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Abstract

In this research the asymptotic behaviour of the improvement factor of the numerical coefficients of the Con-
nected Green’s functions before and after renormalisation will be studied for ¢* theory, ¢ theory and a com-
bination theory, @3 + ¢* theory, that can function as the basis for a model for quantum chromodynamics. Using
properties of factorially divergent series, which the Connected Green’s functions are, a simple way of predicting the

—a
asymptotic of the improvement factor is found, e / . In order to find the two variables needed in the prediction,
the series is cast into a new form using Stirling’s approximation to find ¢y and Feynman diagrams are used as an
easy way to determine the first few Connected Green’s functions used in the renormalisation process to eventually

15 10 7
find a. For ¢* theory this results in e~ 4 . For ¢ this results in e~ 3 without tadpole renormalisation and in e” 3
with tadpole renormalisation. For ¢3 +¢* theory, complications are discussed and a general form of ¢ 1 is found to

—_n3
%. The choice to renormalise A3 instead of 14 is made to work out a general form for a, resulting in
a=5+ 1—61 z without tadpole renormalisation and a = % + %z with tadpole renormalisation. Combining those, the
_=30+27y-19y2 | =7+5y-4)2
improvement factors without and with tadpole renormalisation were found to be e 6-»*  ande 6-»°

becfz

117
respectively. An example is studied where y is chosen to be %, which results in an improvement factor of e™ 32

351
without tadpole renormalisation and e~ 128 with tadpole renormalisation.
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1 Introduction

In this research a zero dimensional model for quantum field theory will be studied. In particular, the asymptotic
behaviour of the improvement factor of the numerical coefficients of the Connected Green’s functions before and
after renormalisation will be predicted for some processes that have already been studied. This will also be studied
for a process that might later function as the basis for quantum chromodynamics. This research was inspired by
the research done by Michael Borinsky in [2], Dirk van Buul in [3] and Ilija Milutin in [4]. Where this was originally
studied for multiple theories by Borinsky and later verified by explicit calculations for ¢* theory by van Buul and
for a model of quantum electrodynamics by Milutin. The next step was obviously to find a basis for studying a
model for quantum chromodynamics, for which two theories need to be combined. I was interested in finding
out how the underlying theories worked and what complications would arise in combining them. The approach in
this research is mainly focused on the fact that the Connected Green’s functions are factorially divergent series and
using the properties of those series to study the asymptotic behaviour of the improvement factor.
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2 Connected Green’s functions and renormalisation

2.1 Quantum Field Theory

Quantum field theory (QFT) combines classical field theory with special relativity and quantum mechanics, and
describes particles as an excited state of the underlying field. In our zero-dimensional case, fully explained in [1],
the quantum field ¢ is a stochastic, it assigns a real number to a single point. Since this is a random variable
we cannot say anything about it. However, something can be said about the probability density, P(¢), and the
collection of its moments, G, = (¢™), called the Green’s functions. The probability density can be written as

P(¢) = Ne™ #59) (1)

where S is the action, specific to a quantum field theory, which we will come back to later. The normalization factor
N can be written as follows

N1 Efe‘%s(‘f’)dqo @)

The Green’s functions are then given by
Guz= (@™ =N f e HS@D g 3)

where the integral is taken from —oco to oo! and Gy must be 1. To make the function more manageable we define H,,
as

1
H, Efe_ﬁs("’)(p”d(p, 4)
so that of course N = _blfo and the Green’s functions can be written as

Hy

Gp= .
n H

5)
The same information contained in the Green’s functions (moments) is also contained in the Connected Green’s
functions, C,, which are the cumulants of P(¢) and can be written as a function of powers of different Green’s
functions in the following way

n-1 n-1

Ch=Gp— Z ( )CmGn—m . (6)
m=1

So, by looking at the Connected Green’s functions something can be said about the quantum field theory under

investigation. In order to do that we need to calculate H, from which we can calculate G,, and eventually C,,. The

easiest theory to take a look at is the free theory, where the action is defined as

L

S 4 ()

which is fairly easy to solve since we just get a Gaussian. It becomes a little more complicated when looking at
higher order theories. For example, if we take a look at ¢* theory we get an action of the form

B Aoy
S:_ + — . 8
2(” 4!<p @

IThis convention will be used throughout the thesis.
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Since this is a lot more difficult to compute, we see this as a small deviation from the free theory. A4 is taken to be
very small and perturbation theory is used to write

k
~Lg(p) g~ 1 ( A4 ) 4k
n = 2h z _—-— . 9
¢ ¢ =0 k'\ 24n ¢ ©

Which can be inserted into the definition of H, to yield

A4 )k(h)2k+" 4k +2n)!
2n go( 2a1) \u @2k + n)! k! 22k+n {10
where we have used that P o)1
fd(p e’%(ﬂzwzl’:(_) ﬂ a1
p) pi2p

This only works with even powers of ¢, hence the 2p, in this case resulting in only even n and thus changing it to
2n in equation 10 for convenience. The same principle applies when looking at other theories. The power series
expressions that are obtained for the Green’s functions after this perturbation expansion are not convergent, but
factorially divergent. This is an important property that we will get back to later.

