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Abstract

In this paper, the possibility of the existence of tachyons is discussed.

If tachyons, particles moving faster than the speed of light, are to exist, there

has to be a source able to create them. After the creation of a tachyon, a

propagator is needed to describe the evolution of the particle through space-

time. The reaction of the quantum field has to be great enough to allow for

such particles to exist for long enough to be even named a particle.

The interactions of tachyons can be studied next, to see if these particles

behave analogous to conventional particles. One of the processes best un-

derstood is the decay of a muon to an electron, a muon neutrino and an

electron antineutrino. By substituting the two neutrinos by tachyonic neu-

trinos, it is possible to check wether this process can occur for tachyons or

not.
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Foreword

The choice for the subject of tachyons came from the results of the OPERA

experiment, where tachyonic neutrinos were thought to have been observed.

At the time of the conclusion of this report, these results were already dis-

carded. Nevertheless the possibility of particles travelling faster than light

speaks to the imagination and is still an interesting subject for further re-

search.

This report is meant to be the conclusion of my bachelor education in

physics. The complete research was done at the department of Theoreti-

cal High Energy Physics under the supervision of Prof. Dr. Ronald Kleiss

at the Radboud University of Nijmegen.

Most of this report is based on and inspired by [1], for some of the basics

in the first chapter, [2] is used. For the evaluation of the complex contour

integrals in the same chapter [3] is used.

Some conventions that are used in this report are:

• The upper and lower indices at four-vectors will be dropped, meaning

that aµ will be written as a. Vectors will explicitly be denoted by a

vector arrow, ~a, and inner products between two four-vectors will be

written as a · b

• The speed of light, c, is taken to be 1 for simplicity
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Chapter 1

Propagation of tachyons

1.1 Introduction

The very first question that comes to mind when a hypothetical particle is

proposed, is whether or not it can propogate through space at all. When

we consider elementary particles, a theory that includes relativity as well as

quantum mechanics is required. Quantum field theory provides us with the

tools necessary to investigate the creation, propagation and annihilation of

such particles. A source is responsible the creation of particles, after that,

the particle’s behaviour is described by its propagator. When investigating

the possibility for a particle to exist or not, it is vital to look at the reaction

of the field to the creation and propagation of that particle.

In this chapter the most important properties of a tachyon are explained.

After that, a source emitting such particles is introduced and its characteris-

tics are described. The tachyon’s propagator is given, which will give rise to

the necessity to distinguish between two kinds of tachyons. For both cases

the reaction of the quantum field will be calculated and the results will lead

to conclusions that are discussed at the end of the chapter.

1.2 Tachyon properties

A tachyon is a hypothetical particle, which means that there is no experi-

mental evidence of the existance of such particles. The study of tachyons is
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therefore purely theoretical.

The most important property of a tachyon is the fact that it’s speed is faster

than the speed of light. This immediately leads to some interesting conse-

quences. The first thing to look at is the energy of a tachyon. Just like the

energy of any other relativistic particle, it is given by

E =
mc2√
1− v2

c2

(1.1)

From Eq. (1.1) it can be seen that a tachyon, having a speed greater than

the speed of light, must have an imaginary mass, because the energy must

be real. Furthermore, one of the interesting facts is that the energy of a

tachyon decreases as its speed increases. This leads to the fact that the

speed of light is still a limit for tachyons, but where conventional particles

can’t go over the limit, tachyons are unable to go below it.

1.3 Sources, propagators and field reactions

The reaction of the quantum field to a tachyon is given by

φ(x) =
i

h̄

∫
d4y Π(x− y)J(y) (1.2)

As can be seen from Eq. (1.2), a propagator describing the evolution of the

tachyon through spacetime is needed, as well as a source, accounting for

the creation of the particle. The propagator of a conventional particle in

four-dimensional Minkowski space is given by

Π(x− y) =
ih̄

(2π)4

∫
d4k

exp(−ik · (x− y))

k · k −m2 + iε
(1.3)

Using the knowledge that a tachyon has an imaginary mass, this propagator

can be rewritten for tachyons by the substitution m2 → −m2.

The source that is used to investigate the reaction of the field is one that

is active for a period of σ0
c around a given time t = 0 and in a region of

volume σ3. So it shows a Gaussian behaviour in space and an exponentially

decreasing behaviour in time.

