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Abstract

Coherent states in a harmonic oscillator describe systems that are in

a quasiclassical state. The purpose of this article is to find out if this also

applies to an infinite square well. Herefore two different approaches are

used: The first approach creates the coherent function in the position rep-

resentation and takes the limit for a high expectation value for the energy

of the system. The resulting function shows classical behavior. However

it still complies to Heisenberg‘s principle and has a certain uncertainty in

position and momentum which increases in time. In the second approach

the expectation value of the position of a coherent function is analyzed

in the limit for high energies. Here we see with the use of Fourier trans-

formation that it converges towards a sawtooth function. Consequently

with this approach we can again conclude that there is classical behavior.

The final result is that a quasiclassical state can be created in an infinite

quantum square well. However the resulting state will not keep mini-

mal uncertainty under time evolution like a coherent state in a harmonic

oscillator.
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1 Introduction

The subject of research in this article is the rather simple system of a particle
in a box. Classically the movement of such a particle, assuming that it has no
interaction with the outer world, is very intuitive and trivial. If Newton’s laws
of motion are applied the particle will move with uniform velocity in straight
lines until it reflects from a wall. However in quantum physics there is a very
different approach: the Schrödinger equation. This will lead to a description
of the particle as a linear combination of the eigenfunctions of the Schrödinger
equation belonging to the system. In addition these solutions to the problem
do not seem to have anything in common with the classical ones. However in
this article we will survey the coherent state - a special type of quantum state -
that should result in a behavior closest to the classical movement of a particle.

The purpose of this article will be to show that the mathematical definition
of a coherent state and the resulting wavefunction will yield a quantum state
that shows classical behavior. Therefore we expect this state to move uniformly
and to have negligible uncertainty in position and momentum. For this purpose
we will use two different approaches. In the first approach (chapter 3) we will
create the coherent wavefunction from the definition of coherent states. Then,
after different simplifications, the expression for the wave function shall con-
verge to a ‘classical’ function. The second approach (chapter 4) will make use
of Fourier transformations. Here we will try to show that the expectation value
of the observable of the position x will have the same Fourier transformation
as the ‘sawtooth function’, which will imply that also both functions are equal.
The consequence is that the expectation value of the position becomes classical.

When speaking of a classical system we make the a priori assumptions that
the uncertainties in position and momentum are zero. Thus the behavior of the
system is entirely determined. In contrast this is not possible for a quantum
mechanical system that obey the Heisenberg uncertainty principle. Therefore it
is not possible to create an entirely classical system by a quantum mechanical
approach. However we can create a state that is as classical as possible, meaning
that uncertainty in position and momentum is minimal. Such a state is called
a coherent state.

For the definition of the coherent state we will make use of the Dirac Nota-
tion. A good introduction to this formalism can be found in ‘Introduction to
Quantum Mechanics’ by David J. Griffith [1]. In addition this book introduces
the infinite square well and the concept of ladder operators which belong to the
background of this article. However we will construct the raising operator in a
more general way that this is done in Griffith’s book.
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2 Theoretical Background/Coherent Quantum
States

2.1 A particle in a box

The theory of a particle in a box or an infinite square well will be the basis for
this article. As it is not the purpose of this article to derive the eigenstates and
eigenenergies we will only introduce them here. A detailed derivation can be
found in ‘Introduction to Quantum Mechanics’ by David J. Griffith’s [1]. To
describe an infinite square well we will use the following potential:

V̂ =







∞ if x < 0
0 if 0 < x < L

∞ if L < x
(1)

The time-independent solutions ψn(x) for the appertaining Schrödinger equa-
tion

Ĥψ = Eψ with Ĥ =
p̂2

2m
+ V̂ (2)

are given by

ψn(x) =

√

2

L
sin

nπx

L
(3)

The corresponding eigenenergies En which are the eigenvalues of the Hamilto-
nian are:

En =
~

2π2

2mL2
n2 (4)

Going over to Dirac-notation the eigenfunctions in position representation are
defined by:

〈x|n〉 = 〈x|ψn〉 = ψn(x) (5)

A time-dependent solution to the Hamiltonian can be created by adding a
time evolution to the time-independent solutions:

|n〉 → |n〉e−iEnt/~ (6)

These functions form a complete orthogonal set. As a result any state |ψ〉
describing our system can be formed by lineair combinations of these wavefunc-
tions:

|ψ〉 =
∑

n∈N

cn|n〉e−iEnt/~ (7)

For normalizations reasons, 〈ψ|ψ〉 = 1, we get the following equation for the
expansion coefficients cn

1 =
∑

n∈N

|cn|2 (8)
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2.2 Coherent quantum states

2.2.1 Lowering and raising operators

To define a coherent state we make use of the lowering operator â.

For a quantum system like the infinite square well, that has an infinite number
of non-degenerate normalized energy eigenstates {|n〉; n = 0, 1, 2, ..}, we can
define the lowering operator by:

â =
∑

n≥0

√
n+ 1|n〉〈n+ 1| (9)

For this operator we can derive the following properties that will be used to
define the coherent state:

The lowering operator â, working on an energy eigenstate, lowers the state
by one:

â|n〉 =
√
n|n− 1〉 (10)

And it returns zero working on the ground state:

â|0〉 = 0|0〉 (11)

The lowering operator and its conjugate operator â†, the raising operator given
by

â† =
∑

n≥0

√
n+ 1|n+ 1〉〈n| (12)

do not commute. Their products are

ââ† =
∑

n,n′≥0

√

(n+ 1)(n′ + 1)|n〉〈n+ 1|n′ + 1〉〈n′|

=
∑

n≥0

(n+ 1)|n〉〈n|,

â†â =
∑

n,n′≥0

√

(n+ 1)(n′ + 1)|n+ 1〉〈n|n′〉〈n′ + 1|

=
∑

n≥1

n|n〉〈n| =
∑

n≥0

n|n〉〈n| (13)

Therefore the commutator is:

[â, â†] =
∑

n≥0

|n〉〈n| = 1̂ (14)

This commutation relation is the property that defines â and â† to be lowering
and raising operators.

2.2.2 Introduction of the coherent state

Now we can define a coherent state. Mathematically, a coherent state |α〉 is
defined as an eigenstate of the lowering operator â. Formally, this reads:

â|α〉 = s|α〉 (15)
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Here the eigenvalue s is in general a complex number for â is not Hermitian.

