent with results from binning. The autocorrelation method yields more consistent results also for smaller
datasets, thus reducing the computational power needed for simulations. If autocorrelation is not applicable
in a situation, one could resort to binning.
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Figure5.6: The standard deviation,σ, versus the number ofmeasurements every2τ . Measurements taken of system
with n = 8192 and q = 1.0. Stationary Bootstrap with p = 0.005 and binning with bin sizem = 1024. The
upper x-axis indicates theNb number of bins for the ”Binning” analysis.
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Figure 5.7: 2D-histogram of the graphs in figure 5.5. The histogram is normalized over the y-axis such that one can
see the percentage error estimates within a certain factor of the autocorrelation estimate perNb number of bins. The
percentage of errors with less than 30% deviation with respect to the error estimate using autocorrelation is given by
84% for 8− 16 bins, 92% for 16− 32 bins, 95% for 32− 64 bins, 100% for 64− 128 bins, 100% for 128− 256
bins.
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5.1.3 Results

Figure 5.8 verifies a few expectations, for a low q k̄/n, approaches 0 which is expected because in the limit
q → 0one should recovermeanderswith just1 road. For ahighq, k̄/n is approaching1which is also expected,
because the maximum number of roads is equal the order of the meander system, n = k, so k̄/n → 1.
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Figure 5.8: Plot of the average number of components k̄ normalized over n versus the weight q. The error bars are
smaller than the markers and determined by binning. The parameter q is varied in steps of 0.1 around q = 2.0 and
for the rest with a step size of q = 1.0.

In Figure 5.8, it becomes clear that at q = 2, there is no kink for the number of components k. One can
also see that there seems to be a certain bias, the higher the system size n the more k̄/n decreases (red below
blue dots). In order to argue that this is caused by working on a discrete system the difference from the value
k̄/n for the largest system size nl (in this case nl = 262144) is plotted in Figure 5.9. The bias decreases for
n → ∞.
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Figure 5.9: Plot of∆(k̄/n) versus the size n where∆(k̄/n)i = ki/ni − kl/nl and nl , kl correspond to the
largest size nl = 262144.
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Figure 5.10: Plot of the Binder cumulantUL versus q. The binder cumulant is given by equation (3.31) in section
3.2. Note errors bars are determined using binning and small, most too small to see.

Figure 5.10 does not show curves that intersect at one point for any q. This is not the expectation since q = 2
was expected to be the critical point of the phase transition. A binder cumulant of 2/3would indicate q < qc.
So what can explain this discrepancy?

• The Binder cumulant might not be the right method to study this kind of phase transition. The model
is special because for 0 < q < 2 there is a kind of ’constant’ phase transition. Every configuration from
0 < q < 2 is in a different universality class. For q > 2, the conjecture expects that there would be just
one phase, the branched polymer phase.

• Onemight be tempted to lower q even further, that is certainly a possibility, but computationally speak-
ing the acceptance rates of the Markov Chain Monte Carlo simulation will only decrease.

A possible explanation for not seeing a phase transition is because the number of components is a local prop-
erty. It does not necessarily take into account large scale behavior. There is no direct connection to the number
of roads all the way on the left in the drawing in Figure 5.11 with respect to the number of roads on the right.

The drawing in Figure 5.11 is a bit misleading because the width of the structure seems to indicate whether
there is aminimumneck and thus a baby universe. Baby universes are however a property of the 2-sphere and
everymeander that can be taken out forms a baby universe. There aremore baby universes than indicated by
the outline of the drawing.
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Figure 5.11: Sketch of random surface decorated with a meander configuration
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5.2 String susceptibility

The string susceptibility was introduced in section 2.5.1. The string susceptibility can be extracted from the
size distribution of baby universes. A large amount of data is required because the asymptotic (i.e. large min-
imum neck baby universes) of the distribution contains the most valuable information. These large baby
universes in the asymptotic are however very rare. The distribution of baby universes was measured for dif-
ferent values of the weight q and were fitted to obtain the string susceptibility as a function of q. Histograms
of the sizes of baby universes found in the Markov chain were collected to find the size distribution of baby
universes. The measurement interval was taken at an interval of 128 τ(n, q) autocorrelation times, which
was estimated using binning for 1 < q < 10. The total dataset consists of 1.85 years of CPU-time. The
number of independent measurements per q and system size n are given in section A.1. In the following, the
measured results at q = 1 are first compared to the analytic results. Secondly, the numerical measurements
are used to measure the string susceptibility as a function of q using an earlier derived fit function based on
the distribution of baby universes around q = 1. Thirdly, the results of alternative fitting methods will be
discussed. Lastly, the string susceptibility as a function of the weight q allows to study the phase transition
conjectured at q = 2.
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Figure 5.12: Plot of p, the probability for a meander baby universe of size n. The plots are made for (a) meanders
of orderN = 128 and (b) meanders of orderN = 512.

