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1. Introduction

One of the big open questions in physics is the exact nature of dark matter (DM),
which comprises the lion’s share of the matter content in the universe. Unlike nor-
mal matter we can not observe DM with traditional methods. Many possible DM
candidates have been put forward. They range from objects like black holes and
neutron stars, massive but radiating too faintly for us to observe, to theorized ele-
mentary particles like neutralinos and axions. This thesis is concerned with another
theorized particle, but one with a more familiar name: the neutrino. However we
have to be careful not to confuse it with the three flavours of neutrinos1 we know
from the Standard Model (SM). Our candidate is the sterile neutrino.

The SM describes the known elementary particles and their properties. It is a pow-
erful tool, but it has some flaws. First of all, in the original formulation of the SM
neutrinos do not have mass. But now it is known that neutrinos are able to oscillate
between the three flavour states. For example, electron neutrinos produced in the
sun may have switched to muon neutrinos by the time they arrive on earth. This
is only possible if there is a mass difference between the mass eigenstates of the
neutrinos, so the neutrinos can not all be massless. Secondly, none of the particles
described in the SM are possible DM candidates. They are either charged (and thus
detectable) or, in the case of the neutrinos, they are too light[1].

So the question arises if we can find a way to solve both of our problems with one
theoretical model. There are models that expand or in other ways modify the SM.
An example of that would be the minimal supersymmetric model, which can provide
a DM candidate in the form of the lightest neutralino2, but does not have a solution
for our neutrino mass problem. Our hope lies with the sterile neutrinos. They are
heavy, right-handed neutrinos that do not interact with any of the SM forces. The
model discussed in this thesis adds three of these to the SM. We will explain how
they can generate mass for our ’normal’ active neutrinos through the type-I seesaw
mechanism and what necessary conditions there are for a sterile neutrino to be a
proper DM candidate. We will also perform a search through the model’s parameter
space to see if we can produce points that satisfy both the known mass differences
of the SM neutrinos and the experimental constraints for DM.

In the first three chapters of this thesis we will lay out the necessary theoretical
background to understand the type-I seesaw mechanism and the relevance of sterile
neutrinos in the context of DM. Chapter 2 serves as an introduction to DM, chapter 3

1The electron neutrino, muon neutrino and tau neutrino.
2Or the lightest sneutrino, a supersymmetric partner of the neutrinos.
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CHAPTER 1. INTRODUCTION

discusses the SM and the physics of neutrino oscillations, and chapter 4 introduces
the type-I seesaw mechanism. In chapter 5 we explore our chosen model. We
explain the methods used to acquire data and our choice of parameters, and show
the important results. In chapter 6 we look at our data in the context of DM. We
look at the experimental constraints on sterile neutrino DM and compare it to our
results. We also shortly discuss the νMSM (Neutrino Minimal SM). In addition
to neutrino masses and DM, this model tries to explain the asymmetry between
the matter and antimatter content of our universe with the addition of three sterile
neutrinos.
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2. Dark Matter

We do not yet know the nature of DM, but we have a better idea of how much of
it there is in the universe. Only 5% of the matter-energy content of the universe
consists of the ordinary matter we know and see around us. The rest is made up
of so called dark energy (69%) and DM (26%) [2]. So in total 84% of all matter is
DM. ’Dark’ in this context means that we are not able to observe it with telescopes
in any part of the electromagnetic spectrum. This either implies that it does not
emit electromagnetic radiation with enough intensity to be picked up by telescopes,
or that it has no electromagnetic or strong interactions at all.

This makes it difficult to detect DM, and it begs the question why we believe in the
existence of DM in the first place. This is not because it was directly detected, but
because of the observation of several gravitational effects that imply the presence of
large amounts of additional mass (in addition to observable objects like stars and
gas) in certain regions of space.

2.1 Rotations, Lensing and Bullets

One of the first hints towards the existence of DM came from studying the orbital
rotation of stars in galaxies [3]. It turns out that the observed luminous matter in
a galaxy cannot explain the observed orbital velocities of its stars. From Kepler’s
laws you expect the rotational velocity within a galaxy to decrease with roughly 1√

r

after a certain distance from the galactic center. However, as we see in Fig. 2.1
the observed rotation curve of galaxy NGC 6503 first rises and then flattens off to a
constant velocity. This type of curve has been repeatedly observed in other galaxies.

DM was proposed as a model to explain this discrepancy between the observed and
expected rotation curves. In addition to the visible stellar mass and gas disk, a halo
of non-luminous matter is added to the galaxy. If it is given the right density profile
(where this DM halo typically contributes most of the total mass of the galaxy) the
observed rotation curve can be reproduced.

More evidence was found through gravitational lensing. The theory of general rela-
tivity states that space is curved in the presence of (large amounts of) mass. Light
that passes through curved space appears to travel along a curved line from an out-
side perspective. If there is a large concentration of mass, for example in the form
of a cluster of galaxies, the curvature of space in its vicinity acts in a similar way
as an optical lens. If such a lens is present between us as observers and a bright
celestial object, the light from this object will pass the gravitational lens, bending
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2.2. CMB AND RELIC DENSITY CHAPTER 2. DARK MATTER

Figure 2.1: Rotation curve for the NGC 6503 galaxy. The solid line represents the fitted
line to the observed data. The dotted and dashed lines give the calculated contributions of
the luminous matter for respectively the gas and the stellar disk. The halo represents the
DM contribution necessary to match the observed curve [3]

and distorting it before it arrives at the observer. So, if there is DM present in the
lens galaxy cluster we expect to see a larger amount of bending and distortion than
predicted based on only the observable mass content. Observations from the Hubble
Space Telescope (Fig. 2.2) have confirmed that this is exactly what happens. Addi-
tionally, we see that DM is not only present within galaxies, but it extends outside
of them as well.

An interesting result is found when we use gravitiational lensing to study the Bullet
Cluster. It was formed from the collision of two smaller clusters of galaxies. Fig. 2.3
shows the current distribution of baryonic matter (pink) and DM (violet). During
the collision the baryonic gas of the two systems experienced friction (from funda-
mental particle interactions) and settled relatively close to the center of the collision.
But both the stellar (stars only interact gravitationally with each other during the
collision) and DM content of the galaxies experienced less friction and only settle
after travelling some distance. This indicates that DM does not interact as strongly
as baryonic matter, presumably because it does not couple to all fundamental forces,
or at least that its couplings are not as strong.