In this thesis we will take a look at three different theories, ¢3, ¢* and a combination theory. The actions are,
respectively

B oo As 3
S==¢"+— 12
AT (12)
B oo Aoy
S==¢p°+— 13
2<P 4!(1’ (13)
and 1 y
) 3 3 4 4
S=Z¢?+ =P+ ol 14
29 TP T y? (14)

The H,, for ¢* theory can be found in equation 10 and using the same principles as above we find H,, for ¢ theory
and the combination theory, respectively

3l+n

A3\ (R\Z Bl+n)!
Hn:Z(——g) (—) ’ (;n)%n@(l+neven) (15)
zo\ 1) ) (3ot
and 3144k
A\ A\ 31+4k+n)!
e E A S s o
K20\ 67 24in) \u (W)mklzf

2.2 Renormalisation

Nothing is known about the parameters y, A3 and A4 so the first few Connected Green’s functions are used as
measurement processes to determine these parameters, after which the rest of the Connected Green’s functions
can be predicted. In order to get the next higher order in perturbation theory for the prediction process, it needs to
be done for the measuring process as well so a new fit of the parameters can be made and we get improved values for
the prediction processes. This order by order improvement is called renormalisation. What we are then interested
in is the improvement factor, the ratio between the coefficients of the Connected Green’s functions before and
after renormalisation. As can be seen in [2] and (3], in ¢* theory, for high loop order the improvement factor goes
asymptotically to a certain value for each of the Connected Green’s functions. The same was shown for quantum
electrodynamics in [2] and [4] as well. The rest of the thesis is focused on predicting these asymptotic values for
three different theories.
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3 Factorially divergent series

To understand the asymptotic behaviour of the improvement factor, it is fruitful to look at factorially divergent
series because the Connected Green’s functions are in this category, as can be seen in [1], [2] and references quoted
therein. We shall take a look at this type of series and its properties in this section, based on their description in [1].
3.1 Comparisons

Consider f(x) and g(x), both asymptotic sums of the form

=) x"fa, 17)

n=0

where, for large n, we assume the coefficients f;, to be of the form
fn= afc}ll“(n+ﬁf) , (18)

making f(x) factorially divergent. We can then define some comparisons between these series f(x) and g(x),

R i
X)) <gx) if lim — =0 (19)
f(x)>gx) ifg(x) < f(x) (20)
fx) ~gx) if y}gn g is a finite nonzero constant (21)
© 8n
fx) =g if lim ﬁ =1 (22)

L(f,x) is defined to be the leading term of f(x), it is the nonzero term in f(x) with the lowest power of x. A series
f(x) is called proper factorially divergent (pfd) if L(f, x) = 1.

3.2 Algebraics
Both f(x) and g(x) are factorially divergent, so
fx)>gx) = fx)+gx) = f(x) (23)

and
fx)gx) = L(f,x)g(x)+ L(g,x) f(x) (24)

If f(x) and g(x) are pfd this changes into

f)gx) = f(x)+g(x), leading to f(x)? = pf(x) (25)
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If we then look at the case where both f(x) and g(x) are pfd and g(x) < f(x) with g; # 0 we find
flxg)= 3 x"fagx)"

n=0
n n n
Sl PRVART P | O i e
n=0
- n < n_k k (26)
- Zx an,k A &1
n=0 k=0 :
n 1 gl)k
- n il =13
ﬁg‘bx fnkgbk! (Cf
a
f(xg)=fx) e
where we used that for large n
Faoin® = afc}’_kf(n —k+ ﬁf)nk ~ afc}’_kr(n +Bs). 27)

Another important thing to look at is inversion. If f(x) is a pfd with f; #0,

y=xf(x) (28)
can be inverted to give
x=ygy, (29)
where g(x) is pfd with g; = —f; and
_h
g)y=—-f(x)e . (30)

3.3 Improvement factor

Every Connected Green’s function can be written as a prefactor times a powerseries in u, where u is specific to each
theory and dependent on 7 and the parameters p, A3 and A4. This is denoted as

Cn=L(Cy,h)6n(u) (31)

where €, (1) is pfd. In the renormalisation procedure u also gets expressed in terms of the renormalised parameters
as 01". Using the lowest order Connected Green’s functions™, it can be expressed as

a=u(l+au+bu+..) 32)

where the part between brackets is again pfd and we will denote it as f(u), making this an equation of the form of
equation 28. This means that we can invert this equation to yield

u=1agd) (33)
_h
with gy = —a and g(u) = —f(we /.6, (u(i)) is then of the form of equation 26, resulting in

G, (i) =€, (1) e . (34)

—a
where the improvement factor is found to be e/ .

liThe hat notation for renormalised parameters shall be used throughout the thesis.
This will be elaborated upon later.
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4 Components of the improvement factor

In order to calculate the improvement factor we need to find a and ¢y in equation 34.