For q = 1, an analytic formula for the probability p of a baby universe of sizenwas derived as Equation (2.20)
in section 2.5.1. In Figure 5.12, p is plotted as a function ofn(1−n/N) for two sizesN = 128 andN = 512
wheren is the order of the meander baby universe andN is the order of the meander. Small baby universes
correspond to smalln(1−n/N), larger baby universes correspond to largen(1−n/N). The largest possible
meander baby universe has order n = N/2. Figure 5.13, shows that large baby universes are very rare and
unfortunately the probability for finding them decreases cubically with the order of the meanderN .

In Figure 5.13, the analytic probability is compared to the measured data, by dividing pmeasured/panalytic.
The x-axis is transformed as n(1 − n/N). The probability for the small baby universe coincides accurately.
For the larger sizes the data is noisy but centered around 1. The numerically measured size distribution of
baby universes at q = 1 therefore matches the analytic results.
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(a)N = 128, nmeasurements = 8.874456 · 106, CPU-time ≈ 217.2 hrs.
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Figure 5.13: Comparison of measured probability to analytic probability to find a minimum neck baby universe
(mimbu) of size/order n. The analytic probability is given by Equation (2.20).

For the other values of the weight q, there is no analytic formula to compare the numerical results to. The
string susceptibility can however be measured and there are several ways to do that which will be introduced
in the following.

5.2.1 The approximation fitting method

In section 2.7, an approximation of the probability for a meander baby universe of size n at q = 1was turned
into afit function for the string susceptibilityγs, seeEquation (2.23). The string susceptibilities obtainedusing
this fitting method are plotted in Figure 5.14. The results at q = 1 are excellent. Assuming that the values of
different system sizes n can be combined using a weighted average gives γs = −0.99284 ± 0.00022 which
is very close to the correct value γs = −1. This accuracy is not unexpected because the fit function is based
on the analytic results for q = 1. The slight deviation that still exists can be attributed to systematic errors of
the fitting procedure. The approximation itself introduces a systematic error since making an approximation
loses information. For 1 < q < 2 in Figure 2.23, the results clearly deviate from the conjectured relation,
how can this be explained?

In order to find out, the probability for a meander baby universe of size n is fitted to numerical data to extract
the string susceptibility for two different values of q. The numerical data and fits for q = 1 and q = 2
for system size n = 512 are plotted in Figures 5.15a and 5.15b respectively. The q = 1 fit yields γs =
−0.99197± 0.00031which is similar to the expected γs = −1.0. For q = 2, the fit yields γs = −0.5872±
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Figure 5.14: Fitted results of the string susceptibility γs as a function of the weight q using the fit function given by
Equation (2.23).

0.0008which is quite different from the conjectured γs = −0.7676. More precisely, for q = 1 the deviation
is only about 0.008where for q = 2 the deviation is 0.1804. The fitted string susceptibility γs at q = 2 clearly
does not match with the conjecture. In Figure 5.15b, it is however visible that the fitted function for q = 2
does not fit the data well. The asymptotic of the fit is slightly above the asymptotic of the numerical data in
Figure 5.15b. Compare that to q = 1 in Figure 5.15a where the fit is exactly centered in the asymptotic of the
data. Thus fitting based on the approximated fit function at q = 1might not be correct for different values of
q.
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Figure 5.15: Fitting of Equation (2.23) to p versusn(1−n/N) to extract the string susceptibility γs. The system
sizeN = 512. (a) corresponds to q = 1 and (b) corresponds to q = 2.

At q = 1 the analytic formula for the probability of a meander baby universe of size n was expanded and
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turned into a fit function given by Equation (2.23) in section 2.7.

5.2.2 Linear fitting

In [23] by Ambjørn et al., two methods are introduced to fit the probability for a baby universe of size n to
find the string susceptibility: a linear fit and a fit using a more sophisticated fit function. From the logarithmic
p versus (n(1 − n/N)) plots (like Figure 5.15) it is clear that the asymptotic is a straight line which will be
fitted using the linear fitting method. Linear fitting itself is however inaccurate because only the asymptotic
is straight, and therefore a cutoff needs to be introduced. In [23], they introduce a cutoff such that only baby
universes of size n ∈ [nc, N/2] are used for fitting where nc is the cutoff andN/2 is the maximum size baby
universe.

More formally the linear method works by fitting y = ax + b to the numerical data where y = ln p and
x = lnn(1− n/N) where a and b are fit parameters. The slope a can be related to the string susceptibility
using γs = a+ 2, which can be derived using Equation (2.7).

The second fitting method introduced by Ambjørn et al. in [23] is by fitting the following function to the
numerical data:

ln (p · n) = a+ (γs − 2) ln

(
n

(
1− n

N

))
+ b/n (5.3)

where a and b are fit parameters. This fit function will be called the ”baby” fit1.

In Figure 5.16, the linear, baby and the approximation fit have been plotted as a function of the cutoffnc. The
approximation-fit works very well for q = 1 (Figure 5.16a) but again fails for q = 2 (Figure 5.16b) even
with cutoff. The linear and baby fit work well for both q and the linear fit converges a bit faster than the baby
fit. The baby fit will therefore not be further used. For the linear and approximation fit the statistical error of
the numerical data is taken into account. For the baby universe, the statistical error is not taken into account
because in that case it tends to only fit well on areas with a low statistical error.