A coherent state can be expanded in terms of energy eigenstates just like any
other wave function:

|α〉 =

∞∑

n=0

cn|n〉 (16)

To determine the expansion coefficients let the lowering operator work on the
coherent state:

â|α〉 =

∞∑

n=0

cnâ|n〉
(11)
=

∞∑

n=1

cn
√
n|n− 1〉 =

∞∑

n=0

cn+1

√
n+ 1|n〉 (17)

As coherent states are eigenfunctions of â (equation (15)) we know that this
state will only differ by a factor s from the coherent state we began with. Thus:

∞∑

n=0

cn+1

√
n+ 1|n〉 = s

∞∑

n=0

cn|n〉 (18)

The energy eigenstates are orthonormal and therefore we get:

cn+1

√
n = cns ∀n = 0, 1, 2... (19)

This yields the following expression for the expansion coefficients.

cn =
s√
n
cn−1 = ... =

sn

√
n!
c0 (20)

Finally to determine c0 we normalize our state. With the normalization condi-
tion (8) we get:

1 = |c0|2
∞∑

n=0

(|s|2)n

n!
(21)

Where the sum is the polynomial expansion of the natural exponent. Thus we
can write:

1 = |c0|2e|s|
2

(22)

Solving for c0 yields:

c0 = e
−|s|2

2 eiθ (23)

There is no physical meaning for the complex phase θ of c0. It is just an overall
factor for all cn and therefore there is no influence on |α|. Hence, to keep
it simple we choose θ = 0 and so we arrive at the following equation for the
expansion coefficients of a coherent state:

cn = e−
|s|2

2
sn

√
n!

(24)

Figure 1 shows cn as a function of n. Here the similarity to a Gaussian
function is easy to see. This property will be used later on in the classical limit.
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Figure 1: Here we see cn with eigenvalue s = 10
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2.2.3 Time-dependent coherent states

What will happen to the coherent state if we put in the time-dependence?

|n〉 → e−iEnt/~|n〉

The coherent function becomes:

|α〉 =
∞∑

n=0

cne
−iEnt/~|n〉 (25)

And thus the eigenvalue equation for coherence changes to

â|α〉 = s|α〉

⇔
∞∑

n=0

cn+1

√
n+ 1e−iE(n+1)t/~|n〉 = s

∞∑

n=0

cne
−iEnt/~|n〉

⇔
∞∑

n=0

cn+1

√
n+ 1e−iEnt/~|n〉e−i∆Et/~ = s

∞∑

n=0

cne
−iEnt/~|n〉

Where

∆E = En+1 − En =
π2

~
2

2mL2
(2n+ 1) (26)

Since ∆E is a function of n it is not possible to find an eigenvalue s so that
this equation holds for constant cn’s. Consequently equation (15) will only hold
for t = 0. For t > 0 the eigenfunctions will run out of phase, because of the
extra phase factor e−i∆E(n)t/~. Hence the ‘coherent function’ will become less
coherent during its evolution in time. This means for a coherent state in a box
that its wave function will spread out as time goes by.

This stands in contrast to the coherent states of the harmonic oscillator which
stay coherent (see appendix A). Here the energy eigenvalues E = ~ω(n + 1

2 )

are equidistant and so the phase factor e−i∆Et/~ can be extracted from the sum
and the following time-dependent equation for the eigenvalue of the coherent
state can be derived:

s(t) = e−i∆Et/~s (27)

In addition it is rather simple to derive the expectation values of position
and momentum using ladder operator. That makes it possible to show that
the state has minimal uncertainty (see appendix A). However for a quantum
well with infinite walls we cannot express position and momentum easily with
ladder operators. Therefore we will use a different approach to show that the
wave function shows classical behavior. In the following two chapters we will
try to show in two different ways that also in an infinite square well a coherent
state is the most classical state possible.
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3 Classical limit

3.1 Preparations

The function we are going to approximate is the coherent state:

|α〉 =

∞∑

n=0

cn|n〉e−iEnt/~ (28)

where cn is given by equation (20).

As we want to get an expression that is more compact and that gives more
insight into the behavior of the state we need to make several approximations.
The purpose will be to come to a function that is not a sum over n anymore.
We will see later on that the sum can be approximated by an integral.

First we will determine the position of the maximum of cn. This lies at the
place where the growth of the factorial

√
n! in the denominator exceeds the the

growth of the power sn. Thus we can regard successive values of cn for they
have to be almost equal at the maximum. We write:

1 ≈ cn0+1

cn0

=
sn0+1

√

(n0 + 1)!

√
n0!

sn0
=

s√
n0

(29)

Consequently the maximum lies at:

n0 = |s|2 (30)

It is true that the maximum does not lie precisely at n0, but in between n0 and
n0 + 1. However this will be negligible for the further process.

To be able to speak of a classical particle it must not be affected by the
discreteness of the eigenenergies. Hence we expect a classical particle to have
a high probability of finding it in energy eigenstates with high energies. These
have less discernible energy transition and for large n we can speak of an almost
continuous spectrum. Therefore in a classical state we also want the maximum
of the cn coefficients to correspond with a high energy eigenstate. This means
that n0 and consequently s have to be big. To make a long story short: to
create a classical situation with coherent states we have to chose the eigenvalue
s of â large.

To give the reader a feeling of the size of s we can make a simple calcula-
tion: Take a billiard ball with a mass of m = 160g and velocity v = 10m

s the
kinetic energy of this ball is:

Ekin =
1

2
mv2 = 8J (31)

If we want to describe a particle with these properties in the quantum well, it
has to have the same energy expectation value, which is:

En0 =
π2

~
2

2mL2
n2

0 (32)
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We will see later on that cn can be approximated by a Gaussian function sym-
metric around n0. Therefore n0 will also be the expectation value for the energy
eigenstate. Solving equations (31) and (32) for n0 yields:

n0 =
L

π~

√
2mE =

L

π~
mv = 4.8 · 1033 (33)

For a classical system we can expect L,m and v to be at orders of 1m, 1kg and
1m/s respectively. Hence we can assume that

n0 = O(
Js

~
) (34)

for a classical system. Consequently we can say that

|s| = O(

√

Js

~
) (35)

Thus taking the classical limit of a particle in a box means to create a coherent

state and let the absolute value of the eigenvalue s become of order of
√

Js
~

.

cn goes to zero for n ≪ n0 and n ≫ n0. Hence we will expect that the energy
eigenfunction that determine the properties of |α〉 will lie around the maximum
at n0. Therefore we will substitute n with

n(k) = n0 + k (36)

whereas k will become the new parameter to sum over. With this we put the
focus on the eigenfunction that are of importance for the behavior of the wave
function.