J(x) ∝ exp

(
−|x

0|
σ0
− |~x|

2

4σ2
− i

h̄

(
p0x0 − ~x · ~p

))
(1.4)
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From the Fourier transform of this source,

J(k) ∝

[
1

σ2
0

+

(
k0 − p0

h̄

)2
]−1

exp

(
−σ2

(
~k − ~p

h̄

)2
)

(1.5)

it can be seen that particles of all kinds of wave vectors are emitted by this

source.

1.4 Two regimes

Looking back at the denominator of the propagator for a tachyon, we can

define a quantity

ω =

√
|~k|2 −m2 (1.6)

which immediately gives rise to two different regimes, namely |~k|2 > m2

where ω is real, and |~k|2 < m2 where ω is imaginary. Both of them have to

be evaluated seperately.

1.4.1 The real regime

First, we look at the region where ω is real. The reaction of the field in this

case is given by

φ ∝
∫
d4k

exp
(
−ik0x0 + i~k · ~x

)
(k0)2 − ω2 + iε

×[
1

σ2
0

+

(
k0 − p0

h̄

)2
]−1

exp

(
−σ2

(
~k − ~p

h̄

)2
)

(1.7)

For positive times x0 > 0, the contour has to be closed in the lower half

complex-k0 plane to make sure that the exponent vanishes. This integral

displays two poles inside the contour, one at k0 = ω − iε and one at k0 =
p0

h̄ −
i
σ0

. Doing the k0 integral1 leads to the following result

φ(x) ∝
∫
d3~k ei

~k·~x−σ2(~k− ~ph̄)
2

× 1

2ω

e−ix
0ω(

p0

h̄ − ω
)2

+ 1
σ2

0

+
iσ0

2

e
− ix

0p0

h̄
−x

0

σ0(
p0

h̄ −
i
σ0

)2
− ω2 + iε

 (1.8)

1The complete calculation can be found in appendix A
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1.4.2 The imaginary regime

We now turn to the case |~k|2 < m2 where ω is imaginary. For aestatic

reasons, we will use a notation where every quantity used is real. This

means that in the following calculations ω will be replaced by iω.

Again, the contour has to be closed in lower half complex-k0 plane, but one

of the poles is different. The one located at k0 = p0

h̄ −
i
σ0

is still present, the

other pole has moved to k0 = −(iω − iε). The integral2 now leads to the

result

φ(x) ∝
∫
d3~k ei

~k·~x−σ2(~k− ~ph̄)
2

×− 1

2iω

e−ωx
0(

p0

h̄ + iω
)2

+ 1
σ2

0

+
iσ0

2

e
− ix

0p0

h̄
−x

0

σ0(
p0

h̄ −
i
σ0

)2
+ ω2 + iε

 (1.9)

1.5 Discussion

The reaction of the quantum field to the creation and propagation of tachyons

depends on the characteristics of those particles. The absolute value squared

of the wavevector of a tachyon can be either greater or smaller than its mass.

We first consider the reaction of the field in the case where |~k|2 > m2. The

expression is exactly the same as the reaction of the quantum field to a con-

ventional particle, apart from the fact that the mass squared is negative in

the case of tachyons.

The exponential function in the numerator of the second term in Eq. (1.8)

consists of a real and an imaginary part. The real part can be seen to decay

exponentially at a rate of |x
0|
σ0

, which is exactly the same as the rate at which

the source decays. For the field to be free and unaffected by interactions, it

is necessary to look at the situations where the source is no longer present.

This means that the second term of Eq. (1.8) can be neglected in the study

of the field.

For the field to be noteworthy, the denomenator of the first term has to be

small, resulting in the fact that p0

h̄ ≈ ω. From this it is possible, just like

it is for conventional particles, to derive Newton’s first law, leading to the

2The complete calculation can be found in appendix B
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conclusion that a tachyon with |~k|2 > m2 might propagate through space.

We now turn to the second possibility for tachyons, namely |~k|2 > m2.

Again, the second term decays exponentially with the source, so it can again

be neglected. The denominator of the first term, however, cannot be small

enough to allow signals to be transmitted over great distances. This is due

to the fact that the factor ω in the denominator is now positive. Moreover,

the exponential in the numerator is no longer imaginary, resulting in expo-

nential decay of this term.

As concluded, a tachyon with |~k|2 > m2 might be created by a source and

can be able to propagate through spacetime. These kind of tachyons would

obey the same law3 as conventional particles do and therefore it might nog

be possible to, experimentally, distinguish between them.

