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In this thesis we will explain a novel method for calculating the colour struc-
tures of Quantum ChromoDynamical processes, or QCD prosesses for short,
with the eventual goal to apply such knowledge to Supersymmetric theory.
QCD is the theory of the strong interactions, among quarks and gluons. From a
Supersymmetric viewpoint, something we will explain in the first chapter, it is
interesting to know as much as possible about QCD theory, for it will also tell us
something about this Supersymmetric theory. Colour structures in particular,
which give the strength of the strong force, can tell us something about the
interactions with the Supersymmetric sector.

There are a multitude of different ways to calculate these colour structures.
The one described here will make use of diagrammatic methods and is therefore
somewhat more user friendly. We therefore hope it will see more use in future
calculations regarding these processes.
We do warn the reader for the level of knowledge required to fully grasp the
subject. Although this thesis is written with students with a bachelor degree in
mind, one cannot escape touching somewhat dificult matterial. We have tried
to explain things as much as possible in a way which should be clear to the
reader.
Sometimes however we saw it neccesary to skip some of the finer details of the
subject. If one wants to learn more about these hiatuses we suggest looking at
the material in the bibliography.
For convenience we will use some common conventions in this thesis. In all
calculations and formulas we will set the speed of light and Planck’s constant
to one, or in other words:

c=h=1

Furthermore we will assume Einsteins summation convention, so summation is
implied over repeated indices:

3
Ay, = Z Aty
pn=0

1 What is Supersymmetry?

In short Supersymmetry (from here on called SUSY) is a predicted symmetry
of nature, which mirrors the fermions to the bosons. In other words, for each
fermion there must be a boson with the same intrinsic parameters, e.g. electro-
magnetic charge, colour, weak charge and mass. The only difference between
these SUSY partners are their spins, which differ by half a unit from each other.



One could wonder why such a framework is necessary. Why would there be
a SUSY partner for each elementary particle? Especially since none of these
fabled particles has been seen. In order to explain this one must look at what is
called the Grand Unification Theory (from here on named GUT) i.e. the theory
in which all forces stem from one source. Such a theory could explain everything
we know about the universe. This is something physicists are looking for these
days. In order for such a thing to work there must be an energy scale at which
all known forces excluding gravity start to act like one. In the Standard Model,
the current theory describing all known particles and non-gravitational forces
most successfully, this is not the case.

Let’s first explain what is meant by ‘act like one’. At low energy the electromag-
netic, strong and weak force all act with a different strength. The electromag-
netic interactions for instance have a coupling constant of % However if one
increases the energy of the particles and measures the coupling constant again,
scientists found that the strength of the electromagnetic coupling was enhanced.
This process can be explained if one sees a charged particle not as one particle
but as a ‘dressed’ one. The electromagnetic field around the particle excites the
vacuum and creates pairs of electrons and positrons that shield the core charge.
If one increases the energy, it is possible to penetrate this cloud and see more
of the bare charge. The same can be done for the weak and strong forces, which
both turn out to decrease in strength when increasing the energy. At some
point these forces intersect and thus have the same strength. Due to large error
margins, people thought that all three forces even intersected in one point. This
would mean that at that point the three forces would have the same strength
and were indistinguishable from each other and thus could be considered one
single force. This proved to be false however. When the accuracy increased the
three lines still intersected, but no longer in one point.

This is where SUSY proved to be a useful theory. When the extra partner parti-
cles that can be created through the various interactions are taken into account,
the new extrapolations of the forces at high energy once again go through one
point. Therefore, in order to have unification of the three elementatry forces
SUSY might be required. But why haven’t we seen it then?

One of the explanations is that SUSY is in fact not an exact, but a broken sym-
metry, with the particles we know much lighter than their, still undiscovered,
SUSY partners. This means that in the current experiments we have not been
able to create these states up to now, simply due to a lack of energy. As said
above however, the forces act the same on the SUSY particles as they do on the
Standard Model particles, which makes it possible to make theoretical predic-
tions of their interactions on the basis of Standard Model knowledge. In order to
make these predictions, however, we need a way to calculate these interactions.
In the rest of the thesis we shall construct a method to do so.

2 Gauge formalism

In order to understand the finer points of the group theory that will be presented
later on, it is imperative that one first understands the reason for using this
formalism. In ordinary quantum mechanics we use a hamiltonian to define the
systems, which works very well at reasonably low energies. At higher energies
and therefore smaller distance scales, particles start to behave relativistically



and thus we can not use the standard equations of motion anymore; we need
to respect the lorentzian ones. This is where the first problem arises. The
hamiltonian formalism itself is not Lorentz invariant, as it does not treat space
and time the same way. There is one quantity that must be invariant at all times
and that is the action. It doesn‘t matter in what frame of reference one is, the
action is independent. The action is constructed by means of the lagrangian. It
is therefore convenient to switch to the lagrangian formalism. Because Lorentz
invariance states that space and time must be treated equal it is convenient to
introduce a quantity £, called the lagrangian density, which is a variation of the
lagrangian over space. This means the action becomes:

Sléi] = / L16:(), 0ui(w))d'z

with 0, defined as:
0
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As one can see the lagrangian is no longer solely dependent on a parameter x,
but instead on a parameter ¢(z) that is a field. We take this step because it
is possible for the lagrangian to have its degrees of freedom defined per space-
time point. Therefore the lagrangian can no longer depend on rigid parameters,
but must depend on a parameter that can vary over space-time itself: a field.
How these fields move through space and time can be derived by looking at the
Euler-Lagrange equations, just as in the classical case:
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In non-interacting field theory these equations of motion should lead to either
the Klein-Gordon equation or the Dirac equation, depending on whether one
looks at a bosonic field or a fermionic one. These are constraints on your fields.
To describe non-gravitational elementary forces we need to consider two general
cases for the lagrangian for free particles with mass m. First we need to describe
spin % matter particles. This involves the fermionic lagrangian belonging to the
Dirac equation:
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for the fermion field 1, with 1) = f4° the Dirac conjugate of ¥ and v the
Dirac matrices obeying the Clifford algebra. The Dirac equation is derived by
taking the lagrangian and putting it into the FEuler-Lagrange equation for the
field 1). Next we need to describe massless spin 1 force carriers (like photons).
This involves the bosonic lagrangian belonging to Maxwell’s equations:
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Here the F'*¥ is the field tensor for the bosonic vector field A¥ and can be
defined as:
FHY = gFAY — oY AH



If one sets the gauge condition d,A* = 0 in order to select the physical states,
one can see the Klein-Gordon equation arise from (1):

9,0" AV =0

Now that we have the free particle basis for the field theory, one might won-

der how to build upon this and create an interacting theory. It is possible to
simply introduce interactions as we see them in nature, involving interactions
between force carriers and matter fermions. However there is a more elegant
way to approach this. Let us look at the fermionic lagrangian above. One may
wonder, after writing the lagrangian in this form, what kind of freedom one has
in choosing the field . This is called a gauge freedom.
After setting all parameters of the theory there are still some choices left. Choos-
ing a gauge means fixing those free parameters and thus defining your theory
for a specific choice. This choice however must not show up in your calculations
since the physics in one gauge cannot be different from the physics in another
gauge.