2.2 CMB and Relic Density

More evidence for the existence of DM comes from the Cosmic Microwave Back-
ground (CMB). The CMB is is a faint radiation present everywhere in our universe
that is predicted by Big Bang models. It is the earliest emitted radiation and stems
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CHAPTER 2. DARK MATTER 2.2. CMB AND RELIC DENSITY

Figure 2.2: Left: Gravitational lensing. The galaxy cluster in the foreground (yellow) acts
as a gravitational lens on the light from a galaxy in the background (blue), resulting in
multiple distorted images of the background galaxy. Right: A reconstruction of the mass
density of the galxay cluster in the foreground. The peaks represent the location of galaxies
in the cluster. There is a smooth non-zero background of matter present that also extends
outside of the stellar content of the galaxy. [3]

Figure 2.3: The distribution of ’normal’ baryonic mass (pink) and DM (violet) present in
the Bullet Cluster after collision [4].

from early in the formation of the universe, at the point that it cooled down enough
that electrons got bound to nuclei. That allowed photons to move without almost
immediately interacting with free electrons. It was first accidentally measured in
the 1940’s, and measurements have continued to improve over the years. This is
important because the CMB is slightly anisotropic, meaning that the temperature
of the signal is not the same from every direction on the sky (See Fig. 2.4). These
measurements of the first radiation provide us with information about the formation
and the early moments of the universe. Most importantly for us the measurements
of the CMB agree with the existence of DM, and they give us a number for the
current DM relic density. We know from measurements of the CMB that the DM
relic density is Ωh2 = 0.1200± 0.0012.[2]1

1These results are based on the λCDM model and uses its standard assumptions.
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2.2. CMB AND RELIC DENSITY CHAPTER 2. DARK MATTER

Figure 2.4: Sky map of the Cosmic Microwave Background measured by the Planck
Observatory.[5]

The relic density is a quantity that tells us how much of the DM that was pro-
duced in the early universe is still around at present (assuming that DM consists
of particles). The early universe was hot, and particles existed in a thermal equi-
librium where they were produced and annihilated through different interactions at
high rates. But as the universe expanded its temperature dropped. At a certain
temperature the particle decouples from the rest of the cosmic soup. Its production
and annihilation processes slow down significantly, so much that its total amount
will barely change for the rest of the lifespan of the universe (or at least up to
present day). This process is known as the freeze-out. The amount of DM at its
freeze-out and the expansion of the universe determine the current DM relic density.

If we have a theoretical model with a DM particle candidate we want to know for
what range of masses and (annihilation) cross-sections it reproduces the correct DM
relic density. We can do this by solving the Boltzmann equation [4], while taking
into account all creation and annihilation processes of this particle.2

ṅ(t) + 3H(t)n(t) = −〈σv〉(n(t)2 − neq(t)2) (2.1)

Here n(t) is the DM particle density as a function of time and neq is the particle den-
sity during equilibrium. H is the Hubble constant that accounts for the expansion
of the universe. The right-hand term describes DM production and annihilation,
where 〈σv〉 is the thermally averaged velocity weighted total cross section.

Additionally we can say that a DM particle must be a stable particle, or have a
half life longer than the age of the universe. If it were shorter the amount of DM
particles would have decreased significantly since freeze-out by decaying, and the
current DM relic density would be much lower.

2Because of the large number of processes involved these calculations become quite complex,
and are generally done numerically.
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CHAPTER 2. DARK MATTER 2.3. MACHO, WIMP OR SOMETHING ELSE

2.3 MACHO, WIMP or Something Else

The list of proposed DM candidates is long, but we will quickly discuss a few and
their viability. It is important to note that DM is not necessarily made up of only
one type of particle or type of object, and several candidates together could con-
tribute to the total amount of DM observed, but most research is focused on finding
a single candidate that can at least explain the majority of the DM relic density.

• MACHOs (MAssive Compact Halo Objects) is an umbrella term for massive
objects that are made up of baryonic matter, but are too faint to observe
with current telescope resolutions. Examples include faint stars or stellar
remains (neutron stars, white dwarfs) and black holes. Observations that look
at gravitational lensing effects from faint objects like planets and MACHOs
(microlensing) have largely excluded that MACHOs contribute significantly
to the total DM content. It is still possible that they contribute to the DM
mass content of galaxies to some degree. For example, white dwarfs possibly
contribute up to 15% of the DM content in the Milky Way [3].

• WIMPs (Weakly Interacting Massive Particles) are massive particles that do
not participate in electromagnetic or strong interactions, and are only subject
to interactions at the order of strength of the weak force. They are a popular
class of DM candidates, mainly because of something known as the WIMP
miracle. If their mass is in the range of 1 GeV to 10 TeV they reproduce
the correct DM relic density because of their (lack of) interactions.3 The
biggest problem for WIMPs is that they have yet to be detected in collider
experiments, which puts increasingly more stringent limits on the allowed mass
range and interaction strength. This makes it interesting to look at alternative
options.

• Sterile neutrinos are the subject of this thesis. They differ from the previous
category because they are sterile, meaning that they only interact with other
particles through gravitation.4 They are introduced in the type-I seesaw model
to generate masses for the active neutrinos. Their own masses are also a lot less
constrained than WIMP masses, and can range from light (1 eV) to incredibly
heavy (1015 GeV) [6][7].

3For comparison, the top quark is the heaviest particle in the SM at roughly 173 GeV. WIMP
DM could be about 100 times heavier.

4We will see that they do have supressed interactions with the weak force because the active
neutrino flavour eigenstates can mix with the sterile neutrinos to form the actual mass eigenstates.

9



3. Neutrino Physics

3.1 The Standard Model

The SM gives an overview of the known elementary particles and their properties,
like electrical charge, colour charge and spin. We usually group the particles to-
gether based on these properties. Fermions are particles with half integer spin (1

2
,

3
2
, etc) and bosons have integer spins. The bosons of the SM can be split up in

gauge bosons with spin 1 and scalar bosons with spin 0. It is the gauge bosons that
transmit the fundamental forces in particle interactions. The photon for the electro-
magnetic force, the gluons for the strong force and the Z0- and W± bosons for the
weak force. The Higgs particle is the only scalar boson in the SM. It is a remnant
of the Higgs mechanism that is responsible for generating masses for the massive
particles in the SM [8]. All fermions also have an associated antiparticle version.
These have the same mass as their normal variant but their charges (electric charge,
hypercharge) have opposite signs.1 It is possible for a fermionic particle to be its
own antiparticle if it carries no charges. These are known as Majorana particles.
Neutrinos could be Majorana particles, but this is still an open question.