4.1 Findingcy

To find ¢ as easily as possible some more properties of factorially divergent series are used. Just as with the Con-
nected Green’s functions, H,, = L (Hp, i) #,(u) and G,, = L(Gy, B) 9, (w) with A, (u) and 9, (u) pfd. Now we can
use the comparisons in section 3.1 to find

S+ 1> H, 35)
and " (0
=—1_ nit = - = =
Gp = Ho L(Hpy,n) (1) L(Hp, h) 6, (u) — Ay (1) = Hy, = Hy . (36)

C, is a combination of powers of G, with m = 2...n, where the leading powers of 7 are the same in each term,
meaning if we devide it out we get C,, in terms of %,,,. And since again

G+1>9, (37)

and we get
C,=G,=H,=H,. (38)

This means that if we want to know the ¢y for C;, we can already find it by just looking at Hy or even just Hy,
because all their c¢’s are the same. Meaning H, needs to be cast in the form of equation 17 in order to just read off
the desired cy.

4.2 Findinga

To find the a in equation 34, we take a look at the first few Connected Green’s functions of our respective theory.
Since a is the first non-trivial coefficient only the first loop order of the Connected Green’s functions is needed,
which is found easily using Feynman diagrams. We can express the Connected Green’s funtions C,, in Feynman
diagrams by writing out all connected diagrams with n external lines, where the Feynman rules shown in figure 1
are used.

AN o o M
l,[,’—.{ h?K h

Figure 1: Feynman rules used in our model for ¢3, ¢* and ¢ + ¢* theory, taken from [1].

We use this to take a look at our first few Connected Green’s functions for our different theories. Obviously for
¢ theory we only have a three-point vertex and for ¢* theory we only have a four-point vertex, whereas in the
combination theory both are used.

The actual process of finding a is best shown using an example, here ¢* theory is used. If we look at C,, we get the
series in figure 2 up to second loop order.
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A+AL+QQ&@+N

Figure 2: Diagrammatic representation of C, for ¢* theory up to second loop order.

When taking symmetry factors and multiplicity into account this results in

noR*A, PPAS(1 11 R, 1 2,
2= ————=+ —+—-+=|+ l--u+-u"+.. (39)
uo2u w4 4 6 23

with u = % The same can be done for Cy, for which the Feynman diagrams can be found in figure 3.

Figure 3: Diagrammatic representation of C4 for ¢* theory up to first loop order

The resulting series is then

4=

Ah® AfR* (4 3 Ay (. 7
B ). (40)

l—--u+..
ptoops ut 2

In the renormalisation procedure these are set to be equal to their first term, but in renormalised parameters,

1 2
Co= 21 gusdie ) =2 an
2 3 o
n3A 7 neA
Ci=- 44(1——u+...)=— g (42)
H 2 H
These can be used to determine i, )
. Rl Cs 5
d=—=-—=ufl--u+.. (43)
fr G5 2

where we can just read off the constant a needed in equation 34 to be —g.
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5 Improvement factors
In this section, we will work through finding the improvement factors for ¢* theory, 3 theory and ¢2 + ¢* theory.

5.1 ¢*theory

Since this theory was used as an example, a was already found to be —%. So now only ¢ needs to be determined in
order to calculate the improvement factor. As we have seen before,

U

k 2k+n |
ﬂ) (h) 4k +2n)! (44)

Hy, = - _
an kzzo( 247 @2k + n) k1 22k+n
In order to find the ¢ ', Hon needs to be of the form of equation 17 with coefficients of the form of equation 18. First,

H,,, is rewritten as

n\" 2n)!
Hyy, = L(Hap, h) #6520 (u) = (_) ('_n)nn%oZn(u) (45)
u) nl2

where /%, is
u)k 4k+2n)! n!

Hon = é(_% 2k+ Ik 2n)!

(46)

with of course u = % Then, in order to find the gamma function involved, we make an educated guess and use

Stirling’s approximation to see if it was correct and what factors are still missing. For the educated guess, one needs
to look at the factorials where k becomes very large, so for a moment we ignore the ones with just n, in this case

g,f:ﬁﬁ}é.Forthe guess we say 4k —2k — k= k and 2n — n = n so we guess I'(k + n). Turning our .#, into
u\k n! (4k+2n)!
Foon =) |—=—| Tlk+ 47
o go( 96) et 1) G Gk R T (ke + ) @7
- (_i)kmﬁm n! 64kgn s
k=0 96 2n)! \/En
2u\* r n! 8"
= -——| Tlk+n)—— (49)
kzo( 3) IDIRVEY 7
(50)

where Stirling’s approximation was used. For a full derivation, see appendix A.1. We can now just read off ¢y = —%.
Consequently we can determine the improvement factor to be

5/2 _15
=e-23=¢ 4 . (51)

<R

e

10
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40+

20+

improvement factor

10
1 S ——
0 20 40 60 80 100 120 140 160 180
loop order
| c[6] c[8] C[10] exp(15/4)]

Figure 4: The improvement factors for ¢* theory for increasing loop order for Cg, Cg and Cy¢ plotted with the predicted asymp-
totic value for the improvement factor.