3.2 The expansion coefficient c
n

for large n

First we write s in exponential form. We will see later on that with (30) this
will simplify the expression a lot.

sn = (|s|eiφ)n = |s|neiφn with φ = arg(s) (37)

Plugging this into the expansion coefficient yields:

cn = e−
|s|2

2
|s|neiφn

√
n!

(38)

However there are more possibilities to write the expansion coefficients. We
can make the following substitution for the complex phase

φ→ φ+ 2πj with j ∈ Z (39)

With this cn will become “dependent” on the new parameter j:

cn → cn,j = e−
|s|2

2
|s|nei(φ+2πj)n

√
n!

(40)

It is true that the complex phase or the absolute value of the expansion
coefficients is not changed in any way.
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So why would we make the expression more complicated than it already is?
During the further calculations we will need to complete a square in the exponent
of the expression of the wave function. This will mean that real terms and
imaginary terms in the exponent will be “mixed”. Consequently also the initial
complex phase of cn will have a contribution to the absolute value of the wave
function. Taking a different j will result in a different wave function. Therefore
every j will correspond with a different part of the total wave function that
is a solution to our system. Hence we will construct the total coherent wave
function |α〉 by summing over all solutions |αj〉 belonging to different j’s.

|α〉 =
∑

j

|αj〉 (41)

We will approximate cn around the maximum at n0, due to the fact that here
will find the eigenstates with the biggest contribution to the coherent state.

As we take n0 large we can use Stirling’s approximation for factorial’s of
large numbers

n! ≈
√

2πn
(n

e

)n

(42)

to eliminate the factorial in the denominator.
Substitution yields:

cn =
e−

|s|2

2

(2π)1/4

1

n1/4

( e

n

)n/2

|s|nei(φ+2πij)n (43)

It will become useful to write all terms dependent on n in one exponent:

cn =
eiΦj(n)

(2π)1/4
e−

|s|2

2 +n
2 +n ln |s|− 1

2 (n+ 1
2 ) ln(n) (44)

Here we used
Φj(n) = (φ+ 2πj)n (45)

to collect the complex phase in one variable. However keep in mind that this
phase is still a function of n and j.

Using (36) to substitute n and (30) to substitute |s| we arrive at the follow-
ing expression:

cn0+k =
eiΦj(n)

(2π)1/4
e

k
2 + 1

2 (n0+k) ln(n0)− 1
2 (n0+k+ 1

2 ) ln(n0+k) (46)

Expanding ln(n0 + k) in a Taylor series

ln(n0 + k) = ln(n0) +
k

n0
− k2

2n2
0

+ ... (47)

the last term of the exponent becomes:

−1

2








(n0 + k) ln(n0) +
1

2
ln(n0) + k +

k2

n0
+

k

2n0
− k2

2n0
− k3

2n2
0

− k2

4n2
0

+ ...

︸ ︷︷ ︸

negligible








(48)
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We will neglect those terms that are at least a factor n0 smaller than other
terms with the same power of k. Furthermore we will neglect all terms with a
power of k greater than 2. We do this because we expect that k ≪ n0 for all
important eigenstates around the maximum.

The expression for the expansion coefficients becomes:

c(k) ≡ cn0+k =
eiΦj(n)

(2πn0)1/4
e
− 1

4n0
(k2+k)

(49)

Completing the square in the exponent yields:

c(k) =
eiΦj(n)

(2πn0)1/4
e−

1
4n0

((k+ 1
2 )2− 1

4 ) (50)

Now we can see that the absolute value of this function is a Gaussian function
with the following expectation value and uncertainty:

µc(k) = −1

2
(51)

σc(k) =
√

2n0 =
√

2|s| (52)

The expectation value still tells us that the maximum lies somewhere between
n0 and n0+1. This is of minor value to us, we already assumed this beforehand.
However the uncertainty points out that it is reasonable to neglect terms that
have higher order than |s|. Thus in the following we will assume that:

k = O(|s|) = O(
√
n0) (53)

It is easy to prove that the coefficients are still normalized in the classical limit:

∫

dk|c(k)|2 =
e

1
8n0

√
2πn0

∫

dke
− (k+ 1

2
)2

2n0 =
e

1
8n0

√
2πn0√

2πn0
= e

1
8n0

For n0 = O(Js
~

) we can approximate e
1

8n0 with 1.

3.3 Derivation of the expression for |α〉 in the classical
limit

With equations (34) and (36) we can say that a small variation in k (k → k±1)
will lead to a minimal variation in n(k). Thus it seems to be legitimate to
handle n(k) as a real parameter. This comes in handy, because then we can
approximate the sum over n with an integral over k.

In addition due to the fact that the limit of c(k) to ±∞ is zero it will not be
noticeable in the result, if the lower integration boundary is k = −∞ in place
of k = −n0. Therefore we can approximate the sum in the following manner:

|αj〉 =

∞∑

n=0

cn|n〉e−
i~π2n2t

2mL2
n=n0+k≈

∫ ∞

k=−∞
dk c(k)|n0 + k〉e−

i~π2(n0+k)2t

2mL2 (54)

Going over to αj ≡ αj(x, t) = 〈x|αj〉 we get the following expression:

αj =

∫ ∞

k=−∞
dk

eiΦj(n0+k)

(2πn0)1/4
e−

1
4n0

(k2+k)

√

2

L
sin

nπx

L
e−

i~π2(n0+k)2t

2mL2 (55)
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Using the substitution sinx = 1
2i(e

ix − e−ix) we can rewrite this to an integral
over two exponents:

αj = A

∫

k

dk
[

eFj(k,x,t) − eFj(k,−x,t)
]

(56)

where A and the function Fj can be derived from the original wavefunction:

A = (2πn0)
−1/4 1

2i

√

2

L
(57)

