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1 Introduction

Through the past decades, formulating a consistent theory of Quantum Gravity where
one tries to combine the fundamental laws of quantum mechanics and Einstein’s theory
of relativity, has become a very well studied open problem in physics. There are currently
many different approaches that are being taken to tackle this problem. According to
Einstein’s theory of general relativity a change in the energy density content of a space-
time will result in a change of the metric of said spacetime, and hence, gravity can be
viewed as a purely geometrical feature. It does a stellar job in explaining the dynamics
of planets, stars, galaxies, and even the time evolution of the universe as a whole, as
seen in figure[I] Contrary to the typical length scales of general relativity, quantum me-
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Figure 1: General Relativity made visible. Image credit: phys.org

chanics describes the dynamics of the smallest possible particles. As the name suggests,
an important feature of quantum mechanics is that some things that seem continuous
- e.g. energy spectra - are actually, and surprisingly, quantized. Quantum mechanics
is often formulated using the path integral formalism, where one computes an infinite
dimensional integral over all possible paths from point A to point B, of an appropriate
weight depending on the action over the considered path. The path that the particle
may take, is in essence random.
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Figure 2: The path integral formalism of Quantum Mechanics. Image credit: wikipedia.



In combining these fundamental aspects of Quantum Mechanics and General Rela-

tivity, to obtain a suitable theory of Quantum Gravity, one must compute an infinite
dimensional integral over all possible geometries of four-dimensional spacetime, weighted
by the Einstein-Hilbert action. One way to look at this is by taking into account the
random’ part of quantum mechanics, and the ’geometry’ part of General Relativity:
random geometry. What this means is that we may study the integral over all geome-
tries of spacetime by discretizing these geometries: we take n identical building blocks,
and look at the limit where this number of building blocks approaches infinity. One of
the largest advantages of this approach, is that properties of discrete models are much
easier to analyse. We may extract exact relations for geometries obtained from n iden-
tical building blocks, and study their asymptotic behaviour in the large n limit.
Doing this for four-dimensional geometries might be the key to a consistent theory of
quantum gravity. However, this turns out to be quite a challenge. Therefore, this re-
search focuses on a simplified model of random geometry in two dimensions instead of
four, in the absence of matter. In this case, the weight that a geometry obtains from
the Einstein-Hilbert action is constant, and therefore all the different geometries obtain
an equal probability.

= 20000

Figure 3: The random geometry obtained by gluing together two-dimensional quadran-
gles, in the large n limit. Image credit: dr. Timothy Budd.

In this research we will study the geometries obtained from the specific case of
quadrangles cut out of the Euclidian plane, as seen in figure [3] where every ’enclosed
area’ is bounded by four edges and four vertices (or points). But firstly, and more
importantly, what I would like to point out is that essentially the discrete structure of
the building blocks of the geometry does not matter - albeit triangles, quadrangles, or
higher order polygons - up to a constant rescaling (which does depend on the discrete
building blocks) the limit

Tim. (V(Mn),cp n_1/4dgT) = (Moo, doo) (1)
is the same for all regular p-gons that we can cut out of the plane! The set of 'points’
V(M,,) of our discrete geometry, equipped with a distance function f(x,y) = ¢, n=/*d,,.(,y)
where dg(z,y) is the geodesic graph distance between the points « and y, converges in



distribution to a well-defined random metric space (Mo, dso) in the Gromov-Hausdorff
topology (whose definition goes beyond the scope of this thesis) [I0]. This limit is called
the Brownian Map. Perhaps the most important thing is, that we can always choose
the constant ¢, such that the limit is truly independent(!) of the discrete nature of our
building blocks, for all p. By comparing figure [3] and figure ] one may see that these
two discrete geometries might indeed coincide in the large n limit.

This means, most importantly, that the Brownian Map carries a certain universality:
apparently, it is the universal limit for geometries made out of a large number of identical
building blocks, but perhaps it is the universal limit for other kinds of two-dimensional
maps as well.

Figure 4: A gluing of two dimensional triangular shapes. From this image is clearly
visible that, in the large n limit, the quadrangulation of figure [3| and this triangulation
might coincide. Image credit: dr. Timothy Budd.

The geometry of the Brownian Map comes with some surprising properties. For a
start, one would expect a typical distance within a two-dimensional surface to scale with
the square root of the area of said surface. However, within the Brownian Map, one
of the striking features is that typical distances in the limiting random geometry scale
with the fourth root(!) of the area. This is readily seen by the rescaling of the graph
distances in equation by this exact factor of n=/%. It has been established that this
is indeed the unique rescaling that one needs for the convergence of .

Another way of saying that geodesic distances scale with the fourth root of the total
volume, is by saying that the Hausdorff dimension of the surface is equal to 4. A
surface whose Hausdorff dimension is unequal to 2, is considered ’fractal’. This implies
that the properties of the geometry are essentially scale-invariant. Actually, this is
precisely what we are looking for in a model of two-dimensional quantum gravity without
matter. One of the biggest problems is that 'naive’ quantizations of the geometry of
spacetime break down when considered on quantum mechanical length scales, close to
the Planck scale. One possible solution for two-dimensional quantum gravity is indeed by
consdering purely fractal surfaces, such that the geometrical properties of the spacetime
are invariant under 'zooming’ beyond the Planck scale!

In this research, I will be aiming to recover this specific dimensional feature of distance
rescaling by n /4, by means of two mathematical models using bijections with trees;
the first of which is already quite well and thoroughly understood, and the second one
is not (as much).

Firstly, we will take a look at a bijection between normal or reqular quadrangulations
and a certain class of trees, well-labelled trees, and investigate how properties on the



quadrangulations translate to properties on the corresponding trees, which are easier to
analyse. Specifically, the fourth root feature will be recovered in two ways - one using
the properties of the labelling of the trees they inherit from the bijection, and a more
precise derivation using the asymptotic features of the generating functions of these
well-labelled trees in the limit where the number of building blocks becomes large.
Secondly - since one of my greatest interests besides physics (and mathematics, for
that matter) is the wonderful game of 10 x 10 draughts, I will be looking at Eulerian
Quadrangulations, which are black and white colored quadrangulations of the plane such
that all white squares must be adjacent to black squares and vice versa. In this different
class of maps I will be investigating a bijection with yet another class of trees - so called
labelled mobiles - and aim to recover the same fourth root feature as in the previous
model. This will be done by setting up a recurrence relation for their generating functions
and studying their asymptotics by comparing them to regular quadrangulations.

In doing so, I hope to recover the same distance scaling of n'/* as for the regular
quadrangulations, which would be a strong indication that Eulerian quadrangulations
are within the universality of the Brownian Map as well.



2 Introduction to Maps and Generating Functions

To start off, it might be useful to quickly go through some definitions of mathematical
objects that will be of great importance throughout this thesis. Even though there are
many interesting things to say about these objects and interesting theorems to point
out, I will try to stick to what is really necessary as much as I can.

2.1 Maps

The start of this chapter will be on graphs, maps, and a wonderful theorem by Leonhard
Euler.

Definition 2.1. A graph is a finite set of vertices (points), edges (lines) and an incidence
mapping that connects pairs of vertices by an edge.

In this definition, it is also allowed to have loops or cycles within the graph (e.g. a
loop is obtained by setting the two vertices that an edge connects equal to each other),
or vertices that exist by themselves without an edge binding to them. Let us define the
following:

Definition 2.2. A connected graph is a graph that has no disconnected vertices; be-
tween any two vertices in the graph, there exists a path connecting them.

The degree of a vertex is the number of edges incident to it.
The following definition is straightforward, but I want to give it the attention it deserves,
because it is indeed quite important.

Definition 2.3. A tree is a connected graph that contains no loops or cycles. Equiv-
alently, a tree is a connected graph that would become disconnected by the removal of
any one of its edges.

Figure 5: A connected graph, but not a tree.

Graphs and trees can be rooted; this corresponds to marking a specific vertex to be
the root of the graph. In the case of a tree, we will often call the tree planted if it has
a such a root.

Let us now turn to the definition of a map.

Definition 2.4. A surface is a closed, connected two-dimensional manifold. Any surface
of genus g is homeomorphic with the sphere with g handles attached.

I’'m not going to go into too much detail here on the genus of a surface and homeo-
morphisms, since we will only be considering surfaces of genus 0. In essence, the genus of
a surface can be thought of as the number of distinct holes it has, and a homeomorphism
between two surfaces can be thought of as a continuous deformation of one surface into
the other.



Figure 6: Surfaces of genus 0, 1, 2 and 3 respectively. Image credit: wikipedia.

Definition 2.5. An embedding of a connected graph G into a surface S is a drawing of
the graph on the surface such that:

e cach vertex of the graph is represented by a point in S and distinct vertices are
represented by distinct points;

e cach edge of the graph is represented by a non-selfintersecting curvilinear segment
in S, with the ends of the segment coinciding with the vertices connected by the
edge. No two segments intersect;

e The complement to the image of G in S is a disjoint union of two-dimensional
domains homeomorphic to disks.

The image of a graph under such an embedding is called a map. Two maps are
considered equivalent if there exists an orientation preserving homeomorphism of the
plane taking the image of the first embedding into the second one. The connected
components of S\G are called the faces of the map. The degree of a face is the number
of edges it is bounded by.

