
RADBOUD UNIVERSITY NIJMEGEN

BACHELOR THESIS

Using multivariate analysis to
improve boosted Higgs to bb̄ mass

resolution.

Author:
Thijs MIEDEMA

Supervisor:
Dr. Frank FILTHAUT

Veronica FABIANI

Institute for Mathematics, Astrophysics and Particle Physics

July 10, 2017

http://www.ru.nl
http://www.ru.nl/imapp/

iii

Radboud University Nijmegen

Abstract
Faculty of Science

Institute for Mathematics, Astrophysics and Particle Physics

Using multivariate analysis to improve boosted Higgs to bb̄ mass
resolution.

by Thijs MIEDEMA

We try to apply multivariate analysis to extract extra information from jet
substructure. By training machine learning algorithms on the background
process gluon to bb̄ we construct a general purpose algorithm without im-
printing the Higgs boson into it. By then evaluating on Higgs boson data we
show that the conventional way of scoring a machine learning algorithm is
unsuited for this purpose, resulting in shifting mass spectra.

http://www.ru.nl
http://www.ru.nl/fnwi/
http://www.ru.nl/imapp/

v

Acknowledgements
I would like to thank my project supervisors Frank Filthaut and Veronica
Fabiani for their everlasting patience with all my questions and tinkering
with algorithms. I would also like to thank my housemates who provided
me with my fuel (coffee), and especially Rutger who joined me in the Thesis
writing crunch sessions.

vii

Contents

Abstract iii

Acknowledgements v

1 Introduction 1
1.1 Research question . 1
1.2 Motivation . 1
1.3 Prior work . 1

2 The Standard Model 3
2.1 Particle processes . 3
2.2 Higgs . 6

3 Jet structure 9
3.1 Simple properties . 9
3.2 Missing neutrinos . 9
3.3 Jet Substructure . 9

3.3.1 Jet trimming example 10
3.3.2 Jet substructure variables 10

4 Event simulation 15
4.1 Motivation . 15
4.2 Software . 15

5 Simulation results 19
5.1 Data spectra . 19
5.2 Input and Output format . 19

6 Machine Learning 23
6.1 Algorithms . 23

6.1.1 Principal Component Analysis (PCA) 23
6.1.2 K-means . 24
6.1.3 Naive Bayes . 26
6.1.4 Logistic regression . 26
6.1.5 Linear regression . 26
6.1.6 Multilayer perceptron 26
6.1.7 Recurrent neural network (RNN) 27
6.1.8 Wide-and-deep neural network 27
6.1.9 Decision trees . 27
6.1.10 Random Forests . 27

viii

6.2 Tools . 27
6.3 Algorithm performance . 28

7 Results 29

A Custom software 37
A.1 TreeReBuild . 37

A.1.1 Old style matching . 37
A.1.2 Delphes style matching 37
A.1.3 New style matching . 37

A.2 root_mldata . 39
A.3 tf-nntrainer . 39
A.4 scikit-learn trainer . 39

Bibliography 41

1

Chapter 1

Introduction

1.1 Research question

The Higgs boson was discovered in 2012 by Atlas and CMS at CERN [1, 2],
with a mass of 125 GeV. However, it was only observed in the γγ, ZZ and
WW decay channel (see Chapter 2). The most probable decay channel of the
Higgs, the production of a bottom-antibottom pair, has not been measured
due to the large background. However, with the increased center-of-mass
energy the Large Hadron Collider, or LHC, now runs at it is more probable to
produce an energetic Higgs boson, what we call a boosted Higgs (see Chap-
ter 2 for more detail on this). The Higgs boson will show up as a single jet in
the detector. Unlike the resolved channel, where to separate b-jets appear in
your detector, this high energy jet is much less likely to be produced in back-
ground processes. The final problem, the jet mass reconstruction algorithm
is not accurate enough to get a good resolution on the Higgs boson mass in
this way. Also, there might be undiscovered particles that also should pop
up in this channel. By improving the mass resolution on the Higgs boson we
might get a better understanding of this channel and maybe see more in the
higher mass regions as well.