In classical field theory the invariance of a lagrangian under variations in the
fields leads to conserved current. This is known as Noether’s Theorem. If one
transforms the fields under the follwing transformations:

¥(a) = V(@) = e p(a)
B(a) = ¥'(@) = <)

One can easilly see that it does not change the lagrangian. However it can be
shown that it does lead to a conserved current and conserved “charge”. This
is called global invariance since it is considered the same for each space-time
point. Next we demand this global invariance to also hold locally, i.e. for
transformations that vary from space-time point to space-time point. In this
case a global invariance is a special case, but the extra local constraint leads to
some interesting consequences. Let us first look at the Dirac fields ). We can
introduce a local transformation:

W(@) = ¢ (@) = e Py (a)
Y(a) = (z) = D) (2)

with ¢ € R, which we shall call the transformation operators for now. The mass
term ma)tp is automatically invariant under the transformation. The kinetic
term, however, picks up an extra term:

L — L= P(iy"0, — my + 0, (C () Py

If we want the lagrangian to be invariant under this transformation we have to
introduce an extra term to compensate for the new term that is created when
we use the transformation. We can do this by replacing d,, by the covariant
derivative

D, =0, +iqA,(x)



where ¢ is the charge of the particle described by 1. To achieve invariance the
vector field A* has to transform as:

1
A= A ()

This results in the total lagrangian

L= P(in"0u —m) — gy A"

= (" Dy —m)y

which is invariant and has what is called U(1) symmetry. We see that the lagra-
gian now picks up a term that mixes the A" bosonic field with the 1 fermionic
field. This A* is called the gauge field and is said to carry the force belonging to
the charge ¢q. By imposing the local gauge symmetry we got ourselves exactly
the interacting term we were looking for. In this particular case it is in fact
the electromagnetic interactions that we got out. It should be noted however
that the bosonic field A* does not have a kinetic part yet. Without it the field
cannot propagate through space. It therefore needs to be added by hand. This
can be done by adding equation (1):
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From now on we will no longer assume bosonic particles but instead wait for
them to come out of the theory. One point that could be noted is that the field
tensor changes by the introduction of the covariant derivative into:

DFAY —DVAM = 9MAY 4 igAMAY — 9V AF — igAV AP
OMAY — B¥ AM + ig[AM, A

thus it is simply the old field tensor plus the commutator of the bosonic field.
In the case of U(1) symmetry that commutator is 0 though, which we will show
in the next section.

3 Lie Goups and Algebras

One may wonder what this U(1) stands for and where it came from. Did we not
discuss invariance under phase transformations? What is this symmetry? Well,
first of all, U(1) is what is called a Lie group. A Lie group is a special kind of
infinite group that is also a differentiable manifold. This means in short that
it is a mathematical space, such as a n-dimensional space of the real numbers
R™ which on short intervals resembles Euclidian space (meaning is looks flat at
short distances) and any mapping you make of it always transform into each
other smoothly. In other words, at very large distances your space (in this case a
group) may look strange, but up close it must be well-behaved and there cannot
be any jumps. For any group G the following property holds:

91,92 € G
g192 =93 € G



such that each set of group elements generates a new group element. Because
of this property, at small distances near the identity a Lie group transforms
in a Lie algebra. This Lie algebra is a vector space with a special property it
inherited from the group G: it has a Lie bracket, which has the same properties
as a commutator

(95, 91] = iejingr

This means that the Lie bracket is the difference of two groupelements. One
can easily see that if any two elements commute their commutator will be zero.
In this case the Lie algebra will have a Lie bracket of zero and the Lie algebra
will be an Abelian one. This is the case for the U(1) Lie group. But what does
U(1) mean?

U(N) is a Lie group of all the unitary N by N matrices, with unitarity defined
as:

ut=u-!
vut =1 (4)

and thus U(1) is a Lie group of all unitairy 1 by 1 matrices. As one can see
the product of two unitary matrices is once again a unitary matrix and since
one can write down an infinite amount of these matrices, it is clear that indeed
U(N) is a Lie group. In order for us to go from the Lie group to the Lie algebra,
we need the proper formalism.

One can view the group elements g € G as g(«,), a smooth and continuous
function depending on a set of parameters «,. Since the Lie algebra is well-
defined near the identity, we want to parameterize the elements in such a way
that g(a, = 0) = 1, where 1 is the identity element of the group. For any
neighbouring point in the vicinity of the identity element we can Taylor-expand
in a to obtain the parameters of the group

g(day) = 1 +ida,C, + O(a?)

where

_ .0
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are called the generators of the group. Finite group elements can be written as
an infinite set of group elements infinitesimally close to the identity element:

g(aa) |a:0

iagCa

lim (1+%)k =e

g(aa) - k—o0 k

so we get the generators in the exponent. In this exponential form the generators
do indeed, by what is called exponential parameterization, generate the group.
Notice that this is indeed the type of transformation we applied to the v fields
in equation (2). Next we show that these generators indeed span the algebra
and inherit the Lie bracket from the group.

Denote the group by G and the algebra by g, with P;€G and p;€g. Because P;
are group elements, a combination of them must go into new group elements:

P1P2:P1+2



However for the algebra in general

ei®aPa oiBbpb £ ei(@atBa)pa

One thing that can be said:

ei¥aPa iPopy — pi0apa

Because close to the identity element all is smooth, by method of Taylor expan-
sion in a and @ we can determine J, from

10gpa = In(1 + e'@aPagtBopy _ 1)

Now we can expand In(1 + K) in terms of « and S up to second order,

K = e ®aPapibops _ q

= (L iupe — (aapa)® + 01 + i — 5 (Bm)?* + O(5) — 1
= iaapa + iBpy — aPalepy — %(aapa)Q - %(ﬁbpb)Q +0(a®, 5°)

giving
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Now we can write the commutator in terms of P,

[@aPa, Bps] = —2i(depe — aPa — BoPb)
= 72i(5c - Qe — ﬂc)pc = i’chc

Since this property must hold for all « and 3, it follows that:

Ye = a3 fabe

where the f,p. are called the structure constants of the group. They differ from
group to group, and in a way define how Lie algebras work. They are therefore
incredibly important and we will revisit them later on.

The phase transformation of the previous chapter is indeed a U(1) trans-
formation, with R as its associated Abelian Lie algebra. Since the lagrangian
of equation (3) is invariant under the transformation, we indeed have a U(1)
symmetry. But what happens if the algebra is no longer Abelian?