A tachyon with |~k|2 < m2 leads to a reaction of the quantum field that goes

to zero very fast, meaning that such a particle can not propagate very far.

It might even be said that such a particle is not even able to exist at all

because of this reason.

If tachyons would exist at all, there is at least one boundary for these par-

ticles, namely that |~k|2 > m2 should be obeyed.

3Newton’s first law, that is
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Chapter 2

Muon decay

2.1 Introduction

After a new particle has been proposed, and it’s propagation through space

and time has been established, the next thing to investigate is the interac-

tions of these particles. One of the best known processes is the decay of

a muon to an electron, an electron antineutrino and a muon neutrino. If

tachyons are to exist, it might be possible for muons to decay to an electron

and two tachyonic neutrinos.

In this chapter, the chance of tachyonic muon decay happening will be stud-

ied. To this end, the kinematics of the process are first studied. This will

lead to an expression for the matrixelement of the process. Using this ma-

trixelement, it is possible to obtain the decay width of the muon, which can

than be compared to the decay width of a conventional muon.

At last, the decay of an electron to another electron is briefly studied. Con-

ventionally, this process is impossible because of the conservation of energy

and momentum, but it might be possible for tachyons to realise this decay.

2.2 Computing the matrixelement

The muon decay process can be described by a single Feynman diagram,

containing one vertex where four fermions meet. The interaction will be

studied from the frame in which the muon is at rest. The transition rate for
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this process is given by

〈|M|2〉 = 64G2
F h̄

2(q · k1)(p · k2) (2.1)

Here, p, q, k1 and k2 are the four-vectors of the muon, the electron, the muon

neutrino and the electron antineutrino respectively.

2.2.1 Conventional kinematics

To be able to compare the tachyonic case of muon decay to the conventional

process, it is necessary first to determine the conventional matrix element.

To compute this matrix element, the inner product of the four-vectors of

the incoming particles has to be known, just like the inner product of the

four-vectors of the outgoing particles.

The four-vectors of the muon and the electron are

p =

(
Eµ

~p

)
, q =

(
Ee

~q

)
(2.2)

Analogously, the four-vectors of the two neutrinos are

k1 =

(
E1

~k1

)
, k2 =

(
E2

~k2

)
(2.3)

By using the condition that the particles have to lie on their mass shells

and the fact that the muon has no impuls1, the following four-vectors are

obtained for the muon and the electron

p =

(
mµ

~0

)
, q =

( √
m2
e + ~q2

~q

)
(2.4)

The four-vectors of the two neutrinos can be rewritten as

k1 =

(
E1√

E2
1 −m2

1

)
, k2 =

(
E2√

E2
2 −m2

2

)
(2.5)

1We are considering the process in the rest system of the muon
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The inner products can now be calculated

(p · k2) = mµE2 (2.6)

(q · k1) = E1

√
m2
e + q2 − ~q

√
E2

1 −m2
1 (2.7)

=
1

2
((q + k1)2 − (m2

e +m2
1)) (2.8)

=
1

2
((p− k2)2 − (m2

e +m2
1)) (2.9)

Where conservation of momentum is used at the last step.

By writing out the four-vectors, this expression can be rewritten as

(q · k1) = mµ

(
(m2

µ +m2
2)− (m2

e +m2
1)

2mµ
− E2

)
≡ mµ(Kc − E2) (2.10)

Plugging these in Eq. (2.1) results in the matrix element for the conventional

case

2.2.2 Tachyonic kinematics

In the case where tachyonic neutrinos are used instead of conventional neu-

trinos, the four-vectors are changed to

k1 =

(
E1√

E2
1 +m2

1

)
, k2 =

(
E2√

E2
2 +m2

2

)
(2.11)

In this case the inner product (q · k1) can be rewritten as2

(q · k1) = mµ

(
(m2

µ +m2
1)− (m2

e +m2
2)

2mµ
− E2

)
≡ mµ(Kt − E2) (2.12)

2.3 Phase space

The partial decay width of the muon is given by

dΓ = φΓ〈|M|2〉dV (2.13)

2A full derivation can be found in appendix C
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In this equation, φΓ is a collection of factors to account for the density of

states of the incoming particle, etcetera. In this case φΓ = 1
2mµ

. Having

already calculated the matrix element, the only thing left to do is to deter-

mine the combined phase space integration element.