The fermions are further divided into quarks and leptons. Quarks posses a colour
charge, which lets them participate in strong interactions. Leptons do not carry
colour and do not feel the strong force. Both quarks and leptons exist in six flavours,
and we order the flavours into three generations based on their mass. The particles
of the first generation are the lightest, those of the third generation are the heaviest.
Neutrinos fall into the lepton sector.

Table 3.1: The Lepton Sector of the SM

Generation Flavour Charge
First e electron -1

νe electron neutrino 0
Second µ muon -1

νµ muon neutrino 0
Third τ tau -1

ντ tau neutrino 0

We see that we have three electrically charged leptons, the electron, muon and tauon,
and three neutral ones, which are the corresponding neutrinos.

1As an exception, the W±-bosons also have each other as their own antiparticles.
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CHAPTER 3. NEUTRINO PHYSICS 3.1. THE STANDARD MODEL

The neutrinos have no electrical or color charge, which means that they can only
feel the weak force. This is interesting in the context of DM, since we know that
WIMPS only interact weakly, and they are possible DM candidates. The problem
is that neutrinos are too light to produce a large enough relic density. Historically
neutrinos were thought to be massless. This is reflected in the original formulation of
the SM, which does not assign masses to them. We now know from the observation
of neutrino oscillations that neutrinos do have mass, albeit small compared to other
fermions in their generations. Their exact masses are not known, but upper bounds
have been determined by several experiments, with mνµ < 190 keV and mντ < 18.2
MeV [9].

3.1.1 Chirality

Another property of fermions is their chirality. Fermionic particles can come in a
left-handed or a right-handed chirality, which can be thought of as mirror images of
each other. Chirality is related to the concept of helicity, which also divides particles
into left- and right-handed categories, but these concepts are not exactly the same.
A particle’s helicity is right-handed when the spin of the particle is aligned with
the direction of its motion and left-handed if its spin points the other way. For a
massive particle helicity is not Lorentz invariant, since we can apply a lorentz boost
to move to a new reference frame where the direction of the particle’s velocity is
reversed but the spin is unchanged, thus flipping its helicity. We cannot do this for a
massless particle travelling at the speed of light, since no change of reference frame
can reverse its velocity. Chirality is Lorentz invariant and for a massless particle it
is equal to its helicity.

Interactions that only involve the strong and electromagnitic force are parity sym-
metric. This means that if we ’mirror’ a particle event, replacing all involved par-
ticles with their counterpart of opposite chirality, the process is unchanged and the
mirrored versions occur at equal probabilities. This is not the case for interactions
involving the weak force. The weak force only couples to particles of left-handed
chirality and antiparticles of right-handed chirality. So interactions mediated by the
weak force, such as beta decay, only produce left-handed particles and right-handed
antiparticles. The mirrored version does not occur.2 Since neutrinos only partici-
pate in weak interactions, the original SM only includes left-handed neutrinos and
right-handed antineutrinos. Right-handed neutrinos have not directly been observed
as of yet. The other fermions do come in right- and left-handed versions that can
be observed through SM interactions.

3.1.2 QFT and the Lagrangian

For now we will accept that the neutrinos have mass, and will refrain from altering
the SM. This is left for the next chapter, where we introduce the type-I seesaw
mechanism. But in order to do so we will have to lift the hood on the SM a bit

2Technically this is only true for the so called ’charged current’ weak interactions that couple
with the the W± bosons. The Z0-boson can couple to right-handed particles, but the interaction
strength is still not conserved under parity transformations.
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3.2. OSCILLATIONS CHAPTER 3. NEUTRINO PHYSICS

further and take a glimpse at the underlying mathematics.

The SM is a quantum field theory (QFT) [10]. In QFT particles are not treated
as point-like but as excitations of an underlying quantum field. We also impose a
symmetry on the SM. It is invariant under local SU(3)C ⊗ SU(2)L ⊗ U(1)Y trans-
formations. These are Lie groups, and each is associated with certain conserved
charges. The only thing we need to know for now is that under these transforma-
tions the SM (or parts of it) must remain invariant, very similar to the concepts of
parity symmetry and ’mirroring’ described in the previous section.

The way the fields of the SM interact is defined in its Lagrangian L. The La-
grangian contains terms that we can split up in sectors: the strong sector (or QCD
sector, for Quantum Chromo Dynamics) that obeys the SU(3) group symmetry, the
electroweak sector, that combines electromagnetic and weak interactions and obeys
SU(2)⊗U(1) symmetry, and the Higgs and Yukawa sectors that are both concerned
with generating particle masses. Mass terms for fermions in the SM Lagrangian
need both left-handed and right-handed particle fields. These couple to the Higgs
field through so called Yukawa interactions to generate the mass terms. For charged
leptons the mass terms take the form [11]:

− LDiracmass = ψLmDψR + ψRm
†
DψL (3.1)

Here ψL are left-handed lepton fields and ψR the right-handed ones. The object
mD is a mass matrix, and it is the product of a Yukawa matrix and the vacuum
expectation value of the Higgs.

We can not construct such a mass term for neutrinos in the original SM because
it only includes left-handed neutrino fields. We are missing the right-handed fields
that are also necessary. Now, for Majorana particles, we can write a mass term that
uses only left-handed or right-handed fields. The problem is that such a Majorana
mass term for the neutrinos with only left-handed fields would break the local SU(2)
invariance of the SM and is therefore not allowed. So we are left without mass terms
for neutrinos in this minimal formulation of the SM.

3.2 Oscillations

The first experimental evidence for neutrino mass was found in the Homestake ex-
periment, that started in 1968 [9]. In spite of the small interaction cross section of
neutrinos with atomic nuclei, they were able to detect electron neutrinos produced
in the sun with a large underground detector. They found that the number of elec-
tron neutrinos they captured was roughly a third of what was expected based on
the solar model for neutrino production.

A theoretical explanation for this lack of electron neutrinos already existed. In 1958
Bruno Pontecorvo proposed that neutrinos could have a small mass, and undergo
oscillations [9]. This means that a neutrino that is produced in charged current
weak interactions as a certain flavour, has a probability that when it is measured
some distance from the source it will have changed to a different neutrino flavour. It
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CHAPTER 3. NEUTRINO PHYSICS 3.2. OSCILLATIONS

is referred to as oscillations because the probability of a neutrino switching flavour
oscillates as a function of the distance travelled from its source. An electron neutrino
produced in the sun through fusion reactions has a probability to be measured on
earth as a muon- or tau neutrino. The Homestake experiment was not sensitive to
those, and these oscillations would suppress the total electron neutrino flux reaching
earth from the sun.