But is it possible to use multivariate techniques to improve the mass resolution
of this energetic Higgs?

1.2 Motivation

An enormous amount of data is produced at the LHC and we should try and
use this data to the fullest extent possible. Using modern machine learning
algorithms to extract more statistics out of existing data is cheap compared to
building bigger collider experiments and can inspire advancements in both
physics and data science.

1.3 Prior work

The boosted Higgs channel is an area of interest for many[3, 4]. Most focus
on identification techniques, but multivariate techniques have only been ap-
plied on the resolved case. Also, these have almost exclusively been carried

2 Chapter 1. Introduction

out using TMVA, a machine learning software package developed for parti-
cle physics[5]. It is a great tool but lacks some of the recent improvements
in the machine learning field. Exploring the possibilities of TensorFlow and
Scikit-Learn and the tools developed to do so shows there might be merit in
using open source software instead of sticking with the proprietary software
developed inside of the physics community.

3

Chapter 2

The Standard Model

2.1 Particle processes

The standard model is a set of elementary particles and interactions that dic-
tate how matter and forces work, see figure 2.1. At collider experiments all of
them can be produced, but due to their short lifetime they usually decay be-
fore reaching the detector. We can see their decay products however. Because
of the conservation of both momentum and energy, these decay products can
give us information about the particle that decayed.

The specific particle we are interested in is the Higgs boson. The most
recently discovered elementary particle can provide us ways to look beyond
the standard model.

Decays and creations of particles in the standard model are best displayed
in Feynman diagrams. These diagrams display the how incoming particles
interact to form the final state. They are two-dimensional, where one axis rep-
resents space and one represents time. I will use the convention of displaying
my time axis horizontally. A Feynman diagram can be turned into an equa-
tion. Solving this equation, often not a trivial exercise, yields a cross section
(σ) or decay width(Γ)The difference lies in the process occurring: a cross sec-
tion represents the probability of an interaction to occur while the decay with
represents the probability of a single particle decaying into something else.
The decay width is the sum of all widths of different decay modes, called
partial widths. The ratio between a partial width and the decay width gives
the probability of that particle decaying into that specific outcome. Cross sec-
tions can be compared in the same way. This predicts how often each process
will happen relative to each other. For example, take these two decays of the
W− boson in figure 2.2.

The input of this diagram is obviously always the same, but the outcome
isn’t. Which one of the two happens is random, but the ratio of which can be
estimated with theory and can be determined experimentally. For example,
the branching ratio for the first diagram is Γ(W− → l−νl)/Γ(Total) = 10.86±
0.09% [6].

But it doesn’t stop there. The resultant particles of a decay might also be
unstable and decay again. This iterative process of several chained decays
might go on for a while. In a collision experiment this means you can detect
sometimes see hundreds of particles coming from a single point. Especially
processes that involve quarks and gluons, like the one we are interested in,

4 Chapter 2. The Standard Model

FIGURE 2.1: The particles in the Standard Model.

W−

νl

l−

W−

s

c

FIGURE 2.2: Two decay modes for the W− boson. Here, l is an
electron, muon or tau lepton and νl the associated neutrino. The
cs̄ could be any of the other quarks, excluding the top quark,
while maintaining charge conservation (the top quark is too

heavy to be produced).

give rise to showers of particles that result in a jet. This is due to the fact that
they carry a colour charge. Colour charge is the charge involved in the strong
force. This force is so strong relative to the other forces that colour charge
cannot exist on its own. This is called confinement [7]. This means that
quarks and gluons produced in collisions quickly collect other quarks and
gluons around them so the total colour charge is zero or white again. This
process results in mesons (quark-antiquark) or baryons(quark-quark-quark),
together called hadrons, which are colour singlets (meaning they have zero
total colour charge). This process is called hadronization [8].