Fj(k, x, t) = − (k2 + k)

4n0
+ iΦj(n0 + k)

︸ ︷︷ ︸

c(k) term

+
i(n0 + k)πx

L
︸ ︷︷ ︸

〈x|n〉) term

− i~π2(n0 + k)2t

2mL2
︸ ︷︷ ︸

time propagator term

(58)

Now we will write the function Fj as a polynomial of k:

Fj = f0,j + kf1,j + k2f2 (59)

with

f0,j =i

[

(φ + 2πj)n0 −
π2

~n2
0t

2mL2

]

+ i
n0πx

L
(60)

f1,j =i(φ+ 2πj) − 1

4n0
+ i

πx

L
− i

π2
~n0t

mL2
(61)

f2 = − 1

4n0
− i

π2
~t

2mL2
(62)

Here everything between the brackets of f0,j only contributes to the normaliza-
tion constant. Also the dependency on t is not of importance for the properties
of the wavefunction as the term only contributes to the rotation of the function
in the complex plane. This will not affect the expectation value of the function.
Thus we will put this term into the “constant” Kj(t) to increase the readability
of the equations.

f0,j = iKj(t) +
in0πx

L
(63)

3.3.1 Classical velocity

Let’s make a substitution to give the function a more classical look. Speaking of
a classical particle it will be helpful to introduce the velocity v. For this purpose
we will use the classical definition of kinetic energy:

Ecl =
1

2
mv2 (64)

and equal it to the average energy of our system:

En0 =
π2

~
2n2

0

2mL2
(65)

this yields:

v =
π~n0

mL
(66)
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Finally our functions will look like this

f0,j = iKj(t) + i
mvx

~

f1,j = i(φ+ 2πj) +
iπx

L
− iπvt

L

f2 = − 1

4n0
− iπvt

2Ln0

Probably the reader will question himself where we want to end up with these
approximations. The point of these calculations is to come to two exponents
that have the form of a polynomial in powers of k. As we have seen in the
latter approximations we neglected all terms containing k’s that had a power
higher than 2. The derived polynomial then can be rearranged so that we get
an integral over a Gaussian function. To complete the square in the exponent
we use the following expression:

f2k
2 + f1,jk + f0,j = f2(k +

f1,j

2f2
)2 −

f2
1,j

4f2
+ f0,j

Our wavefunction now looks in general like:

αj =

∫

k

dk
(

ea(t)(k−b)2
)

(ecj(x,t) − ecj(−x,t)) (67)

Solving the integral yields:

αj =

√
π

a(t)
(ecj(x,t) − ecj(−x,t)) (68)

The interesting part is now the function cj(x, t) in the exponent. This function
will define the movement of the particle. cj(x, t) expressed in the coefficients of
the polynomial Fj(x, t, k) is:

cj(x, t) = −
f2
1,j

4f2
+ f0,j (69)

Plugging in the three functions yields:

cj(x, t) = −π
2n0

L2

(x− vt+ φ
πL+ 2Lj)2

1 + 2πi vt
L

+ i
px

~
+ iKj(t) (70)

Separating the imaginary part from the real part yields:

cj(x, t) = − π2n0

L2

(x− vt+ φ
πL+ 2Lj)2

1 + (2π vt
L )2

(71)

+ i

[

2π
π2n0

L2

(x − vt+ φ
πL+ 2Lj)2

1 + (2π vt
L )2

+
px

~
+Kj(t)

]

(72)
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Now the real part in the exponent is important for the position of the peak.
The complex phase however will only play a role near the points of discontinuity
of the potential, thus around x = 0 and x = L. Far away from these points, all
Gaussian peaks except for one are nearly zero. Thus here the absolute value of
α is only determined by the real part of the exponent. However near x = 0 and
x = L the complex phases of the different Gaussian functions become important
as there are now two functions 6= 0 with different phases that we sum over. Here
the phase should care for normalization of the total wave function. Furthermore
it should make sure that α complies to the general conditions which imply that
it is zero at the barriers.

3.3.2 Complex phase of the coherent state α

In this subsection we will show that we can derive from the complex phases of
the different peaks that the coherent function we derived satisfies the boundary
conditions. Without respect to the complex phase we know that all right-moving
and left-moving peaks have different signs. This means that, if we find for every
left-moving peak a right-moving peak with the same phase (without respect
to the minus sign for the left-moving peaks) and the same absolute value for
x = 0, L, we can state that the total coherent function α will become zero in
the points of discontinuity.

Plugging inKj(t), the phase of a peak moving to the right with index j becomes:

Θj(x, t) = (φ + 2πj)n0 +
n0πx

L
− π2

~n2
0t

2mL2
+ 2π

vt

L

(x− µj)
2

2σ(t)2
(73)

with µj = vt− φL/π − 2Lj and σ(t) = L√
2π|s|

√

1 +
(
2π vt

L

)2
.

The phase difference between two peaks with j1 for the right-moving and j2
for the left-moving (left-moving means that x→ (−x)) is:

∆θ = 2πn0(j1 − j2) + 2
n0πx

L
+ 2π

vt

L

(x− µj1)
2 − (x + µj2)

2

2σ(t)2
(74)

The first term is always a multiple of 2π, as n0 is an integer. The same holds
for the second part in the points of discontinuity, x = 0 and x = L. Hence these
two terms do not contribution to a phase difference no matter which value we
choose for j1 and j2. Thus if we want two pairs to have the same phase, we
need to find pairs that satisfy the following equation.

(x− µj1)
2 = (x + µj2)

2 (75)

The peaks obeying this equation will in addition have equal absolute value.
Both sides of the equation represent the numerator of the real exponents of
the peaks belonging to j1 and j2. The denominator is the same as it is only a
function of t. Thus if we find for x = 0, L pairs that obey equation 75, we can
state that the boundary conditions are fulfilled.