Figure 3.1: Neutrino oscillations of an initial electron neutrino at some distance from its
source. The black line is the probability of measuring a electron neutrino, the blue line for
measuring a muon neutrino and the red line for measuring a tau neutrino [12].

Neutrinos are produced in weak interactions at an interaction point (vertex) with a
W-boson and a charged lepton. The neutrino and charged lepton are created at the
vertex as flavour eigenstates of the same generation. But, now that we are working
with neutrinos that have a mass, the neutrinos are not necessarily created as mass
eigenstates [11]. We will call the mass eigenstates ν1, ν2 and ν3.

We can express a flavour-eigenstate electron neutrino at the time of its creation as
a linear superposition of the three mass eigenstates. |ν(0)〉 = |νe〉 = a |ν1〉+ b |ν2〉+
c |ν3〉. More generally, for να, α = e, µ, τ and for νj, j = 1, 2, 3 (We will be using
Greek indices for flavour eigenstates and Latin indices for the mass eigenstates):

|ν(0)〉 = |να〉 =
∑
j

U∗αj |νj〉 (3.2)

U is a complex unitary matrix (U †U = I). It contains the information of how the
mass eigenstates mix to form flavour eigenstates (and vice versa). It is known as
the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix.

If we want to know how the mass eigenstates evolve with time we have to solve for
the (time dependent) schrödinger equation: i d

dt
|Ψ(t)〉 = Ĥ |Ψ(t)〉.3 Since the |νj〉

states are mass (energy) eigenstates we simply pick up a phase factor e−iEjt:

3We use natural units, ~ = c = 1
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3.2. OSCILLATIONS CHAPTER 3. NEUTRINO PHYSICS

|ν(t)〉 =
∑
j

U∗αje
−iEjt |νj〉 (3.3)

The phase factor is what causes the oscillations. Since the three mass eigenstates
each have a different Ej in their phase factors, the probability of finding a neutrino
in a different flavour eigenstate at time t > 0 is nonzero. We can calculate the prob-
ability of these transitions. Using that the mass eigenstates are mutually orthogonal
and normalized:

A(να → νβ; t) = 〈νβ|ν(t)〉

=
∑
j,k

(Uβk 〈νk|)(e−iEjtU∗αj |νj〉)

=
∑
j,k

UβkU
∗
αje
−iEjt 〈νk|νj〉

=
∑
j

UβjU
∗
αje
−iEjt

P (να → νβ; t) = |A|2 = |
∑
j

UβjU
∗
αje
−iEjt|2 (3.4)

So, the probability P is not zero and the complex phases describing the time evolu-
tion of the mass eigenstates lead to the oscillatory behaviour.

3.2.1 The Parameters

To understand the transition probability P in more detail we want to know the
structure of the PMNS matrix. Right now the only thing we have stated is that it is
complex and unitary. We will take a look at its degrees of freedom and its standard
representation.

A general complex n × n matrix has n2 entries, and each entry has a real and a
complex part, giving us 2n2 parameters. Unitarity, U †U = I, gives us a set of n2

equations 4. Thus reducing the number of free parameters down to n2. We will
divide these into n(n−1)

2
parameters in the form of mixing angles θ and n(n+1)

2
pa-

rameters in the form of complex phases eiφ.

Since we have three neutrinos that means we are working with three mixing an-
gles (θ12, θ13, θ23) and six phases. We can use a little trick to reduce the number
of complex phases. It is possible to redefine the flavour and mass eigenstates by
multiplying them with a complex phase factor without changing their physics. We
can move the complex phases from one row of the PMNS matrix to the definition of
the mass eigenstates and of one column to the definition of the flavour eigenstates.5

This reduces the number of complex phases by 2n− 1, so in the end for our n = 3

4one for each entry of U†U , setting it to 1 on the diagonal and 0 on the off-diagonal entries
5If the neutrinos are Majorana particles (being their own antiparticle) we can’t rephase the

mass eigenstates and can only remove n phases from the PMNS matrix. In this case it does not
matter, since the extra ’Majorana phases’ present do not have an effect on oscillation
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CHAPTER 3. NEUTRINO PHYSICS 3.2. OSCILLATIONS

case we are left with three mixing angles and one complex phase. The PMNS matrix
is parameterized as:

U =

1 0 0
0 c23 s23

0 −s23 c23

 c13 0 s13e
−iδCP

0 1 0
−s13e

iδCP 0 c13

 c12 s12 0
−s12 c12 0

0 0 1


=

 c12c13 s12c13 s13e
−iδCP

−s12c23 − c12s13s23e
iδCP c12c23 − s12s13s23e

iδCP c13s23

s12s23 − c12s13c23e
iδCP −c12s23 − s12s13c23e

iδCP c13c23

 (3.5)

where cij = cos(θij) and sij = sin(θij).

We see three rotation matrices with an added complex phase factor. The PMNS
matrix rotates the base of the flavour space into the base spanned by the mass
eigenstates. This rotation is paired with a complex phase shift.
With the PMNS matrix parameterised we can calculate the probability in equation
(3.4). We will make two additional assumptions. First, for neutrinos travelling
almost at the speed of light t ≈ L, where L is the distance travelled from the source.

Second, we expand the energy associated with νj; Ej =
√
~p2 +m2

j ' |~p| +
m2
j

2|~p| '

|~p|+ m2
j

2E
. The probability function now becomes:

P (να → νβ) = |
∑
j

UβjU
∗
αje
−im2

j
L
2E |2

=
3∑
j=1

|Uβj|2|Uαj|2

+
∑
j<k

2Re[UβjU
∗
βkU

∗
αjUαk] cos

∆m2
jkL

2E

+
∑
j<k

2Im[UβjU
∗
βkU

∗
αjUαk] sin

∆m2
jkL

2E
(3.6)

where ∆m2
jk = m2

j −m2
k.

Thus experiments that look at neutrino oscillations are sensitive to the parameters
of the PMNS matrix (the mixing angles θij and the complex phase δCP ) and the
difference of the squared neutrino masses.

3.2.2 Values and Ordering

There have been many experiments working to determine the parameters involved
with neutrino oscillations. Fig 3.2. gives a recent overview of global results. Because
of the difficulty in detecting neutrinos there are still reasonably large uncertainties
in these parameters.

