Tachyonic neutrinos

Gillian Lustermans

July 11, 2012



Abstract

In this paper, the possibility of the existence of tachyons is discussed.

If tachyons, particles moving faster than the speed of light, are to exist, there
has to be a source able to create them. After the creation of a tachyon, a
propagator is needed to describe the evolution of the particle through space-
time. The reaction of the quantum field has to be great enough to allow for

such particles to exist for long enough to be even named a particle.

The interactions of tachyons can be studied next, to see if these particles
behave analogous to conventional particles. One of the processes best un-
derstood is the decay of a muon to an electron, a muon neutrino and an
electron antineutrino. By substituting the two neutrinos by tachyonic neu-
trinos, it is possible to check wether this process can occur for tachyons or

not.



Foreword

The choice for the subject of tachyons came from the results of the OPERA
experiment, where tachyonic neutrinos were thought to have been observed.
At the time of the conclusion of this report, these results were already dis-
carded. Nevertheless the possibility of particles travelling faster than light
speaks to the imagination and is still an interesting subject for further re-

search.

This report is meant to be the conclusion of my bachelor education in
physics. The complete research was done at the department of Theoreti-
cal High Energy Physics under the supervision of Prof. Dr. Ronald Kleiss
at the Radboud University of Nijmegen.

Most of this report is based on and inspired by [1], for some of the basics
in the first chapter, [2] is used. For the evaluation of the complex contour

integrals in the same chapter [3] is used.

Some conventions that are used in this report are:

e The upper and lower indices at four-vectors will be dropped, meaning
that a* will be written as a. Vectors will explicitly be denoted by a
vector arrow, @, and inner products between two four-vectors will be

written as a - b

e The speed of light, ¢, is taken to be 1 for simplicity
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Chapter 1

Propagation of tachyons

1.1 Introduction

The very first question that comes to mind when a hypothetical particle is
proposed, is whether or not it can propogate through space at all. When
we consider elementary particles, a theory that includes relativity as well as
quantum mechanics is required. Quantum field theory provides us with the
tools necessary to investigate the creation, propagation and annihilation of
such particles. A source is responsible the creation of particles, after that,
the particle’s behaviour is described by its propagator. When investigating
the possibility for a particle to exist or not, it is vital to look at the reaction

of the field to the creation and propagation of that particle.

In this chapter the most important properties of a tachyon are explained.
After that, a source emitting such particles is introduced and its characteris-
tics are described. The tachyon’s propagator is given, which will give rise to
the necessity to distinguish between two kinds of tachyons. For both cases
the reaction of the quantum field will be calculated and the results will lead

to conclusions that are discussed at the end of the chapter.

1.2 Tachyon properties

A tachyon is a hypothetical particle, which means that there is no experi-

mental evidence of the existance of such particles. The study of tachyons is



therefore purely theoretical.

The most important property of a tachyon is the fact that it’s speed is faster
than the speed of light. This immediately leads to some interesting conse-
quences. The first thing to look at is the energy of a tachyon. Just like the

energy of any other relativistic particle, it is given by

ch

E = —— (1.1)

=
From Eq. (1.1) it can be seen that a tachyon, having a speed greater than
the speed of light, must have an imaginary mass, because the energy must
be real. Furthermore, one of the interesting facts is that the energy of a
tachyon decreases as its speed increases. This leads to the fact that the
speed of light is still a limit for tachyons, but where conventional particles

can’t go over the limit, tachyons are unable to go below it.

1.3 Sources, propagators and field reactions

The reaction of the quantum field to a tachyon is given by
i
o) =5 [ iy e~ 9)I) (12)
As can be seen from Eq. (1.2), a propagator describing the evolution of the
tachyon through spacetime is needed, as well as a source, accounting for
the creation of the particle. The propagator of a conventional particle in

four-dimensional Minkowski space is given by

ih exp(—ik - (z —y))
Mz —y) = d*k 1.
(x =) (271')4/ k-k—m?2+ie (13)
Using the knowledge that a tachyon has an imaginary mass, this propagator

can be rewritten for tachyons by the substitution m? — —m?.