The linear fit approaches the string susceptibility for increasing cutoff nc. The final string susceptibility can
therefore be extracted by fitting the following ansatz to the results of the linear fit:

γs(nc) = γs − ce−dnc (5.4)

where c and d are fit parameters and γs is the final string susceptibility. This exponential is plotted in Figure
5.16c and yields a string susceptibility γs = −0.9638 ± 0.0019. This method of obtaining the string sus-
ceptibility has a higher systematic error than the approximation fitting method in section 5.2.1, but it should
work more accurately and reliable on all values of 1 < q < 10. In the following, this method will be referred
to as the linear+exponential method.

In Figures 5.16a and 5.16b, another fitting method was used called Random sample consensus RANSAC.
RANSAC is able to get a better convergence than the linear and baby fit. It works roughly by randomly sam-
pling what data is considered for the fit and choosing the best least-squares fit [51, 52]. The sampling removes
outliers from the data. This method does however not take into account the statistical error of the data and
will therefore not be used, but it might be interesting for future use.

1The name ”baby” fit originates from the name of the article ”Baby universes in 2d quantum gravity” [23] by Ambjørn et al..
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Figure 5.16: Comparison of the different fitting methods in (a) and (b) for respectively q = 1 and conjectured
q = 0.7676. In (c), an exponential is fitted to the linear fit results as a function of the cutoff nc. Note that the error
bars in (a), (b) and (c) are determined by the covariance matrix and are often smaller than the markers.
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5.2.3 Results

In Figure 5.17, the string susceptibility is plotted as a function of q for different system sizes n. The lin-
ear+exponential method introduced in section 5.2.2 is used for the fitting with a maximum cutoff nc = 80.
The results in Figure 5.17 show a better correspondence to the conjectured relation between the string sus-
ceptibility and the weight q, than the results for the approximation fit in Figure 5.14.
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Figure5.17: Fitted results of the string susceptibilityγs as a function of theweight q using linear+exponential fitting
and amaximalnc = 80. Errors are determined by the covariance matrix of the least-squares fit and smaller than the
markers.

At q ≈ 8.5, the larger system sizes go from having a lower string susceptibility γs to having a higher string
susceptibility with respect to the smaller system sizes. This location could be identified as a special point,
qc ≈ 8.5. The region of the point qc is cropped in Figure 5.18, where it is more clear that all the sizes exactly
switch around when comparing q = 7.0 and q = 9.0.

It turns out that doing a linear fit with a set cutoff can also yield consistent results. The results for linear fitting
with the cutoff set to 30 is given in Figure 5.19. The region around the point qc is again cropped in Figure 5.20.

The correspondence of the conjectured relation between the string susceptibility and the weight q is plotted
in Figures 5.17 and 5.19 by the blue line. For 1 ≤ q ≤ 2, the numerical string susceptibility follows a similar
shape to the conjectured string susceptibility. Approaching q = 2, the measure string susceptibility starts
to deviate slightly. For q > 2, the numerical string susceptibility clearly deviates, the kink is not visible.
How can this result be interpreted? The conjectures that meanders are governed by 2DQG is made in the
continuum limit. Here, the conjecture is studied using discrete geometries which can cause discretization
effects explaining the continuous transition from q = 2 to the branched polymer phase. It must however be
noted that extrapolating q → ∞ seems to approach the string susceptibility γs = 1/2which corresponds to
the branched polymer phase.
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Figure5.18: Fitted results of the string susceptibilityγs as a function of theweight q using linear+exponential fitting
methodwith amaximalnc = 80. Errors are determined by the covariancematrix of the least-squares fit and smaller
than the markers.
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Figure5.19: Fitted results of the string susceptibilityγs as a function of theweight q using linear fittingwith a cutoff
of 30. Errors are determined by the covariance matrix of the least-squares fit and smaller than the markers.

This kind of smooth transition from 2DQG coupled to a CFT with c < 1 to branched polymers is also
commonly observed in literature, for example in [53] where they measure a phase transition from c = 1
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Figure5.20: Fitted results of the string susceptibilityγs as a function of theweight q using linear fittingwith a cutoff
of 30. Errors are determined by the covariance matrix of the least-squares fit and smaller than the markers.

to branched polymers and from c = 0 to branched polymers. For the meanders a phase between c = −1 and
branched polymers is studied. It is however difficult to call it a real phase transition because for q < 2 the
system is continuously changing phase.