The table is split up into two versions, one for normal ordering and one for inverse
ordering (also referred to as normal and inverse hierarchy). This is because the
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Table 3.2: Values for the neutrino oscillation parameters. Fit to global data available as
of July 2020 [13].

experiments are only sensitive to the absolute squared mass differences ∆m2
jk of

the neutrinos, and not their absolute mass. For three neutrinos there are two mass
splittings, and experiments have found one to be several orders larger than the other.
We do not know if the small mass splitting is between the two lightest neutrinos
(normal ordering) or if it is between the heavy neutrinos (inverse ordering). Notably,
it is possible for the lightest mass eigenstate to be zero, since we only know upper
bounds for the neutrino masses and we can only measure the two mass splittings.

Figure 3.2: The two possible orderings of the neutrino masses. The colours indicate the
mixing of the flavour eigenstates for each mass eigenstate. ∆m2

sol refers to the transi-
tion from electron to muon neutrinos between the sun and earth. ∆m2

atm refers to muon
neutrinos, that are produced by cosmic rays in the earths atmosphere, transitioning to tau
neutinos [14].
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4. the Type-I Seesaw Mechanism

The type-I seesaw mechanism explains both the existence of neutrino mass, and
their relative smallness compared to the other fermions in their generation.1 This is
done by introducing new heavy, right-handed neutrinos to the SM. Because of their
right-handedness they do not couple to the weak force like the left-handed (active)
light neutrinos do. The presence of right-handed neutrinos makes it possible to
construct neutrino mass terms in the SM Lagrangian, and they suppress the mass
of the active neutrinos with their own heavy masses. This interplay between the
masses of the sterile and active neutrinos is what gives the seesaw mechanism its
name. Increasing the mass of the sterile neutrinos decreases the mass of the active
ones, like a seesaw going up and down. For every right-handed neutrino we add
to the SM we can generate mass for one active neutrino. To reproduce the correct
mass-splittings ∆m2

ij we need at least two sterile neutrinos to provide mass to two
active neutrinos.

We saw that it is not possible to have a mass term with two left-handed particle
fields in the Lagrangian. Now that we have access to right-handed neutrinos we can
construct a Dirac mass term.[11]:

− LDiracmass = ψLmDψR + ψRm
†
DψL (4.1)

As of yet it is unclear whether neutrinos are Dirac or Majorana particles. Majo-
rana particles are particles which are their own antiparticles, which is possible for
neutrinos because they don’t carry charges. We have the possibility to construct
a Majorana2 mass term, which is constructed with only right-handed or only left-
handed fields. We could not use two left-handed fields because it breaks the local
symmetry of the SM, but we have more freedom with the right-handed neutrinos
since they do not need to transform under the SU(2)× U(1) symmetry of the elec-
troweak sector [1]:

− LMajorana
mass =

1

2
(ψcRMMψR) + h.c. (4.2)

Here we use the charge conjugated field ψcR. Charge conjugation replaces the par-
ticle with its corresponding antiparticle and changes its chirality. These two mass

1Additionally there are also the type-II and type-III seesaw mechanisms. Instead of adding
right-handed neutrino fields to the SM they respectively add a boson and fermion triplet to the
SM. [15]

2Proof of the Majorana nature of neutrinos would be the observation of neutrinoless double
beta decay, where two neutrons simultaneously decay and emit an electron and a (anti)neutrino.
If the neutrino is Majorana these two decays can ’share’ one (anti)neutrino for both processes. In
the final state there will only be two protons, two electrons and no (anti)neutrino.

17



CHAPTER 4. THE TYPE-I SEESAW MECHANISM

terms together describe the neutrino masses in this extension of the SM. We can
combine them into one expression. Replacing the general fermionic fields ψ with
neutrino fields ν we get:

−LMν =
1

2

(
ν̄L ν̄cR

)( 0 mD

mT
D MM

)(
νcL
νR

)
+ h.c. ≡ 1

2

(
ν̄L ν̄cR

)
M

(
νcL
νR

)
+ h.c. (4.3)

We will call M the neutrino mass matrix. It is constructed from submatrices, the
3 × ns Dirac mass matrix mD and the symmetric ns × ns Majorana mass matrix
MM , where ns is the number of sterile neutrinos added to the SM. We can (block-
)diagonalize the mass matrix with a unitary matrix U [6]:

U † ·M · U∗ =

(
M1 0
0 M2

)
(4.4)

After diagonalisation M1 is the effective mass matrix for the active neutrinos and
M2 for the sterile neutrinos. We want to find expressions for the matrices M1 and
M2 by solving the characteristic equation of mass matrix M :

det(M − λI) = det

(
−λI3 mD

mT
D MM − λIns

)
= 0 (4.5)

Where In is the n-dimensional identity matrix. For the determinant of a block
matrix we have [16]:

det

(
A B
C D

)
= det(A−BD−1C)det(D) (4.6)

Here A and D are square matrices, and D must be invertible. This means that
we have to be careful that MM − λIns is an invertible matrix (and thus that its
determinant is non-zero).

det

(
−λI3 mD

mT
D MM − λIns

)
= det

(
−λI3 −mD(MM − λIns)−1mT

D

)
det (MM − λIns) = 0

⇒ det
(
−λI3 −mD(MM − λIns)−1mT

D

) λ�MM' det
(
−mDM

−1
M mT

D − λI3

)
= 0

det (MM − λIns) ' 0

⇒M1 ' −mDM
−1
M mT

D (4.7)

M2 'MM (4.8)

The characteristic equation of M is approximately the product of two characteristic
equations for the matrices −mDM

−1
M mT

D and MM , which correspond to M1 and M2.
This is where we see the seesaw behaviour of the system, the values of M1 (and
thus the masses of the active neutrinos) are suppressed by a factor M−1

M , while the
values of M2 scale linearly with MM . To get this result we made use of the seesaw
limit λ�MM . In practice this limit holds well for a large range of values for MM ,
ranging from 1 eV to 1015 GeV [6].