Maps, as well as graphs, can be rooted. In this case, this corresponds to marking a
specific edge on the map with an orientation.

Remark. Any graph G embedded in a surface S has a so called dual map, which is
the graph embedded into S whose vertices and edges are in one-to-one correspondence
with the faces and edges of G respectively, and each edge of the dual map connects the
vertices corresponding to the faces separated by the corresponding edge of G.

Figure 7: A graph, and the construction of its dual graph. Image credit: chegg.com.

Now that all of this is settled, we can finally state Euler’s formula.

Theorem 2.6. Euler’s theorem. For a map of genus g with n edges, f faces and v
vertices, the following relation holds:

v+ f—e=2-2g (2)



This is an amazingly simple relation between the numbers of vertices, faces and edges
of a map and the genus of the surface it is embedded in. In the literature, the quantity
2 — 2g is sometimes also being named the Fuler characteristic of the surface.

Since we will actually only be considering planar graphs, i.e. graphs with zero genus,
the relation reduces to v+ f —e = 2 in our case. I think it is safe to say that proving the
formula for surfaces of arbitrary genus is still quite challenging, but in our zero genus
case it is somehow intuitive that it works - any edge must connect two vertices, and
adding a vertex means automatically adding an edge, whether the vertex is placed in
the middle of an already existing edge, or elsewhere. Furthermore, the same argument
can be made for the faces; a face can be divided into two faces by adding an edge, so in
the same way as between the edges and vertices, there is some kind of a balance between
the number of edges and the number of faces of a map.

Of course, this was not an official proof of the theorem, but it does give some insight as
to why the relations holds - which for the purpose of this thesis should be enough. An
interested reader may find more on Euler’s theorem in [13].

Definition 2.7. A planar map is a graph embedded into a genus zero surface. It can
be represented in the plane by sending the ’outer’ face to infinity. Every planar map
also has a spherical representation, which maps the infinite outer face of the planar map
onto a finite face within the sphere.

This thesis will be on unicolored and bicolored quadrangulations of the plane. To
that end, let us define:

Definition 2.8. A planar quadrangulation is a graph embedded in the plane in which
all faces have degree four.

Furthermore, a tree can also be thought of as a one-face map of genus zero. By
Euler’s formula, a tree with n vertices has n — 1 edges - as it should. An equivalence
class of embeddings of a tree in the plane is called a plane tree.

2.2 Generating Functions

We can very nicely study maps (and trees specifically) via their generating functions.
This might come in handy for e.g. the enumeration of maps, as we will see shortly - but
later on, it proves to be very useful in defining recursive sequences for certain classes of
trees as well. Generating functions provide a rather intuitive way to convert ’counting
problems’ of certain combinatorial objects into algebraic problems of the corresponding
generating functions.

Definition 2.9. The generating function of a sequence of numbers ag, ai, as, ... is the
power series G(z) = Y7 a,z".

More often than not, this is to be considered as a formal power series; this means that

we do not really wish to evaluate the function G(x) at some value of z, but that we are
merely converting a ’counting’ problem into an algebraic problem on the corresponding
generating functions. These functions are in general much easier to manipulate. For
example, the generating function of ¢riples of some combinatorial object defined by the
function G(z), is equal to G(z)3.
We may use this formalism to calculate the number of planted plane trees with a given
number of edges, by manipulating their generating functions. Let us provocatively
denote the sequence of the number of plane trees with n = 0,1,2,3,... edges by C,.
These numbers are called the Catalan numbers and have a whole range of applications
in different combinatorial fields. To start our quest, let us define what is called a regular
bracket structure:



Definition 2.10. A regular bracket structure is a sequence of opening and closing brack-
ets, such that:

e there are as many opening as closing brackets;

e at any point in reading the sequence from left to right, the number of closing
brackets cannot exceed the number of opening brackets;

e upon removing any opening bracket and its 'associated’ closing bracket, the re-
maining sequence must still be a regular bracket structure.

For example, the sequence ((())())() is regular; the sequence (()())(()))( is not.

The number of planted plane trees with n edges is precisely equal to the number of
regular bracket structures with 2n brackets. This is seen by considering a walk along the
contour of a planted tree, starting from the root. Such a contour walk traverses every
edge precisely two times, once away from the root vertex and once towards the root
vertex. We associate a step ’away’ from the root with an opening bracket and a step
towards the root with a closing bracket. After 2n steps, we return to the root vertex,
and by construction we have obtained a regular bracket structure. See figure

Using the regular bracket structures, we can write down a recursion relation for the

t

Figure 8: The plane tree corresponding to the bracket structure (()((()())()))().

Catalan numbers [9]. The number of ways one can organize 2(n+1) brackets, denoted
by Cy+1, is, in terms of the previous Catalan numbers C,,,C,,_1,C) 9, ..., Cy given by

Cnt1=CoCp+ C1Cp1+ ... + Cn_1C1 + CnCo =Y CpCh_y. (3)
k=0

This is seen by noting that any regular bracket structure can be decomposed in terms
of two regular structures as (X)Y', where we allow either X or Y to be empty. Next we
count all possible configurations where X has k pairs and Y has n — k pairs in total, for
all possible k € [0,n]. Adding them up, we find the total number of bracket structures
with n 4 1 brackets.

Next, we denote the generating function of the Catalan numbers to be C'(z) = > ° ) Cra™.
Then, by the previous observation, we find that

Z Crii2" = Z ( Ckcnk> " = Z Cra® Z Cppa™F (4)
n=0 n=0 \k=0 k=0 n=~k
= Cra® Z Cizl = C?(x), (5)
k=0 1=0

10



where the substitution n = k + [ was made in going from the first line to the second
line. We find

1 o0
22 ™™ = C%(a), (6)
n=0

and we can further simplify this by writing

% (i Cha — co> — (), 1)

and since we know that Cy = 1, we can obtain from this a quadratic equation in C(z)
given by

xC?*(z) — C(x) +1 =0, (8)
and this is easily solved to be:
1++1—4zx

For the choice between the positive and the negative square root, it is sufficient to
observe - once again - that C'(0) = Cp must evaluate to 1, which is clearly not the case
for the positive square root. For the negative square root, we have a case of %, but the

limit is straightforwardly computed to be 1. Therefore it is clear that C/(z) = == W
is the function we are looking for. This is the well-known generating function for the
Catalan numbers.

The enumeration of plane trees now follows from an interesting theorem.

Theorem 2.11. Lagrange’s Inversion Formula. Suppose two formal power series
G(z) with G(0) =0, and F(t) with F(0) # 0 are related by G(x) = «F(G(x)). Then for
the coefficients of the function, we have the relation

(#"1G(w) = T ), (10)

where [z"]G(x) denotes the coefficient of ™ in the power series G(x).

For a proof of this theorem, as well as interesting notes and alternate forms, I would
like to refer to [12].
Unfortunately equation is not yet in the right form for the above theorem to be
applied, but we can make it that way. Let us set G(x) = C(z) — 1, and F(t) = (1 +1)%.
The reader can check by themselves that upon doing these substitutions, the desired
form G(z) = xF(G(x) is automatically obtained! Let us now readily use the theorem
and calculate the coefficients of C(x).

[2"I6() = = [ (F ()"
— "G () = — [+ 6
[#"1G() = ") (Z (%) 1%%)
k=0
e =1 (,2):

where we have used Newton’s binomial formula to expand (1 + ¢)?". Finally we find

[2"]G(x) = - (i?) (11)

n+1

11



and hence the generating function for the Catalan numbers becomes

Cz) =) Cpa" (12)

n=0
= 1 [2n
=1 n 1
+;n—|—l<n>$ (13)
=01 /2
_y (”)x (14)
n:0n+1 n

- the coefficient of ™ corresponding to the number of planted plane trees with n edges.

SAVER VAV

Figure 9: The possible non-isomorphic planted plane trees with 1, 2, 3 and 4 edges
respectively.

In conclusion, from setting up and manipulating the generating function for a previously
unknown sequence of numbers, we have extracted what these numbers actually are.
Generating functions of a certain class of objects (labelled trees, decorated trees, etc.)
will prove very useful not only in enumeration - as I have attempted to briefly show
here - but even more so in deriving recursive relations for these functions from intrinsic
properties of the class of trees that one is interested in. From there, we will see how this
can help us to obtain information on the distance statistics within these trees.

12



3 Regular Quadrangulations

This section is about regular (i.e. unicolored) quadrangulations of the plane, and more
importantly their bijection with a specific class of plane trees. In contrast to the following
section on Fulerian quadrangulations, this is quite a well-studied topic - at least within
the context of two-dimensional quantum gravity.

Figure 10: A quadrangulation of the plane.

To start off, I would like to give some motivation as to why we would be looking for
a bijection between these two objects in the first place. To illustrate this, the following
two results by one of the pioneers of the study of maps, W.T. Tutte (1917- 2002), are
of great use.

Theorem 3.1. Tutte’s Bijection. For any g and n there is an explicit bijection
between rooted maps of genus g with n edges and rooted quadrangulations of genus g
with n faces.

Not only in our case will this be a useful theorem - it uniquely translates any map
with arbitrary face degrees into a quadrangulation (i.e. with bounded face degrees),
which is generally far easier to work with.