First let us regard x = 0. Plugging in µj1,2 yields for equation 75:

(−vt+
φ

π
L+ 2Lj1)

2 = (+vt− φ

π
L− 2Lj2)

2 (76)
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The equation must hold for all t ∈ R. Therefore the only solution is:

j1 = j2 (77)

Thus every αj vanishes in 0 and therefore also α.
Now we can use the same procedure for x = L. In this case the equation

becomes:

(L− vt+
φ

π
L+ 2Lj1)

2 = (L + vt− φ

π
L− 2Lj2)

2 (78)

This also has to hold for all t ∈ R. Therefore we get:

L+ 2Lj1 = −L+ 2Lj2 (79)

Solving for j2 yields:
j2 = j1 + 1 (80)

Thus the right-moving peak belonging to j1 cancels out against the left-moving
peak belonging to j + 2 = j1 + 1. Thus here we also have definite pairs of left
and right-moving peaks. This means for the coherent function α that it obeys
to the boundary conditions and vanishes in x = 0 and x = L.

3.3.3 Moving Gaussian functions

Without the complex phase we can understand the functions as Gaussian func-
tions with the expectation value µj and the uncertainty σ(t).

µj = vt− φ

π
L− 2Lj (81)

σ(t) =
L√
2π|s|

√

1 +

(

2π
vt

L

)2

(82)

Thus finally the coherent wave function can be written as

α(x, t) =
∞∑

j=−∞
α

(in)
j (x, t) −

∞∑

j=−∞
α

(out)
j (x, t) (83)

with

α
(in)
j (x, t) = Aj(t)e

− (x−µj )2

2σ2 +iΘj(x,t) (84)

and
α

(out)
j (x, t) = α

(in)
j (−x, t) (85)

The argument Θj(x, t) of the functions still is given by:

Θj(x, t) = (φ + 2πj)n0 +
n0πx

L
− π2

~n2
0t

2mL2
+ 2π

vt

L

(x− µj)
2

2σ(t)2
(86)

In Figure 2 we can see a schematic drawing of the coherent function, which
exhibits the incoming and outgoing Gaussian pulses which “reflect” at the walls
of the well.
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Figure 2: Here we see α(t) in a square well with L = 1

3.4 Analysis

Now it is time to put our derived function to the test. As we stated earlier a
coherent state has minimal uncertainty in position and momentum.

As it is not easy to determine the uncertainties σx and σp directly by calcu-
lations of 〈x〉, 〈x2〉, 〈p〉, 〈p2〉, we need to analyze α itself.

We can see in equation (81) that our function consist of infinitely many in-
coming and outgoing Gaussian functions moving at velocity v. All incoming
and outgoing peaks have distance 2L respectively. This means that there is
always one peak on the interval [0, L]. As for example the right-moving peak
belonging to j = 0 arrives at x = L, then the left-moving peak belonging to
j = 1 enters the interval. This can be understood as reflection on the righter
barrier of the infinite square well. The same process repeats itself everytime the
peak in the box arrives at x = 0 or x = L. However we do not have any proof
that in this process normalization is conserved. However the complex phase
makes sure that two peaks always cancel out at the boundaries (see 3.3.2). The
most interesting part of the function however is the uncertainty σ(t). Assuming
that we have a classical limit, we can state with equation (35) that the order of
the uncertainty is:

O (σ(t = 0)) = L

√

Js

~
≈ L · 10−16 (87)

Which is very small compared to the length scale of the system. This means
that we can speak about a classical system at t = 0. However for t≫ T we can
neglect the 1 in the square root and the uncertainty becomes:

σ(t) =
√

2π
vt

|s| =
√

2π
2Lt

T |s| ≈ L
t

T
· 10−16 (88)

What we can see in this formula is that also after 2 · 106 reflections at the walls
the uncertainty is still only significant in the tenth digit after the point. This
still will be difficult to observe, also due to outer influences on the system just
as friction or gravity. Therefore we can state that we derived a function that
really shows classical behavior when we take the classical limit.
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We can also try to have a look at this problem from a different angle. Herefore
we will regard a classical system that we give an initial uncertainty in position
and momentum. This is also what has happened to the function α we derived
in the latter calculation, which has to satisfy Heisenberg’s principle.

We will create a state with a free particle with initial values:

x = x0 + ∆x (89)

v = v0 + ∆v (90)

Here we understand x0and v0 as the expected values and ∆x and ∆v as a small
variation. The equation of motion for a free particle then becomes:

x(t) = x0 + ∆x+ v0t+ ∆vt (91)

Here we see that last term describing the deviation in the position increases
linearly in time. This means that an initial uncertainty in the velocity, will
increase the uncertainty in the position during the evolution in time. Therefore
it becomes comprehensible that there is a time-dependence in the uncertainty
of α. Thus taking this into account we see that the wave function we derived
fulfills the requirements for a classical system as good as possible.

However we have to mention that we implicated that the reflection at the
barriers has no effect on the uncertainty.

In contrast, for a classical harmonic oscillator a deviation of the initial con-
ditions does not affect the evolution of the state anyhow. With the same initial
values the evolution of x can be described with the following equation of motion:

x = (x0 + ∆x) cosωt+
v0 + ∆v

ω
sinω (92)

with

ω =

√

k

m
(93)

which is independent of x and v. What we see is that a variance in position and
momentum is possible, however this variance will stay constant for all times.
This also applies to the coherent states of a quantum harmonic oscillator (see
appendix A).

However the limit ∆x,∆v → 0 will describe the same behavior as the limit
|s| → ∞. Hence we can conclude that also for a particle in a box coherent states
will become classical for |s| → ∞. Nevertheless we have to mention that this
limit also is unphysical as the energy of the system becomes infinite. However
for classical energies: |s| > O(

√

Js/~) this still is an appropriate approximation.

To sum it up, a coherent state in an infinite quantum well has to obey Heisen-
berg’s uncertainty relation. Therefore it always has to have a small amount of
uncertainty in position and momentum in the first place. At t = 0 this uncer-
tainty is minimal, however with increasing time this uncertainty increases. This
can be explainend on the one hand by an evolution of the eigenstates that goes
more and more out of phase due to the fact that the energy eigenvalues are
not equidistant - ∆En ∼ (n + 1) (equation (26)) - as derived in section 2.2.3.
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This stands in contrast to the harmonic oscillator that has equidistant energy
eigenvalues and whose eigenstate therefore will stay in phase. Hence a coherent
state in a harmonic oscillator keeps its minimal uncertainty. On the other hand
we derived from the classical equation of motion for a free particle that an initial
uncertainty in momentum results in a linear increase of uncertainty in position.
Applying this to a particle in a box makes it clear that it will not be possible
to create a state that keeps minimal uncertainty during time evolution, unless
its uncertainty in momentum is zero.
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Figure 3: The sawtooth function that shall describe 〈x〉

4 The classical limit using the Fourier transfor-
mation of the sawtooth function

4.1 Preparations

For the calculations in this section we will make use of several formulae that
were derived in chapter 3.