The source that is used to investigate the reaction of the field is one that
is active for a period of 22 around a given time ¢t = 0 and in a region of
volume o3. So it shows a Gaussian behaviour in space and an exponentially

decreasing behaviour in time.

J(z) o exp (— - - ﬁ (p%2° — :E-ﬁ)) (1.4)



From the Fourier transform of this source,
o~ 211 _\ 2
> ] exp (—02 (k: — Z) ) (1.5)

J(k) o<
90
it can be seen that particles of all kinds of wave vectors are emitted by this

source.

1.4 Two regimes
Looking back at the denominator of the propagator for a tachyon, we can
(1.6)

w=/|k]2 = m?

define a quantity
which immediately gives rise to two different regimes, namely |E\2 > m?
where w is real, and ]E 2 < m? where w is imaginary. Both of them have to

be evaluated seperately.

1.4.1 The real regime
First, we look at the region where w is real. The reaction of the field in this

(1.7)

case is given by
L XD (—iko.’ro + ik - f)
d*k X
¢“/ (K92 — w? + ie
271 N 2
1 po ~ P

il J AU _o? _ £
a§+( h)] exp(a( 5
For positive times z° > 0, the contour has to be closed in the lower half
complex-k° plane to make sure that the exponent vanishes. This integral

displays two poles inside the contour, one at k& = w — ie and one at k¥ =
Doing the k¥ integral' leads to the following result

P’ i
h oo’
o s 2 g\ 2
o(x) o</d3k: ezk-xfa2(kf%) «
. 0 _izopo_ﬁ
e W 100 e " o0
X > 7 —— ' (1.8)
(% — ;—0) —w? +ie
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The complete calculation can be found in appendix A




1.4.2 The imaginary regime

We now turn to the case |lg|2 < m? where w is imaginary. For aestatic
reasons, we will use a notation where every quantity used is real. This
means that in the following calculations w will be replaced by iw.

Again, the contour has to be closed in lower half complex-k" plane, but one
of the poles is different. The one located at k0 = % — O%O is still present, the
other pole has moved to k = —(iw — i¢). The integral? now leads to the

result

o(x) oc/dBIZ eig'f_02(g_§)2 X

1 e—wr’ 10 e w(;po %
0
T N2 (i) (1.9)
(%ﬂ'w) + 5 (%—U—zo) + w? + e

1.5 Discussion

The reaction of the quantum field to the creation and propagation of tachyons
depends on the characteristics of those particles. The absolute value squared
of the wavevector of a tachyon can be either greater or smaller than its mass.
We first consider the reaction of the field in the case where k|2 > m?2. The
expression is exactly the same as the reaction of the quantum field to a con-
ventional particle, apart from the fact that the mass squared is negative in
the case of tachyons.

The exponential function in the numerator of the second term in Eq. (1.8)
consists of a real and an imaginary part. The real part can be seen to decay
exponentially at a rate of %, which is exactly the same as the rate at which
the source decays. For the field to be free and unaffected by interactions, it
is necessary to look at the situations where the source is no longer present.
This means that the second term of Eq. (1.8) can be neglected in the study
of the field.

For the field to be noteworthy, the denomenator of the first term has to be
small, resulting in the fact that % ~ w. From this it is possible, just like

it is for conventional particles, to derive Newton’s first law, leading to the

2The complete calculation can be found in appendix B



conclusion that a tachyon with |/’¥|2 > m? might propagate through space.

We now turn to the second possibility for tachyons, namely |l;:’|2 > m2.
Again, the second term decays exponentially with the source, so it can again
be neglected. The denominator of the first term, however, cannot be small
enough to allow signals to be transmitted over great distances. This is due
to the fact that the factor w in the denominator is now positive. Moreover,
the exponential in the numerator is no longer imaginary, resulting in expo-

nential decay of this term.

As concluded, a tachyon with \E|2 > m? might be created by a source and
can be able to propagate through spacetime. These kind of tachyons would
obey the same law?® as conventional particles do and therefore it might nog
be possible to, experimentally, distinguish between them.