This integration element is defined by

dV (P ; p1, p2, ..., pN ) ≡

 N∏
j=1

1

(2π)3
d4pjδ(p

2
j −m2

j )

×
(2π)4δ4

P − N∑
j=1

pj

 (2.14)

The mj and the pj are the masses and wavevectors respectively of the N

particles in the final state and P is the wavevector of the incoming particle.

The Dirac delta functions in the product makes sure the particles in the

final state lie on their mass shell. The four-dimensional Dirac delta imposes

the conservation energy and momentum.

In the case of tachyonic neutrinos, this phase space integration element is

given by

dV (p : q, k1, k2) =
1

(2π)5
d4q d4k1 d

4k2 δ(k
2
1 +m2

1) δ(k2
2 +m2

2)×

δ(q2 −m2
e) δ

4(p− q − k1 − k2) (2.15)

This can be rewritten as3

dV (p : q, k1, k2) =
π2

(2π)5
dE1 dE2 d cos θ1,2 ×

δ4

(
−m2

µ + k2
1 + k2

2 −m2
e + 2(mµ − k0

1)(mµ − k0
2)

2| ~k1|| ~k2|
− cos θ1,2

)
(2.16)

Using the fact that the cosine is bounded, the expression for the integration

element that is left is

dV (p : q, k1, k2) =
π2

(2π)5
dE1dE2 (2.17)

3The complete computation can be found in appendix D
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Where the following boundaries have to be imposed

−m2
µ + k2

1 + k2
2 −m2

e + 2(mµ − k0
1)(mµ − k0

2) ≤ 2| ~k1|| ~k2| (2.18)

−m2
µ + k2

1 + k2
2 −m2

e + 2(mµ − k0
1)(mµ − k0

2) ≥ −2| ~k1|| ~k2| (2.19)

Writing out all the wavevectors explicitly, these boundaries can be rewritten

in terms of the energies of the two neutrinos and the masses of all the

particles involved

m2
µ −m2

e −m2
1 −m2

2 − 2mµE1 − 2mµE2 + 2E1E2

2
√

(E2
1 +m2

1)(E2
2 +m2

2)
≤ 1 (2.20)

m2
µ −m2

e −m2
1 −m2

2 − 2mµE1 − 2mµE2 + 2E1E2

2
√

(E2
1 +m2

1)(E2
2 +m2

2)
≥ −1 (2.21)

2.4 Decay width

The decay width is now given by integration of the partial decay width over

the energies of the two neutrinos

Γ =

∫ ∫
32 G2

F h̄2 mµ E2(Kt − E2)
π2

(2π)2
dE1 dE2 (2.22)

The boundaries for the integral over E2 are given by fact that 〈|M|2〉 has

to be positive. This implies that

(p · k2) = mµE2 (2.23)

(q · k1) = mµ(Kt − E2) (2.24)

both have to be positive or negative.

If the first inner product is negative, then E2 has to be negative. The frac-

tion in the second inner product is always positive, because the masses of

the two neutrinos are equal, and the mass of the muon is greater than that

of the electron.

This means that, if the inner product is to be positive, E2 has to be positive.

This leaves only the possibility of E2 ≥ 0, the second inner product then

forces E2 ≤ Kt.

So the integral over E2 has to be taken from 0 to Kt
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At last, the boundaries from Eq. (2.20) and Eq. (2.21) can be solved for E1

by inserting values for the masses and using a computational program4. By

taking the following masses

mµ = 100 MeV (2.25)

me = 0.5 MeV (2.26)

|m1| = 1 · 10−4 MeV (2.27)

|m2| = 1 · 10−4 MeV (2.28)

the boundaries can be rewritten to impose restrictions on E1

E1 ≥
1

−50 + E2

(
5.0 · 108

(
− 5.0 · 1010 + 1.5 · 109E2 − 1.0 · 107E2

2+√
2.5 · 109 − 10 · 107E2 + 2.5 · 1017E2

2 − 10 · 1015E3
2 + 1.0 · 1014E4

2

))
≡ R1 (2.29)

E1 ≤
1

−50 + E2

(
5.0 · 108

(
5.0 · 1010 − 1.5 · 109E2 + 1.0 · 107E2

2+√
2.5 · 109 − 10 · 107E2 + 2.5 · 1017E2

2 − 10 · 1015E3
2 + 1.0 · 1014E4

2

))
≡ R2 (2.30)

These boundaries fix the phase space, which is shown in Figure 2.1. The

dark areas of the figure are the ones where both boundaries are satisfied.