In this chapter we are going to analyze the probability function 〈x〉 and
compare it to a sawtooth function f that would describe the movement of a
classical particle in a one dimensional box. To obviate complications and to
keep calculations simple we will assume that s ∈ R. This implies that the
particle will start at x = 0 with velocity v = π~n0

mL (see equation (66)). Hence
the sawtooth function we will be using is

f(t) =







...
−vt for − T/2 < t < 0
vt for 0 < t < T/2

L− vt for T/2 < t < T
...

(94)

We will write this function as a Fourier series:

f(t) =
∑

j

βje
−2πint/T (95)

with

βj =

{

L/2 if j = 0
L((−1)j−1)

π2j2 if j 6= 0

and the period T = v
2L .

A large s means that the expectation value of the energy of the system
is large compared to the ground state. This can be understood as a classical
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situation (see section 3.1). Hence the purpose is to find an expression for very
large |s| = O(

√

Js/~) which corresponds with a classical system.
From equation (30) we know that the maximum of cn lies at n0 = |s|2. As

the terms around this maximum have the biggest contribution to the total wave
function we will, analog to chapter 3, make use of the substitution:

n(l) = n0 + l

m(k) = n0 + k (96)

This is what we will be using in the further calculations to to see if the expec-
tation value of the position becomes a sawtooth function.

4.2 〈x〉 in the classical limit

The probability function 〈x〉 is given by

〈x〉 = 〈α|x|α〉 =
∑

n,m

cncm〈n|x|m〉e−i(Em−En)t/~ (97)

Where the limits of the different parts cncm, 〈n|x|m〉 and e−i(Em−En)t/~ will be
handled separately in the following three sections.

4.2.1 〈n|x|m〉 in the classical limit

〈n|x|m〉 can be calculated by integration - see appendix C - which yields:

〈n|x|m〉 =

{
L/2 if n = m

L
π2

[
(−1)n−m−1

(n−m)2 − (−1)n+m−1
(n+m)2

]

if n 6= m
(98)

Applying equations (96) the term for n 6= m of the expression becomes:

L

π2

[
(−1)l−k − 1

(l − k)2
− (−1)2n0+k+l − 1

(2n0 + k + l)2

]

(99)

For n0 large we will neglect the second term, which becomes small compared to
the first term due to n0 in the denominator. If we see l− k as one variable, the
resulting expression is the Fourier transform of the sawtooth function:

〈n|x|m〉 =

{

L/2 if k = l
L
π2

(−1)l−k−1
(l−k)2 if n 6= m

= βl−k (100)

Thus we already derived a first link to the sawtooth function, with 〈n|x|m〉
which is the corresponding Fourier transform. However we still have two other
terms and two sums that have to be transformed to make the sawtooth function
complete.

4.2.2 The time evolution term in the classical limit

Here we will again make use of (96) to substitute n and m. Hereby we get the
following expression for the exponent of the time evolution term:

−i π
2
~t

2mL2
(2n0k + k2 − 2n0l− l2) (101)
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With

v =
2L

T
(102)

and equation (66) we arrive at the following expression for the constant factor
in the exponent:

~π

2mL2
=

1

n0T
(103)

Substitution yields:

−iπ(2k +
k2

n0
− 2l +

l2

n0
)
t

T
(104)

Assuming that k, l ≪ n0 we can approximate this with

−2πi(k − l)
t

T
(105)

If k − l can be seen as one variable, this term is the exponent of the Fourier
series. However we still have a double sum and thus we first have to try to derive
an expression for the coefficients cncm that makes it possible to separate k − l
as index to sum over. In the next section we will see how this is accomplished.

4.2.3 The coefficients cncm in the classical limit

Here we will again make use of the substitution (96). The result is the following
equation for the coefficient product:

cncm → clck =
s2n0+k+l

√

(n0 + k)!(n0 + l)!
(106)

Let’s have a look at the expectation value of the position after the latter calcu-
lations:

〈x〉 =
∑

k,l

s2n0+k+l

√

(n0 + k)!(n0 + l)!
βl−ke

−2πi(k−l)t/T (107)

We already mentioned that the 〈n|x|m〉 part of this equations will become pretty
similar to the Fourier series of the sawtooth functions. We can see that βk−l

will be the same for all k en l with equal difference. Therefore it seems to be
advantageous to make a substitution:

∆ = k − l. (108)

However with this substitution we also need to change our understanding of the
double sum. In the first place we need to sum over all differences between k
and l. Therefore we get a sum over ∆ from −∞ to ∞. Here we keep will keep
l fixed. Then there will be a second sum over l. With k = ∆ + l the expression
for 〈x〉 becomes:

〈x〉 =
∞∑

l=∞

∞∑

∆=−∞

s2n0+∆+2l

√

(n0 + ∆ + l)!(n0 + l)!
β∆e

−2πi∆t/T (109)
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Here we used that βj is symmetric around 0. We can see that that the expression
for the coefficients

ckcl =
(s2)n0+ls∆

√

(n0 + ∆ + l)!(n0 + l)!
(110)

becomes rather similar to |cn|2. Therefore we will try to “extract” the ∆ from
the denominator. Rewriting the factorial yields:

(n0 + ∆ + l)!(n0 + l)! = (n0 + l)!
(n0 + ∆ + l)!

(n0 + l)!
(n0 + l)!

= ((n0 + l)!)2
(n0 + ∆ + l)!

(n0 + l)!
(111)

If we assume that a variation in l has no great effect on the variation on n0 + l -
which is comprehensible if we suppose that terms far away from the maximum
in cn will not contribute to the probability function - we can approximate the
fraction in (111) with

(n0 + ∆ + l)!