Also, an explanation needs to be given for the larger system sizes having a larger string susceptibility with
respect to the smaller system sizes for q higher than qc ≈ 8.5. The naive explanation would that for q < qc,
the fits approaches the string susceptibility of the phase at q = 2, and for q > qc one could say that the
fits approach the string susceptibility γs of the branched polymer phase γs = 1/2. The reality is however
probably more complex. One could make a very rough approximation of the probability p for a meander
baby universe of size n by

p ∼ nγs−2

(
1 +

(
n

N1(q)

)−δ1
)

(5.5)

where n refers to the total system size and N1(q) is a system size dependent on q. For n < N1(q), δ1 will
be added to the string susceptibility resulting in an effective string susceptibility γeffective

s ≈ γs + δ1. For
n > N1(q), the string susceptibility will be equal to γeffective

s ≈ γs. The assumption in Equation (5.5) says
that the string susceptibility should only increase or decrease at a set q when the system size is varied. To
explain the results seen around qc ≈ 8.5 higher order corrections are required.
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In [1], Di Francesco et al. report that their numerical results get worse when approaching q = 2 from below.
They measured a string susceptibility higher than expected. In Figure 5.21, the results for the string suscep-
tibility at q = 2 are plotted using the linear fitting with cutoff nc = 30 and linear+exponential method with
nc = 80. Here like in [1], the string susceptibility is higher than the conjectured value. The values for the
string susceptibility γs seem to approach the conjectured value for larger system sizes n. The linear fitting
method has a systematic error that can be reduced by increasing the cutoff, however for increasing the cutoff
more numerical data is required.
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Figure 5.21: Fitted results of the string susceptibility γs at q = 2 using linear fitting with cutoff nc = 30 and
linear+exponential method with nc = 80. The errors are determined using the least squares covariance matrix.
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5.3 Hausdorff dimension

The Hausdorff dimension describes the dimension of a geometry, and it was first introduced in section 2.5.1.
In Figure 2.20 the conjectured dependence of dH on the weight q was plotted2. In the following, numerical
evidence will be presented to support this conjecture. TheHausdorff complements the stringsusceptibility as
an observable because it is computationally less expensive to measure for a lower q ∈ [0, 2]where the string
susceptibility γs is easier to measure for a higher q ∈ [0, 2]. The string susceptibility is therefore measured
for q ∈ [1, 2]. The Hausdorff dimension will be used to study q ∈ [0, 1].

5.3.1 Setup

The Hausdorff dimension has been measured for two values, q = 0.2 and q = 1. The Hausdorff dimension
at q = 1 allows to check the overall validity of the simulations and compare to other Hausdorff dimension
measurements like in [20] by Barkley and Budd. The simulations take about 1/q longer when below q < 1,
therefore q = 0.2was chosen as a compromise between the computational power required and approaching
the meanders with just one road for which q → 0.

Measuring the Hausdorff dimension is performed by measuring the distance profile of geometries produced
by the Markov chain Monte Carlo simulation. The distance profile is the probability ρ(r) to find an edge or
face at a distance r. One can measure distance traversing the edges which is called the graph distance or the
distance traversing the faces which is called the dual graph distance. The two types of distances are visualised
in Figure 5.22. Both graph and dual graph distances have been measured.

Figure 5.22: The dual graph distance traverses faces and is displayed in blue. The graph distance traverses edges
and is displayed in red.

The distance profiles are taken from a certain randomly picked origin face or edge which results in very fluc-
tuant distance profiles. This can be reduced by measuring the distance profile from multiple random points
in the geometry. The sample rate,nsamples, defines howmany times the distance profile ismeasured. Here the
sample rate is put to nsamples =

n
16 which translates to approximately 0.2% − 80% CPU-time on measuring

for respectivelyn = 128 andn = 131072 for q = 1. Spending 80% CPU-time measuring is not optimal, but
for all the other sizes the percentage is below 50%.

2The Hausdorff dimension is calculated using the conjectured Ding and Gwynne formula which depends on the Liouville cou-
pling constant γ.
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For q = 1, a total of 11520 independent measurements were taken at an interval of 512 sweeps. The inter-
val of 512 sweeps was determined by doing a binning analysis and determining the minimal bin size m for
independent measurements. The 11520 independent measurements consist of 720Markov chains with dif-
ferent seeds. The 11520 independent measurements are split up into 10 batches with 1152 measurements.
In every batch the statistical error of the distance profile is calculated using the standard error. The maximum
measured system size is n = 131072. The simulations are worth 1.15 years of CPU-time for q = 1.

For q = 0.2, a total 2304measurements were taken at a rate of 2048 sweeps, also determined by performing a
binning analysis. The 2304measurements consisted of 144Markov chains. Themaximummeasured system
size is n = 32768. The total dataset is divided up into 9 batches and is worth 22.3 days of CPU-time.

5.3.2 Finite-size scaling

Finite-size scaling can be used to estimate critical exponents. Finite-size scaling measures the scaling of r
as a function of N by rescaling the distance profile [13]. Here finite-size scaling will be used to extract the
Hausdorffdimension from thedistance profiles. Thedistance profile of a systemof sizen is denoted byρn(r).
The distance profiles of size n can be rescaled as

lim
n→∞

n1/dHρn(xn
1/dH ) = ρ(x) (5.6)

which is assumed to converge to ρ(x) forn → ∞ andx > 0 [20]. In otherwords, the distance profiles should
overlap which they do for the correct Hausdorff dimension dH .