First of all, for the square in the upper right corner to be allowed, the en-

ergy of the electron should be negative and therefore, this regime can be

neglected.

The two regimes where one of the energies of the neutrinos is negative are

only possible if 〈|M|2〉 is negative, which is impossible for the given matrix-

element.

Now the decay width can be calculated by only integrating over the tri-

angle in the positive quadrant

Γ =

∫ Kt

0

∫ R2

R1

32G2
F h̄

2mµE2(Kt − E2)
π2

(2π)2
dE1dE2 (2.31)

4In this case, Maple was used
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Figure 2.1: The phase space of the muon decay

Numerical calculation of these integrals5 leads to the following result for the

decay width

Γ = 1.68 · 106G2
F h̄

2 (2.32)

which is numerically equal to the decay width of the conventional muon

decay

Γ =
G2
F h̄

2m5
µ

192π3
(2.33)

2.5 Electron decay

By changing the value of mµ to that of the electron mass, this process can

easily be changed to describe the possible decay of an electron. By doing

this the phase space shown in Figure 2.2 is obtained and, by integrating over

the phase space, while neglecting the cases where me or the matrix element

is negative, the decay width is found to be equal to 0.

5Again, by the use of Maple
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Figure 2.2: The phase space of the electron decay

2.6 Discussion

The matrix element for the process of a muon decaying to an electron and

two tachyonic neutrinos is not known, so the best one can do is use the same

matrix element that describes the process with conventional neutrinos.

The phase space can be divided into three parts. The part in the top right

corner, which is kinematically forbidden because the electron energy in this

regime would be negative, can be neglected.

The two parts in the quadrants where one of the energies of the neutrinos

is negative can be seen to diverge to infinity. Finally, the triangular part in

the positive quadrant is equal to the allowed phase space in the conventional

case.

If the conventional matrix element is indeed the correct one to also describe

the tachyonic process, the two diverging areas are forbidden because in these

areas, the matrix element would be negative. Because this matrix element

gives the chance for the muon decay process to happen, and a chance cannot
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be negative, these areas are off limits.

If the conventional matrix element turns out not to be correct in the tachy-

onic case, and another matrix element that does describe the process can

be found, these two diverging regimes cannot be neglected. But in this case

the partial decay width has to be integrated over all phase space, which

diverges, meaning that the total decay width will go to infinity in this case.

The lifetime of a particle is proportional to 1
Γ , so in the case of an infinite

decay width, the lifetime of a particle is equal to 0, resulting in the fact that

the particle is unable to exist at all.

When considering the possibility of an electron decaying to another elec-

tron and two tachyonic neutrinos, the phase space can be divided into two

parts. The first part is the positive quadrant, where the electron energy has

to be negative, so this part can again be neglected. The other part, just like

in the case of muon decay, is impossible because the chance for this process

would be negative in that regime. This leads to the conclusion that, just like

in the conventional case, it is impossible for an electron to decay to another

electron.
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Appendix A

The field integral in the real

regime

The integral in Eq. (1.7) will be worked out in some detail here. This

reaction of the field can be rewritten as follows

φ ∝
∫
d4k

exp
(
−ik0x0 + i~k · ~x

)
(k0)2 − ω2 + iε

×[
1

σ2
0

+

(
k0 − p0

h̄

)2
]−1

exp

(
−σ2

(
~k − ~p

h̄

)2
)

(A.1)

=

∫
d3~k ei

~k·~xe−σ
2(~k− ~ph̄)

2

×∫
e−ik

0x0
dk0

(k0 − (ω − iε)) (k0 + (ω − iε))
(
k0 −

(
p0

h̄ −
i
σ0

))(
k0 −

(
p0

h̄ + i
σ0

))
(A.2)

To only integral that will be done here is the one over k0. This integral can

be closed in the lower half complex=k0 plane.

Two poles are present in te contour

k0 = ω − iε (A.3)

k0 =
p0

h̄
− 1

σ0
(A.4)

19



To do this integral, the residues have to be calculated first.