We shall come back to this question in chapter 4, but first we need to clarify
a few things in order to smoothen our path later on. U(1) is the group of unitary



1 by 1 matrices, which are just phase factors. When one chooses a representa-
tion for this group, there is one operator and thus one generator, namely a real
number. It is commonly said that U(1) is 1 dimensional. One might think that
because of this the dimension of the group U(N) is N, equal to the rank of the
matrices. This is wrong however. The dimension of the group is given by the
number of independent real parameters that are needed to describe each element
of the group. For U(1) that is just one parameter, namely the one that makes
up it’s matrix. In the case of U(2) however we have a 2 by 2 matrix that needs
to be unitary. From this it follows that if one writes the elements o, of such a
matrix as o = aji +1b;i, with a;i, b;r € R, and solves the unitarity condition
(4), there are four equations with eight unknown parameters. So your matrix
is defined by four real independent parameters and thus the dimension is 4. In
the N dimensional case you have N2 equations with 2N? unknown parameters
and therefore N? real independent parameters. For all U(N) the dimension is
N2

In the U(1) case you had one generator, the one independent parameter.
In a higher dimensional group there is more than one independent parameter.
Since each independent parameter leads to one degree of freedom that one can
“gauge away”, this means that an independent parameter leads to a generator.
And since the dimension of a group is equal to the number of independent
parameters, the number of generators is equal to the dimension of the group.

4 SU(3)

Non-Abelian groups can be represented by matrices with a rank higher than
one. If the rank is equal to the number of the group (for instance rank 2 for
U(2)) we call the representation the fundamental representation. The higher
the rank of the matrices in the fundamental representation, the higher the di-
mension of the group. For now we’ll stick to this representation, for it gives us
the basic knowledge about what we will call the order of the force.

There are many non-Abelian Lie groups we can look at, but within the Stan-
dard Model two groups stand out: SU(2), which can be identified with the weak
interactions, and SU(3), which leads to the strong interactions.

The group SU(N) is, like U(N), a group of unitary matrices of rank N. However
the difference, indicated by the S (which stands for special), lies in the fact that
the determinant of these matrices must be 1. Since the product of the deter-
minant of two matrices is equal to the determinant of the product of these two
matrices, one can see that if U(N) is a group so must SU(N).

One would think that the dimension of the group is N2, but one has to take
into account that the determinant must be 1, which gives us an additional con-
straint. This removes one independent parameter and we are left with only
N? — 1 dimensions and thus N2 — 1 generators.

In light of this thesis we will now look at SU(3). To construct a valid theory
we need to make a few definitions which distinguish SU(3) from the more general
case we discussed above. From now on we will denote SU(3) generators as Ty,



and the Lie bracket becomes:
[Ta7 Tb] = Z.fabciz-‘c (5)

Much like the generators (,, the generators T, will help us establish a symmetry
in the lagrangian. In the fundamental representation it is convenient to define
a set of 3 by 3 matrices which are called the Gell-Mann matrices A,:

01 0 - 0 1 0 0
AM=1(11 0 0 1 0 a=1{0 —1 0
0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0] As=({0 0 0 01
100 1 0 010

0 0 O 1 1 0 O

Ai=|(0 0 —i] dg=—7[0 1 O

0 ¢« O V3 0 0 -2

In order for the SU(3) transformations to be unitary these matrices need to
be hermitian and traceless. Indeed, for any hermitian matrix P,

Ulay,) = e'@le

is unitary. Moreover, we find a basis for which «,P, is a diagonal matrix D,
then

det(U(ag)) = det(ei®Fa) = det(eP)
= H(ei[D]jj) — ¢t 2Dl

J
67,'T'r‘(D) _ eiTr(aaPa) =1

= Tr(a,P,) =0
Since a, can be chosen arbitrarily P, must be traceless.

Next we construct the gauge formalism, beginning with the fermionic part
of the lagrangian:

Y(@) = P (x) = e (z) = U(a)ip(x)

b(x) = P () = d(a)e’* T = (a)UT
Again the mass term is symmetric and yet again we are left with the kinetic part
for which we need to construct a covariant derivative. The difference with before

is that this covariant derivative needs to be invariant under all 8 independent
transformations at the same time. So we obtain:

D,=0,+ igngTa



where W is a collection of 8 gauge fields and g is the coupling constant (cou-
pling strength) of the strong force. We usually simply write W, = Wi T, where
W, is, what is called, Lie algebra valued. In other words, it has the properties
of a Lie algebra in it. As we promised, we no longer need to add the gauge field
terms separately but instead let them come from the symmetries themselves.
After we add the infinitesimal transformations of the gauge fields:

WiT, — U(x)WLT,U ™ (z) — g%U(x) (8MU_1(:U)>
inf

a . 1
< WiIT, + z[WL’Tb, a ] + g—s(auaa)Ta
1
= (WE + ;aﬂaa - fabcwﬁac> Ta

we will see that indeed the lagrangian is symmetric under local SU(3) invariance.
The last term comes from the fact that we are no longer working with simple
constants, but matrices. As we see, the amount of generators will determine the
number of gauge fields that we have, in this case 8. There is still the matter
of the kinetic terms of those gauge fields. In chapter 2 we noted that they still
needed to be added by hand, but there are of course a multitude of possibilities
one could think of. One can prove by means of the Ricci-identity there is but
one solution that serves our purposes:
Gt = i[D D,
igs- "
DFWY — DYWH
= O*WY +igWHWY — "WH —ig, WYIWH
= OMWY —"WH +ig, [WH WY] (6)

and thus we can define a Lie-algebra valued field tensor
G = "W, — "W — gs fare WL WY

When one works out the commutator of two covariant derivatives we see that
it picks up a commutator of its own, in two of the gauge fields. The field tensor
needs to be squared in order to obtain the kinetic terms:

1 1
—1 G Ca = —7 (aﬂwg W — g, fabcwg*wg>
(8[LWI/0. - avVV/La - gsfadeW;LdWye)

WY~ W (D, Waa — 0, W)

+gsfabc (auW;) WubWuc
2
- %fabcfadeW#WgWudWVe

The last three terms give two three-point interactions and a four-point interac-

tion in the gauge fields. Thus the non-vanishing commutator leads to what is
called gauge boson self interactions. It is also easy to see why we had no such
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problems in the Abelian case. Since in that case there where no non-vanishing
commutators, the last term in the field tensor (5) was automatically zero and
thus no self interactions emerged.

In order to better understand this we first go back to the fermion fields.
For the symmetry to properly work on these fermions, the fermions themselves
need to be vectors in the fundamental representation. Since the T, are 3 by
3 matrices the fermions need to be vectors of length 3. So for every fermion
in the SU(3) symmetric theory, there are in fact three copies of that fermion.
This decomposition corresponds to a quantum number of the field that is called
colour. The usual way of denoting this quantum number is by a subscript i, so
the fermionic field ¥ now becomes ;, with i ranging over the possible colours,
which is 3 in SU(3). This is called a colour triplet, for the same fermion is
decomposed in a set of 3 individual states with different colour. Since the gauge
fields W, are in fact Lie algebra valued, they contain the generators. In the
same way as in the case of ¢; we can write these generators as Tj;, with i and
j ranging over the different colours. Therefore the gauge fields can be written
as WZ’; and now one can see that the fields themselves carry colour, making it
possible for SU(3) gauge fields to couple to themselves. It is exactly this colour
structure that we are interested in.