The ideal way to perform this finite-size scaling and collapse the distance profiles is described by Barkley
and Budd in [20]. Collapsing the distances profiles is performed by fitting distance profiles ρn(r) of differ-
ent sizes n to the largest distance profile ρn0(r) of size n0. This corresponds to taking the function x →
knρn(k

−1
n x) and fitting it to the function x → ρn0(x). The tails of the distance profiles are cut off by

ρn(r) ≥ 1/5max ρn(r) because they are influenced by discretization effects [20].

Practically speaking, the distance profile ρn0(r) are interpolated linearly. The datasets of the distance pro-
files consist of x⋆ = (x1, x2, . . . , xn), and ρn = (ρn(x1), ρn(x2), . . . , ρn(xn)). The datasets describe
the function x⋆ → ρn(x

⋆). For the collapse the x⋆ will be rescaled and the values of the new x are then
given by: xik−1

n = x⋆i which yields xi = x⋆i kn. So x will be equivalent to changing the datasets to x =
x1kn, x2kn, . . . , xnkn. Thedistanceprofileswill be rescaled toρ′n = (knρ

′
n(x1), knρ

′
n(x2), . . . , knρ

′
n(xn)).

Also, the statistical error Sρn(r) of the distance profiles is taken into account for the collapsing.

To improve the accuracy of the collapse, a shift s ∈ R can be introduced by

lim
n→∞

n1/dHρn(xn
1/dH − s) = ρ(x) (5.7)

which will still yield correct finite-size scaling results [20]. Firstly, the shift sn must be determined which can
be done by taking the function x → knρn(k

−1
n (x+ sn)− sn) and fitting it to the function x → ρn0(x). The

shift s can be determined by the weighted average of the fitted values of sn [20]. Using the shift s, kn can be
determined by fitting x → knρn(k

−1
n (x+ s)− s) to x → ρn0(x) [20, 22].

An estimate for the Hausdorff dimension is given by [20]
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dH(n) =
log (n0/n)

(kn/kn0)
(5.8)

The Hausdorff dimension can be more accurately determined by fitting kn to the following ansatz

kn ≈
(

n

n0

)− 1
dH

(
a+ b

(
n

n0

)−δ
)

(5.9)

where a and b are fit parameters with a ≈ 1, |b| ≪ 0 and δ > 0 [20, 22].

5.3.3 Results

In Figure 5.23, the results of measuring the Hausdorff dimension for q = 1 without shift s are plotted as
a function of the system size n. Equation (5.8) is used to calculate dH(n) in Figure 5.23 from the fitted kn.
The errors are determined by jackknife by using 10 batches. The predictedHausdorff dimension by theDing
and Gwynne formula (see Equation (2.12)) is equal to dH = 3.58 and drawn with the dashed line in Figure
5.23. The measured Hausdorff dimension by dual graph distance and graph distance approach the predicted
value as the system sizen increases. It is however clear that a larger system size is required to find out to what
value the estimates approach. By fitting Equation (5.9), the Hausdorff dimension was further determined to
be for the dH = 3.331 ± 0.016 dual graph distance and dH = 3.290 ± 0.011 for the graph distance. The
raw fit results can be found in Table A.11 for the dual graph distance and in Table A.12 for the graph distance.
In Figure 5.24, the collapsed distance profiles of the graph and dual graph distance are plotted for the fitted
Hausdorff dimensions.
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Figure 5.23: Measuring the Hausdorff dimension dH at q = 1. The expected Hausdorff dimension is dH = 3.58
by Ding and Gwynne.

Introducing the shift s changes the results significantly. The determined values for the shift s at q = 1 are
s = 3.297 for the dual graph distance and s = 5.229 for the graph distance. Fitting using the shift s yields
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Figure5.24: Finite-size scalingof the dual graphdistance andgraphdistancewithHausdorff dimensions determined
from fitting with Equation (5.9). The used Hausdorff dimensions are dH = 3.331 ± 0.016 for the dual graph
distance and dH = 3.290± 0.011 for the graph distance.

the results in Figure 5.25 where again the errors have been determined using jackknife and the Hausdorff
dimension is calculated using Equation (5.8).

The results in Figure 5.25 aremore accurate thanwithout the shift and even coincidewith the predictedHaus-
dorff dimension by theDing andGwynne formula (see Equation (2.12)). TheWatabiki formula for theHaus-
dorff dimension is also plotted. The Watabiki formula is an older conjectured relation between the Liouville
coupling constant γ and the Hausdorff dimension that was contradicted by numerical simulations in [20].
The dual graph distance and graph distance seem to favour the Ding and Gwynne formula for larger system
sizes, but the statistical error is too large to make any hard conclusions.