We used the matrix U to diagonalize the neutrino mass matrix. It serves as the
mixing matrix for the mass and flavour eigenstates of the collection of active and
sterile neutrinos.
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να = Uαiνi, νi = U∗αiνα (4.9)

where α = e, µ,τ, s1, ..., sns , i = 1, 2, 3, ..., ns + 3

Importantly the process of neutrino oscillations set up in section 3.2 also applies here.
The sterile and active neutrino flavour eigenstates can mix in the mass eigenstates,
and oscillations between active and sterile neutrinos are possible. Mixing opens
up the possibility for sterile neutrinos to participate in weak interactions, since the
active neutrino flavour states contribute to the heavy mass eigenstates. We can
define a mixing matrix between sterile and active neutrinos as [17]:

θ = mDM
−1
M (4.10)

We can see that the mixing is suppressed for large Majorana masses. Stronger
mixing is possible if we choose one (or more) of the heavy neutrino mass eigenstates
to lie closer to the light mass eigenstates ν1,2,3. Mixing between active and sterile
states may be an explanation for what is known as the reactor anomaly. Neutrino
detectors placed at ≤ 100 m from nuclear reactors measure an approximately 5%
[18] smaller neutrino flux then the reactor is expected to produce. This could be
due to oscillations to sterile neutrino states [9].
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5. Data and Results

5.1 Method

Now that we have set up the type-I seesaw mechanism as our model for generating
neutrino masses we can do a search of its parameter space. The seesaw mechanism
introduces new parameters to the SM in the form of the entries of the Dirac and
(symmetric) Majorana mass matrices. Their size depends on the number of right-
handed neutrinos added to the SM. We choose to add three, in order to provide
mass to all three active neutrinos. We refer to this as a 3+3 mass model. We must
also make choices about: What information we are interested in extracting from the
model, what tools and methods to use to get this information, and over what ranges
we are going to search the entries of the Dirac and Majorana mass matrices. We
want to address three questions:

• What do the distributions of the mass eigenvalues of mass matrix M look
like, and can we reproduce the mass splittings of the active neutrinos found
in table 3.2? We can find the masses by calculating the eigenvalues of M1 '
−mDM

−1
M mT

D and M2 ' MM . We order them from heaviest (mν6) to lightest
(mν1).

• What will be the mixing of the mass eigenstates in terms of flavour eigenstates?
We mainly want to know how strong the sterile neutrinos can contribute to
the light mass eigenstates. The mixing matrix U diagonalizes the neutrino
mass matrix M , so we can construct it by inserting the eigenvectors of M as
the columns of U .

• How do these results relate to the possibility of sterile neutrino DM? What are
the constraints on sterile neutrino DM and has our parameter search delivered
any suitable solutions?

The type-I seesaw model does not directly place any restrictions on the structure
of the Majorana and Dirac matrices, other than that the Majorana mass matrix is
symmetric. For convenience and to reduce the number of free parameters we also
choose mD to be symmetric:

mD =

a b c
b d e
c e f

 , MM =

g h i
h j k
i k l

 (5.1)

In total M has twelve free parameters. The only limit on the values we can choose for
the parameters comes from the seesaw limit mD �MM . We choose to sample points
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uniformly in the ranges {a, b, ..., f} ∈ [0−1 ·103 eV] and {g, h, .., l} ∈ [0−1 ·109 eV].1

With these assumptions in place we generate O(106) neutrino mass matrices and
calculate their mass eigenvalues and mixing matrices.

5.2 Mass

Figure 5.1 shows the distributions of the three light and three heavy neutrino masses.
We see a clear distinction in mass of up to 13 orders of magnitude between the the
three heavy and three light neutrinos, as we expect from the seesaw mechanism.
Within the light and heavy sectors we see that the distributions get progressively
wider for higher mass eigenstates, and each has its own distinct peak. Negative
masses are allowed; the absolute value is the actual physical quantity. We plot the
masses as negative in the histograms to show that there is an asymmetry between
the generated positive and negative values. The bias towards negative eigenvalues
is expected because of the sign of formula 4.7.The masses for ν2, ν3 and ν5 have
dips around m = 0 eV, since this is the range where the lightest heavy and light
mass eigenstates ν1 and ν4 have their mass eigenvalues. Only the distribution of the
heaviest mass eigenstate ν6 is not centered around m = 0 eV.

Figure 5.1: Histograms of the eigenvalues of neutrino mass matrix M . Left: light neutrino
masses mν1, mν2 and mν3. Right: heavy neutrino masses mν4, mν5 and mν6. Number of
bins = 1000.

We can check if any of the generated data points produces light neutrinos that are
consistent with experimental constraints. The generated masses easily fall below
the upper mass bounds mνe < 1 eV,mνµ < 190 keV and mντ < 18.2 MeV [9]. How-
ever, when we impose the constraints on ∆m2

ij found in table 3.2, we find exactly

1The Majorana mass is not as bounded as this search range suggests. Earlier we stated that it
can be as large as 1015 GeV. We choose this range because of technical limitations. To find M1 we
need to calculate the inverse of MM . This calculation is done in Python, using the matrix inverse
function of the numpy package. This is an iterative function with limited precision output, and
for entries of MM higher than the chosen range the calculation is not precise enough. This leads
to unreliable values for the neutrino masses.
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one point that falls within the 3σ range for the normal ordering scenario and none
for inverse ordering. If we relax the constraints by only demanding that the ratio
∆m2

21

∆m2
32

is within 3σ-confidence we find 32313 data points with the correct ratio for

normal ordering and 837 points for inverse ordering. This shows that this uniform
parameter search is not optimal for finding specific points within the model. We
are working with a large parameter space and we scan over a large range of values
for the MM entries. Further research could focus on ways to increase the number of
physical points found in a search. For example by specifically searching in the neigh-
bourhood of our ’correct’ point (using that point as a seed) or using non-uniform
distributions to generate entries for the mass matrix.

5.3 Mixing

The entries of the mixing matrix tell us how the mass eigenstates are decomposed
in terms the flavour eigenstates: U∗αiνα = νi. We can visualize the relationship
between the mass eigenstates and the mixing of specific flavours in scatter plots.
With six mass eigenstates and 6× 6 matrix elements there are 216 total plots. We
will show a small selection to illustrate possible behaviour of the model. Figure 5.2
shows the composition breakdown of mass eigenstate ν4, the lightest of the heavy
neutrinos, as functions of the ν4 mass eigenvalues. Figure 5.3 shows the same but
for the heaviest of the light neutrinos ν3. We choose these mass eigenstates because
they respectively show the strongest mixing of active neutrino flavour eigenstates
in heavy mass eigenstates and sterile flavour eigenstates in the light mass eigenstates.