Theorem 3.2. The number of rooted planar maps with n edges, is

2.3"
n+2

Cn (15)

with Cp, as in the previous section.

Interesting notes and even thorough proofs of these two theorems can be found in
[7]. Surprisingly, we see the Catalan number C,, popping up in the enumeration of
planar maps, and thus - via Tutte’s bijection - in that of planar quadrangulations as
well. Hence, it seems quite natural to look for a bijection between quadrangulations and
plane trees, possibly decorated with some additional information.

3.1 The Schaeffer Bijection

Firstly, let us define the ’class of trees’ that we are looking for.

Definition 3.3. A well-labelled tree is a tree in which every vertex has a label n € Ny,
obeying:

e the labels vary by at most one between neighbours;
e the minimal label on the tree is 1.

Now we are ready to state what is probably the most important result of this section.

13



Theorem 3.4. Schaeffer’s Bijection. There exists a bijection between rooted and
pointed quadrangulations with n faces and rooted well-labeled trees with n edges.

Pointing the quadrangulation means marking one specific vertex as the ’origin’.
Rooting the quadrangulation in this case corresponds to marking and edge between two
vertices with labels (I — 1) and ! with an orientation (I — 1) — [.

The marked vertex will become the starting point of the construction of the correspond-
ing well-labelled tree.

As an extension of and (3.2), an exact enumerative proof that the set [W,| of
rooted well-labelled with n edges is precisely equal to |@,| of rooted and pointed quad-
rangulations with n faces can be found in [§]. Let us now turn to the construction of
the bijection.

3.1.1 Construction: From Quadrangulation to Tree

Our goal is to obtain a mapping ¥ : @ — 7T that constructs a rooted well-labelled tree
T € T out of a rooted and pointed quadrangulation @ € Q. I will visually try to explain
step-by-step what the construction looks like.

1. We start with a rooted and pointed planar quadrangulation Q.

&

2. We label the pointed vertex with label 0 and subsequently label every vertex of @
with its geodesic distance from the pointed vertex, i.e. the length of the shortest
path from the considered vertex to the pointed vertex.

3. Next, we observe that we have in general two types of faces within the labelled
quadrangulation. We apply the rules of figure to draw an edge within every
face of Q.

4. After drawing the new edges and erasing the old edges of @) along with the pointed
vertex, we are left with figure The vertex of @) that the root edge points

14



k k+1 k+1
k
k+1
k+2

Figure 11: The local rules.

k+1

towards, now becomes the root of the well-labelled tree T. To recover the root
edge in the inverse process, instead of indicating the root of a tree with an arrow
we now indicate it by marking a specific corner belonging to the root vertex.

For a thorough proof that the resulting graph is indeed a well-labelled tree, I would like
to refer the reader to [10] or alternatively [8]. It follows that T € 7. O

3.1.2 Construction: From Tree to Quadrangulation

The inverse ® : T — Q of the construction above is a tad more difficult, but naturally
I will try to give an as clear as possible explanation of the construction of a rooted and
pointed quadrangulation @ € Q out of a rooted well-labelled tree T' € T .

1.

2.
3.

This time we start with a rooted well-labelled tree T'; let us for the sake of simplicity
take the tree of figure T2

We insert a leg in every corner of 7'

Starting from the root vertex, we connect every leg belonging to a vertex of label
1 > 1 to the first vertex of label ¢ — 1 we encounter while walking around 7" in
counter-clockwise order. These new edges become the edges of (). The edge that
is drawn out of the root corner of T in this process, becomes the root edge of
@ with an orientation (I — 1) — [ as before. Rather surprisingly, this 'matching
process’ is unique up to homeomorphisms.

15



Figure 12: The resulting well-labelled tree. The root corner is indicated by the dashed
red line.

4. Next, we place a vertex with label 0 in the only face of T" and connect every leg
belonging to a vertex with label 1 to this vertex. The vertex with label 0 becomes
the pointed vertex of the quadrangulation.

5. After drawing the new edges of ) and erasing the original edges of T', we have
recovered a rooted and pointed quadrangulation out of a rooted well-labelled tree.
Note that the edge that had the root corner as its starting point has become the
root edge.

The proof that the resulting graph must be a quadrangulation and - more importantly
- that ® = U~! is indeed the inverse of the construction from section is rather
technical and slightly outside the scope of this thesis. I would rather like to refer any
interested reader to [§] if they wish to know more.

We have now successfully constructed Schaeffer’s bijection between the set Q of pointed
and rooted quadrangulations and the set 7 of rooted well-labelled trees. Let us also
define the following two properties of quadrangulations and trees respectively [§].

Definition 3.5. The label distribution of a well-labelled tree T is the sequence (A} )0
of the number of vertices of T with label k.

The profile of a planar quadrangulation @ is the sequence (71',?) k>0 of the number of
vertices of ) at geodesic distance k from the pointed vertex.

Please note the following interesting feature of the Schaeffer bijection.

Remark. The Schaeffer bijection works exactly in such a way, that ¥ : @ — 7 maps
the profile (Wg)k>0 of Q onto the label distribution (A} )g=o of T and, vice versa for the
inverse .

This will give us a surprisingly natural way to consider distances within any quad-
rangulation by looking at the labels on the corresponding trees.

16



3.2 Distances in Random Quadrangulations: From The Labelling
Of The Trees

At the start of this section on distances within random quadrangulations, it might be
useful to state what we are actually interested in. Since we are dealing with pointed
and rooted quadrangulations, naturally two of the vertices are marked at random. We
wish to be able to say something about the distribution of the distance between these
two vertices in large quadrangulations. This, however, turns out to be quite a challenge.
Before diving into that, I would like to give a more insightful explanation as to why
these distances of order n'/4 are actually quite intuitive, only using the labels of the
corresponding trees. To that end, suppose we select a third vertex in the quadrangulation
uniformly at random, and look at the label of this vertex. Let us denote the label of the
root vertex by d;, and the label of this new vertex by ds. In the previous section, we
have discovered that the distribution of the labels on the well-labelled tree corresponding
to a quadrangulation of the plane is one-to-one with the distribution of the geodesic
distance of the vertices of the quadrangulation from the pointed vertex with label 0.
Now, we can not yet say anything constructive about the distribution of the distances
d; and ds themselves, but we might be able to say something about the distribution
of the difference between the geodesic distances d; and dy, D = ds — dy, and how
this difference depends on the number of squares n. From Schaeffer’s bijection, we will
straightforwardly be able to convert this to the difference of the labels on the path from
the root of the tree, labelled dy, to the selected vertex labelled ds.

In a natural way, we can now divide the problem into two parts - one that takes into
account the distribution of the labels on the tree when we take a walk from the root of
the tree to a randomly chosen vertex in the tree at distance r; and one that calculates
this distribution of this 'height’ r of a randomly chosen vertex within the tree as a
function of the total number of edges, n.
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Figure 13: After completing step 5, we recovered the quadrangulation from figure

3.2.1 The distribution of the labels

Recall the definition of a well-labelled tree where the vertices of the tree are la-
belled with a number that can only change by 0, £1 going from one vertex to another.
Therefore, let us quickly note the following:

Remark. Alternatively, we can label every edge of the tree by their increment as we
walk away from the root of the tree.

Figure 14: The tree of figure [12| with the edges labelled instead of the vertices.

Even though figure[T4 might suggest otherwise, naturally the labelling that we obtain
in this way is uniformly distributed among all possible labels in {—1,0, 1}", and we might
suggestively write that the labelling of a well-labelled tree of n edges is of the form tree
+ {—1,0,1}". We can subsequently write the sum of the labels D as

D = ié’i, (16)
i=1

where the ¢; are independent random variables chosen uniformly in {—1,0,1}. Since
this labelling distribution is symmetric around zero, we expect (D) = 0. Therefore, we
need to find another way to gain information on D. It is natural to look at the variance
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(D?). Since all of the ’steps’ are independent, this is simply computed to be

and finally we find
(D?) o 7, (17)

which is - because of the fact that (D) = 0 - an explicit relation between the variance
of D and the height r of a randomly chosen vertex on the tree.

3.2.2 The height of a randomly chosen vertex of a tree

The next part of our quest is to determine how the height of a randomly chosen vertex
in a tree, r, depends on the number of edges n of the tree, in the large n limit. To this
end, let us define the following.

Definition 3.6. A Dyck path is a walk from (0,0) to (2n,0) in the plane, without ever
going below the x-axis.

One can also characterize the contour walk along the edges of a tree by a Dyck path.
Intuitively, this is in correspondence with plane trees, as well as the regular bracket
structures from the previous section.

Figure 15: One of the possible Dyck paths for n = 8. Image credit: slideplayer.com.

Observing that the figures [[5] and [I6] are in bijection with each other, is completely
identical to the procedure for the regular bracket structures. Starting from the root of
the plane tree and taking a walk in clockwise direction around the edges of the tree, we
associate a step upwards in the Dyck path with a step moving away from the root of
the tree, and vice versa. The walk will traverse each edge twice, once upwards and once
downwards.