5 Quantum ChromoDynamics

Before we continue with the math behind the strong interactions, it might be
useful to look at what these interactions really are. First we give a name to the
branch of processes which involve the SU(3) gauge interactions. The processes
are said to be Quantum ChromoDynamical processes, QCD processes for short.
The name stems from the greek word chroma (xpwuca) which means colour.

Let us first give a proper definition to the fields we have created thusfar.
We have a fermion triplet ¥; and a set of eight bosonic Lie algebra valued fields
Wi‘;, called a bosonic octet, with i and j running over the 3 possible colours. In
nature we see two types of fermions: leptons and quarks. On pure theoretical
grounds there is no reason not to let both be SU(3) triplets. However, empiri-
cally we see that leptons exhibit no QCD interactions. It’s is like they are blind
to the strong force, which makes us to believe that they do not carry a colour
charge and are what is called singlets under SU(3) transformations®. As for
the bosonic octet, we shall call it a gluon field. It describes eight particles, the
gluons, who have self interactions, as was shown in the previous chapter. Unlike
the fermions, to which you can again apply the U(1) symmetry argument and
thus give them electromagnetic charge, this does not apply to the gluon fields.
This means that while we can give the quarks both colour and electrical charge
and causing them to interact with the photons, the gluons will have no charge
other than colour.

The strong interactions, also called strong force, were first postulated in

1Being a singlet under a transformation means that if an element of the group works on
the singlet, it stays the same and does not change. A good example is the null vector. Any
multiplication with this vector gives again the null vector and thus it is a singlet under all
transformations.
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order to correct the up till then quite successful parton model. This model
tells us that hadrons are constructed out of smaller particles, which were (later)
named quarks. In 1961 there was what was called a zoo of particles. There-
fore Gell-Mann proposed that the baryons, a subset of the hadrons, were not
single particles, but instead composite particles consisting of three quarks or
antiquarks. He postulated the existence of three types of quarks: up, down and
strange (the rest was yet to be discovered), which create a flavour triplet. Using
what was called SU(3) flavour symmetry, he constructed the eightfold way. By
this method it was possible to explain the particle zoo and even predict some yet
undiscovered particles. The method he used is the same as the one that will be
used in this thesis, but now modified to colour triplets instead of flavour triplets.
However there was a particle that seemed to contradict this, due to the fact that
it seemed to break the Pauli exclusion principle: the A**. In the ground state
(symmetric in space) this particle consists out of three up quarks (symmetric in
flavour). It also has a spin of % Quarks have a spin of %, so this means that also
the spin state is symmetric. Since the Pauli exclusion principle teaches us that
the total wave function of fermions needs to be anti-symmetric, the model was
incomplete. Therefore a new quantum number was introduced, for which the
three quarks were in a anti-symmetric singlet state: colour. Quarks, however,
are confined, i.e. they occur as constituents inside hadrons but never as free
particles. Therefore we cannot directly measure them.

At small distances and thus at high energies it is possible, however, to probe
this baryonic matter and see how the colour charge flows in QCD processes.
That is exactly what we want to look at in this thesis: how exactly does the
colour charge flow through a process and can we on this basis exclude certain
processes or make the calculation of others intuitively visible? Looking at the
colour charge in order to predict certain processes has other advantages. Since
in supersymmetric theories the charges are the same as in the Standard Model,
SUSY processes can be covered by generalizing the Standard Model processes.

6 Colour Labels

Our next stop is to look at a real process, in which we can identify the colour
labels and maybe say something constructive about an equivalent supersym-
metric process. One of the fundamental processes in QCD is a quark and an
antiquark exchanging a gluon. To visualize this we shall use a Feynman diagram
with time defined as going from left to right.
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Here the straight line indicates a fermion, with an arrow in the direction of the
time indicating a quark, while an arrow in the opposite direction of the time
indicates an antiquark. The curly line indicates a gluon field. One might wonder
why the gluon has no arrow. This is because the gluon is its own antiparticle.
This Feynman diagram is called the t-channel for the process quark-antiquark
goes to quark-antiquark (¢¢ — ¢g). The other possible channels and their
relevance will be discussed later on. With some advanced methodology called
Feynman rules one can construct the physics of this process from the diagram.
The way to derive these rules, however, goes well beyond what we try to discuss
here. Therefore we shall simply state the answer and work with it:

—ig, ab ~ g
M = —i[ﬂ(?))c;,][—i%sww] [u(l)cl][%] @(2)02][_2%)\%”] (e
- B “(3”“”(1)9#”“(2)%(4)} ) Hcévclaabcng
gz, 1

Here M is what is called the amplitude for the process and with it we can cal-
culate the cross section of the process, giving the likelihood that the interaction

will take place. The first part of this answer, which we have dubbed i—gA, is
the lorentzian part of the answer and governs the paths of the particles through
4-dimensional Minkowski space. For now we leave it aside. The second part,
that we have dubbed %1", is the colour part of the answer and is called the colour
structure. This is precisely what we are interested in. If we look at it we see
twice the structure ¢/ A\%c;. Here the A* are the Gell-Mann matrices, related to
the generators of the group. The ¢; is called the colour label of the fermion,
and is nothing more than the vector structure of ; in colour space. The cZT» is
the colour label of the antifermion, originating from wg . The colour structure
gives us the opportunity to calculate the colour potential V4 of the interaction,
which depends only on the colour charges:

[0
qu:—ff

with ag the fine structure constant of the strong force. The colour factor f can
be calculated, by considering the colour structure I', but since I' involves four
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open colour labels, we must let it run over all possible colour configurations. In
other words we need some serious bookkeeping in order to take some work out
of our hands. There are various ways of doing this, one of them being simply
crunching numbers. What we will do instead is make use of the Lie group we
have and construct the weight space.

7 Weights and their Spaces

In order to introduce weights and weight spaces we must first introduce a new
representation of the Lie algebra. We have the generators T, with a going
over all possible states. As shown in chapter 4 the generators 7% have a Lie
bracket, and the antisymmetric structure constant f,,.. By means of a simple
calculation the following must hold

[T, [T°, T = i focalT*, T%) = = focd fade T
Since commutators obey the Jacobi Identity
[T, [T°, T + [T°, [T, T")) + [T, [T, T%] = 0
it follows:

_fbcdfadeTe - fabdfcdeTe - fcadfbdejje =
= fbcdfade + fabdfcde + fcadfbde =0 (7)

since T° cannot be 0. It is possible to define a set of matrices [t,]p. according
to:

[ta]bc = _ifabc (8)
and from the Jacobi Identity (7):

—[to]caltalde + [talcaltldae = ifabalt]ce
= ([tallte)ce — ([tsl[tal)ece = i fabaltalce
= [ta,ts] = ifabata

These matrices themselves span the Lie algebra as a different representation,
named the adjoint representation, or adjoint for short. In SU(3) all three in-
dices of [ty]pe run over the eight possible generators of the group. Thus the
generators in the adjoint are 8 by 8 matrices and work on a vector of length 8.
The only object that we know with eight colour indices are the gluon fields and.
We can see in the adjoint the interaction two gluon fields give us a new different
gluon field back. This looks like a self interaction and thus the adjoint might
indeed describe our gauge fields. Now that we have the adjoint representation
of the gauge fields and the fundamental representation for the fermion fields
it is time to look at the colour decomposition. We do this by generalizing the
representation. Since the adjoint representation follows directly from the funda-
mental one, and the only restriction on the fundamental representation is that
it needs to be a set of eight 3 by 3 matrices that are hermitian and traceless,
we have a lot of freedom in the exact representation. The ultimate goal is to
bring the Hilbert space into a form that makes our calculations easier. It must
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be clear that a representation in which the generators are purely diagonal will
be the easiest one. However, looking at the Gell-Mann representation one can
see that it will be impossible to diagonalize all the generators at the same time.