For plots of all six mass eigenstates see appendix A. In figure 5.2 we see that the ac-
tive neutrino flavour states can contribute to mass eigenstate ν4, but only when the
ν4 mass approaches the light neutrino mass range. This results in these cross-shaped
plots, where all points with non-zero mixing have small masses and appear to lie
on a horizontal line (in reality there is some variation in their masses).The mass
eigenstate ν5 shows the same behaviour, but due to its higher masses the mixing is
much weaker, whereas ν6 has almost no mixing with the active neutrino states. The
mixing of the sterile neutrino states is largely unconstrained, even allowing ν4 to be
a (nearly) pure flavour eigenstate (where the mixing of a certain flavour eigenstate

equals 1). Whenever the absolute mixing of a flavour eigenstate exceeds
√

1
2
, it is

automatically the flavour that contributes the most to the total mixing of the mass
eigenstate. This leads to the monochromatic bands of points at the sides of the plots
for the sterile neutrino flavours in figure 5.2, and for the active neutrinos in figure 5.3.

In figure 5.2 we see that for negative mass values the maximum allowed mixing of
the sterile flavour states decreases. This is a result of our chosen parameter ranges.
We have only allowed positive values for the entries of the Dirac and Majorana mass
matrices. As a result we can only achieve negative mass eigenvalues through the
mixing of multiple flavour eigenstates. This means that we need increasingly more
mixing of flavour eigenstates to accomplish the lower negative mass eigenvalues, so
the maximum allowed mixing of the individual flavour eigenstates decreases. We
see the same effect for ν5.

22



CHAPTER 5. DATA AND RESULTS 5.3. MIXING

Figure 5.2: Scatter plots of the mixing strengths (given by the elements of the mixing
matrix Uαi) of the neutrino flavour eigenstates να for mass eigenstate ν4, plotted against
the ν4 mass. The colours indicate which of the flavour eigenstates contributes the most to
the total ν4 mixing for that data point. A mixing of U = 0 means that for that data point
the flavour eigenstate does not contribute to the total mixing of ν4. A mixing of 1 means
that ν4 is a pure flavour eigenstate.

Another effect of our chosen parameter range can be seen in the mixing of the sterile
neutrino eigenstates for mass eigenstate ν6 (See Fig. A.6 in appendix A). For masses
larger than 1.0 · 109 eV, the maximum for the range of MM , we see again that we
need mixed mass eigenstates and thus we can no longer obtain pure flavour eigen-
states. Additionally, when we pass two times the maximum parameter range, the
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minimum allowed mixing of the sterile eigenstates starts increasing, and the maxi-
mum allowed mixing starts decreasing more sharply. This shows that we can only
reach these mass values when all three sterile flavour eigenstates have significant
presence in the total mixing.

Figure 5.3: Scatter plots of the mixing strengths (given by the elements of the mixing
matrix Uαi) of the neutrino flavour eigenstates να for mass eigenstate ν3, plotted against
the ν3 mass. The colours indicate which of the flavour eigenstates contributes the most to
the total ν3 mixing for that data point. A mixing of U = 0 means that for that data point
the flavour eigenstate does not contribute to the total mixing of ν3. A mixing of 1 means
that ν3 is a pure flavour eigenstate.

In figure 5.3 we see that the contribution of the sterile neutrino states to ν3 is mostly
clumped in a neighbourhood around zero mass and zero mixing, but there are some

24



CHAPTER 5. DATA AND RESULTS 5.3. MIXING

scattered points with stronger contributions from the sterile flavour eigenstates, and
significantly higher possible mass eigenvalues (that were not visible in figure 5.1
since we truncated the tails of the distributions). We even have one point where νs2
provides the largest contribution to the total mixing. This behaviour differs strongly
from ν1 and ν2, where we see almost no contribution of the sterile neutrino flavour
states to the mixing, and no masses that exceed even 0.15 eV (see Appendix). That
ν3 has stronger contributions from the sterile flavour eigenstates is to be expected,
since this mixing is what gives mass to the light neutrinos and ν3 is the heaviest
among them.
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6. Sterile Neutrino Dark Matter

If we want to check that our parameter search has produced sterile neutrinos that
are suitable DM candidates we need to understand what constraints exist on sterile
neutrino DM in general. We will start referring to the sterile neutrino DM particle as
N1. We can use a combination of theoretical arguments and observational evidence
to place limits on the mass of N1 and the active-sterile mixing angle θ. From sources
[1] and [19]:

• Stability Through the mixing of N1 from the active neutrino states it is
no longer stable and can decay via weak interactions. The dominant decay
channel is N1 → νανβ ν̄β. DM candidates should have a half life longer than the
age of the universe, which places an upper bound on the active-sterile mixing

angle θ2 ≡
∑

α=e,µ,τ |θα1|2 < 3.3× 10−4
(

10 keV
MN1

)5

.

• X-ray bounds Another more suppressed decay channel of the sterile neutrino
is the radiative decay N1 → γνα (See figure 6.1). It predicts photons with an
energy of half the sterile neutrino mass. These photons provide a potentially
measurable signal from cosmic sterile neutrinos. We can exclude regions of
allowed mass and mixing angle based on the absence of this signal in obser-
vations. These searches typically focus on sterile neutrino masses in the keV
range. Interestingly there is an unexplained signal in X-ray spectra of some
galaxy clusters, as well as in the Milky Way and Andromeda galaxies, at ∼ 3.5
keV. This could be a signal from sterile neutrino DM with mass ∼ 7 keV. This
is not confirmed, and other spatial regions with large DM concentration did
not show this signal.

• Phase space A lower bound on the mass of N1 can be deduced from the phase
space density in dwarf spheroidal galaxies accompanying the Milky Way. This
is known as the Tremaine-Gunn bound. This gives the bound MN1 > 1 keV.

• DM production We do not know exactly how and when DM was produced
in the early universe. There are several possible ways for sterile neutrinos
to be produced. These processes are beyond the scope of this thesis, but
we can obtain constraints from them by demanding that they reproduce the
correct DM relic density ΩDMh

2. An upper bound in the mass-mixing plane is
derived from non-resonant thermal production. A lower bound can be found
from resonant thermal production, which can occur if there is an asymmetry
between leptons and anti-leptons during the production process.

Figure 6.2 shows the effect of the constraints on the allowed sterile neutrino DM mass
and the total mixing contribution from the active neutrino states

∑
α sin2(2θα1). We
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Figure 6.1: One possible radiative decay modes of the sterile neutrino N1 → γνα. The
coupling of N1 to the W-boson is suppressed by the mixing angle θαi. [19]

Figure 6.2: Constraints on sterile neutrino mass and mixing. The blue region is excluded
by the X-ray observations. The region on the left with MN1 < 1 eV is excluded by the
Tremaine-Gunn bound. The black lines show the constraints derived from thermal pro-
duction. The quantity µα is a measure for the lepton – anti-lepton asymmetry during
production. Points on the lines recreate the correct DM relic density for the corresponding
amount of lepton asymmetry. These bounds assume that all DM content consists of sterile
neutrinos. [19]

construct a scatter plot of these same variables for our own model (using the mass
eigenvalues of ν4), the results of which can be seen in figure 6.3. We conclude that no
points in our data set fall within the allowed DM region. Points that fall within the
allowed mass range have mixing angles that are many orders too large, and points
with allowed mixing angles are far too heavy. Possible explanations are our choice
of parameter ranges for mD and MM and the scanning method. Since θ = mDM

−1
M ,

allowing larger values for MM (while at the same time keeping one heavy neutrino
light enough to fall within the DM mass bounds) could subdue the mixing angle for
lower DM masses.