(n0 + l)!
≈ n∆

0 = |s|2∆ (112)

Thus we can write

ckcl ≈
s2(n0+l)

(n0 + l)!
= |cn0+l|2 (113)

and as a result the double sum can be divided into two separate sums:

〈x〉 ≈
∑

l

|cn0+l|2
∑

∆

β∆e
−2πi∆t/T (114)

The first sum is 1 due to normalization - see equation 8 - and the second sum
is the Fourier Series of the sawtooth function. So we can state that

lim
|s|→∞

〈x〉 =
∑

∆

β∆e
−2πi∆t/T = f(x) (115)

Thus we can state that the expectation value of the position for a coherent
function in an infinite square well will become a sawtooth function in the classical
limit.

4.3 Analysis

The result is exactly the equation of motion which we would expect for a clas-
sical particle in a box. Therefore we can conclude that in the classical limit a
coherent state leads to quasiclassical behavior. However this is just the expecta-
tion value. We cannot conclude much about the uncertainty in the position for
the particle for we did not calculate 〈x2〉. Doing this in addition would indeed
be interesting, however this will not be a subject to this article.

Though what we can conclude is that at x = 0 and x = L the uncertainty
must go to zero in the classical limit. Otherwise it would not be possible for
〈x〉 to “reach” the boundaries. For an infinite square well it is not possible for
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the particle to get over the boundaries. Therefore the probability for x > L and
x < 0 is zero. Thus if the expectation value is x = 0 or x = L and if there is an
uncertainty larger than zero there has to be a chance for the particle to be at
positions to the left and to the right of a boundary. This contradicts with the
fact that there is no chance of finding the particle behind a boundary. Therefore
we can conclude that the uncertainty in the position is zero when the particle
hits a boundary. However at these points the particle reflects at the boundary.
Since the boundaries are infinite there is a discontinuity in the velocity of the
particle at the points x = 0 and x = L. We cannot determine whether the
particle is moving right or left. Thus the uncertainty in momentum is infinite.

In the the latter calculation we have assumed that s is real. However gener-
ally this is not true. Though this will not be a subject of this article, it might
be interesting to do the same calculations on the assumption that s is complex.
What we will expect then is a phase shift in the Fourier series, so that the
starting position of the particle will be dependent on the complex phase of s
just like in section 3.

5 Conclusion

Let us resume the results of the two preceding approaches: The direct calcula-
tion of the coherent state α resulted in two sets of equidistant Gaussian functions
moving with uniform velocity v in opposed directions. The uncertainty is in-
versely proportional to |s| and becomes negligible in the classical limit and for
t ≪ T · 106. It increases under time evolution. From a quantum mechanical
point of view this means that the eigenstates building up the coherent function
will run more and more out of phase, hereby the whole function will become
more incoherent with increasing time. Consequently there is no minimal un-
certainty in position and momentum under time evolution just as anticipated
in section 2.2.3. This stands in a contrast to coherent states in a harmonic
oscillator where minimal uncertainty is preserved under time evolution. How-
ever with respect to the classical equations of motion we could see that also the
position of a classical particle in a box will become less certain if there is an
initial uncertainty in the momentum. This supports the result of chapter 3. The
second approach showed us that also the expectation value of the position be-
comes classical in the limit. In addition we could conclude that the uncertainty
of the position becomes zero at the boundaries. However at these points the
momentum of the particle is entirely undetermined. Therefore it is not possible
speak of minimal uncertainty in position and momentum. Though we are able
to conclude, that if 〈x〉 converges to a sawtooth function its wavefunction will
not be able to spread out under time evolution. Otherwise 〈x〉 would not be
able to reach the boundaries anymore where minimal uncertainty in the position
is crucial. However we have to mention that this may result from the limit we
have taken. For example the quadratic terms in the time evolution terms of 〈x〉
may have certain influence on the phase differences of the different eigenstates
which could lead to a dispersing wavefunction.

We see that there are certain contradictions between the results of the two
approaches. To find the causes we can investigate the different approximations.
Maybe some of them where too vigorous and disturbed the results.

All in all we can conclude that coherent states in an infinite square well
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will lead to classical behavior under application of the classical limit. However
they do not preserve minimal uncertainty as the coherent states of a harmonic
oscillator. To create such states in a quantum box we would need to search
for functions that will preserve phase coherence of the eigenstates under time
evolution.
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A Coherent states of the harmonic oscillator

For the harmonic oscillator we can define the following Hamiltonian:

Ĥ = ~ω(â†â+ 1) (116)

Whereas â† and â are the raising and lowering (ladder) operators which are
given by

â =
1√

2~mω
(mωx̂+ ip̂)

â† =
1√

2~mω
(mωx̂− ip̂) (117)

So that under substitution we will get the familiar form of the Hamiltonian, the
sum of kinetic and potential energy:

Ĥ =
p̂2

2m
+

1

2
mω2x̂2 (118)

The coherent states are the eigenfunctions of the lowering operator and satisfy
equation (15). To find the uncertainties in position and momentum we will first
calculate 〈x̂〉, 〈x̂2〉, 〈p̂〉 and 〈p̂2〉. Herefore we solve equations 117 for x̂ and p̂:

x̂ =

√

~

2mω
(â† + â); p̂ = i

√

~mω

2
(â† − â) (119)

Now we can substitute x̂ and p̂ with the lowering and raising operator:

〈x̂〉 =

√

~

2mω
〈α|â† + â|α〉

=

√

~

2mω

(
〈α|â†|α〉 + 〈α|â|α〉

)

=

√

~

2mω
(s∗ + s)

〈x̂2〉 =
~

2mω
〈α|â†â† + â†â+ ââ† + ââ|α〉

=
~

2mω
〈α|(s∗)2 + s∗s+ 1 + s∗s+ s2|α〉

=
~

2mω

(

s∗2 + 2ss∗ + s2 + 1
)
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〈p̂〉 =i

√

~mω

2
〈α|â† − â|α〉

=i

√

~mω

2
〈α|s∗ − s|α〉

=i

√

~mω

2
(s∗ − s)

〈p̂2〉 = − ~mω

2
〈α|â†â† − â†â− ââ† + ââ|α〉

= − ~mω

2
〈α|s∗2 − s∗s− 1 − s∗s+ s2|α〉

= − ~mω

2

(

s∗2 − 2ss∗ + s2 − 1
)

Here we used that [â, â†] = 1 and equation (15). Now the uncertainties in
position and momentum are easily calculated:

σx =
√

〈x̂2〉 − 〈x̂〉2

=

√

~

2mω

(

s∗2 + 2ss∗ + s2 + 1 − (s∗ + s)2
)

=

√

~

2mω

σp =
√

〈p̂2〉 − 〈p̂〉2

=

√

~mω

2

[

−
(

s∗2 − 2ss∗ + s2 − 1
)

− i2(s∗ − s)2
)

=

√

~mω

2

Thus the uncertainty product is minimal:

σpσx =
~

2
(120)

Now we will check if a coherent function of the harmonic oscillator stays coherent
under time evolution.