The residue of the first pole, Eq. (A.3) can be calculated as follows

lim
k0→(ω−iε)

e−ik
0x0

(k0 + (ω − iε))
(
k0 −

(
p0

h̄ −
i
σ0

))(
k0 −

(
p0

h̄ + i
σ0

)) =

e−ix
0(ω−iε)

((ω − iε) + (ω − iε))
(

(ω − iε)−
(
p0

h̄ −
i
σ0

))(
(ω − iε)−

(
p0

h̄ + i
σ0

)) =

e−ix
0(ω−iε)

2 (ω − iε)
(

(ω − iε)2 − (ω − iε)
(
p0

h̄ + i
σ0

)
− (ω − iε)

(
p0

h̄ −
i
σ0

)
+
(
p0

h̄ −
i
σ0

)(
p0

h̄ + i
σ0

)) =

e−ix
0(ω−iε)

2 (ω − iε)
(
ω2 − 2iεω − ε2 − ωp0

h̄ −
iω
σ0

+ iεp0

h̄ −
ε
σ0
− ωp0

h̄ + iω
σ0

+ iεp0

h̄ + ε2

σ0
+ (p0)2

h̄ + 1
σ2

0

) =

e−ix
0(ω−iε)

2 (ω − iε)
(
ω2 − 2ωp0

h̄ + (p0)2

h̄2 + 1
σ0
−
(

2iωε+ ε2 + 2iεp0

h̄

)) =

e−ix
0ω

2ω
(
ω − p0

h̄ + i
σ0

)(
ω − p0

h̄ −
i
σ0

) =
e−ix

0ω

2ω
(
p0

h̄ − ω
)2

+ 1
σ2

0

(A.5)

The residue of the second pole, Eq. (A.4) is

lim
k0→

(
p0

h̄
− i
σ0

) e−ik
0x0

(k0 − (ω − iε)) (k0 + (ω − iε))
(
k0 −

(
p0

h̄ + i
σ0

)) =

e
−ix0

(
p0

h̄
− i
σ0

)
(
p0

h̄ −
i
σ0
− (ω − iε)

)(
p0

h̄ −
i
σ0

+ (ω − iε)
)(

p0

h̄ −
i
σ0
−
(
p0

h̄ + 1
σ0

)) =

e
−ix0 p

0

h̄
−x

0

σ0(
p0

h̄ −
i
σ0
− ω + iε

)(
p0

h̄ −
i
σ0

+ ω − iε
)(
− 2i
σ0

) =

iσ0e
−ix

0p0

h̄
−x

0

σ0

2
(

(p0)2

h̄2 − 2 ip0

h̄σ0
− 1

σ2
0
− ω2 + 2iεω + ε2

) =
iσ0e

−ix
0p0

h̄
−x

0

σ0

2
(
p0

h̄ −
i
σ0

)2
− ω2 + iε

(A.6)

And the addition of these two residues results in Eq. (1.8)
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Appendix B

The field integral in the

imaginary regime

In this case, the poles are located at

k0 = −(iω − iε) (B.1)

k0 =
p0

h̄
− 1

σ0
(B.2)

The residue of the first pole is now given by

lim
k0→−(iω−iε)

e−ik
0x0

(k0 − (iω − iε))
(
k0 −

(
p0

h̄ −
i
σ0

))(
k0 −

(
p0

h̄ + i
σ0

)) =

ei(iω−iε)x
0

−2 (iω − iε)
(
− (iω − iε)−

(
p0

h̄ −
i
σ0

))(
− (iω − iε)−

(
p0

h̄ + i
σ0

)) =

e−ωx
0+εx0

−2 (iω − iε)
(

(iω − iε)2 + (iω − iε)
(
p0

h̄ −
i
σ0

)
+ (iω − iε)

(
p0

h̄ −
i
σ0

)
+
(
p0

h̄ −
i
σ0

)(
p0

h̄ + i
σ0

)) =

e−ωx
0+εx0

−2 (iω − iε)
(
−ω2 + 2εω − ε2 + 2iωp0

h̄ − 2iεp0

h̄ + (p0)2

h̄2 + 1
σ2

0

) =

e−ωx
0

−2iω
(
−ω2 + 2iωp0

h̄ + (p0)2

h̄2 + 1
σ2

0

) =
e−ωx

0

−2iω

((
p0

h̄ + iω
)2

+ 1
σ2

0

) (B.3)

The residue of the second pole in this case is the same as the second pole in

the real regime, except for the fact that ω2 is now replaced by −ω2
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Appendix C