A tachyon with \E|2 < m? leads to a reaction of the quantum field that goes
to zero very fast, meaning that such a particle can not propagate very far.
It might even be said that such a particle is not even able to exist at all
because of this reason.

If tachyons would exist at all, there is at least one boundary for these par-

ticles, namely that |E |2 > m? should be obeyed.

3Newton’s first law, that is



Chapter 2

Muon decay

2.1 Introduction

After a new particle has been proposed, and it’s propagation through space
and time has been established, the next thing to investigate is the interac-
tions of these particles. One of the best known processes is the decay of
a muon to an electron, an electron antineutrino and a muon neutrino. If
tachyons are to exist, it might be possible for muons to decay to an electron

and two tachyonic neutrinos.

In this chapter, the chance of tachyonic muon decay happening will be stud-
ied. To this end, the kinematics of the process are first studied. This will
lead to an expression for the matrixelement of the process. Using this ma-
trixelement, it is possible to obtain the decay width of the muon, which can
than be compared to the decay width of a conventional muon.

At last, the decay of an electron to another electron is briefly studied. Con-
ventionally, this process is impossible because of the conservation of energy

and momentum, but it might be possible for tachyons to realise this decay.

2.2 Computing the matrixelement

The muon decay process can be described by a single Feynman diagram,
containing one vertex where four fermions meet. The interaction will be

studied from the frame in which the muon is at rest. The transition rate for

10



this process is given by
(M%) = 64GER* (g - k1) (p - k2) (2.1)

Here, p, q, k1 and ko are the four-vectors of the muon, the electron, the muon

neutrino and the electron antineutrino respectively.

2.2.1 Conventional kinematics

To be able to compare the tachyonic case of muon decay to the conventional
process, it is necessary first to determine the conventional matrix element.
To compute this matrix element, the inner product of the four-vectors of
the incoming particles has to be known, just like the inner product of the
four-vectors of the outgoing particles.

The four-vectors of the muon and the electron are

(5)e(5)
p q

Analogously, the four-vectors of the two neutrinos are

lﬁ:(%),b:(%) (2.3)
i s

By using the condition that the particles have to lie on their mass shells
and the fact that the muon has no impuls', the following four-vectors are

obtained for the muon and the electron

p=<mﬂ”>,q=< mgfq?) (2.4)
0 q

The four-vectors of the two neutrinos can be rewritten as

ky = £ ky = E (2.5)
A\ vEes )\ v |

'We are considering the process in the rest system of the muon

11



The inner products can now be calculated

(p-k2) = mubs (2.6)
(q-k1) = Erv/m2+q—q\/E}—m} (2.7)
= S((a+ k)~ (m2 +md) (28)
= S((p— k) (m2 ) (29)

Where conservation of momentum is used at the last step.

By writing out the four-vectors, this expression can be rewritten as

(q- k1) =my <

=my (K. — E») (2.10)

(mjy +m3) — (mZ +mi) E2>
2my,

Plugging these in Eq. (2.1) results in the matrix element for the conventional
case
2.2.2 Tachyonic kinematics

In the case where tachyonic neutrinos are used instead of conventional neu-

trinos, the four-vectors are changed to

ky = - ky = £ (2.11)
A\ vET ) T\ VEE T ‘

In this case the inner product (q - k1) can be rewritten as?

() — (m2 4 md)
2my, 2

(q'kl):mu<

=my (K, — E3) (2.12)

2.3 Phase space
The partial decay width of the muon is given by

dl' = ¢r(IM|?)dV (2.13)

2A full derivation can be found in appendix C
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In this equation, ¢r is a collection of factors to account for the density of

states of the incoming particle, etcetera. In this case ¢r = ﬁ Having

already calculated the matrix element, the only thing left to do is to deter-
mine the combined phase space integration element.

This integration element is defined by

N
1
dV(P;p1,pa,on) = | [ [ (27T)3d4pj6(p32~ —m3) | x
i1

N
@m)*s* [P = p (2.14)
j=1

The m; and the p; are the masses and wavevectors respectively of the N
particles in the final state and P is the wavevector of the incoming particle.
The Dirac delta functions in the product makes sure the particles in the
final state lie on their mass shell. The four-dimensional Dirac delta imposes
the conservation energy and momentum.