Because of momentum conservation, all particles produced in a decay
chain move in similar directions, especially when the original particle was
very energetic. This results in a cone-shaped shower of particles in your
detector. This is what we call a jet. A jet can have different shapes and sizes.
A highly energetic particle (also referred to as a "hard particle") might make
a relatively big jet. When reconstructing bigger jets we aptly name them Fat
Jets.

Often a fat jet contains smaller cones inside because the original particle

2.1. Particle processes 5

FIGURE 2.3: An impression of what a Jet could look like in a
detector. Imagine the image as a square cut out of the cylindri-
cal wrapper outside the collider. Each dot represents a particle

impact, the size of the dots their energy.

decayed into two or more particles that still had a lot of energy and long
decay chains. These are referred to as subjets. This is the origin of jet sub-
structure and an important jet property to try to reconstruct.

But before we can identify jet substructures we need to identify the jets
themselves. When you would view a single, clean event this would be an
easy task for a human. Take for example 2.3. It is easy to spot the circular
shape here, as a slice of a cone, but in reality this might be a lot more diffi-
cult. There could be several jets in one event and to make it worse several
events are happening at once (pile-up), requiring to be separated afterward
in software. Jets can be close together or even go through each other. Sev-
eral algorithms have been developed to perform jet identification and solve
these problems. To mention a few: CDFJetClu, MidPoint, SIScone, kt, Cam-
bridge/Aachen and anti-kt. Several are still in use, usually for very specific
problems except for the anti-kt algorithm, which is the default one for ba-
sically all jet reconstruction. kt, Cambridge/Aachen and anti-kt can all be
derived from the following equation.

dij = min(p2βT i, p
2β
Tj)

∆2
ij

R2
(2.1)

diB = p2βT i (2.2)

Here, β determines the algorithm: -1 for anti-kt, 0 for Cambridge/Aachen
and 1 for kt. dij is a distance measure between particles, while diB is a dis-
tance measure between a particle and the beam. The rest are explained in the
ATLAS design paper in section 1.1, quoted here:

6 Chapter 2. The Standard Model

“The nominal interaction point is defined as the origin of the coordinate
system, while the beam direction defines the z-axis and the x-y plane is trans-
verse to the beam direction. The positive x-axis is defined as pointing from
the interaction point to the centre of the LHC ring and the positive y-axis is
defined as pointing upwards. The side-A of the detector is defined as that
with positive z and side-C is that with negative z. The azimuthal angle φ is
measured as usual around the beam axis, and the polar angle θ is the angle
from the beam axis. The pseudorapidity is defined as η = ln tan(θ/2) (in the
case of massive objects such as jets, the rapidity y = 1/2 ln[(E + pz)/(E − pz)]
is used). The transverse momentum pT , the transverse energy ET , and the
missing transverse energy ET

miss are defined in the x-y plane unless stated
otherwise. The distance ∆R in the pseudorapidity-azimuthal angle space is
defined as R =

√
∆η2 +∆φ2.”[9]

Based on these distances d you can cluster particles together. You take the
smallest distance, if that is a diB you call i a jet and remove it from the list of
entities. If it is a dij you combine i and j into one entity i and remove j. You
continue combining until everything is removed as a jet candidate.