6.1 The νMSM

In this thesis we provide a solution for the lack of neutrino masses and DM in the
minimal SM by adding three right-handed heavy neutrinos. There is a model known
as the Neutrino Minimal SM that aims to do the same, and additionally explain the
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Figure 6.3: Scatter plot of the mass and the summed sterile-active mixing angle of the
lightest sterile neutrino state ν4.

asymmetry between the amount of baryonic matter and anti-matter in our universe
[19]. The model is constructed to modify the SM as little as possible, and only adds
three right-handed neutrino fields, just as we have done. It also relies on the type-I
seesaw mechanism to provide light masses for the active neutrinos. In the pursuit
of minimal new physics it does not introduce masses higher than the Z-boson mass
for the sterile neutrinos. It has been shown that this model can simultaneously
address these three problems in physics, but only under certain conditions. One
sterile neutrino must have a mass in the keV range, and the other two must have
equal masses within the range of 1 GeV up to MZ = 91 GeV. This degeneracy in
mass boosts the production of the lightest sterile neutrino through resonant effects,
which is necessary to get the correct DM relic density [19]. Additionally the lightest
sterile neutrino may not provide a significant contribution to the mass of the active
neutrinos through the type-I seesaw mechanism, leaving one of them (nearly) mass-
less.

If we compare these conditions to the mass eigenvalues we generated in figure 5.1
we can make a few observations. First, ν6 has mass eigenvalues in the correct range
for the νMSM, and there are values for ν4 in the keV range. However, the mass
eigenvalues for ν5 generally fall below 1 GeV and have little overlap with ν6 masses,
so we are unlikely to have many points with degenerate masses that are high enough.
Last, figure 5.1 seems to allow for nearly massless ν1 neutrinos. The lightest ν1 in our
data set has a mass of the order O(10−15) eV, compared to a mean mass of 2.0×10−4

eV for all ν1. In future research it would be interesting to see the effects of having
degenerate masses for ν5 and ν6 in our model, and if it results in data points with
correct mass splittings between the active neutrinos ∆m2

ij and with sterile neutrinos
in the allowed DM region as shown in figure 6.2.
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7. Conclusion

The goal of this thesis was to explore the possibilities of the type-I seesaw mechanism
that expands on the SM, and accounts for both the small neutrino masses and a DM
candidate. To accomplish this we introduced three new particles, the right-handed
sterile neutrinos. These heavy particles generate masses for the left-handed neutri-
nos of the SM through the type-I seesaw mechanism and have the right properties
that make them interesting DM candidates. To gain a better understanding of the
behaviour of the type-I seesaw mechanism we performed a uniform parameter scan of
the entries of the Majorana and Dirac mass matrices in the ranges MM ∈ [0−1 ·109]
eV and mD ∈ [0 − 1000] eV. We have a total of 12 free parameters in our model,
and we have generated O(106) data points. In our data we reproduce the large mass
difference between the sterile and active neutrinos that is emblematic of the type-I
seesaw mechanism, and we see a clear distinction between the mass distributions
of the three light and three heavy mass eigenstates. Our search did not produce
a significant number of data points (exactly one) that reproduce the correct mass
squared differences ∆m2

ij between the active neutrinos, which have been experimen-

tally determined by observing neutrino oscillations. If we look at the ratio
∆m2

12

∆m2
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we

find a total of 33150 points with values within the 3σ experimental uncertainty. We
have plotted and analyzed the flavour mixing of the neutrino mass eigenstates. We
see that especially ν3, the heaviest of the light neutrino mass eigenstates, can have
significant contributions from the sterile flavour eigenstates.

We have discussed the theoretical and experimental constraints that exist on sterile
neutrinos as a DM candidate. These translate to bounds on the DM sterile neu-
trino mass and the active-sterile mixing angle θ that describes the strength of the
mixing between the DM sterile neutrino and the active neutrino states (see figure
6.2). Again our search did not produce points in the non-excluded region, and points
that fall in the correct keV mass range all mix too strongly with the active neutrinos.

Future research on this topic could focus on more targeted search efforts for points
that have correct mass splittings between the active neutrinos and have a sterile
neutrino that can act as DM. This could be achieved by varying the search ranges of
the Dirac and Majorana mass matrix parameters and applying non-uniform distri-
butions, or by specifically searching in the parameter space neighbourhood of data
points close to the allowed regions. Inspiration can be taken from the νMSM. This
model employs the type-I seesaw mechanism and, in addition to neutrino masses
and DM, gives an explanation for the asymmetry between matter and anti-matter
in the universe. Notably our model already produces masses for the sterile neutri-
nos in the correct ranges for the νMSM, but it does not comply to the demand that
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there are two GeV-range sterile neutrinos with approximately degenerate mass and
one keV sterile neutrino that mixes very weakly with the active neutrinos. A next
step could be enforcing these νMSM constraints on our model and comparing the
resulting data set to the data used for this thesis.
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A. Mass Eigenstate Decompositions

This appendix contains the scatter plots of the flavour composition of all six mass
eigenstates, as explained in chapter 5.3. We use the following notation for U∗να = νi:

U00 U10 U20 U30 U40 U50

U01 U11 U21 U31 U41 U51

U02 U12 U22 U32 U42 U52

U03 U13 U23 U33 U43 U53

U04 U14 U24 U34 U44 U54

U05 U15 U25 U35 U45 U55

 ·

νe
νµ
ντ
νs1
νs2
νs3

 =


ν6

ν5

ν4

ν3

ν2

ν1


The colours indicate which flavour eigenstate provides the greatest contribution to
the total mixing of the mass eigenstate for each data point.
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Figure A.1: ν1 flavour composition
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Figure A.2: ν2 flavour composition
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Figure A.3: ν3 flavour composition
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Figure A.4: ν4 flavour composition
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Figure A.5: ν5 flavour composition
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Figure A.6: ν6 flavour composition
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