Let’s go back to the general case. It is at least possible to find a basis in
which one or more generators are diagonalised. These diagonal generators span
an algebra, called the Cartan subalgebra. Due to the fact that these Cartan
generators, H,, are diagonalised, they are hermitian and they obey the following
commutation relations:

H,=H}
[HvaU] =0

Now all that remains is choosing a basis of the Hilbert space in such a way that
Tr(HyH,) = krépo

where kp is a constant dependent on the representation. The Cartan subalgebra
is now diagonalised and the elements are orthogonal. Due to the fact that the
Cartan generators commute, we can find a set of simultaneous eigenfunctions
|pi, T, R > in a certain representation R, where

Hplpi, z, R >= pplpi, z, R >

Here 1, is called a weight of SU(3) and z labels the state, as it is possible for
two states to have the same weights. The weights together form a vector «;,
called the weight vector of fundamental state i, with

;= | Hip

The Cartan subalgebra is on its own an m-dimensional space (with m the num-
ber of Cartan generators) in which one can construct the weight vectors. To-
gether these weight vectors form a diagram, called a weight diagram, giving us
immediate information about the state we are working with. At this point it
may all sound a bit technical, but we will elaborate on this in upcoming sections.

What we want to do first is to create a weight space for the adjoint repre-
sentation in the same way we constructed it for the fundamental representation.
The big advantage of the adjoint is that the rows and columns are labeled in
the same way as the generators themselves 2. This means that the generators
themselves can be made to correspond to an orthonormal base of adjoint states,
which we shall name |X® >. These states are defined by:

XX >=0

2remember that the rank of the adoint matrices is equal to the dimension of the group
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with no summation over a intended. This follows from:

XX > = |X°>< X°XX° >
|)(C > [ta]cb

—i fach| X >

i fabe| X >

= |ifape X >

= |[X* X" >

The defining step in the previous derivation is the one where we use equation (8).
Thus the choice of base vectors | X* > is defined by the group structure, set by
the structure constants fu;.. Later we will see that it is convenient to construct
linear combinations of the states, that correspond to linear combinations of the
generators:

alX® > 48 Xb >= |aX? + X >
Now we have the tools to construct the action of a generator on such combined

states.

Just like in the fundamental case we can define a Cartan subalgebra, with
Cartan generators H ;‘ that satisfy the relation:

HP|H® >=|[H?,H°] >=0

Because of this the weights of the adjoint Cartan subalgebra are 0. This, how-
ever, only gives us m of the possible adjoint weights. The rest must be con-
structed by letting the Cartan generators work on the remaining generators in
the way prescribed above. It is however more convenient to write the remaining
generators in linear combinations E,

EV = Z OéiX,‘

in such a way that they become eigenfuntions of the Cartan generators:
[Hy,,E)|=v,E, = E,|H, >= —v,|E, >

thus creating new states for which the adjoint weights are easy to calculate.
These F, are clearly not hermitian, for we can take the adjoint of the commu-
tator

[HpaEu]T = [Elva] = VPEZ = [HpaEi] = *VpEI

Therefore we can take
El=E_,

This is reminiscent of ladder operators in basic quantum mechanics as can be
made more explicit if one looks at the action of the Cartan generators on an
eigenstate |p;, z, R > of H, modified by E,:

HpEiullJivxa R> = [HpaEiV]lﬂivxaR > +Eiqu|/Ji7 z, R >
= (M’L :ty)pE:tlll//"hI?R >

16



Now that we have a new set of generators defined, we can go on to construct
the adjoint weight space with weight vectors o for the Adjoint state a.

Finally, before we can continue with a real case, we need to address the
complex conjugate representation. As we saw in the rough calculations above,
antiparticles must carry anticolour charge and thus we need a definition of that
in terms of the weights. We can take the Lie bracket and complex conjugate it

([tavtb])* = (ifabctc)*
= [ta: 6] = —ifavcte
= [~ta, —tp] = ifave(—1t2)

As one can see, this is just another Lie algebra with generators —X%*, which
generates the same weights except for a minus sign, since the Cartan generators
are hermitian.

8 Weights of SU(3) and Colour States

We finally have the tools to say something about the colour states of the pro-
cesses considered, so let us start by constructing the weight diagrams of the
particles involved. The quarks are in the fundamental representation and it
is convenient to choose again the Gell-Mann matrices for this purpose, since
we already have them written down. A quick glance at them immediately re-
veals the Cartan subalgebra. Remember that the Cartan generators need to
be hermitian and their commutator needs to be equal to 0. Furthermore it is
convenient to choose them as diagonal matrices. Since there are two diagonal
matrices A3 and Ag and since they obviously commute we choose them to be in
the Cartan subalgebra. All the other Gell-Mann matrices do not commute with
these Cartan Generators, even not when taking linear combinations of them, so
we have

Hy =13
Hy =T"
Here we went back to the definition of the generators we have been using all the

time. Since the quarks correspond to colour triplets, we choose the convenient
base

1 0 0
|Cl >= |0 ‘CQ >= 11 |03 >= |0
0 0 1

o

Applying the Cartan generators to these base vectors yields weight vectors

1 1 0
() o () - ()
23 23 V3

with the following definition of weight vector «;

1
i
o =
(M?>

This gives rise to the following diagram
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This triangle apparently is connected with a triplet state.

We want to do the same with the adjoint representation, thus creating the
weight space of the adjoint of SU(3). One might think it is convenient to trans-
form the generators to an 8 by 8 matrix representation, thus giving the adjoint
states the same form (only now 8-dimensional) as the quarks had in the funda-
mental representation. However, it turns out that the transformation to the 8
by 8 adjoint is to much hassle, even more since we have the tools to create a 3
by 3 version of the adjoint with the help of representation-independent raising
and lowering operators. Since the Cartan subalgebra must also hold for the ad-
joint representation, H; is still T3 and Hs is still 78. Now we define the ladder
generators in a proper way

L L (010 o 1 (0 00
BT =G0 o) P Et T E
Lo ; (001 U s 1 (0 00
E3=7§(T +zT)=ﬁ 8 8 8 E4—E(T —ZT):E (1) 8 8
L L [0 00 o ] L [0 00
BBt =m 0 g o) Pt T Y

where we have simply labeled the generators instead of indicating the adjoint
weights, for we do not yet want to spoil any surprises. The adjoint weights,
which we shall call R; for convenience, are found by taking the commutator
with the Cartan generators as defined in the previous chapter. This tedious but
simple calculation leaves us with the following adjoint weights:

0 0
O‘?h =R = <O) O‘gz =Ry = (0) aél =Rz = (0>
-1 1 _1
e (3) et () ot ()
2

[—

This gives rise to the following diagram:

18




H 2
R, R
Rz H 1
R+ ——— Rs
R
RS Rs

This hexagon with two centers apparently is connected to an octet.