Tachyonic kinematics

The inner product between the four-vectors

q =

( √
m2
e + ~q2

~q

)
, k1 =

(
E1√

E2
1 +m2

1

)
(C.1)

is to be calculated. The first thing to do is look at the following expression

(q + k1)2 =
(√

m2
e + ~q2 + E1

)2
−
(
~q +

√
E2

1 +m2
1

)2

= m2
e −m2

1 + 2 (q · k1) (C.2)

This leads to

(q · k1) =
1

2

(
(q + k1)2 −m2

e +m2
1

)
=

1

2

(
(p− k2)2 −m2

e +m2
1

)
=

1

2

(
(mµ − E2)2 −

(
−
√
E2

2 +m2
2

)2

−m2
e +m2

1

)
=

1

2

((
m2
µ +m2

1

)
−
(
m2
e +m2

2

)
− 2mµE2

)
= mµ

((
m2
µ +m2

1

)
−
(
m2
e +m2

2

)
2mµ

− E2

)
≡ mµ (Kt − E2) (C.3)
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Appendix D

Phase space

The phase space for the muon decay process reads

dV =
1

(2π)5
d4q d4k1 d

4k2 ×

δ(k2
1 +m2

1) δ(k2
2 +m2

2) δ(q2 −m2
e) δ

4(p− q − k1 − k2) (D.1)

First of all, let’s examine the following expression

d4k δ(k2 +m2) = dk0d|~k| |~k|2dΩ δ

((
k0 −

√
~k2 −m2

)(
k0 +

√
~k2 −m2

))
= dk0d|~k| |~k|2dΩ

1

k0 +
√
~k2 −m2

δ
(
k0 −

√
~k2 −m2

)
= d|~k| |~k|2 dΩ

1

2
√
~k2 −m2

= d|~k| |~k|2 dΩ
1

2k0
(D.2)

The phase space can now be written as:

dV =
1

(2π)5
d4q δ(q2 −m2

e)×

| ~k1|2 d| ~k1| dΩ1

2k0
1

| ~k2|2 d| ~k2| dΩ1

2k0
2

δ4(p− q − k1 − k2) (D.3)

Evaluating the Dirac delta functions

d4q δ(q2 −m2
e) δ

4(p− q − k1 − k2) = δ4((p− k1 − k2)2 −m2
e)

= δ4((mµ − k0
1 − k0

2)2 − (− ~k1 − ~k2)2 −m2
e)

= δ4(m2
µ − 2mµk

0
1 − 2mµk

0
2 + (k0

1)2 + (k0
2)2 + 2k0

1k
0
2 −m2

e

− ( ~k1)2 − ( ~k2)2 − 2| ~k1| | ~k2| cos θ1,2) (D.4)
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Furthermore:

dΩ1 = d cos θ1dφ1 (D.5)

dΩ2 = d cos θ1,2dφ1,2 (D.6)

The integral over d cos θ1dφ1dφ1,2 leads to a factor 8π2, so we are left with:

dV =
8π2

(2π)5
d cos θ1,2

| ~k1|2| ~k2|2d| ~k1| d| ~k2|
4k0

1k
0
2

×

δ4(m2
µ − 2mµk

0
1 − 2mµk

0
2 + k2

1 + k2
2 −m2

e + 2k0
1k

0
2 − 2| ~k1|| ~k2| cos θ1,2)

(D.7)

Taking the derivative at both sides of

(p0)2 = m2 + |~p|2 (D.8)

we find

2p0dp0 = 2|~p|d|~p| (D.9)

leading to the fact that
|~p|d|~p|
p0

= dp0 (D.10)

Using this, we obtain

dV =
π2

(2π)5
dE1dE2d cos θ1,2 ×

δ4

(
m2
µ − 2mµk

0
1 − 2mµk

0
2 + k2

1 + k2
2 −m2

e + 2k0
1k

0
2

2| ~k1|| ~k2|
− cos θ1,2

)

=
π2

(2π)5
dE1dE2d cos θ1,2 ×

δ4

(
−m2

µ + k2
1 + k2

2 −m2
e + 2(mµ − k0

1)(mµ − k0
2)

2| ~k1|| ~k2|
− cos θ1,2

)

=
π2

(2π)5
dE1dE2 (D.11)

the result of Eq. (2.17)
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