2.2 Higgs

With the existence in the Higgs boson confirmed by Atlas and CMS in 2012 [1,
2] with a mass of 125GeV we now know that one of the main decay modes
for the Higgs boson should be to a bottom-antibottom pair, or h0 → bb̄ for
short (see figure 2.4, Γ(H− > bb) 57%). Evidence for this process exists[10]
but not enough to accurately determine that branching ratio experimentally
[11]. This is because this decay channel is not as clean as for example γγ.
The b and b̄ both hadronize to form colour singlets, as explained earlier this
chapter. Those hadrons decay and result in a jet. The energy and momen-
tum of a jet are a much more complex problem than that of a photon. The
hadrons bottom quark decays into an up or charm quark via the weak inter-
action. This decay is quite slow when compared to all the strong interactions,
resulting in a displaced vertex in the jet, a new origin of particles outside the
main interaction point. The displacement is in the order of millimeters, but
with the precision of the Atlas detector this is detectable. The main way of
identifying these b-jets is looking for B-mesons in the decay products or dis-
placed charm-mesons. This whole process of identification is referred to as
b-tagging. The current Atlas b-tagging efficiency is about 70% and going up
with higher energies, determined by Monte-Carlo simulation of the whole
detector.

With the b-tagging and the knowledge that the Higgs boson decays to
bb̄-pairs often we could look for events that have two jets with a btag rela-
tively close together, with maybe a jet going the opposite way to cancel out
the momentum, illustrated in figure 2.5. However, these events occur plenty
out of normal Quantum Chromodynamic(QCD) processes. This background
will completely drown out the signal we are looking for. Therefore it is more

2.2. Higgs 7

FIGURE 2.4: The Higgs boson decay modes as a function of the
Higgs boson mass, which we now know to be ≈ 125GeV [12].

Low p
H

b Jet

b Jet

High p
bb̄ JetH

b

b

FIGURE 2.5: h0 → bb̄ with two separate two jets, the resolved
case and h0 → bb̄ in a single jet, the boosted case.

interesting though is the situation where the Higgs boson has so much mo-
mentum the bottom quarks are close enough together that we see only a sin-
gle jet with both bottom quarks inside, because the distance between those
quarks is related to the Higgs momentum dbb̄ ≈ 1√

z(1−z)

2m
pT

(z and z-1 are the

momentum fractions of the b and b̄ respectively) [13]. These high momentum
single jet channels are called boosted. The boosted variant of the h0 → bb̄
channel in particular is much less contaminated with background processes
since there is less chance to produce such high momentum bottom quarks so
close together from normal background.

9

Chapter 3

Jet structure

3.1 Simple properties

Once a group of particles has been classified as a jet there are several prop-
erties that you can calculate. A few ones are obvious, such as the average
direction of the jet, the total transverse momentum and energy, which can
be calculated by summing over the total set of particles in the jet. A naive
estimate for the invariant mass of the jet would be estimating the total mo-
mentum by taking the jet direction and transverse momentum and simply
applying Pythagoras. Then we apply Einsteins formula

m2 = E2 − p2 (3.1)

3.2 Missing neutrinos

Of course, this is not the full picture. The jet can be ’contaminated’ by other
particles that are not part of the jet but end up inside the jet area. Also, en-
ergy and transverse momentum are lost due to the usual problem in particle
physics: all neutrinos will be missing from your data. Various techniques ex-
ist to make an attempt to fix these. In general you try to identify the muons,
electrons and taus involved in the jet and argue that if they are not produced
in a lepton-antilepton pair there should be an associated neutrino. You then
look at the muon momentum and direction and the missing transverse mo-
mentum and energy in the event and make some estimate on the momentum
of the missing neutrino.

3.3 Jet Substructure

However, there are yet more challenges. When dealing with a fat jet it is not
just a blob with an energy, momentum and mass, it has an inner structure. It
is, in some cases, quite easy for a human to put the jets into groups. When
you look at 3.1 it is easy to imagine that the left one is probably caused by a
single particle, while the left one were two particles close together. But we
have millions upon millions of jet events from ATLAS, so we need to write
some algorithm to do this for us. The first step is to somehow “clean” the Fat
Jet. By trying to remove particles that originate from another interaction not

10 Chapter 3. Jet structure

FIGURE 3.1: An impression of an event that has a jet with one
and a jet with two substructures.

connected to the jet and maybe leaving out insignificant particles, especially
those with lower energy you get something that is much easier to handle in
processing in a later stage. Several of these algorithms exist. To name a few:
jet grooming, jet trimming[14], jet pruning[15], softdrop and more. After
these procedures you can run the normal jet finding algorithms again on the
contents of the jet.