In the case of tachyonic neutrinos, this phase space integration element is

given by
dV(p: q ki, ko) :(2;)5014(; d*ky d*ke 6(kF 4+ m?) §(k3 +m3)x
0(¢* —m?) 6*(p — q — k1 — k2) (2.15)
3

This can be rewritten as

7T2

dV(p: q, k1, k2) :WdEl dE3 dcosby o x
5 —mi + k3 + k3 —m?Z +2(my, — k) (m,, — k9) ot
—— 1,2
2|k || k2

(2.16)

Using the fact that the cosine is bounded, the expression for the integration

element that is left is
2

™
dV(p . q, kl, kig) == WdEldEZ (217)

3The complete computation can be found in appendix D
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Where the following boundaries have to be imposed

2k lka|  (2.18)
—2|k1||k2| (2.19)

—mi + k2 4+ k2 — mg +2(my, — k?)(m“ —k9)

IN

V

—mi + k2 4+ k2 — mg +2(my, — k?)(mu —k9)

Writing out all the wavevectors explicitly, these boundaries can be rewritten
in terms of the energies of the two neutrinos and the masses of all the

particles involved

m2 —m? —mi —m3 — 2m, By — 2m, Ey + 2E1 Ey <1 (2.20)
2\/(Ef +mi)(E3 + m3) -
mi — mg — m% — m% —2my By —2my Ey + 2E1 By - (2.21)

2v/(BY + m3)(EF + m3)
2.4 Decay width

The decay width is now given by integration of the partial decay width over

the energies of the two neutrinos

2
I = //32 G%v h2 m# EQ(Kt — EQ)(;—i)QdEl dE2 (222)
™
The boundaries for the integral over Fy are given by fact that (|M|?) has
to be positive. This implies that

(p-ko) = muks (2.23)
(q-k1) = mu(K— Ey) (2.24)

both have to be positive or negative.

If the first inner product is negative, then Es has to be negative. The frac-
tion in the second inner product is always positive, because the masses of
the two neutrinos are equal, and the mass of the muon is greater than that
of the electron.

This means that, if the inner product is to be positive, Fo has to be positive.
This leaves only the possibility of Ey5 > 0, the second inner product then
forces By < K;.

So the integral over Fy has to be taken from 0 to K

14



At last, the boundaries from Eq. (2.20) and Eq. (2.21) can be solved for E;
by inserting values for the masses and using a computational program?. By

taking the following masses

my, = 100 MeV (2.25)
me = 0.5 MeV (2.26)
mi| = 1-107% MeV (2.27)
Ima| = 1-107% MeV (2.28)

the boundaries can be rewritten to impose restrictions on Fj

> 1

12 (5.0 -10® ( —5.0-101 +1.5-10°F; — 1.0 - 10" E3 +
- 2

\/2.5 109 —10- 10"Fy + 2.5 - 1017E2 — 10 - 10°E3 + 1.0 - 1014E§>>

Ry (2.29)

1

<—— (50-10%(5.0-10"°—-1.5-10°FE, + 1.0- 10" E2
= —50+E2< ( 2+ 2t

\/2.5 109 —10-107E + 2.5 - 1017E3 — 10 - 10" E3 + 1.0 - 1014E§>>
= Ry (2.30)

These boundaries fix the phase space, which is shown in Figure 2.1. The
dark areas of the figure are the ones where both boundaries are satisfied.
First of all, for the square in the upper right corner to be allowed, the en-
ergy of the electron should be negative and therefore, this regime can be
neglected.

The two regimes where one of the energies of the neutrinos is negative are
only possible if (|M|?) is negative, which is impossible for the given matrix-

element.

Now the decay width can be calculated by only integrating over the tri-
angle in the positive quadrant

2

K R
I = / / 32G%h*m, By (K; — E») dE1dFy (2.31)
0 R1 (27T)2

4In this case, Maple was used

15



Figure 2.1: The phase space of the muon decay

Numerical calculation of these integrals® leads to the following result for the

decay width

I = 1.68-10°G%1h> (2.32)

which is numerically equal to the decay width of the conventional muon
decay

2 12,5
_ Grh m;,

I'= "0 (2.33)

2.5 Electron decay

By changing the value of m,, to that of the electron mass, this process can
easily be changed to describe the possible decay of an electron. By doing
this the phase space shown in Figure 2.2 is obtained and, by integrating over
the phase space, while neglecting the cases where m, or the matrix element

is negative, the decay width is found to be equal to 0.