In figure 4% this prediction for the asymptotic value of the improvement factors is plotted together with the im-
provement factors for increasing loop order for Cg, Cg and Cjp. We see that the prediction is fairly accurate. It
corresponds to what was found in [2] and [3]. If we take different Feynman rules, where the four-point vertex
with A4 is positive instead of negative, the absolute values stay the same but ¢ becomes positive and —a becomes
negative, resulting in the same improvement factor. We conclude from this that taking Feynman rules where the
four-point vertex with A4 is positive has no effect on the resulting improvement factor and can therefore be done if
desired.

WIn all the figures showing the asymptotic behaviour of the improvement factors included in this thesis, the improvement factor is taken as

ggzg , which results in taking away the minus sign in the exponent.

11
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5.2 ¢° theory

¢° theory varies somewhat from ¢* theory in that it contains tadpoles. In our zero dimensional case that is not a
problem, however when looking at higher dimensions sometimes these need to be divided out because they are
unphysical. This process is called tadpole renormalisation and is done to make sure the expectation value of the
vacuum field has the desired value. Since this is quite an important procedure that is often used, the expectation
value shall be investigated both with and without tadpole renormalisation. However, the steps are very similar.

5.2.1 Without tadpole renormalisation

—a
Again, we need to find a and c; and enter them into our equation for the improvement factor e/ . We shall start
with finding a, for which we first take a look at C,. In figure 5 a diagrammatic representation can be found.

e 9

Figure 5: Diagrammatic representation of Cy for 3 theory up to first loop order without tadpole renormalisation.

When taking symmetry factors and multiplicity into account this results in

no A2h%2 n
Cy=—+-3 +...:p(1+u+...)=

2 (52)
pooopt o2

==

. A2h . . . . . .
with u = % Now, the same is done for Cs, for which the diagrammatic representation can be found in figure 6.

Figure 6: Diagrammatic representation of C3 for ¢ theory up to first loop order without tadpole renormalisation.

The resulting series is then

Ash?  A3h3 (2.3 Ash? Ash?
C3=—3—3—3—6(—+1)+...=— S (Lt dut.)= - (53)
Iz Iz 2 U u
These are then used to determine i, .
. An Ck
h=—= :—3=u(1+5u+...) (54)
[

so we end up with a = 5. Next, cr needs to be determined, for which H;, needs to be of the form of equation 17,
with coefficients of the form of equation 18. As seen before,

AN |
anz(—@) (E) i Lm;me(uneven) (55)
zo\ 6R) ) (3o

12
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and since [ + n needs to be even, we have two possibilities that we will look at separately, n = 2p and ! = 2r or
n=2p-1and!=2r+1". In the first case, H, becomes

p naz \"
Hzp:(h) Z( 3) 6r +2p)! 56)

2u) S\ 288u3 | Br+p)len)!
n\?P 2p)!
= L(Hap, h) #op(u) = (@) 7%2;;(”) (57)

where 6, (u) is

Hopu) =) 1 Eo(ﬁ)r (3&6:;)2!3)! (zl;!)! ' 8)

For our Gamma function we guess I'(r + p), resulting in
Hoop =) r=0 (%)rm 2 (2’;!)! Gr+ ;g?!r(;rz)fr)ir p) &9
:ZraO(%)rl“(r+p)(2Lp!)!$ (60)
=Zr20(37u)rl“(r+p)(%)!g (61)

where Stirling’s approximation was used. For a full derivation, see appendix A.2. We can now just read off ¢y = %
We shall now look at the case where n =2p —1 and [ = 2r + 1 to see whether it results in a different c¢. In this case

H,, becomes
Az \( F\P nAz " Gr+2p+2)!
Hzp_lz(__i“)(_) Y | P (62)
12p)\2p) Zo\288up° | Br+p+D!I2r+1)!

ﬁ) (z)” 2p+2)!
12p)\2u) (p+1)!

= L(Hzp-1,h) #op-1(u) = (— Hrp-1(U) (63)

where A%, (u) is

Hop (W= r=0 (%)r @r f;izl?! ;)L ! ((22112))!! ' 64)

For our Gamma function we guess again I'(r + p), resulting in
Hrp-1W)=) r=0 (ﬁ)rr(r 2 ((2!;;12))!! @r+p i61r);22:):12))!!r(r +p) 63)
:Zrzo(%)rr(rﬂ;) ((21;112))!! 432rnlzp3 66)
=Zr20(3?u)rl“(r+p) ((2’;:12))!!%13 67)

where Stirling’s approximation was used. For a full derivation, see appendix A.2. Again we find ¢y = %, for our
purpose the two approaches give the same result. Consequently we can determine the improvement factor to be

=e3/

=e

ol
- ‘&
I\)‘U‘

-
«ls

e (68)

This corresponds to what has been found in [2].

V[ cannot become smaller than 0.

13
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5.2.2 With tadpole renormalisation

First we look for the different value for a. When looking at the diagrammatic representations, found in figure 7 and
8, we see a slight change due to the tadpole renormalisation.

Figure 7: Diagrammatic representation of C, for ¢? theory up to first loop order with tadpole renormalisation.

Figure 8: Diagrammatic representation of C3 for ¢ theory up to first loop order with tadpole renormalisation.