The following theorem will be of great use to us. [0]

Theorem 3.7. The sum of the areas of all Dyck paths Da, of length 2n is given by

S Arca(P) = 4" - ;(2:;2). (18)
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Figure 16: The plane tree corresponding to the Dyck path of figure

Naturally, the average height r is now equal to this sum divided by the length per
path and the total number of Dyck paths of length 2n.
Let us now calculate this average height r in a tree with n edges.

total area

(r)

- length per path x number of paths
n 1(2n+2
4" — 2 ( n+1 )
2n - C,

TR Ty

“om-C, 2n-C,°

Before we move on, we have to note that the right side of the last expression looks a
lot like something that might become constant in the large n limit. Let us explicitly
calculate that this is indeed the case. By definition of the Catalan number,
2n+2 2n+2
(y?+1) _ (§+1) n+1
4n - C, (2") dn -

n

2n+2) _ (Zn) (2n+2)(2n+1)

el ) T D () and therefore

Now we note that (

(277-;2) n+1
() 4n
~ (2n+2)(2n+1)
dn(n +1)

Taking the limit of n — oo, we find that

(2n+2)(2n+1)  4n?
dn(n+1)  4n? L (19)

and we conclude that (2:;:'12) ~ 4n - Cp, in the limit of large n.
We may forget this term for now, since it does not explicitly depend on n. Let us

2f(n) ~ g(n) is defined as lim, o0 f(n)/g(n) = 1.
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continue, and write

4n
{r) 2n - C,
4" (n+1) - (n})?
2n (2n)!
4" 271n (% 2n

where we used Stirling’s approximation for factorials of large numbers:

n! ~V2mn (ﬁ> .
e

In the end, we find the surprisingly simple formula

(r) ~ g/, (20)

and hence, we have found the dependence (r) o /n for the height of a randomly chosen
vertex in the tree on the number of edges n. Combined with the previous section,
this means that we have established the variance of our distance D to scale with the
square root of n and, hence, its standard deviation to scale with n1. This means that
upon choosing 3 different points on the quadrangulation and observing the distance
between one select point and the other two, the difference between these two distances
will generally be of order ni. This does not yet prove that d; or ds themselves are
typically of order ni. If we quickly make the assumption that d; and ds are equally
distributed, we might try to compute a lower bound on (d?), by

(D?) = ((d2 — d1)*) = (di +dj — 2drdy) < (2d}) = (df) > (D?) (21)

N |

and find that a lower bound is given by (D?)/2. This means that the standard deviation
on d; is minimally given by something that is of order ni. This is already a clear
indication that, as n grows large, distances between two randomly selected points will
perhaps be of order nt themselves.

3.3 Distances in Random Quadrangulations: The Two Point
Function

As a more rigorous and slightly more exact approach, we can try to tackle the problem
using the framework of generating functions (see . This is where we really start to
appreciate working with generating functions.

In our bijection, introduced in section [3.1} we found that a pointed quadrangulation with
a marked oriented edge pointed towards a vertex at geodesic distance k is in one-to-one
correspondence with a well-labelled tree with root label k. In this section we wish to
establish a generating function for well-labelled trees that keeps track of the root label.
This means that we will index our generating function with parameter that will indicate
the root label of the considered trees. This concept of constructing a generating func-
tion that keeps track of distances - in our case, the distance between the pointed vertex
and the root edge of the quadrangulation - is more commonly known as the two-point
function.
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Let us denote the generating function of planar quadrangulations with the end of the
root edge at geodesic distance k by G (), and quickly remind ourselves that the corre-
sponding well-labelled tree has root label k. The expansion of the generating function
G(z) is then given by

Gk(l‘) = ZGk,nﬁcn, (22)
n=0

where the coefficient of ™ denotes the number of vertices at geodesic distance & from
the pointed vertex in a quadrangulation with n squares.
To make our life easier, let us quickly define the following:

Definition 3.8. An almost well-labelled tree is a well-labelled tree on which the restric-
tion that the minimal label must be 1 is lifted. All the labels must still be positive, and
the labels on the vertices can still only differ by 0,+1 along the edges.

Firstly, we wish to determine a generating function of almost well-labelled trees with
root label equal to this value, k. In this case, almost well-labelled trees are easier to work
with than well-labelled trees, because other than positivity, there are no restrictions on
the actual values of their labels; only on the value of the difference of two consecutive
labels. Let us denote their generating function by Ry (x). Since Ri(x) generates almost
well-labelled trees with root label k, we need to take into account only those elements
of Ry, that have a minimal label 1 somewhere on the tree to recover Gy(x) from Ry (x).
This is achieved by a simple shift of labels from k& — k — 1 and then subtracting - i.e.

G, =Ri — Ri_1. (23)

Because the elements of Gy are in bijection with pointed and rooted quadrangulations
of the plane with two marked points at geodesic distance k, this mechanism of shifting
the labels shows us that the elements of Ry are in bijection with rooted and pointed
quadrangulations with two marked points at geodesic distance < k. The amount by which
we have to shift down the labels to obtain a well-labelled tree out of an almost well-
labelled tree, is determined by the minimal label of said well-labelled tree. Subsequently,
let us try to explicitly calculate this generating function Ry (z).

3.3.1 The Generating Function of Almost Well-Labelled Trees

Suppose we have a function Ry (), generating an almost well-labelled tree with root label
k. Let us now consider all the different possibilities for the tree to branch outwards from
the root. In theory, we might have n € N new branches into new vertices of the tree,
all connected by edges with equal weight x and these new branches have three possible
labels from the label restriction on almost well-labelled trees - namely, k — 1,k or k+ 1.
Each of these branches corresponds to the root of a new tree, starting at that vertex,
and hence they are enumerated by Ry_1(z), Rx(z) and Ry11(z) respectively.
This implies the relation

oo

Ri(x) = > ™ (Rp_1(x) + Ri(x) + Ry ()", (24)
n=0
and we obtain the recurrence relation
1

Ry(z) = 1—xz(Ri_1(z) + Rp(z) + Ry1(2))’

or equivalently,

Rk(:c) =1+ l‘Rk(I) (Rk_l(x) + Rk(l‘) + R;,H_l(x)) . (26)
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k+1

R

k

Figure 17: Some of the possibilities for a tree, with generating function Ry, to branch
into new trees.

Generally, this is far from easy to solve, because the equation at hand is recursive and
more importantly non-linear. However, we might be able to make an attempt at lin-
earizing the equation. The recursive equation that we will obtain in the next section
on Eulerian Quadrangulations will be even more troublesome to solve analytically, and
there we will need to resort to a so called continuum limit approach. I will also introduce
this in the next section to solve the problem at hand, but at first we are quickly going
to investigate how to solve more exactly following the lines of [2].

3.3.2 Exact Solution to the Recurrence Relation

Firstly, I want to point out that we need to impose two conditions. For a start, we need
to have an initial condition Ry = 0; and secondly we need to have that in the large k
limit, we obtain

lim Ry, = R., (27)
k—oco
1—VI=12
- (28)

where R, is the solution to the quadratic equation
Re = 1+ 3zR%, (29)

as can be established by letting k£ go to infinity in equation . The solution R
displays the ’critical value’ of z. = 1—12 of pure quadrangulations. This value of z.
precisely corresponds to the radius of convergence of the generating function R.,. More
on this critical value will follow in section B.3.91

Let us now expand Ry in the vicinity of R, and write

Ry, :Roo(l_pk)- (3())

Upon substituting this in and only keeping the terms that are linear in p, we obtain
the following equation, which can be seen as the first order linearization’ of ,

~Roop)” = —30R%p" — 2R (o2, + o) + ol

or equivalently,
1 1 1 1 1
p\V = 3zRopl” + 2R (p;i_)l +p) +P;§_)1)~ (31)
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By setting pg) = a; y*, we obtain the characteristic equation for this recurrence rela-

tion, given by
ko 1-42R 1

y —xﬁx@bd+yh+f+w+3ﬂ%ﬂk:$Azﬁf—*:§+y. (32)

Here it is important that we impose the condition |y| < 1, to ensure limg_,0 p,(cl) =0
and hence the convergence of Ry to R.,. We can now expand Ry further in pg, by
writing py fully as a power series of the solution to the characteristic equation y*, by
writing

P = Zai(yk)i~ (33)

Substituting this into equation (30)), then substituting equation for Ry, and finally
picking the terms of order {+1 in *, and remembering that if two power series coincide,
the coeflicients of their powers must coincide, we obtain a relation for the coefficients of

ay of equation :

l
1 1 |
Qit+1 (yl+1 + S U ) = E Q41— <yj + v + 1) . (34)

v) =

The reader might check by themselves that this relation holds. The products ojay41—;
originate from the products Ry (Rg+1 + ...) in equation - where j sums over all the
possibilities to obtain a power of [ + 1 in y* out of the two terms.

Now that we have obtained a recursive relation for the coefficients of the power series
Pk, it is possible to give a closed form solution for Ry in terms of R, and the solution to
the characteristic equation y. For the purpose of this thesis I do not think it is necessary
to repeat all the steps, but an interested reader may find the derivation in [2].

The final solution to the recurrence relation becomes

(1 _ )\ykJrl)(l _ )\yk+4)

Ry = Roo (1= AyF2)(1 = Ay t3)’

where A is an arbitrary constant. Upon imposing our initial condition Ry = 0, we find
that the only A that will ensure Ry = 0 and ensure the convergence of Ry to Ry in the
limit & — oo, will be A =y~ !. Substituting this into our last result, we obtain

(1—yF)(1 —y**3)

Ri = Roo .
k (1= yFt)(1 — yk+2)

(35)

It may be explicitly checked that this final solution precisely solves our recurrence rela-

tion .