Fitting using the ansatz Equation (5.9) yields for the dual graph distance dH = 3.5598 ± 0.0028 and for
the graph distance dH = 3.540 ± 0.006. The statistical error on these values is determined by jackknifing
and fits with a statistical error larger than 1 on the Hausdorff dimension were removed. The removed fits also
do not respect the a ≈ 1, |b| ≪ 0 of the ansatz. The full fit information can be found in Table A.13 for the
dual graph distance and inTableA.14 for the graph distance. The collapsed distance profiles for themeasured
Hausdorff dimensions can be found in Figure 5.26. Lastly, the values determined using these fits are in the
range of 3.54−3.56which is lower than the conjectured values of theHausdorff dimension ofdH = 3.58. By
looking at Figure 5.25 however, it seems reasonable that when the simulations are extended to larger system
sizes the Hausdorff dimension will converge to the conjectured value at q = 1.
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Figure 5.25: Plot of the Hausdorff dimension at q = 1 calculated with Equation (5.8) for the finite-size scaling
with shift s. The statistical errors are calculated by jackknifing 10 batches.
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Figure5.26: Finite-size scalingof the dual graphdistance andgraphdistancewithHausdorff dimensions determined
from fitting with (5.9). The usedHausdorff dimensions are dH = 3.5598± 0.0028 for the dual graph distance and
dH = 3.540± 0.006 for the graph distance.
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For q = 0.2, the results are displayed in Figure 6.1. The maximum system size used for q = 0.2 is n0 =
32768 in comparison to n = 131072 for q = 1. The statistical errors on have been determined by jack-
knifing. The fit results of Equation (5.9), for the Hausdorff dimension are dH = 3.3394 ± 0.0024 for the
dual graph distance and dH = 3.355 ± 0.019 for the graph distance. This is again lower than the expected
Hausdorff dimension of dH ≈ 3.40, but considering Figure 6.1 the estimates for the Hausdorff dimension
could certainly approach the conjectured value of dH ≈ 3.40 for larger system sizes.
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Figure 5.27: Plot of the Hausdorff dimension at q = 0.2 calculated with Equation (5.8) for the finite-size scaling
with shift s. The statistical errors are calculated by jackknifing 9 batches.

In Figure 5.28, a summary is given of all the results of the Hausdorff and string susceptibility measurements.
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Figure 5.28: Summary of the results of the Hausdorff dimension dH from section 5.3 and string susceptibility γs
from section 5.2. The lines indicate the conjectures values of the Hausdorff dimension and string susceptibility.
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CHAPTER6

Conclusions and outlook

A discrete surface can be built based on a meander configuration and Di Francesco et al. conjectured that in
the continuum limit thesediscrete surfaces are two-dimensional quantumgravity (2DQG).Themain research
question was, is there numerical evidence that verifies or falsifies this? Predictions about the string suscepti-
bility and Hausdorff dimension conjecture have been checked using numerical evidence. Additionally, the
expected phase transition for q > 2 has also been studied.

To check the conjectured relations Markov chain Monte Carlo techniques were used to sample geometries
built bymeander configurations. The sampling can be controlled by theweight qwhich is theweight assigned
to the roads. The number of roads, string susceptibility and Hausdorff dimension of the sampled geometries
have been measured as a function of the weight q.

The number of roads/components k was studied as an order parameter for the expected phase transition for
q > 2. Thenumberof roadsk as a functionofqwashowever smooth for allmeasured sizes. Theanalysis using
Binder cumulant of the number of roads did not show any signs of a phase transition. A possible explanation
for this might be that the number of roads is not a good order parameter. In conclusion, no phase transition
was measured when using the number of components as an order parameter.

Measuring the string susceptibility was more fruitful. The measurements matched the analytic results for the
string susceptibility at q = 1. The string susceptibility was fitted using several methods. Fitting based on an
approximation of the analytic result at q = 1 gave good results at q = 1 for the string susceptibility but poor
results for other values of q. Fitting using the linear fitting methods worked best and uses the least amount
of assumptions which results in more reliable string susceptibility measurements. Between 1 < q < 2 the
string susceptibility seemed to follow the predicted curve. When approaching q = 2 however, the numerical
string susceptibility seemed to favour a slightly higher string susceptibility than predicted. The same was
reported in [1] by Di Francesco et al. The deviation can be attributed to discretization effects and/or it could
be a flaw of the fitting method. The conjecture could also be wrong for q = 2 but more numerically evidence
at q = 2 is required to test that. Extrapolating the string susceptibility for q → ∞, the string susceptibility
approaches γs = 1/2which corresponds to the predicted branched polymer phase. A more sharp transition
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was predicted. The conjecture holds however for the continuum limit, studying it with discrete geometry
can be a possible cause for not seeing a sharp transition to branched polymers. The smooth instead of sharp
transition is therefore attributed to discretization effects.

The Hausdorff dimension at q = 1was measured and matches well with the expected Hausdorff dimension
for q = 1. The data might even seem to favour the Ding and Gwynne formula for the larger system sizes
but no hard conclusions can be made because the statistical error is too high. At q = 0.2, the measured
Hausdorff dimensions seemed to approach the expected Hausdorff dimension, but larger system sizes are
required to verify this claim. It must however be noted that for larger system sizes the Hausdorff dimension
could also approach to a value just below the predicted Hausdorff dimension which would mean that the
predicted Hausdorff dimension is wrong.