This also results in a slight change in the formulas

no Ain%1 h h
Co=—+ 1 —+.=—0++.)== (69)
Hooopt 2 u u
Ash? 313 (3 Ash2 (. 5 Ash?
CG=——g =[S +1|+. == l+su+..|=——F. (70)
u peo\2 u u
(71)
In the same way as before # is determined
e 7
MZA—3=—3:u(1+—u+...), (72)
[N 2
resulting in a = % To determine cr here, we include a tadpole counterterm in the action,
A
S(tp)=§<ﬂ2—§<ﬂ3+T<p- (73)

Where obviously we need to find out more about this extra term. T is tuned such that the tadpoles vanish so not
only is Gy = 1 as always, but also G; = 0. We can express all Green’s functions in terms of T, for example G, = %T.

hz—;:f. Where we see that T starts with
7, meaning T2 < T. In this way, using the other Green’s functions, T can be determined up to increasing powers
of ii. However, this is a lengthy task so we shall use a different method. We start again with a different field with a

different action,

We already know that L(G,h) = %, from which we can determine L(T,h) =

_m o, A3 3
Sty) = 2 14 5 (/7 (74)
Where we look at the Schwinger-Dyson equation”! with source J,
A
my()=J+ 2 (WP +hy' () . (75)

ViEor an explanation of the origin of this equation, see [1].

14
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This field ¥ containes a tadpole, ¢ = y(0), so if we take ¢(J) = w(J) — t it is free of tadpoles. When substituted into
equation 75, we find

A 1
(m—=2A3T)p()) =T+ 73 (@(D? +he' (D) - (mt - 5/13 ). (76)

Where the tadpole-free action can be found if u = m - Azt and T = m¢ - %/13 t? are chosen. If J = 0 is put into
equation 75, a relation for ¢ is found.

A3 A3 (o h RhA3 O
t=—(t"+C))=—|t"+—+——1 7
m 2 ( * 2) 2 +m+ m om 77)

. . . nA . .
From its Feynman diagram, we know ¢ must be of the form ¢ = %T(x) with x = . This can be put into the
former equation, resulting in

1 2 3 21
T(x)=1+x7(x)+ Zxr(x) + Ex 7 (x), (78)

where it is easy to see that 7 =1+ g +..,0 = % and B; =1 and 7 can be written as
3 n
T(x):ZA(E) F(n+1)x". (79)
n

Here, 7 is still a function of x, which in turn is a function of m, but we want to know it as a function of y, for which

2
we use our regular u = % To make this switch, u is determined as a function of x as
u—x(1+xr(x))_SvZA(?’)nr(n)x" (80)

- 2 V) ’

which is then inverted to yield x = ug(u), where we have
3 n
gw) :—e_IZA(E) r(nu" <71 (81)
n

so 7(x) becomes

T(x) =t(ug(u) = e 1w (82)

meaning c; stays the same. Now with this 7(u) the original tadpole counterterm T can be determined as follows.

_ 13 2 h/13 X o1 hﬂg
T=mt 5 t° = oy 7(x) (1 4T(x)),~e 2 T(u) (83)

which does not change the cr = % Now the H,, can be written down including this tadpole counterterm,

_ B\ TV (R 1 Qg
Hn_lyéo(&) (_E) (ﬁ) W—q!ZqH(quven) (84)

where g = 31+ k+ n)/2. Since ¢t = % and ¢y = % without tadpole renormalisation, now ¢y = % as well. This is no
surprise since full tadpole renormalisation and one-loop tadpole renormalisation result in the same asymptotic, as
demonstrated in [1] and [4].

Since cy is the same as without tadpole renormalisation, we get an improvement factor of

=712

=e32 =¢e

<R
Wi~

e (85)
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improvement factor
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Figure 9: The improvement factors for ¢ theory with tadpole renormalisation for increasing loop order for Cy,, n = 4,...,10,
plotted with the predicted asymptotic value for the improvement factor.

In figure 9 this prediction for the asymptotic value of the improvement factors is plotted together with the im-
provement factors for increasing loop order for C,;, n =4, ...,10. We see that the prediction is fairly accurate and it
corresponds to what has been previously found in [2] and [4].
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5.3 @3+ ¢* theory

In the combination theory we have both three-point vertices and four-point vertices, resulting in terms with 13 and
A4, making this more complicated than the previous theories. These vertices might be connected through a ratio of
their respective u’s, or they might not be connected at all. Another issue is the renormalisation process, if the two
are connected, should we renormalise A3 or A4, or if they are not connected, should we renormalise both? For this
theory, we shall use Feynman rules where the four-point vertex is positive instead of negative, this will not affect
the outcome, as said in section 5.1. To find a general ¢y, we must take a look at Hy, which is in a slightly changed
form from equation 16 due to the choice of positive four-point vertex,

3l+4k+n
2

I

4 1
e
2o\ 6n) \2an) \p (3l+4k+”)ll|k|2

From ¢ theory we know it does not matter what we choose to make I + n even so we choose n = 2p and I = 2r,
resulting in