5Again, by the use of Maple
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Figure 2.2: The phase space of the electron decay

2.6 Discussion

The matrix element for the process of a muon decaying to an electron and
two tachyonic neutrinos is not known, so the best one can do is use the same
matrix element that describes the process with conventional neutrinos.
The phase space can be divided into three parts. The part in the top right
corner, which is kinematically forbidden because the electron energy in this
regime would be negative, can be neglected.

The two parts in the quadrants where one of the energies of the neutrinos
is negative can be seen to diverge to infinity. Finally, the triangular part in
the positive quadrant is equal to the allowed phase space in the conventional

case.

If the conventional matrix element is indeed the correct one to also describe
the tachyonic process, the two diverging areas are forbidden because in these
areas, the matrix element would be negative. Because this matrix element

gives the chance for the muon decay process to happen, and a chance cannot

17



be negative, these areas are off limits.

If the conventional matrix element turns out not to be correct in the tachy-
onic case, and another matrix element that does describe the process can
be found, these two diverging regimes cannot be neglected. But in this case
the partial decay width has to be integrated over all phase space, which
diverges, meaning that the total decay width will go to infinity in this case.
The lifetime of a particle is proportional to %, so in the case of an infinite
decay width, the lifetime of a particle is equal to 0, resulting in the fact that

the particle is unable to exist at all.

When considering the possibility of an electron decaying to another elec-
tron and two tachyonic neutrinos, the phase space can be divided into two
parts. The first part is the positive quadrant, where the electron energy has
to be negative, so this part can again be neglected. The other part, just like
in the case of muon decay, is impossible because the chance for this process
would be negative in that regime. This leads to the conclusion that, just like
in the conventional case, it is impossible for an electron to decay to another

electron.

18



Appendix A

The field integral in the real

regime

The integral in Eq. (1.7) will be worked out in some detail here. This

reaction of the field can be rewritten as follows

L XD (—z’koxo + ik - ;E)
¢“/dk (O2 —w?+ie |

(o) (o (- 2)) )

-1.0,.0
e—zk x dkO

/(ko_(w_iﬁ))(k0+(w—ie)) (ko— (%_UL()) (kU— (%4_0%))

To only integral that will be done here is the one over k°. This integral can
be closed in the lower half complex=k° plane.

Two poles are present in te contour

K0 = w —ie (A.3)
0
P 1
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To do this integral, the residues have to be calculated first.
The residue of the first pole, Eq. (A.3) can be calculated as follows

5100
) e ik®x
lim =

Ao e (-2 )

0
el (w—1ie€)

(w—ie) + (w—ie) (=i~ (- £)) (w—i0 - (B +5))

g0

e—iaco (w—1e)

2 (w — 1ie€) ((w—ig)Q_(w—ie)(%—}—gio)—(w—ie)<%—fo>+(%_ i)(%-f— 1)) =

- 0_70

0
el (w—1e)

. . 2
— 2 9jew — 2w’ dw yoiep® e wp® yoiw o odepd €2y (0)° 4 1
2 (w — ie) (w 2iew — € R i e o - T TS

iz (w—i
el (w—1€)

2 .
BF + L — (2iwe+ e + 222))

. 2wp?
2 (w — 1ie€) (w2—Tp+

0

—iz w —izOw
e e
v (ot iV (i) o (2 S (A.5)
w W h o)) w h oo 2OJ (f_w) +O,g
The residue of the second pole, Eq. (A.4) is
—ik0z0
: e
hIDIl ' 0 ) =
R0 (2 =) (kO — (w — i€)) (KO + (w — ie)) <I<:0 - (f n ;0))