In conclusion, studying quadrangulations decorated with meanders using Markov Chain Monte Carlo simu-
lations and the developed flip move based on the Metropolis-Hastings algorithm resulted in new numerical
evidence for larger meander systems than studied in the past. The new numerical data for larger system sizes
largely supports the conjecture for 0.2 ≤ q ≤ 2 and no big differences with results at smaller size systems
have been found. Meanders can thus most likely be used to study statistical systems with a central charge
c ∈ [−4,−1] coupled to 2DQG. For q > 2, no sharp transition is found which shows that very large geome-
tries (n ≫ 262144) might be required to see a sharp transition.

And the next time you look at a very longmeandering river, youmight actually be looking at two-dimensional quantum
gravity!

Outlook

Further numerical evidence can be collected in the future by extending the measurements to more values of
q, in particular for the Hausdorff dimension for q < 1. Also, larger system sizes should be measured. This is
however computationally expensive. In the future, other Markov chain Monte Carlo moves like exchanging
baby universes could be introduced to reduce the autocorrelation time and therefore speed up the simulations
[54].

The quadrangulations decorated with meanders are an interesting system which with enough computational
resources might even be used to study the conjectured relations between the Hausdorff dimension and string
susceptibility, like the Ding and Gwynne formula.

For future research, multi-river systems could be considered. This is conjectured to allow, studying CFTs
coupled to gravity with different central charges between c = −4 and c = 1. When the weight for the rivers
is set to q1 = 1 and the weight of the roads set to q2 = n, one can study the O(n) loop model coupled
to 2DQG [1]. The flip move can be extended easily to multi-river systems, however, keeping the algorithm
O(logn)might be difficult.

The string susceptibility can be fitted using different fittingmethods that are tailor-made to find just the linear
parts of a fit, in section 5.2.2 RANSACwas triedwhich gave good results in comparison to linear fitting. In the
future, RANSAC-like approaches could be tried for obtaining the string susceptibility using a fit of the prob-
ability of meander baby universes. Furthermore, a different method for measuring the string susceptibility
could be used based on the method described in [45] by Golinelli. For that, the Markov chain Monte Carlo
simulation would need to be changed to a grand canonical ensemble, so different system sizes can be found
in the Markov chain.
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APPENDIXA

Tables

A.1 Practical information on string susceptibility measurements

Table A.1: Practical data on string susceptibility measurements, number of independent measurements and total
time (hours) measuring at q = 1.

n nindependent total time (hours)
512 3546960 465.5
1024 114688 33.3
2048 16384 8.5
4096 16384 20.8
8192 16384 66.6
65536 1280 53.7
262144 1664 321.0

Table A.2: Practical data on string susceptibility measurements, number of independent measurements and total
time (hours) measuring at q = 2.

n nindependent total time (hours)
512 1130912 260.4
1024 1183744 420.9
2048 1015808 730.7
4096 34816 71.1
8192 16384 91.3
65536 1280 77.2
262144 1624 499.1

74



Table A.3: Practical data on string susceptibility measurements, number of independent measurements and total
time (hours) measuring at q = 3.

n nindependent total time (hours)
512 249152 149.3
1024 16384 8.9
2048 16384 18.5
8192 12288 89.8
65536 1280 106.1
262144 1520 608.2

Table A.4: Practical data on string susceptibility measurements, number of independent measurements and total
time (hours) measuring at q = 4.

n nindependent total time (hours)
256 16384 2.3
512 163536 87.4
2048 20480 31.4
4096 4096 13.2
8192 4096 38.3
65536 1280 130.9
262144 1504 871.1

Table A.5: Practical data on string susceptibility measurements, number of independent measurements and total
time (hours) measuring at q = 5.

n nindependent total time (hours)
256 16384 2.8
512 65536 27.9
1024 16384 12.4
2048 4096 7.6
4096 4096 16.3
8192 4096 52.1
65536 1136 160.4
262144 1472 1005.3

Table A.6: Practical data on string susceptibility measurements, number of independent measurements and total
time (hours) measuring at q = 6.

n nindependent total time (hours)
256 16384 3.2
512 73728 36.6
1024 24576 26.0
2048 4096 10.1
4096 4096 22.0
8192 4096 60.4
65536 1136 180.4
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Table A.7: Practical data on string susceptibility measurements, number of independent measurements and total
time (hours) measuring at q = 7.

n nindependent total time (hours)
256 16384 3.9
512 73728 42.6
1024 24576 28.2
2048 4096 10.1
4096 4096 25.4
8192 4096 80.3
65536 1184 254.4
262144 1240 1354.5

Table A.8: Practical data on string susceptibility measurements, number of independent measurements and total
time (hours) measuring at q = 8.

n nindependent total time (hours)
256 16384 4.1
512 70656 51.8
1024 24576 32.1
2048 4096 13.8
4096 4096 29.9
65536 1168 281.4
262144 1152 1463.6

Table A.9: Practical data on string susceptibility measurements, number of independent measurements and total
time (hours) measuring at q = 9.