_(ﬁ)p A2h ’(Am)’“ 6r+2p+4k) TUr+p+k) @7
2 \ou) 2o\ 288u3 ) \96p2) @Br+p+2k)@NIKIT(r+p+k)
n\P 2p)!
= L(Hzp,h) ‘75211 = (@) TWZP (88)
(89)
with | (67 + 2 + 40!
us Uy p: r+zp+
Sy = 90
2 ,,kzzo(zss) (96) L P R G Bre pr 2l 2 R 4 p+ B 0
Since we do not know if either of the u will dominate for large r and k, we define r = s — k and rewrite
s k | !
p! (6s+2p—2k)!
r
SZ()ICZO(ZBS) (96) (s )(Zp)' Bs+p—K)'2s—2k)k!IT(s+ p)
91)
S (3u p! (6s+2p—2k)!
r el
;0(288) (Hp)kz_o( us ) 2p)! Bs+p— k) 2s— 2k K T(s+p)
For simplicity, we shall say 3u—L;4 = z and we will look at ./,
(6s—2k)!
Hp = T . 92
0= s;)(zss) (5),;)(2) (Bs— K 25— 2k KIT(s) ©2)
We now define
Co o (6s—2k)! 2~ ©3)
Sk~ 85— k)25 —2Kk) KIT(s) 288°
and s
Fs=) Cg, 94)
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which contains everything needed to determine c¢. We want it to not have great influence if we have one more 14
relative to A3, so we want Cs 11 /Csx = 1,

Cskr1  (65—2k—2)!(3s—k)! (25— 2k)!k! z
Cor  (6s—2K)!Bs—k—1!(2s—2k—2)!(k+1)!
_ Bs—k)(2s—2k)?z

(95)
(6s—2k)?k
_(s—k?z
~ kBs—-k)
which is 1 at k = ys, with y a constant. where we can see that
33—
g=282Y) (96)
1=y
3+2z—-V9
_ z—vV9+8z ‘ ©97)
2(1+2)
(98)

Then we again use Stirling’s approximation to evaluate Cj x, for a full derivation see appendix A.3, resulting in

Cor=(m 352 B=y*1- ) X (ya-y)t18~
_( (3_y)3 )5 1 (99)
“l181-y)2 emis(ya-y)

Which we can then use to determine the asymptotic behaviour of Fj,

F;=C 2 (100)
TN n(Cy )"
where C c
(In(Cy)) = In 72 (101)
Cs,k
for which we first determine
Coi+1Csk-1 _ (6s—2k+1)(2s-2k)(2s—2k- 1k 102)
c2,  (6s—2k-1)2s—2k+2)2s—2k+1)(k+1)
Then, taking a series expansion of the logarithm of this we find
1 CoknCok1 _ y+3 + (103)
C3y s(y=3)(y-Dy
v( 3-y)° ) 1 w]rs(y—s)(y—l)y
=
18(1 - y)? 3 _ +3
y vV (2m) s(yl(l ) y (104)
_( B-y? )si 3—y)z
“\18a-y2) 2n\3+y
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3
s ;/)2 is found as a function of y = £ If this ratio is known, it can be entered into the formula for

where ¢y = 11(3321_—— <

S
cr. To check that the correct asymptotic value for Fs was found, the value from the calculation of Fs = }. C; x was

compared to the asymptotic value that was found.

1.81

calculated value/asymptotic
L L L L L L
[ ] Lad e L [ e |
1 L L L L 1

—
—
1

[
=]

300

=]
[a—
(=]
(=]
[
=]
(=]

Figure 10: Comparison of the calculated value of Fs compared to the asymptotic.

A graph of this comparison can be found in figure 10. It can be seen that the calculated value matches the asymp-
totic very nicely, from which we conclude that our prediction is correct.

We can not determine a as straightforwardly as with the other theories since we need to choose what to renormalise
on. If a choice is made, a can be determined as a function of y as well. We choose to renormalise A3 to show this
derivation of a. The choice to renormalise 13 instead of 1, is based on a hunch that everything will work fine
this way but the other way around may cause issues when looking at C3. These issures might arise since for the
renormalisation of 14 we need C4 and renormalisation affects all the next Connected Green’s functions but not the
ones before it. However, it is important to keep in mind that this was not checked and the choice was made just to
show the process.

In this theory, tadpoles play a role as well, so just as in ¢° theory, we shall predict the improvement factor with and
without tadpole renormalisation. As explained in section 5.2.2, this will not affect c¢, only a.

5.3.1 Without tadpole renormalisation

As always, first we consider the Feynman diagrams.
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Figure 11: Diagrammatic representation of C, for ¢° + ¢* theory up to first loop order.

In figure 11 a diagrammatic representation of C» can be found. When taking symmetry factors and multiplicity into

account this results in
o Ash? 2 A5H* n ( 1 )
=—+ + - +o.=—l4+-up+us+..|=
poo2qud 2 ot pl 2

where 13 and 14 are the same as before.

T2

Figure 12: Diagrammatic representation of C3 for ¢° + ¢* theory up to first loop order.