3.3.3 Ceritical Scaling

Now that we have found an exact solution, we might be interested to see how this solution
behaves in the limit where the number of squares of the quadrangulation, n, becomes
large. As mentioned before, the critical value x. corresponds to the radius of convergence
of the generating function R, the generating function for planar quadrangulations
without restrictions on distances between two marked points. As a continuum limit,

we might study this generating function as x tends to its critical value of z. = % (see
equation . To that end, let us set
1
r=1x.(1 - Ae') = E(l — Aeh). (36)
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The quantity A should be interpreted as a cosmological constant, and is related to the
total volume V' of the map by an explicit Laplace transform. This Laplace transform can
be viewed as the continuum limit of the generating function for planar quadrangulations.
To make this more clear, let us say that planar quadrangulations with n squares, without
restrictions on the distance between two points, are enumerated by @,. As we know,
we can denote its generating function as

Roo(x) = Qn ™. (37)

Let us quickly state the following, very useful, theorem [I1]:

Theorem 3.9. Transfer Theorem for singularity analysis. Let A(z) be a gener-
ating function with its closest singularity at z = p, and there it has an expansion of the
form

A(z) =ag+ a1 (1= 2/p) " +0 (L= 2/p) "), (38)
then, in the limit of large n, its coefficients grow as:
"] A(2) ~ ¢ no Lo (39)

We can immediately apply this theorem to our form of the function R, from equation
(7). We have a singularity of the form (1—x/2.)"/?, so in this case the leading order of
our expansion has « = —1/2. Applying the theorem, we readily see that the coefficients
of R, behave asymptotically as

Qn~C x;"n~3?2 (40)
for some constant C. Now, we may use the expansion of equation (36) to write

Ry(z)=C ch_" n=3/2 (ze (1— Ae'))". (41)

Since we have chosen a scaling of (z. —z) o €* for the edges of our trees - and hence the
faces of the quadrangulations, we may write that the total volume of the map in this
case is related to the total number of squares n by

V = net. (42)

We can subsequently change the sum over n into an integral over the continuum volume
V, in the limit € — 0, as

1 Oodv -n Vv e n 4 L4
l%Rm(x) = C’/O g (€4> al (1 —Aeh)- (43)
av (VNP .,
= Cé / dV Ry e AV = Ce® Ry. (45)
0

One thing that has to be noted here, is that this is in essence a ’formal’ integral: for our
value of —3/2 as the power of V| it does not converge at V' = 0. From this, it is readily
seen that in the limit of large n the integral is strongly dominated by quadrangulations
of small volume. This is also seen by the fact that in this limit, R., obtains just a
tiny contribution from these large quadrangulations, of order €2 (as seen in the last
line of the previous equation). We will shortly see how to resolve this problem, and
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more importantly how this Laplace transformation might be able to help us to obtain
information on the scaling limit of large quadrangulations. Firstly, let us quickly return
to the exact solution to the recursion relation (26]). From a clever inspection of equation
, we see that our expansion of equation corresponds to

1
62Rs =1 — VAet = 2R, = s AY2e2), (46)

Then, from the characteristic equation , we find that y can be written as

1—4zR
R

where a can be determined from combining equation and by writing

:2—|—a262+0(€3) :eae+e—a5+0(€3) —>y:€ia€+0(€3), (47)

6—4(1—AY232) = (y + 1)(1 — AV2¢%),
)

~%¢ and subsequently collecting all powers of

and filling in the series expansion for y = e
€2 to obtain a = V6AL/2,

Filling in this ansatz for y in the exact solution to our recurrence relation, we find that

(1 _ (e—ae)k’) (1 _ (e—ae)k-‘r-?))

(1 _ (e—ae)k-‘rl) (1 _ (e—ae)k+2) :

Rr = R (48)
Subsequently, since we want to investigate the limit where € goes to zero and distances
between points grow large, we rewrite the geodesic distance k in terms of a continuum
scaling variable r as

k=L

e’

and letting € go to zero. If we now wish to determine the power a of ¢, let us expand all
the exponentials in equation up to second order as

(aek — 2a%®k?) (1 — (1 — ack + 2a2€%k?) (1 — 3ae + 19a%€?))

R = Roo )
» (1— (1— aek + $a2€2k?) (1 — ae + 2a2€2))(1 — (1 — aek + $a2e?k?) (1 — 2ae + 14a2€?))

from which it is quite straightforwardly observed that a sensible continuum limit is
obtained in the case where k o< €' as e goes to zero, to ensure that neither the numerator
nor the denominator does evaluate to zero in this limit, and furthermore that we have
lim,_,g Ry = Rso- Finally, we find

k= (49)

r
€
for the scaling between k and e. From this we can actually already draw the small
conclusion that, apparently, there is a relation between the e-scaling that we choose for
the faces of the map in the limit x — x., and the scaling that follows for the geodesic
distance k, and it just so appears to have a fourth power between them.

This continuum scaling variable r that has been defined by equation is precisely
the variable that keeps track of geodesic distances within the continuum volume V' of
our map, as defined by equation . To make this more precise, we might write (recall

equation D

L Gr(z) = lim L Z Grn 2" =Ga(r) = / dV Gy (r) eV, (50)
=0 0

e—0 ESRoo
n—=

lim
e—0 €3Roo

where in this case in our continuum space, G (r) is the continuum partition function
for surfaces with two marked points at geodesic distance r within volume V.
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We can now calculate explicitly what this function G (r) should be. To that end, let
us recall that the exact solution to the recursion relation , Ry(x), generates planar
quadrangulations with two marked points at geodesic distance < k. However, in our
formulation of the Laplace transform of we encountered the problem that in the
continuum limit, Ry will always be dominated by quadrangulations of very small sizes
n and small geodesic distances k. This is not what we are looking for, because we are
interested in the scaling of geodesic distances in the case where the sizes of quadran-
gulations are very large. Therefore, it is much more useful to look at the generating
function R, — Ry of quadrangulations with two marked points at a geodesic distance
> k. This immediately resolves the issue of the Laplace transform, in the limit of large
quadrangulation sizes and large geodesic distances!

Similar to the function G (r) as defined by , we can now define the continuum par-
tition function for surfaces with two marked points at geodesic distance > k (in which,
for now, I will be omitting the subscript A) as

F(r) = lim Roo — Ri

e—0 €2Roo ’ (51)

in which we have divided by R, by means of convention. Let us quickly rewrite this as
Ri = R (1 — € F(ke)) . (52)

One may notice that this does actually look a lot like the expansion that was made in
! Equation can be seen as the ’continuum’ equivalent of .

We see that we have an expression for Ry in terms of the function F, which is yet to be
determined. To determine this function, let us plug into . We obtain

R (1= €F(ke)) = 14+azR2 (1-€*F(ke)) (1 — F (ke +€)) + (1 — € F (ke)) + (1 — EF (ke — €))) .
(53)

Now, we will expand this equation up to fourth order in €. To make this procedure a bit

more comprehensible, let us first organize the different terms according to their order.

We look at equation and gather all the different orders together up to order 4, as

they appear in equation (53)).

O(1): Ry = 1+ 3zR2,
O(?) : =2 Roo F(r) = =32 R% 2 F(r) — xR% . (F(r +¢) + F(r) + F(r —¢))
O(e): 0= ngoe‘l]:(r) (F(r+e)+F(r)+ F(r—re).
Our first observation, is that the terms of order one precisely correspond to (27), as

should be the case. They cancel each other. Subsequently, we divide everything by R
and substitute the expression from equation for zR, and we obtain

O() : —F(r) = —%(1 CAR)EF(r) — %(1 — AR (F(r +€) + F(r) + F(r — )

O(e*) : 0 = %(1 — A F(r) (F(r+e) +F(r)+ F(r—e)).

Let us do the exact same thing again: we distinguish the terms of order €2 and those of
order e*. However, we now remember that they were all part of the same equation ,
and therefore the equations corresponding to the different orders ultimately should be
added up. Upon doing this, and immediately taking the e2-terms to the left side of the
equation and the e*-terms to the right side, this yields

—%8;(7«) + é? (F(r+e)+ F(r)+ F(r—e) = %A1/264]—'(r)+

Lar@) (Fer+ &) + Fr) + Fr — &) + O(e9).

éAl/Qe“ (Flr+ )+ Fr) + Flr—e)) + ¢
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Organizing, dividing by €*, multiplying by a factor of 6 and finally taking the limit
e — 0, as in our definition of the function F(r) , we see that this corresponds to

1
lim = (F(r+4€) +2F(r) + F(r — €)) = 6AY2F(r) + 3F%(r) + O(¢?),
or equivalently, using the definition of the second derivative of a function, we obtain the
following second order differential equation for F(r):

d*F
— g” — 6AY2F(r) = 3F%(r) = 0 (54)
,
This differential equation was obtained in [2], but there A was set to 1 in the expansion.
Since it is closely related to the volume of our map by , I would rather keep it. The
differential equation with A = 1 was solved by

3
sinh? ( %T) '

It is easy to check that this equation already obeys the necessary boundary conditions
for our function F(r), namely that its limits at the endpoints of our spectrum of r
should be F(r = 0) = oo and F(r = o0) = 0. Therefore, let us now set our solution to
something similar to this, and try to find the correct form by substituting it into the
original differential equation. We set

./—"Azl (’I”) =

A
sinh? (At \/gr) ,

and try to find the constants A and t. Substituting this into (54)), we find

Fa(r) =

A A% A ANV/? A?