Now all that remains is constructing the weight diagram for the antiquark
state. In that case the representation is complex conjugate to the triplet of the
quark and thus the weights have the opposite sign:

_1 1 0
o = (_%) o = (_) o = ()
23 23 V3

This gives rise to the following diagram

H,

This inverted triangle apparently is connected with an antitriplet state.

We see now that the form of the weight diagram tells us something about
the degeneracy of the colour state. By simply counting the number of dots in
such a diagram we see what kind of state we have and by mirroring the diagram
in the origin we get the complex conjugate representation.

H2
a,
a, o, "
a, Q,
a 3
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We can also see that the adjoint representation is its own complex conjugate
representation, thus the gluons are their own antiparticles.

Now that we have constructed the weight spaces, let us return to the problem
at hand: the possible colour states of quark-antiquark interactions. Let us
first look at the initial states in which we have a colour triplet and antitriplet.
Where we previously looked specifically at the t-channel, we now look at all
possible intermediate states at tree level®. The generic Feynman diagram will

look something like this:

Here the grey semicircle depicts all possible intermediate states that this initial
state can make. The product between these two initial colour states can be
expressed in weight diagrams:

VA

By taking all possible first states and adding all possible second states, we get
the possible total colour structures of the incoming particles. This is done by
taking a weight vector of the first diagram and use it as the origin of the second
diagram. One then adds the three new diagrams together as below:

1 1
1T 1

Here the numbers stand for the weight degeneracy. There is but one way to
construct the outer states, which therefore have a weight degeneracy of 1. There
are three ways, however, of constructing the central weight. Therefore it has a
weight degeneracy of 3. The new diagram looks much like the adjoint weight
diagram, except for the three zero weights instead of the expected two. But we
can subtract the adjoint weight diagram leaving;:

1 1
1.1 o 1’1 i ‘1
1 1 1 1

3Tree level means that we look at Feynman diagrams with no loops in them. Although
the methode also holds for diagrams with loops in them (called higher order diagrams) they
serve no immediate purpose in this thesis and so we have omitted them.
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and we see that the possible colour states are a colour octet and a colour singlet.

Now it is important to define some things. In the weight diagram of a
quark we see that each point was given a name «;. When one overlays the
two diagrams as is shown in the decomposition, one can simply add two such
vectors and arrive at all composite states. For instance, if one adds |a; > to
|ah > one arrives at the composite weight vector in the upper right corner of
the final diagram. We will use the following notation:

la; > +]af >=1i,5" >

Now we look at the final state of the diagram, for which the diagram looks

like this:

Again we have a triplet and antitriplet state:

ANV

This gives us exactly the same colour states, which is important because of
conservation of colour. If a certain colour state goes in, then that same colour
state must come out. If not, the amplitude would break SU(3) invariance and
that is exactly the opposite of what we wanted. Thus the initial octet can only
couple to the final octet and the same goes for the singlet states. The quark-
antiquark interaction therefore decomposes into a singlet part and octet part.
This means that the initial state colour states can merge into a gluon. This is
best shown in what we call the s-channel Feynman diagram:

q q

q q
If the initial and final states can be combined into a colour state connected to
a physical particle, then we can construct a Feynman diagram in the s-channel,
giving rise to that physical particle being exchanged. Intuitively this argument
sounds convincing, but there are some flaws, which we will discuss later.

In this respect the singlet state is a bit alien to us, since we have not defined

any particle that is an SU(3) singlet. The problem is that in a pure SU(3) theory
such a particle does not exist. When we move back to the previous case of U(1)
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we can see that there is a possibility. If we construct the U(1) weight space we
have to remember that U(1) only has one generator, which in a proper base is
hermitian and therefore automatically a Cartan generator. In the fundamental
representation this gives naturally rise to a singlet and in the adjoint it is not
hard to see that indeed we get a singlet state there too. It suffices to say that
the U(1) adjoint is a singlet under SU(3), since there is no interaction in the
lagrangian between the W* and A¥. Therefore the particle of the U(1) adjoint,
the photon, is a candidate for the SU(3) singlet state, creating the following
s-channel Feynman diagram:

q q

q q

with the wigly line indicating the exchanged photon. However this is no pure
QCD procces and thus not interesting to us in this study. The other possibility
for getting a singlet term is by decomposing the t-channel amplitude. When
one decomposes the t-channel it is indeed found that there is a singlet term
there. So, apparently all colour states with which we cannot identify a particle
are required to form the other possible channels for the theory.

It is time to go back to our calculations from chapter 6. We had a form
for the colour potential, but we had to look at all possible states to find out
what it would be in the end. Now we do not have to do that anymore, for we
know there are but two possible colour flows: an octet and a singlet. First we
look at the octet state, which is eightfold degenerate. It will be sufficient to
choose one of these octet states, for all the others will give us the same result.
For convenience we will pick one of the states on the outer rim, |1,2" >. The
outgoing state must also be an octet and by the same reasoning we will select
|1,2" > to be that state, giving us the following colour factor:

1 1 0
f = (100)X‘0H(010)/\a 1
4 0 0
1
= Z( 11 32)

Since A% and A% are the only diagonal matrices this becomes:

1 1
f= Z()\?V\gz +AT1A3,) = 6

The same can be done for the singlet. In that case we see three possible
weight vectors: [1,1' >, |2,2' > and |3,3’ >. Each of the central weights consist
of a linear combination of these three weight vectors. It turns out that the singlet
state corresponds to %(H, 1" > +]2,2' > 43,3 >). In vector notation we thus

get the following colour factor, keeping in mind that the outgoing particles must
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also be in a singlet state:

f o= i\}g;gq(l 0 0) A 8 H(l 0 0)A 8

- N+ 0\
+ [0 1 oA fof]|[(® 0o 0o)x*[1
L 0 L 0/ -
- N+ 0\
+ |0 0 A {o][[(1 0 0)Ar*{0
L 0 L 1/ -
i 0\ -r 1\ -
+ [T o o)x*|1]][[(0 1 0)A*[0
L 0 L 0/ -
- 0 _ 0\ -
+ (0 1T ox[1])]|(0 1 0)r*|1
L 0 L 0/ 4
- 0 - 0\ -
+ [0 0 A1 (0 1 0)x“fo0
L 0 L 1/ A
i 0\ 1r 1\ -
+ [t o o)x*{o][{(0 0o 1)A* [0
L 1 L o/ -
i 0\ 1r 0\ -
+ [(0 1 o)x*|o][[(O0 0 1)A*[1
L 1 L o/ -
- 0 - 0\ -
o o pafo)][© o yrfo )
L 1 L 1/ A
_ I e e
- 4\/3\/3()‘11)‘]2)
_ 1l aya
= 43TT()\)\)

with summation over a implied, going over all eight Gell-Mann matrices. Since
Tr(\\%) = 259

we get
Tr(\*\%) =16

The colour factor will be

1 avay 4
Putting this into the equation for the QCD potential we get

4 o
Vo =35
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for the colour singlet and

for the colour octet.
We continue the discussion of quark matter with a new process: quark-quark

scattering. We look at the incoming states of the process of two quarks, which
looks very much like in the quark-antiquark case, but now with both arrows

going in:

This leads to a weight diagram with two triplet states. Again taking all possible
first states and adding the second we get the following:

1 1

X — >

1

This time, however, we cannot take out an octet and it seems we are stuck.
On closer inspection, however, one can recognize a large triangle with a small
triangle inside, the small triangle being an antitriplet state. Taking it out, we
get the following decomposition of states:

2

1 1
2 2 — >
1
1 1 1 1
1 A
1 1 1
1
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This gives rise to a sextet and an antitriplet state.

One could again write down the outgoing state, and calculate the possible
weight decomposition, but this time it is fairly easy to see we get the same
result: again a sextet and an antitriplet state. Can we extract any physics out
of this, like we did in the case of quark-antiquark? There is an antitriplet state,
which might imply the exchange of an antiquark in the s-channel. If this were
so the following Feynman diagram needs to exist:

q q
pc o

C
11 3/

44

However, in the lagrangian we find neither a quark-quark-antiquark term (nec-
essary for the first vertex), nor a triple antiquark term (necessary for the second
vertex). Due to Lorentz-invariance this interaction is forbidden though, so we
cannot add it to the lagrangian. Just as in QED?#, where fermions can only form
an annihilation reaction with antifermions, in QCD a colour state can only have
an annihilation reaction (which is in the diagrams equal to an s-channel) with
its anticolour state. Thus there is no possible s-channel for the quark-quark

process and the only possible diagram is the following t-channel diagram?®:

q

Pc PS

NN ==

4Quantum Electro Dynamics. It is the quantum field version of the electrodynamics theory
of Maxwell

5There is also a u-channel diagram, which is equal to the t-channel diagram, but with the
outgoing states interchanged.
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We shall simply give the amplitude for this process:

M = L A ) (€A )
= %[6(3)7%(1)][ﬂ(4)7uu(2)]>< (ciAver) (chAves)
2 1
= %AXZF

with if again the colour structure.

Now let us see if we can define a potential for this process, just like we did in the
quark-antiquark case. The previous potential is no longer useful, since there are
now two particles with the same charge and thus it looks more like a modified
potential for the equivalent QED process of electron-electron scattering, also
known as Mgller scattering:

Vaglr) = £

So again one has to calculate the colour factor f. Let us first start with the
sextet. We know that the sextet contains the upper right point of the large
triangle, which consists of twice the same triplet weight vector. To simplify the
calculations we take exactly this point for the calculation, since we know that
all other points on the large triangle give us exactly the same result.

Because of this only the diagonal Gell-Mann matrices are needed, resulting in
the following colour factor:

I 1 1
f = 4(100),\“0H(100)Aa 0
0 0

1 a
= Loean)
1
= i()‘i’l)‘?1+)‘§1)‘§l)
1 1 1 1

i((l)(l) + (%)(ﬁ)) =3

The same can of course be done for the antitriplet state. However, each point
of the antitriplet is degenerate in weight. For instance, the top of the antitriplet

state corresponds to either [1,2 > or |2,1 >. Thus any orthonormal pair of
c1|1,2>+c2|2,1> and c2|1,2>—cq]2,1>
Veita Vet
and ¢ is obtained by requiring that one of these vectors corresponds to a colour
factor f = % and thus belongs to the sextet. The other vector than belongs to
the antitriplet. From this procedure it follows that %(H, 2 > +|2,1 >) belongs

to the sextet and %(H, 2 > —|2,1 >) to the antitriplet. In the latter case the

vectors can be used. The proper choice for ¢y
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colour factor then becomes:

;o= 111({(1 0 o [0 H(o oy [
- 422 0 0
i 1\ 1 0
—{(0 1 o)x*f{o][](1 0 0)r*|1
- o/t 0
- 0\ 1r 1
—{ (@ 0 o)x*f{1]][(0 1 0)A*[0
: o/t 0
- o\ - - 1\ -
+[(0 1 0)A* |1 (1 0 0)A*|o0 )

L 0/ 4L 0/ -

1 a a a a a a a a
= g(/\11>\22 — AZ1ATe — ATaAS) + A%, 11)
1 a a a a
= Z(/\n)‘m - 12/\21)

1, ..
= Z()\i)\gz + AT1A32 — AlgAdy — ATA3)
1 1 2

= (-14--1-1)=-2
1t )=73

If there is more than one inner state, one starts at a non-degenerate state and
calculates the colour factor. Then one moves inwards and looks at a twofold
degenerate state. Finding an appropriate set of othonormal states composed
out of linear combinations of the two vectors, one identifies one state with the
previously calculated colour factor. This fixes the other state, which can then
be used to calculate the other colour factor. One can then move to a threefold
degenerate state and proceed in a similar way there. This continues till all states
have been identified.

The colour structures give rise to the following potentials for the antitriplet:

2 o
V. = ———
qq(T) 3,
and for the sextet: )
as
Vaq(r) = 37,

This time the sextet interaction is the repulsive one, while the antitriplet inter-
action is attractive. It might be shocking at first to see that two quarks can
attract each other. It is however not a singlet state and as such can have inter-
actions with other coloured matter. Together with a third quark the antitriplet
state in fact forms a singlet, leading to hadronic matter.

We have looked at pure incoming (and outgoing) fermion states, so now it
is time to look at bosonic states. We can distinguish two cases: boson-fermion
inintial states and boson initial states.

We begin by looking at the boson-fermion case, i.e. QCD processes with gluon-
quark initial states. The s-channel Feynman diagram will look something like
this:
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On the basis of this diagram we expect a triplet state in the decomposition of the
weight diagrams. Now we look at the weight diagram. An incoming quark gives
rise to a triplet state and the gluon to an octet state, leading to the following

diagram:
<:> )

The decomposition in irreducible states, however, is not so easy. Where pre-
viously one could simply take out a state we recognized (the octet in the first
example and the antitriplet in the second), this cannot be done so easilly in
this case. One can see it is indeed possible to take out a triplet state, as we
expected, but we are still left with 21 states which cannot be classified yet. The
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states are reducible however and there is a way to show this.