n nindependent total time (hours)
256 16384 5.9
512 70656 52.7
1024 24576 31.0
2048 4096 14.6
4096 4096 33.7
8192 3200 83.5
65536 1216 434.3
262144 1112 1456.9
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Table A.10: Practical data on string susceptibility measurements, number of independent measurements and total
time (hours) measuring at q = 10.

n nindependent total time (hours)
256 16384 5.2
512 71680 48.3
1024 24576 30.7
2048 4096 15.1
4096 4096 46.8
8192 1792 43.0
65536 1200 337.4
262144 1128 1410.2
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A.2 Tables on Hausdorff dimension fits

Table A.11: Fit results for fitting Equation (5.9) to the kn of the dual graph distance in section 5.3.3 without shift
s.

dH a b δ

3.27± 0.05 0.987± 0.007 0.0014± 0.0012 0.69± 0.10

3.28± 0.04 0.988± 0.006 0.0017± 0.0014 0.65± 0.09

3.28± 0.04 0.989± 0.006 0.0015± 0.0011 0.68± 0.09

3.32± 0.09 0.990± 0.009 0.004± 0.005 0.55± 0.13

3.35± 0.09 0.987± 0.007 0.007± 0.007 0.49± 0.11

3.44± 0.15 0.981± 0.015 0.018± 0.021 0.39± 0.10

3.33± 0.09 0.990± 0.010 0.003± 0.004 0.58± 0.13

3.30± 0.06 0.989± 0.006 0.0038± 0.0031 0.57± 0.09

3.37± 0.12 0.989± 0.009 0.009± 0.011 0.47± 0.12

3.36± 0.13 0.987± 0.010 0.008± 0.011 0.48± 0.15

Table A.12: Fit results for fitting Equation (5.9) to the kn of the graph distance in section 5.3.3 without shift s.

dH a b δ

3.38± 0.05 0.9855± 0.0035 0.010± 0.005 0.44± 0.05

3.27± 0.05 0.986± 0.007 0.0018± 0.0018 0.63± 0.12

3.27± 0.04 0.986± 0.007 0.0013± 0.0012 0.67± 0.11

3.27± 0.04 0.987± 0.006 0.0016± 0.0013 0.65± 0.09

3.25± 0.05 0.984± 0.008 0.0011± 0.0013 0.69± 0.14

3.31± 0.05 0.988± 0.005 0.0039± 0.0034 0.54± 0.09

3.30± 0.04 0.988± 0.006 0.0022± 0.0018 0.61± 0.09

3.29± 0.05 0.987± 0.005 0.0033± 0.0026 0.56± 0.09

3.30± 0.05 0.989± 0.005 0.0031± 0.0023 0.57± 0.08

3.26± 0.04 0.985± 0.006 0.0008± 0.0008 0.72± 0.11
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Table A.13: Fit results for fitting Equation (5.9) to the kn of the dual graph distance in section 5.3.3 with shift s.
Shaded in red are the removed fits.

dH a b δ

3.561± 0.008 1.0040± 0.0028 (0.0± 2.1)× 10−43 (0± 8)× 104

3.549± 0.005 0.9960± 0.0016 (0.0± 3.5)× 10−39 (0.0± 1.5)× 105

(0.0± 3.2)× 108 0.01± 0.07 0.99± 0.08 0.3± 1.8

3.561± 0.012 0.998± 0.004 (0± 9)× 10−40 (0.0± 2.8)× 105

(0± 4)× 109 0.01± 0.06 0.98± 0.06 0.3± 1.3

3.567± 0.007 0.9954± 0.0025 (0.0± 2.0)× 10−44 (0± 8)× 104

3.568± 0.022 1.0016± 0.0020 0.0002± 0.0010 0.6± 0.5

3.563± 0.010 0.9998± 0.0035 (0± 4)× 10−44 (0.0± 2.1)× 105

3.550± 0.006 0.9977± 0.0022 (−0± 6)× 10−41 (0.0± 1.3)× 105

6± 32 0.1± 0.8 0.9± 0.8 0.1± 0.8

TableA.14: Fit results for fitting Equation (5.9) to the kn of the graph distance in section 5.3.3 with shift s. Shaded
in red are the removed fits.

dH a b δ

3.519± 0.015 0.996± 0.005 (−0± 7)× 10−45 (0.0± 1.7)× 105

3.519± 0.018 0.991± 0.008 0.010± 0.018 −1± 5

3.534± 0.011 0.992± 0.005 0.008± 0.012 −2± 5

3.540± 0.007 0.9972± 0.0027 (−0.0± 1.4)× 10−39 (0± 6)× 103

3.552± 0.010 0.993± 0.005 0.007± 0.014 (−0.0± 2.8)× 106

3.558± 0.009 0.9965± 0.0023 (1± 7)× 10−6 1.3± 0.7

3.56± 0.04 1.0017± 0.0028 0.0004± 0.0024 0.5± 0.6

6± 22 0.1± 0.4 0.9± 0.4 0.1± 0.5

3.537± 0.006 0.9982± 0.0020 (0.0± 2.3)× 10−43 (0.0± 1.0)× 104

(0± 6)× 108 0.01± 0.10 0.99± 0.10 0.3± 2.7
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