_ AN (2 cosh? <At \/§r> + 1> — 0 — 3 .
sinh* (At \/gr) 2 sinh? (At \/gr) sinh* (At \/gr)
Using the trigonometric identity cosh? (x) = 1+sinh2(x), we can compare the coefficients

of sinh ™2 (At \/gr) and sinh™* (At \/%“), to obtain the consistency equations

9A A% = 3A2;
6A A% =64 A2,
from which we can conclude that in our solution we should have t = 1/4, and A = 3 A'/2.

Substituting this into our ansatz, the continuum partition function for surfaces with two
marked points at geodesic distance > r, Fa(r), takes its final form

3 AL/2
Falr) = : (55)
sinh? <A1/4\/§r)
Now we recall equation , and fill in the expansion of . We find that
1 1 _dF(r)
Ga(r) = limy ——Gala) = limy = (Falr =€) = Fa(r) = =57, (56)
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and conclude that the partition function for surfaces with two marked points at geodesic
distance equal to r is easily computed by differentiating with respect to r and
putting a minus sign in front. This leads us to

M) g e e (a7y/3r) , (57)
dr sinh® (A1/4\/§7’)

This is precisely the form of the continuum partition function that was obtained in [T],
in the context of triangulations. The fact that we have obtained the same form, is only
displaying our hypothesis on the continuum two point function of discrete surfaces: up
to constant rescaling, it should have the same form, no matter the building blocks of
the surface!

Ga(r) =

3.3.4 Scale Invariance of the Continuum Two Point Function

Now that we have determined the form of the continuum partition function via an
explicit calculation, we are interested in the scaling properties of the geodesic distance
r as a function of the volume V. According to the rescaling of the graph distance in the
Brownian Map by a factor n'/%, it is natural to expect (r) to scale with /4,

To be slightly more precise, we wish to show the scale invariance of the function Gy (r).
This means that up to scalar multiplication the partition function G within the volume
2V of the continuum variable r, should coincide with the function G within the volume
V of the rescaled continuum variable z—%/4 7, for any z € R>g - i.e.

Gov(r) =2 Gy (x_1/4 T) . (58)

Firstly, let us calculate that this would indeed imply (r)y = cV1/%. The expectation
value of r is defined as -
o rGv(r)dr

(ryv = W- (59)
Now, we note that equation evaluated at x = V! yields
Gav (r)|g=v-1 = Gi(r) =V Gy (V1/4r) ) (60)
Upon making the substitution V*/4r — r, we find that
Gv(r) =V G (V1) (61)

Plugging this into equation , and immediately making the reverse substitution r —
V14 we obtain
JSve VYA G (r) VY 4dr
S5 Ve Gi(r) Vi/adr
= () V4, (63)

(r)v = (62)

where (r); is a well-defined constant, from which we can see that indeed (r)y = cV/4.
However, in the previous section we have computed the continuum partition function
Ga(r) instead of Gy (r). Luckily, we can rewrite the scale invariance of Gy (r) as a scale
invariance requirement on Ga(r) as well - via the Laplace transform of equation -
and explicitly calculate that it does indeed hold for our form of the continuum partition
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function (57).
To that end, let us write (according to equation (50))

Gon(r) = / 4V Gy (r) V. (64)
0
Upon performing the substitution £V — V| we find
Gun(r) = / 271V Gy (r) e MY, (65)
0

and finally using the scaling invariance of G,-1y/(r) of equation , we find that the
corresponding requirement on G (r) is given by

Gaun(r) =717 /0C><> dV Gy (a:l/4r) e AV =gl gy <m1/47‘) . (66)

Computing G, (r) for the continuum partition function of equation , we find straight-
forwardly:

a2 (o) O o)

and from this we can clearly see that the requirement of is fulfilled for o = —7/4. We
can finally conclude that the continuum partition function is indeed scale invariant,
in the sense of . Therefore, we can conclude that this two point function obeys
(r)y = cV1/4. Since we defined our total volume as V = ne? 7 and our continuum
scaling variable r as r = ke 7 it follows that, in the limit ¢ — 0 and subsequently
n — oo,

(k) e = (r) o« VM4 = nM* e = (k) oc n/4, (68)

where we remember that k is the graph distance between two marked points. In this con-
tinuum limit, we find precisely the graph distance rescaling by a factor of n'/4 according
to the definition of the Brownian Map . Wonderful!
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4 FEulerian Quadrangulations

The following section is on the more complex case of Eulerian quadrangulations. We will
investigate a bijection between this class of maps and the class of trees called labelled
mobiles, which will turn out to be slightly more difficult to enumerate than the well-
labelled trees of the previous section. However, we will try our best to apply the same
strategies as in the previous section to obtain a recursion relation for its generating
function. From there on, we will see how the previous case of regular quadrangulations
might help us out.

4.1 The Bouttier - Di Francesco - Guitter Bijection
First of all, it might be useful to state exactly what a Eulerian quadrangulation is.

Definition 4.1. A Fulerian quadrangulation is a bicolored quadrangulation of the
plane, such that only faces of different colors are incident to each other.

Figure 18: A pointed and rooted Eulerian quadrangulation. Note that in this figure,
the outer face is black.

See figure [18| for an example. This is the example that will be used for the construc-

tion of our labelled mobile. For personal reasons - shortly mentioned in the introduction
of this thesis - I will stick to the colors black and white. Following the Schaeffer bijection
of section [3.1} we will now take a closer look at the Bouttier - Di Francesco - Guitter
bijection for Eulerian quadrangulations. Originally, this bijection was designed for the
much more general case of Eulerian maps; it takes on a drastic simplification in our case
of quadrangulations.
Similar to the previous section on regular quadrangulations, let us define the class of
trees that we are interested in. I have specified this definition to our case of Eulerian
quadrangulations; for general Eulerian maps, the corresponding labelled mobiles need
some additional information from the Eulerian maps [3], which is not necessary in our
case.

Definition 4.2. A labelled mobile is a plane tree, such that:

1. Its vertices are of three types: unlabelled white vertices, unlabelled black vertices
and labelled black vertices;

2. We have two types of edges: edges connecting labelled black vertices to unlabelled
white vertices, and edges connecting unlabelled black vertices to unlabelled white
vertices. Any white vertex has only one unlabelled black vertex attached;
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3. All labels are positive integers and there is at least one vertex labelled 1;

4. Walking in counter-clockwise direction around a white vertex, starting from the

attached unlabelled black vertex, the labels of the vertices must obey n - n+1 —

. — n + p — 2 before returning to the unlabelled black vertex, if the white

vertex has degree p. It should be noted that in our case of quadrangulations,

the white vertices have degree 4, and the walk will be: black unlabelled vertex
—n—n+1—n+ 2 — black unlabelled vertex.

Let us now dive into the bijection.

Theorem 4.3. The Bouttier - Di Francesco - Guitter bijection. There exists
a bijection between rooted and pointed Fulerian quadrangulations and rooted labelled
mobiles.

Let us denote the set of Eulerian quadrangulations by &, and the set of labelled
mobiles by M.

4.1.1 Construction: Labelled Mobile out of Eulerian Quadrangulation

We start with the construction ¥ : £ — M of a labelled mobile M € M out of a
Eulerian quadrangulation E € €.

1. For the construction of M, we start with the rooted and pointed Eulerian quad-
rangulation of figure [I8
The first step is already a tiny deviation from the procedure of section 3.1 We
now impose the condition that we can only walk around the white faces in counter-
clockwise order and around the black faces in clockwise order. While doing so, we
label them with their ’asymmetric’ geodesic distance from the pointed vertex. Fur-
thermore, we require the root edge of F to be oriented according to the orientation
that it obtains in this way.

Figure 19: A Eulerian quadrangulation E with the vertices labelled according to their
asymmetric geodesic distance.

2. After completing this step, we insert a new unlabelled vertex in every face of F
with the color of the face it lies in. Subsequently, we draw edges in each face of E
according to figure[20] This will automatically make sure that the resulting graph
is connected, and is indeed a tree.

3. And finally, after erasing the original edges of E, we are left with the rooted labelled
mobile M of figure[22] This completes the construction.
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k+2 k42
k+1 k+3
k41
k+3
k

Figure 20: The selection rules.

Figure 22: A labelled mobile.

4.1.2 Construction: Eulerian Quadrangulation out of Labelled Mobile

Even though the construction of section is by far the most important for the
remainder of this section, the least I can do to provide some insight as to why this
would be a bijection, is to state the unique inverse construction ® = ¥~1 : M — &.
However, for the sake of clarity, I will explain this construction using a slightly smaller
labelled mobile than the one constructed in the previous section. To that end let us start
with the pointed and rooted Eulerian quadrangulation of figure[23] and its corresponding
rooted labelled mobile of figure 24]
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Let us now turn to the construction.