To do this we go back to the construction of the adjoint weight diagram. In
the weight space we took the Cartan adjoint generators and showed that their
weights where always 0. We combined the remaining generators into convenient
ladder generators which would move the Cartan weights either up or down, to
create the remaining weights. That is where we stopped the procedure, but
there was no particular reason for that yet. Seemingly we could have continued
moving into infinity. In reality one has to stop at either the heighest or lowest
possible weights, just as in all cases of using ladder operators. It is possible to
move from the heighest weight to the lowest one by use of ladder operators while
remaining on the outer layer of the diagram. Moving in such a way, each weight
can be reached uniquely and thus the outer layer forms an irreducible weight
representation. In the corresponding weight diagram all outer layer states have
a degeneracy of 1. Up to now we have always drawn the outer lines, forming
“shells”, but now we know what their purpose is. It can be proven that each
time one moves a shell inwards the number of states for each weight increases
by one. The proof is a bit beyond the scope of this thesis, although we can
make it plausible. If one moves inwards it is no longer possible to move in a
unique way. Starting from the heigest weight there are two ways of reaching
the second shell using two ladder generators F4, which moves to a weight down
right, and Es, which moves left. One can first apply E; and then FEs, first going
down right and then left. But if one does it the other way around, first Ey and
then E7, we move first left and then down right, ariving at the same spot. The
same argument can be repeated each time we move down a shell, thus making
our statement plausible.

Now we see that the remaining state must be degenerate, since there are points
with twofold degeneracy on the outer rim. Connecting these points one gets a
triangle, with a weight in the middle of the lines. This is an antisextet (see the
previous example) and taking it out leaves us with the following structure:

—
1
1 1
L+
1
1 1
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The first diagram corresponds to a quindecuplet consisting of 15 states. The
figure is irreducible and thus we found the decomposition.

We cannot, however, easily write down the potential between the incoming par-
ticles and thus we shall skip it. It is possible to write down the colour factors,
but this is in fact quite complicated and thus we shall leave it to others to do
these calculations if they wish to know them. The main problem is that we have
not yet defined a simple way of calculating the gluons in these processes.

Finally we will look at the last process: gluon-gluon scattering. From the
lagrangian we know that such interactions must exist, because of the quadratic
commutator (6). Let us use our new found method of differentiating colour
states and decompose the generic incoming Feynman diagram

We know that a gluon has an adjoint weight diagram, so gluon-gluon scattering
corresponds to the following weight diagram:

Just as in the gluon-quark case we can decompose this diagram by using the
ladder operators.
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Applying this theorem to the diagram above, we first see a hexagon with 12
weights that must be irreducible, so all have degeneracy 1. Going inward, we
are left with a hexagon with 6 weights, all with degeneracy 2. Finally we must
have a central dot with degeneracy 3. Pulling this new weight diagram out, we
find:

e

1

This gives rise to a heptaduodecuplet (27 states) and something that looks like
a star, but what is in fact two triangles overlaying one another. Using the same
method as above we can pull out these two triangles, both decuplets (10 states),
leaving us with 2 octets and a singlet state:
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Again we can look at the final state of the process and do the same de-
composition there. But let us first do some predictions for our model. Due to
SU(3) invariance only indentical colour states can interact, thus for gluon-gluon
scattering (gg — gg) we have a colour structure of 27 states giving the same
potential; 2 structures of 10 states, which cannot communicate with one another
(since one is a normal state, while the other is a conjugate state); 2 structures of
8 states, again identifiable as gluons ;and finally 1 colour singlet state, defining
a bound gluon state that could be a glueball®.

Just as above in the gluon-quark case we cannot easily find a potential for the
process. However, while in the previous case we said that those factors were a
bit complicated, here they are downright hard to calculate, and one is not served
by lengthy math only to arrive at an ugly factor. The easiest way of actually
preforming the calculation is by going to an 8-dimensional base and find an

6Glueballs, composite particles consisting of gluons only and thus being in effect the only
tpe of pure gluons that can be “free”, are said to be detectable at the LHC.
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8-dimensional representation for the generators. The base and representation,
however, are quite obscure and not readily found in the literature. If one wishes
to calculate these structures, the representation and base must therefore be
found by hand. This might be a project for the future, for it is far beyond the
scope of this thesis.

9 SUSY and beyond

To draw a conclusion we look back to what we did in the beginning of this the-
sis. As we said, the true purpose of this study is to look at SUSY interactions
and predict the colour structures, which we can then use to calculate the poten-
tials for instance. The SUSY partners obey the same rules as the usual QCD
particles, apart from aspects related to spin, thus a triplet state describes the
squarks and an octet state the gluinos. This means that the weight diagrams
are identical to what we have seen before, which gives a rather quick way to
calculate the possible potentials by following the exact same method as we have
used above.

Now we can define the relevant new particles for SUSY interactions. The
quarks, fermions with spin %, are colour triplets. Their SUSY partners the
squarks, bosons with spin 0, must also be colour triplets. By the same reason-
ing we know that the antisquarks, also spin 0 bosons, must have an antitriplet
colour state. The gluons, which are spin 1 bosons, form a colour octet. Therefore
their SUSY partners, the spin % fermions called gluinos, must also be described

by an colour octet state.

Just as before we can mix and match these particles and it is not hard to
find the colour part of the associated scattering cross-sections. Let’s take the
squark-antisquark interaction, of which a possible Feynman diagram looks like
this:

q. q

/

N
.
\,
™, lataYalalalalalalalalalalalalalaVd
—
~

.
.

\
B\
[N} .
~O

W,

C

Qi
O

33



Here the dashed lines indicate the squark (§) and the antisquark (¢), while the
spring with a line through it is the gluino. We see a triplet and antitriplet going
in and thus a singlet or an octet can be exchanged. One thus gets the exact
same colour factors as in the quark-antiquark case. This is great news, for it is
exactly what we were looking for. Now the SUSY processes will be much easier
to calculate. Most of the work has already been done. The beauty is that this
can be done for all initial triplet and antitriplet pairs. It is now that one can
fully appreciate this method of calculation, for all new processes can be reduced
to ones we already know.

The method as described in this thesis might be a little cumbersome to learn
and there are definitely some hiatuses that we did not explain, but if one wants
to dive deeper into the underlying material of the Lie algebras, the bibliography
provides the necessary details.

In conclusion there are still some things that can be calculated in order to

fine-tune this method. The calculation of the quark-gluon sector, for instance,
can be worked out properly by defining to which diagram some of the degener-
ate states belong. Also the precise way of dealing with the connection between
the gluon’s colour matrix and the quark’s colour vector is not trivial and needs
to be worked out properly.
As for gluon-gluon scattering, research has to be done in determining the 8-
dimensional representation of the generators and in deriving of the adjoint base
from there. If one has these tools, it might be possible to calculate the colour
structure with the help of a computer program.

The weight diagrams we’ve constructed in this thesis coincide with the de-
composition of the colour structures as found in the literature. Also, the colour
factors we have calculated do indeed agree with the results obtained with known
and tested methods. These results give hope for the future development of this
method.

Special thanks go out to Wim Beenakker, whose assistance made this thesis
possible, not only by sharing his knowledge on the subject but also thanks to
his patience in waiting for its development. Also we thank Gert Heckman, who
showed us how to properly use Lie algebras.
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