3.3.1 Jet trimming example

The following is a simplified example of the steps involved when using jet
trimming. First, the anti-kt algorithm is used, but with R=1 instead is R=0.4.
This is because we are working in the regime of boosted jets instead. We want
to use this on fat jets with substructure, not resolved cases. We then redo the
jet finding with anti-kt but now with R=0.2. We discard any subjets we have
now find with a to low pT (5% of the pT of the original fat jet). See figure 3.2
for an example of how that would look if used on our fatjets in figure 3.1.

3.3.2 Jet substructure variables

We now have some data on the interior structure of the jet, but nowhere near
perfect. Subjets might overlap and thus be classified as a single subjet. The
whole process of jet trimming and rerunning jet finding is also very compu-
tationally expensive. We also have no measure of confidence in the data. We
either have one, two, etc subjets, and if it is ’ambiguous’ that doesn’t show in
our final data. Take the following image for example:

As a human you might say ’Unsure’ or ’1.5?’ but we haven’t given the
jet trimming algorithm the possibility to make that choice. A new algorithm
was published in 2011, the so-called ’N-subjettiness inclusive jet shape’, or
τN [16]. It tries to define some sort of probability that a certain jet has the

3.3. Jet Substructure 11

FIGURE 3.2: Jet trimming applied to the jets from 3.1.

FIGURE 3.3: Sometimes jet classification can be ambiguous.
Here, the same structure could be said to be one jet, or two.

12 Chapter 3. Jet structure

specified number N of subjets.

τN =
1

d0

K∑
i

pT,imin {∆R1,i,∆R2,i, · · · ,∆Ri−1,i,∆Ri+1,i, · · ·∆RN,i} (3.2)

Here i sums over the total K particles, ∆RJ,p denotes the ’rapidity-azimuth’
(see chapter 2) distance between candidate subjet J and particle p, d0 is a nor-
malization factor. When for example there are two obvious subjets τ1 will
always be large, since wherever we place the candidate subjet, the contribu-
tion of one or both of the subjets will be substantial. However, with τ2, you
can put the candidate subjet centers in the obvious places and all contribu-
tions will be fairly small. So the N for which τN < τN−1 is probably the real
amount of subjets.

Therefore, we define the N-subjettiness ratios, τ2
τ1

, shortened to τ21, and
also τ32 and so on. These variables are now normalized, so it is easy to com-
pare them. A τ21 that is below 0.5 with a τ32 that is 0.7 is a pretty strong
indicator that the jet you are looking at has two substructures.

Since the time N-subjettiness was introduced there has been more work
on improving this. In 2013 and 2014 respectively the C2 and D2 variables
were published [17, 18]. They are both based on the Energy Correlator Dou-
ble Ratio functions:

ECF (N, β) =
∑

i1<i2<i3···<iN∈J

(
N∏
a=1

Eia

)(
N−1∏
b=1

N∏
c=b+1

θibic

)β

(3.3)

These functions are so general and versatile that combining them in different
ways you can get a lot of different information out of them. The computa-
tional complexity is exponential in N, so most applications stick to N=3 as
the maximum N used. C2 is constructed as follows:

C
(β)
2 =

ECF (3, β)ECF (1, β)

ECF (2, β)2
(3.4)

C2 should be sensitive to jets with two subjets, or two-pronged jets. The
parameter β can be used to focus on a specific type of jet. It controls, roughly,
how important the outer regions of the jet cone are compared to the center.
These are referenced to as collinear and wide-angle respectively.