Figure 23: A Eulerian quadrangulation.

Figure 24: The labelled mobile corresponding to the Eulerian quadrangulation of figure

1. We draw all the faces of the map according to the rules of figure See figure
We label all the newly added vertices, since they only have one possible label
from the construction rules.

Figure 25: All the faces of the map drawn from the edges of the mobile.

2. Upon erasing all the original edges of the labelled mobile, we arrive at figure 26
Naturally, we keep all the original vertices of M, to indicate the color of the faces.
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The edge that has now been drawn between the two vertices ’corresponding’ to
the root corner, becomes the new root edge of the map, with its orientation as
prescribed by the first step of section

1

Figure 26: All the faces of the Eulerian quadrangulation, with the color as indicated by
the vertex that lies in it. The root edge has been distinguished.

3. We observe that this map does indeed have as many faces as the original quadran-
gulation of figure plus one outer face. Our task is now to correctly merge the
edges of the map. Looking at figure[26] this is somehow quite intuitive. For a start,
remember that we only want to merge edges that border black faces with edges
that border white faces, and vice versa. Starting from the root of the associated
mobile, we take walk around the contour of the map in clockwise direction. With
this orientation, we ’associate’ any edge of type n — n + 1 that borders a black
face, with the next edge of type n + 1 — n that we encounter on our clockwise
walk, bordering a white face. All the edges around the black faces are of said
type, since the edges that are of the type n — n — 3 have already been connected
through our procedure of drawing the faces.

This is made visible in figure

Figure 27: The matching procedure for the edges of the labelled mobile.

4. Now that we have a very clear correspondence between the edges bordering black
and white faces respectively, the only thing that is left to do is to merge the as-
sociated edges. We color every face with the color of the vertex that lies in it.
The vertex labelled 0’ becomes the pointed vertex of the quadrangulation. This
completes the construction. By construction the resulting map is the Eulerian
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quadrangulation of figure

Secondly, for the sake of completeness, let us show that we can recover the Eulerian
quadrangulation of figure from the labelled mobile of figure by this procedure.

This is shown in figures 2§] -

Figure 29: Labelling the vertices and deleting the original edges of the mobile.

For the more general cases of Fulerian maps and a thorough proof of the bijection,
I would like to refer any interested reader to [3].
Now that we have succesfully established the bijection between rooted and pointed
Eulerian quadrangulations and labelled mobiles, we are going to investigate how to
obtain information on the scaling of distances within the quadrangulations from this
bijection.
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Figure 30: The matching of (some of) the edges according to the clockwise walk around
the contour of the map.

4

2

Figure 31: After contracting the edges, we are left with the Eulerian quadrangulation

of figure

4.2 Distances in Eulerian Quadrangulations: The Two Point
Function

4.2.1 The Generating Function of Labelled Mobiles

Similar to the previous section, we will now investigate how to obtain a recurrence
relation from the structure of the labelled mobiles. This task has become slightly more
difficult now, since we are dealing with three different types of vertices instead of just
one, and therefore we should distinguish between the types of edges going from a black
to a white vertex and vice versa. Let us for clarity recall the labelled mobile that was
constructed in section - see figure Firstly, it should be clear that we wish to
obtain information on the distance between the black vertices of the mobile, since those
are the ones that correspond to the original vertices of the Eulerian quadrangulation.
One of the black vertices has naturally become the root of the tree, according to the
procedure from we have a distinguished edge, that is oriented towards the ’root
vertex’. However, we have to note that the distance statistics we obtain from the
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Figure 32: The labelled mobile from the previous section.

above bijection in this section, are in essence asymmetric, contrary to the symmetric
distances of unicolored quadrangulations. This is because of the clockwise and counter-
clockwise orientations of the edges around each black resp. white face of the Eulerian
quadrangulation. In the end, we will see how to obtain information on symmetric
distances within Eulerian quadrangulations, from the asymmetric distances we obtain
using the Bouttier-di Francesco-Guitter bijection. For now, let us continue.
Similar to the previous section, we will establish a recursion for mobiles where the
requirement that the minimal label be 1 is lifted. This will prove much more convenient
to work with instead of general labelled mobiles, for the exact same reason as for regular
quadrangulations - while constructing the recurrence relation, we will not have to worry
about the actual values of the labels, and we will be able to translate this into an initial
condition on the generating function.
Suppose we start from the black root vertex of an almost well-labelled mobile, labelled
k, and denote the generating function of this root vertex going to a white vertex by
Hy(z). Again, this function also enumerates planar Eulerian quadrangulations of which
the depth of the root edge is at most k. Taking a look at the possibilities for the tree to
branch outwards from this root vertex, we see that it only has unlabelled white vertices
attached, corresponding to the white faces, and it might have n of them. In section
we weighted the edges of the tree with = each, because those were the ones that
corresponded to the faces of the original map. Here, it is therefore convenient to give
only the white vertices weight x, since those are the ones that correspond to the white
faces in the Eulerian quadrangulation. We will be able to define our volume only in
terms of the white faces.
Let us denote the generating function of a white vertex going to a black vertex by Fy(z),
where this generating function inherits the label k& from the black vertex it originates
from. See the left side of figure

This implies a relation between Hy(z) and Fj(x) given by

Hye) = 3 @) = oy (69)
n=0

Say we arrived at a white vertex from a black vertex of label k. All white vertices have
a total of 1 grey vertex (corresponding to the black faces of the quadrangulation) and 2
new(!) black vertices attached. The grey vertex is by construction always a leaf, which
means that the tree does not continue from the grey vertex.

What might happen from here? To answer this question we make the following obser-
vation, already shortly mentioned in the definition of a labelled mobile. Denoting the
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Figure 33: The branching possiblities for a labelled mobile corresponding to a Eulerian
Quadrangulation.

minimal label of the three black vertices around a white vertex by p, the construction
of the well-labelled mobile works in such a way that the order of the labels of the black
vertices will be p,p + 1,p + 2, when going in counter-clockwise direction around the
white vertex, starting from the only grey vertex it has attached. This can be explicitly
checked to be true in the labelled mobile of figure In essence, arriving at a white
vertex 'with label k’, the labels of the two black vertices it has attached strongly depend
on the location of the black face in the Eulerian quadrangulation! This construction
is summarized in the right side of figure 33] For example, it might be that k is the
minimal label around the tree, in which case the only grey vertex should be directly to
the left of this black vertex, and the other two black vertices have labels k + 1 and k + 2
consecutively. Taking the other two possibilities into account as well, and giving the
white vertices weight x, we find the relation

Fi(z) = 2 (Hi1 (2)Hppo () + Hppr (0) Hy—1(2) + Hy—1 () Hi—2(x)) (70)

Combining with and rewriting, we find a recurrence relation on the gener-
ating function Hy(z) of the form

Hk(x) =1+ CL’H}C((E) (HkJrl({E)HkJrQ((E) + Hk+1(x)Hk,1(£C) + kal(x)Hk72(x)) . (71)

Comparing to the recursion of the generating function of regular quadrangulations, this
is easily seen to be slightly messier. Solving this equation analytically is quite a stretch
and slightly outside the scope of this thesis - even though it can be done [5]. Therefore,
we will dive straight into the continuum limit approach, similar to section |3.3.3

4.2.2 Critical Scaling

To start off, let us look at what happens in the limit where k& — oo. Equation
reduces to

lim Hy(z) = Hoo = 1+ 3zH3,. (72)
k—o0
This looks similar to , where we could immediately solve the quadratic equation
and extract critical values. However, having the third power of H., instead of the
second power makes this very difficult to solve in a similar manner. Luckily, we do not
necessarily need an exact solution in order to extract critical values.
Recalling that the value x. corresponds to the radius of convergence of the generating
function H., finding the critical value z. corresponds to finding the first singularity of

39



the function H,(z) on the real x-axis. This is equivalent to finding the first stationary
point of the inverse function = (Hy). Inverting equation , we find

H, -1
Subsequently setting the derivative of this equation with respect to H., to zero, we find
the value of H, at the critical point z. to be

d [(He—1 1 2 3
I N AN 4
dHo ( 3H3, ) T s 0 Helw) =3 (74)

z(Ho) = (73)

From this we can immediately extract the critical value z. itself, and we find that it is
given by
Hoo(xz:) —1 3/2-1 4
g = Heelte) =1 _ 3/ == (75)
3H o (zc) 3-(3/2)3 81
Furthermore, this singularity analysis allows us to determine the asymptotic growth of
the coefficients, from theorem Expanding z(H,) around its critical point Hu(z.),
we find

x(Hoo)%Hoo(xc)—l ( 1 2

Hoo? () HE (2.) 3H§O(xc)> (Hoo(w) — Hoo(2))

1 2 4 )
"2 (Héo(xc) - Hgo(zc)> (Hoo(2) = Hoo ()" + o

However, our critical value . is defined such that the derivative of the function x(Hx)
would vanish at z.. Therefore, the first singularity of 2:(H) is of the form (Hoo(2) — Hoo (a:c))g,
from which we can conclude that the first singularity of the inverse Ho,(x) indeed has the
same square root singularity as regular quadrangulations. Its coefficients grow asymp-
totically as . Furthermore, let us quickly calculate the value of z.HZ2,,

3/2—1 1

Tellc(te)” = 355 =g (76)

since this will prove to be useful later on.
Now that all of this is settled, we can finally continue our quest to find the appropriate
scaling for Eulerian quadrangulations. To that end, we let x tend to its critical value x.
by
4
z=zx.(1-Ac") = 3L (1—A€"), (77)
and define our total volume (identical to (42)), as

V = net. (78)

In this case, we have to once again remind ourselves that only the white faces have been
weighted by z. Therefore, the number n corresponds to the number of white faces of
the map. Since the map is - of course - connected, this will not make a difference when
considering (asymmetric) geodesic distances, and in the large n limit it is convenient to
define the volume only in terms of the white faces.