From chapter 2.2 we know that the expansion coefficients of this function
have to comply with equation (20). Thus we can write for the coherent function
|α〉 with timedependence:

|α〉 =
∑

n

cn|n〉e−iEnt/~ (121)
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Now we let the lowering operator work on |α〉:

â|α〉 =

∞∑

n=0

cn
√
n|n− 1〉e−iEnt/~

=

∞∑

n=0

s√
n
cn−1

√
n|n− 1〉e−i(En−1+~ω)t/~

= se−iωt
∞∑

n=0

cn−1|n− 1〉eiEn−1t/~

As â|0〉 = 0|0〉 we can start the sum at n = 1 and it becomes the expression for
the coherent function. Thus the new time-dependent eigenstate equation is:

â|α〉 = se−iωt|α〉 (122)

Hence |α〉 remains an eigenstate of â with the time-dependent eigenvalue

s(t) = se−iωt (123)

Consequently the coherent state of the harmonic oscillator stays coherent and
continues to minimize the uncertainty product.

The expectation value of the position becomes with equation (123):

〈x̂〉 =

√

~

2mω
(s∗ + s) (124)

=

√

~

2mω
2ℜ(se−iωt) (125)

=

√

~

2mω
2|s| cos(ωt− arg(s)) (126)

Now we equal the expected eigenenergy of the state with the classical energy of
a an oscillator.

En0 ≈ ~ω|s|2 ≈ 1

2
mx2

0ω
2 (127)

With x0 the amplitude of the oscillation. Solving the above equation for x0

yields the constant factor in (126). Thus the expectation value of the position
becomes:

〈x̂〉 = x0 cos(ωt− arg(s)) (128)

Which is the classical equation of motion for a harmonic oscillator.

B Fourier transformation of f(x)

In this section we will derive the Fourier series of the sawtooth function that
has been used to show that a classical limit of a coherent state in an infinite
square well results classical behavior. First we need to define the connection
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between a function and its Fourier transformation. In this article we will use
the following definition:

f(t) =

∞∑

j=−∞
βje

−2πijt/T (129)

βj =
1

T

∫ t0+T

t0

f(t)e2πijt/T (130)

Here f(t) will be the sawtooth function that corresponds with the position of a
classical particle. We write:

f(t) =







...
−vt for − T/2 < t < 0
vt for 0 < t < T/2

L− vt for T/2 < t < T
...

(131)

To calculate the Fourier series βj we have to solve (130). First we calculate β0.
With t0 = −T/2 we get:

β0 =
1

T

∫ T/2

−T/2

dt f(t)e0 (132)

=
v

T
2

∫ T/2

0

dt t (133)

=
v

T

T 2

4
=
vT

4
=
L

2
(134)

For j 6= 0 however we have to use partial integration to solve βj :
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βj =
1

T

∫ T/2

−T/2

dt f(t)e2πijt/T

=
v

T

[
∫ 0

−T/2

dt (−t)e2πijt/T +

∫ T/2

0

dt te2πijt/T

]

=
v

T

[

−
[

t
T

2πij
e2πijt/T

]0

−T/2

+

∫ 0

−T/2

dt
T

2πij
e2πijt/T

+

[

t
T

2πij
e2πijt/T

]T/2

0

−
∫ T/2

0

dt
T

2πij
e2πijt/T

]

=
v

T



−
[

0 +
T 2

4πij
e−πij

]

+

[(
T

2πij

)2

e2πijt/T

]0

−T/2

+

[
T 2

4πij
eπij − 0

]

−
[(

T

2πij

)2

e2πijt/T

]T/2

0





=
v

T

[

T 2

4πij

(
(−1)j − (−1)j

)
+

[(
T

2πij

)2
(
1 − eπij

)

]

−
[(

T

2πij

)2
(
eπij − 1

)

]]

=
v

T

(
T

2πij

)2
[
0 + 1 − (−1)j − (−1)j + 1

]

=
vT

2π2j2
((−1)j − 1)

with L = vT
2 this results in:

βj =
L((−1)j − 1)

π2j2
(135)

C Calculation of 〈n|x|m〉
In this section we will derive an expression for 〈n|x|m〉. First let’s have a look
at the special case n = m:

〈n|x|n〉 =
2

L

∫ L

0

dxx sin2
(nπx

L

)

=
1

L

∫ L

0

dx(x− x cos

(
2nπx

L

)

=
1

L

[

1

2
L2 −

[

x

(
L

2nπ

)

sin

(
2nπx

L

)]L

0

+

∫ L

0

dx

(
L

2nπ

)

sin

(
2nπx

L

)]
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Here the second term is zero because sinnπ = 0∀n ∈ N. In addition the last term
has no contribution either as integration yields a term containing cos 2nπ− 1 =
0∀n ∈ N. Thus:

〈n|x|n〉 =
1

2
L (136)

For n 6= m we use the trigonometric identity

sinα sinβ =
1

2
(cos(α− β) − cos(α+ β)) (137)

Then we solve with integration by parts:

〈n|x|m〉 =
2

L

∫ L

0

dx x sin
(nπx

L

)

sin
(mπx

L

)

=
1

L

∫ L

0

dx

(

x cos
(n−m)πx

L
− cos

(n+m)πx

L

)

=
1

L

[[

x

(
L

(n−m)π
sin

(n−m)πx

L
− L

(n+m)π
sin

(n+m)πx

L

)]L

0

−
∫ L

0

dx

(
L

(n−m)π
sin

(n−m)πx

L
− L

(n+m)π
sin

(n+m)πx

L

)]

The first term is zero because sinnπ = 0∀n ∈ N. Integrating the second part
and using cosnπ = (−1)n∀n ∈ N we get:

〈n|x|m〉 =
l

π2

[
(−1)n−m − 1

(n−m)2
− (−1)n+m − 1

(n+m)2

]

(138)
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