C

= (105)
7

In figure 12, the diagrammatic representation of C3 can be found, for which we do the same as for C,, resulting in

Ash? A3R® (2.3 AsAai® (3 3 1 Ash? 7 Asi?
Cs=-—p - [ == +1| - =[S+ +c|+.=- 1+4Uz+ —tg+...| = ——— . (106)
Iz pe \ 2 w2 2 2 p 2 I
Then, these are used to determine i3,
i igh C?Z’ (1+5 +11 + (1+(5+11 + ) (107)
i3 = =—==u U+ —ug+..|=u —z|ug+..
3 [N 3 3t ol 3 6 3
where we used that 14 = § u3. Here, we find a =5+ %z and using z = {E—y)yz) we can determine
—a _—-30+27y—-19y* 18(1—y)* _ —30+27y—19)* (108)
cr 6(1-y)? B-y? B-y)?

-30+27y-19)°
which leads to an improvement factor of e ©-»°
We will test our prediction by giving an example where we have set z = 2, from which we can calculate y = %,

. . . _1uz
resulting in an improvement factor of e™ 32 .
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Figure 13: The improvement factors for ¢3 + ¢* theory without tadpole renormalisation for increasing loop order for Cp,, n =
4,...,10, plotted with the predicted asymptotic value for the improvement factor.

In figure 13 the improvement factors for increasing loop order for C,,, n =4, ..., 10, without tadpole renormalisation
are plotted with the prediction for the asymptotic value of the improvement factor. Again, we see that the prediction
is fairly accurate.

5.3.2 With tadpole renormalisation

Just as in @3 theory, tadpole renormalisation changes the first few Connected Green’s functions in the following

way.
/’\ + /“@ ﬁ + .

Figure 14: Diagrammatic representation of Cy for ¢3 +¢* theory up to first loop order when taking tadpole renormalisation into
account.

To start, in figure 14 a diagrammatic representation of C, with tadpole renormalisation can be found. When taking
symmetry factors and multiplicity into account this results in a slight change,

o Ash? 1502 h 1 1
=—+ + - +..=—|l+-m+-us+..|=
poo2pd o2 pt pl 27 2

where 13 and u4 are the same as before.

C (109)

| St
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. +f{ A©<>\&AC<+

Figure 15: Diagrammatic representation of Cs for 3 +¢* theory up to first loop order when taking tadpole renormalisation into

account.

In figure 15, the changed diagrammatic representation of C; when taking tadpole renormalisation is taken into

account can be found, which leads to a slight change in the equation as well, resulting in

Ash?  A3R3 (3 AsAqh® (33 Ash? (. 5 Ash?
C3=—3—3—3—6(—+1)— 3 ; (— —)+...:— 3 (1+—u3+3u4+...)=— SA .
I pe \2 w22 w 2 @
These are once again used to determine i3,
) igh Cg u(1+7u +9u+ u(1+(7+3)u+ )
l3=—=—5= - - = —+-z
3 I Cg’ 3 Sust il 3 575 3
where we used uy = §u3. Here, we find a = %+ %z and using z = {1(:32 we can determine
—a _-7+5y—-4y* 18(1-y)* _ —-7+5y—4)°
cr 2(1-y)? B-y3 B-y3

=7+5y-4)?
which leads to an improvement factor ofe”  ¢-»°

(110)

(111)

(112)

The same example as before, with z=2and y = % is worked out, now taking tadpole renormalisation into account.

.. . _ 351
The prediction for the improvement factor then becomes e~ 125.

22



Effectiveness of renormalisation in zero dimensional ¢3 + ¢* theory, September 2020

20+
g 15
&
g 101
b=
@
a,
g
5
Ul Ll T T L) Ll Ll T T
0o 10 20 30 40 350 60 70 80 90
order
c, Cs Cy c,
Cy Cy Ciy exp(351/128)

Figure 16: The improvement factors for ¢3 +¢* theory with tadpole renormalisation for increasing loop order for C, 1 = 4, ..., 10,
plotted with the predicted asymptotic value for the improvement factor.

In figure 16 the improvement factors for increasing loop order for C,, n =4, ..., 10, with tadpole renormalisation are
plotted with the prediction for the asymptotic value of the improvement factor. As can be seen in this figure, our
prediction for the improvement factor seems to be accurate.
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6 Discussion

For @3 + ¢* theory it would be interesting to study the ratio between the couplings, y. As demonstrated, if a ratio is
chosen the calculation of the improvement factor is fairly straightforward, however it might not make much sense
if it is just chosen at random. Therefore it would be interesting to study what has the outcome closest to reality,
perhaps in a quantum chromodynamics context.

For the same theory, we chose to renormalise A3 instead of 14, it would be interesting to see what impact this choice
has and whether one is better than the other. A reason for the choice in this thesis was given, however that was not
studied and it would be interesting to see if that reasoning is correct or not.

This combination theory, 3 + ¢* theory, is the basis for gluonic quantum chromodynamics (QCD), since it uses a
three-point vertex and a four-point vertex. With the knowledge from our basic ¢® + ¢* theory, a zero dimensional
toy model for QCD can be studied, just as Michael Borinsky and Ilija Milutin did for quantum electrodynamics in
[2] and [4] respectively. This might provide some insight on the best value of y to choose.
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A Stirling’s approximation
The two important things from Stirling’s approximation we use are
Inp!= (p+ )lnp p+Inv2n
InT'(p) = (p— E)lnp— p+Inv2n

for large p.