The D2 variable is again trying to improve on the work done with the C2
variable. The research done by Andrew J. Larkoski, Ian Moult, and Duff Neill
identified some problems with the C2 variable, mainly that it is very sensitive
to pile-up. Almost every time protons collide in ATLAS, a beam crossing, in
the order of 25 interactions occur [19]. The data from each interaction must
be separated afterwards to be able to use that data for analysis. Errors in
this separation process can mean that particles from one interaction event
end up in another. These pile-up data contamination’s are a serious factor to
consider in your analysis.

3.3. Jet Substructure 13

(A) τ1 (B) τ2

FIGURE 3.4: Mock calculation of the N-subjettiness variables.
They should be calculated by multiplying the size of the dot
times the length of the line. This is obviously smaller for the
second one, while a third one will yield a much smaller im-

provement.

14 Chapter 3. Jet structure

For the definition of D@ we first define the normalized Energy Corelation
Double Ration function:

e(β)n =
ECF (n, β)

(ECF (1, β))n
(3.5)

The authors argue that using this leaves the result without unit, allowing
fairer comparison between the functions. Now we can define D2 as:

D
(β)
2 =

e
(β)
3(

e
(β)
3

)3 (3.6)

15

Chapter 4

Event simulation

4.1 Motivation

The mass reconstruction of a jet is a sophisticated algorithm that tries to take
into account all the particles in the jet and the uncertainties in their energy
and momentum measurements and missing neutrinos. However, it is still
developed and tweaked by physicists, who cannot cover the total amount
of data that jets can contain. The substructure variables might contain hints
as to improve our mass estimates, we just need to find out how to get those
"hidden statistics" out of there. That is where machine learning comes in.
However, in order to train these algorithms, we need to feed them loads of
events where we already know what the actual mass is. This is where we
turn to simulating events instead of using real data. Here we can control
exactly which processes are happening and can determine what the mass of
jets is in truth. Luckily several tools have been developed to achieve exactly
this.

4.2 Software

The first step is a program called MadGraph5_aMCNLO[20], from here on
just MadGraph. This piece of software simulates the low-level Feynman di-
agrams, from protons to Higgs boson to bb̄ for example. This allows us to
generate only those events we are interested in. But we have another prob-
lem. If we just generate Higgs boson to bb̄ the truth mass will always be the
Higgs boson mass. This means that training a machine learning algorithms
on it is difficult, since those are always based on finding some kind of error
minimum, and always giving the answer 125GeV is a sound way to do just
that. Therefore we decided training on gluon to bb̄ instead. This spectrum
is smooth so training on it will disallow“cheating” by the machine learning
algorithm. So we ask MadGraph to generate two kinds of samples, gluon to
bb̄and Higgs boson to bb̄. We will use one for training and the other one for
testing. Listed in figure 4.1 are some of the Feynman diagrams MadGraph
generates. The thing to note is that there is always a bb̄-pair in the output.

But we aren’t there yet. We know bottom quarks must decay quickly (in
order of millimeters [21]) and fall apart into jets. This part of the process
is covered by PYTHIA[22]. It takes the particles generated by MadGraph
and selects the unstable particles. It then simulates a decay chain and makes

16 Chapter 4. Event simulation

FIGURE 4.1: Feynman diagrams generated by MadGraph.

4.2. Software 17

sure the final state contains no coloured particles as explained in chapter 21.
The output from PYTHIA has the stable particles from MadGraph and the
mesons, hadrons and leptons it produced.

The next and final step is simulating the ATLAS detector itself. After
PYTHIA we know the exact momenta of every single particle. However, in
the real world we don’t see neutrinos, we have uncertainties on how fast
muons are traveling. Our energy estimations of photons, mesons, hadrons
might be off. Maybe we think something is a muon but is an electron. Etcetera,
etcetera, etcetera. Luckily there is software available that does all of this
for us. Delphes is a detector simulation framework, taking the output from
PYTHIA and outputting the event as if an actual collider experiment had
recorded it [25]. It can simulate various detectors, CMS, ATLAS, or even col-
lider experiments that still have to be built[26]. You can run Delphes fairly
fast on a normal computer, especially considering it has to simulate millions
of particles interacting with a huge detector. The trick is that it doesn’t ac-
tually do that by doing some serious corner cutting. Instead of simulating
the full detector it takes the accuracy results from the actual full and slow de-
tector simulation ATLAS does internally and applies these to your simulated
data.