Similar to , we rewrite our geodesic distance k in terms of a continuum scaling
variable r as

=7 (79)

€
Furthermore, we expand our recursion relation in terms of a yet to be determined con-
tinuum partition function F, as in (52)), by

Hy, = Heo (1 — B2 F(ke/v)) . (80)
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To summarize - our goal is to show that for a certain choice of constants v and 3,
the form of the two point function for Eulerian quadrangulations will reduce to that of
regular quadrangulations. This would mean that - up to global scalar multiplication -
the scaling laws for the two models are the same!

The following calculation will be a bit tedious, but it is necessary. Substituting into

, we obtain

Hoo(1 = B F(ke/v) = 1+ aH3 (1 — B F(ke/v) (1 — Be* F((ke + 2€) /7)) (1 — B2 F((ke +€) /7))
+ (1= BEF((ke +€)/7)) (1 — e F((ke — €) /7))
+ (1= BEF((ke — 2€)/7))(1 — BEF (ke — €)/7)))-

Now, let us again expand this up to fourth order in € and separate the different powers.
We compute straightforwardly

O(1): Hy =1+ 3zH2,

O(e?) : —€2BrH F(r) = —3¢*BxH3 F(r)
—2BxH3 (F(r +2¢/v) + 2F(r + ¢/7) + 2F(r — /) + F(r — 2¢/7))

O(e*) : 0= *B2aHE F(r) (F(r +2¢/y) + 2F(r +€/v) + 2F(r — €/v) + F(r — 2¢/7))
e B2 H, (F(r+ 2¢/7)F(r +¢/v) + F(r + ¢/ 1) F(r —e/v) + F(r — e/7)F(r — 2¢/7)).
Let us try to organize this 'mess’ by dividing through H.,, and again taking all the
e2-terms to the left side and the e*-terms to the right side, as we remember that in the

original equation the terms were part of one and the same equation and should be added
up in the end. We obtain

€ (S,Bngo]:(r) — BF(r) + BxH2 (F(r +2¢/7) + 2F(r +¢/v) + 2F(r — ¢/y) + F(r — 2¢/7)))

= (B o HL(F(r)F(r + 2¢/v) + 2F(r)F(r + ¢/7) + 2F (r) F(r — ¢/7)+
F(r)F(r —2¢/v) + F(r+2¢/v)F(r+¢/v) + F(r+e/v)F(r—e/v)+
F(r —€/7)F(r = 2¢/7))) + O(e%).
Following our discussion on the critical values of H.,, we can now let x tend to its
critical value, which corresponds to making the substitution zHZ, — (1 — Al/2€?),

similar to equation . Then, multiplying left and right by a factor of 9 and once more
expanding the equation up to order €?, this yields

€ (3BF(r) — 9BF(r) + B(F((r + 2¢/v) + 2F((r +€/v) + 2F(r — €/v) + F(r — 2¢/7)))

= ¢ (BBAYEF(r) + BAY2(F(r 4 2¢/7) + 2F(r 4 €/7) + 2F(r — €/7) + F(r — 2¢/7))
+B2(F(r)F(r +2¢/v) + 2F(r)F(r +€/v) + 2F(r)F(r —e/v)+
F(r)F(r—2¢/y)+ F(r+2e/v)F(r+e/v)+ Fr+e/v)F(r—e/v)+
F(r—e/7)F(r—2¢/v))) + O(°).
Dividing by Be*, and taking the desired limit € — 0, we finally(!) find
lim <€12(]-"(r 1+ 2¢/y) — 2F(r) + Flr — 2¢/) + 2F(r + ¢/) — AF(r) + 2F(r + e/’y)))

e—0

= 3AY2 F(r) + 6AY? F(r) + 98F2(r) + O(2).
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Again, using the definition of the second derivative (twice!), we obtain

£d2]:(r)
2 dr?

= 9AY2 F(r) + 98F*(r), (81)

and upon multiplying by 2/3 and rearranging the terms, we find the following final form
of the differential equation for our continuum partition function F(r), given by

4 d*F(r
%dfg) _6AY2 F(r) — 68F2(r) = 0. (82)
We see that upon choosing the values v = 2 and 8 = 1/2, this gives us the exact same
differential equation as for the regular quadrangulations !

This means that, up to constant rescaling of the partition function F(ke/v) of two
marked points at ’continuum’ geodesic distance > r by a factor of 1/2, and constant
rescaling of our definition of the geodesic graph distance k by a factor of 2, we can
obtain this partition function for the case of regular quadrangulations out of the partition
function for Eulerian quadrangulations. From this we can similarly extract the partition
function for geodesic distances equal to r by differentiating F(r) with respect to r, which
automatically implies that it does indeed obey the same scale invariance law as
before! Furthermore, we still have

kocr/e, (ryoc V4 o (k) o nt/4 (83)

where n corresponds to the number of white squares in the Eulerian quadrangulation,
since those are the faces that were weighted in the our recursion, and the total volume
is defined as in . Furthermore, from the exactly computed values of v = 2 and
B = 1/2, we can deduce for the relation between the graph distances (k%) and (kF?)
for quadrangulations and Eulerian quadrangulations respectively (where we have to
remember that the graph distances k9 are still with respect to their orientation!), that

(k)0 = 1/2 (kF9)2, = 27/4(K59),,, (84)

where the factor of 1/2 comes from +, because upon multiplying our scaling law by 1/2,
we go from 'Eulerian’ distances to 'regular’ distances. The factor of 2 in front of the
number of squares n comes from 3, since 3 tells us something about the ratio between
the number of regular and Eulerian quadrangulations in the limit of very large n.
Furthermore, we can give a lower and an upper bound on the symmetric graph distance
within Eulerian quadrangulations, in terms of the asymmetric graph distance. The
largest asymmetric distance that two points at geodesic distance k might have is given
by 3k, because the asymmetric graph distance and the graph distance maximally differ
by a factor of 3 across each face of the quadrangulation. Similarly, the smallest distance
they might have is just given by k. Therefore we may write that

1

gdfﬁ <d9. <di?, (85)
which readily shows that also the symmetric graph distance within Eulerian quadran-
gulations, up to scalar multiplication, scales with the usual power of n'/4 in the large n
limit.
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5 Discussion

In this thesis, we have seen two different bijections between maps and trees. In the
introduction, we set our goal to show that the universality of the Brownian Map
extends to bicolored quadrangulations as well as regular quadangulations (and all other
p-angulations, for that matter). We have thoroughly examined the case of regular quad-
rangulations via their bijection with well-labelled trees. Firstly, I tried to give a more
intuitive explanation of this rescaling factor of one fourth, using the properties of random
walks on the trees and their labels. Secondly, we have seen a derivation of this scaling
limit, by solving the recursion relation for the generating function of well-labelled trees
and deriving its Continuum Two Point Function. From there we saw, via an explicit
calculation, that indeed in this continuum limit geodesic distances scale with the fourth
root of the total volume of the map.

Subsequently we tried to extend this to the case of bicolored or Fulerian quadran-
gulations. A bijection between Eulerian quadrangulations and labelled mobiles was
established, thanks to the work of Bouttier, di Francesco and Guitter [3]. This time
it proved slightly more complicated to solve the recurrence relation for these mobiles
exactly, but by singularity analysis we were able to establish the critical values of the
generating function. We used these to expand the generating function in the continuum
limit, and explicitly showed that for a certain choice of parameters we may obtain the
Continuum Two Point Function for regular quadrangulations out of the one for Eulerian
quadrangulations. Therefore we established that up to scalar multiplication of our def-
inition of geodesic distance, and of the Two Point Function itself, the distributions for
the two families of quadrangulations are equal and the scaling limits indeed do coincide.
Though it is not a proof, at least is a great indication that Eulerian quadrangulations
are within the universality class of the Brownian Map.

As shortly stated in the introduction, this thesis was on two dimensional quantum
gravity without matter - we have only considered the geometry of spacetime itself, and
derived the scaling limit for two discrete models. However, Eulerian maps, such as the
quadrangulations of section 4, can be of great use when matter is involved. General
maps where matter is included, such as the Ising model or similar models of interacting
particles, can be nicely translated to the study of Eulerian maps, with some additional
constraints. One can e.g. characterize such models by blocking certain edges of the
quadrangulation, or putting restrictions on the total number of particles that is allowed
between adjacent faces of Eulerian maps, as in [4]. Using techniques shown in this
article, one can come up with recursive equations for the generating functions of such
systems, which may be analyzed in the limit of large n, as we have seen for the case
where matter is absent. [J.
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