A.1 ¢* theory
In equation 47 we take a look at the last part and therefore define

(4k+2n)!

A= ,
2k+n)k'T'(k+ n)

since this is the part for which Stirling’s approximation is used.

InA= (4k+2n+ )ln(4k+2n) 4k-2n+InvV2n

—(2k+n+— )1n(2k+ n)+2k+n-Inv2rn

+%)1n(k)+k-1n\/ﬁ

- k+n—%)1n(k+n)+k+n—1n\/ﬁ

InA=|4k+2n+ — )(1nk+21n2+—) 2n
2 2k
n
(2k+n+ lnk+ln2+—)+n
2k
( )ln(k)
(k+n——) lnk+Z)+n
—In2n
lnA:Ink(4k+2n+l—zk—n—l—k—l—k—rﬁl)
2 2 2 2

1
+2In2 (4k+2n + 5) —In2

1
2k+n+5)—ln2ﬂ

1
InA=In2|6k+3n+ 5 —In2n
64kgn
A=28k23n\/3 107 =
27
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A.2 3 theory

In equation 59 we take a look at the last part and just as in ¢* theory, we define

(6r+2p)!
@Br+plen''(r+p)

A=

(121)
since this is the part for which Stirling’s approximation is used.

1
InA= (6r+2p+—)ln(6r+2p)—6r—2p+ln\/ﬁ
(3r+p+ )ln(3r+p)+3r+p—ln\/_
(122)
(2r+ )1n(2r)+2r—1n\/ﬂ
_(r+p—5)ln(r+p)+r+p—ln\/2_ﬂ

1
lnA:(6r+2p+§

(lnr+ln6+3—pr)—2p

1 p
—(3r+p+§)(lnr+ln3+§)+p
1
—(2r+§)(lnr+ln2) (123)
—(r+p—l)(lnr+2)+p
2 r
—In2n
1 1 1 1
InA=Inr 6r+2p+E—Sr—p—E—Zr—E—r—p+E
1 1 1 1 (124)
+ln3(6r+2p+——3r—p——)+ln2(6r+2p+——2r——)—ln27r
2 2 2 2
InA=In3(3r+p)+In2(4r+2p)-In2n (125)
432"12P
A=3373P242%P 2 = 27716374 |27 = 5 (126)
/2
We want to do the same for H,),, for which we take a look at the last part of equation 65 and again define
6r+2p+2)!
A= 6r+2p+2) (127)
@Br+p+D!Cr+DIT(r+p)
since this is the part for which Stirling’s approximation is used.
InA= (6r+2p+ )ln(6r+2p+2)—6r—2p 2+Inv2r
—(3r+p+= )ln(3r+p+1)+3r+p+1—ln\/
(128)

(Zr )ln(2r+1)+2r+1—ln\/_

r+p——)ln(r+p)+r+p—ln\/
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InA=

5 1
6r+2p+—)(lnr+ln6+ %)—Zp

+1
(3r+p+ )(lnr+ln3+pg—r)+p

(2 ) (Inr+1n2)

(r+p——) lnr+$)+p

—In2n

1nA—lnr(6r+2 +5 3r 3 2r 3 r +1
- PT3 P=3 2 P73

5 3 5 3
+ln3(6r+2p+——3r—p——)+ln2(6r+2p+——2r——)—ann
2 2 2 2
InA=In3(3r+p+1)+In2(4r+2p+1)-In2n

_ 43271273
A=3%3P3.2422P0 05 = 277167 3P4P6 /2 = ——— =

27
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A3 @3+ " theory

The stirling approximation is used to evaluate Cj j in equation 93.

InCsf=klnz- —1n27r+ (63 2k+ 5

(Ins+In2+In@B-y))-6s+2k
(33—k+2)(lns+ln(3 y)+3s—k

(25 2k+ - )lns+ln2+ln(1 y))+2s—2k (133)
(k+
1

s— )lns+s sln288

(Ins+Ilny)+k

1 3
InCsf=Illnz—-Ins—-In2x
’ 2 2
1 1
+ln2(6s—2k+——23+2k——)
2 2

1 1
+In(3-y) (65—2k+§—3s+k—5)

1 1
—ln(l—y)(23—2k+5 —lny(k+5 —sIn288
:llnz—llns—§ln2n
2 2
1
+4sIn2+In3—y) Bs—k) - (Zs 2k+ = )ln(l - ( 5)1ny—sln24—sln18 (134)

= llnz—llns—§ln2n
2 2

+sB-InB-y)-2s1-y)In(1-y) - %ln(l -y) - (ys+

Iny-slnlis8
1
= ——1ns—§ln2n
2 2
1
+3sIn3-y)—2sln(1—y) - > In(y(1-y)-sln18+ys(lnz—In(3-y)+2In(1 - y) -Iny)
1 3 1
= —zlns— 3 In27 +3sIn(3—-y)—2sln(1 - y) - 3 In(y(1-y))—sln18

Cor=2m s 2@-y> Uy (p1-y) 218 (135)
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