—ix0 b i—o
P i AV T EAY AR A
(h > w—i-Ze)(h UO—I—w ze)( Uo)
ZOPO ZO zopo_mo
. A . TR o
100€e 0 . 100€ 0 (A 6)
2 (@ o _ L _ 24 9y + ¢2 P i\ 2
R2 hoo o2 2 o) —wi e

And the addition of these two residues results in Eq. (1.8)
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Appendix B

The field integral in the

imaginary regime

In this case, the poles are located at
K = —(iw —ie) (B.1)
1
o= 22 (B.2)

The residue of the first pole is now given by

_51.0..0
. e ik"x
lim =

ot (10— (i =) (0= (5 = 55)) (W= (% +5))

0

i(iw—ie)x

aQ

—2 (iw — ie) ((iw — ie)? + (1w — ie) (5 — L) + (iw —ie) (% = ) + (

0 0
—wz’ +ex
e +

0)2

-9 (iw _ ie) (_w2 + 2¢w — €2 + 2iaF)Lp0 _ Zi%po i (1;12 N U%)

0

0
—wT —wT
(&

e
: 2ip® | P2, 1\ . T\ 2
) ()

The residue of the second pole in this case is the same as the second pole in
2

the real regime, except for the fact that w? is now replaced by —w

21
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Appendix C

Tachyonic kinematics

The inner product between the four-vectors

m2 + ¢? E
= : , k1= S (C.1)
q VvV EY +mi
is to be calculated. The first thing to do is look at the following expression
2
g+ k) = (VT 7 + 1) - <q+ N m§>

=mZ—m?+2(q k) (C.2)

—

2

This leads to

(q-k1) =

=my (Kt - EQ) (C?’)
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Appendix D

Phase space

The phase space for the muon decay process reads
1

(27)°

dV = 2
5(k3 +m3) 6(k3 +m3) 6(¢* —m2) *(p—q—ki — ko)  (D.1)

d*q d*ky dtko x

First of all, let’s examine the following expression

d*k 6(k* +m?) = dkd|k| |k|*dQ & ((ko — k2 - m2> (ko +\ k2 - m2>>

— dKOd|R] K20 ! 5<k0— \/ﬁ—wﬂ)
k0_|_ 2

=

k2 —m
B 1
=d|k| |k|? dQ ——=
—m2
B 1
2
= Q — D.2
| R a2 5 (D.2)
The phase space can now be written as:
_ Ly 2 2
av _(27r)5d q 0(q® —m2)x
k1|2 dlky| d |kal? d]ka| d
k1| dlki| dq |ko|” d|ks L 5 (p— g — ky — ko) (D.3)

2k0 2k

Evaluating the Dirac delta functions

d'q 6(q> —m?2) 6*(p —q — k1 — ko) = 6*((p — k1 — k2)? — m?)

= 04 ((my — kY — k3)? — (—k1 — ka)* — m?)
= 0% (m?2 — 2my kY — 2m kS + (k9)* + (k9)? + 2kPk9 — m?
— (k1)? — (k2)? — 2|k1| |ka| cos b)) (D.4)
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Furthermore:

dQl = d cos 91(1@1 (D.5)
dQQ = d cos 9172d¢172 (D6)

The integral over dcos 01d¢1dep1 2 leads to a factor 872, so we are left with:

8 [ [2 ez 2d| R | d]eo|
dV = ——=dcosf
(2m)p 12 4k0KD
54 (m2 — 2myu kY — 2m kY + kF + k3 — m2 + 27K — 2|k || k2| cos 01 2)
(D.7)
Taking the derivative at both sides of
(P°)? = m? + |p? (D.8)
we find
2p’dp” = 2|pld|p (D.9)
leading to the fact that
|Pld|p] 0
o =dp (D.10)
p
Using this, we obtain
2
dV = WdEldEQd COS 9172 X
4 mi —2my kY — 2m, kS + k3 + k3 — m?2 + 2k7KS
5 S —cos b2
2|k k2|
2
= WdEldEQdCOS 91,2 X
o [ —mi A+ K+ k3 —m2 4 2(my, — k) (m, — k9)
) — —cos b2
2|k [[ k2|
2

the result of Eq. (2.17)
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