1Achieved by using a Lund string technique, see [23, 24]

19

Chapter 5

Simulation results

5.1 Data spectra

Once we have obtained several million event records that contain bb̄-jets we
need to check if they are suitable and calculate the necessary training pa-
rameters. That means finding the bb̄-pair in our event record, checking if
they are contained into the same jet and not reconstructed into two separate
jets. Then we also need to add their four-momenta to calculate their invari-
ant mass. This is the truth variable we want to train on after all. A check
for NaN values is needed because machine learning libraries don’t play well
with those, a single NaN in your data might propagate to all your weights in
the algorithm. This means any training you did prior to that that is unsaved
will be lost. We also need to calculate the substructure variables, τ21, τ32, C2,
D2. All of this is done with a custom piece of software, for more details see
A.

We can now also plot spectra of our input variables. This is an essen-
tial step in the whole process, since this is the point where you find out if
the event generation actually produced correct events. We executed about
25 runs of data generation before these spectra were satisfactory. Some key
points can also be made as a conclusion from these plots:

Gluon to bb̄ jets fundamentally differ from Higgs to bb̄ jets. The differ-
ence is visible best in the substructure variables. In general, the variables
associated with two substructures peak lower, which can be interpreted as a
clearer separation in the two substructures in a Higgs jet then in a gluon jet.
This probably has as a root cause that the Higgs boson and gluon to bb̄ de-
cays are governed by two totally different processes. All of this is guesswork
at this point and involve quantum field theory calculations far beyond my
current understanding, but by looking at the changes in the τ21 spectrum as
a function of invariant mass and transverse momentum this can be viewed
directly. Low energy and almost on-shell gluons tend to have a higher τ21,
indicating that the two substructures are less clear.

5.2 Input and Output format

With a custom tool, see appendix A, we can transform event records from
Delphes to a vector of floats for each event, containing all the information we
need. The input is shaped like this:

20 Chapter 5. Simulation results

(A) Jet reconstructed mass (B) Jet transverse momentum pT

(C) Jet substructure variable τ21 (D) Jet substructure variable τ32

(E) Jet substructure variable C2 (F) Jet substructure variable D2

FIGURE 5.1: Data spectra of the final simulation.

5.2. Input and Output format 21

FIGURE 5.2: The τ21 distribution as a function of the cut on in-
variant mass. This shows that jets originating from more off-
shell gluons behave more like two-pronged jets then (almost)

on-shell gluons.

22 Chapter 5. Simulation results

FIGURE 5.3: The semileptonic decay of the b giving rise to
muons associated with the jets.[27]

~x ≡ {η, φ,mreconstructed, pT , τ1, τ2, τ3, τ4, τ5, τ21, τ32, C2, D2,

Emiss
T , ηEmiss

T
, φEmiss

T
,∆R(muon, jet), pmuon

T , Emuon, qmuon} (5.1)

You see we include one muon in the input data. This is the closest muon to
the jet axis. Muons could be of importance since they are direct evidence that
we are missing some momentum and energy due to the missing neutrino.
They get produced when the b quark or resulting c quark decays semilep-
tonic, as displayed in figure 5.3. We hope that the trained algorithms pick up
on this. We defined three variables for our algorithms to train on:

y1 ≡ mtruth

y2 ≡ mtruth −mreconstructed (5.2)

y3 ≡
mtruth

mreconstructed

− 1

We refer to these three as Direct, Adding and Scaled respectively. The reason
for training on the difference or ratio is motivated by the fact that we make
cuts on generator and reconstruction level, which results in hard boundaries
in the data. These hard boundaries get picked up my the algorithms very
easily and results in artifacts in your output spectrum. We don’t want the
algorithms to make hard cuts when these are used on real-world data, so we
hide the hard cuts with this technique. The added benefit is that the output is
semi-normalized, which makes the algorithms converge more quickly when
training.

23

Chapter 6

Machine Learning

6.1 Algorithms

There are roughly two types of machine learning problems: classification and
regression. Classification deals with problems that require datapoints to be
assigned to different groups, or classes as they’re called, hence the name. It
can be classifying wines to be red or white based on chemical properties[28],
which is called one-to-one or binary classification. There is also multiclass
classification or open set recognition, where the total number of classes might
be unknown or input might not be part of any class at all. This happens with,
for example, written character or face recognition. Regression on the other
hand does not work with classes but predicts some continuous variable. To
extend our previous examples: it could be used to predict the wine alcohol
content from the rest of the chemical properties or predict the age of someone
based off a picture.

There are more algorithms then I can list here. They are all designed to
either tackle a very specific type of problem, or work on a very broad spec-
trum of problems. I will highlight a few that are the starting point for almost
any problem and can help directing you to the right algorithm, or might be
already good enough to satisfy your requirements.

6.1.1 Principal Component Analysis (PCA)

We start off by cheating and mentioning an algorithm that is not machine
learning at all. It is, however, the starting point of almost any machine learn-
ing exercise. PCA is a way of dimensionality reduction of your problem.
Even though your problem might have a lot of input variables, they can be
strongly correlated and thus you could express your data in fewer variables.
PCA does this by performing a sort of eigenvalue decomposition of the in-
put. The input data is of course not a square matrix so that isn’t possible, but
it can be approached by so-called singular value decomposition. This results
in a set of vectors that have the property that they are ordered in terms of
variance. The first vector gets the largest variance, while the last one has the
least. This might be hard to visualize, but figure 6.1 should make it immedi-
ately clear.

So even though your problem might have 10-dimensional input, the first
three PCA dimensions will most of the time already capture a lot of what is

24 Chapter 6. Machine Learning

FIGURE 6.1: A 2D to 1D PCA projection. By maximizing the
variance in the first dimension and minimizing in the second
you get an optimal way to represent your data in less dimen-
sions. This generalizes to an arbitrary amount of dimensions.

[29, 30]

happening in your data. The plot in figure 6.2 was made very early into the
internship, trying to figure out what was wrong with the g → bb̄ matching
algorithm. It immediately shows that there is a certain type of datapoints
that the algorithm does not handle well. This provided a clue to my as to
what direction a solution should be sought.

6.1.2 K-means

A very basic classifier for exploratory work or simple problems [31]. There
are a good number of extensions on this algorithm, but the basic idea stays
the same: each class has a mean datapoint, called a centroid. This centroid
should be the best representation of a class. For every new datapoint added
you find the closest centroid and assign the datapoint that class. Then you
update the centroid accordingly to reflect the addition of the new datapoint.
“Closest” is of course an empty term without context: in normal k-means
you use euclidean distance, normalized to the variance in each input vari-
able. Some derived algorithms change this, for example the K-medians[32]
or Minkowski-weighted k-means[33] algorithms. There are several problems
with K-means, the first is that it is very computationally expensive to run on
large datasets, since the algorithms complexity scales exponentially with the
number of datapoints. The second is that it is highly sensitive to initial con-
ditions and local minima. It can, therefore, be beneficial to run the algorithm
several times, randomizing initial conditions for the centroids each time. But
then we are back at problem one. Again, several derived algorithms attempt
to fix this problem, but discussing those is outside the scope of this docu-
ment.

6.1. Algorithms 25

FIGURE 6.2: A plot from the early days of the internship. This
is a plot of the first two principal components of my FatJet vari-
ables. The axis have no direct units, but the in the analysis later
on it turned out that the red blot in the middle, which is a class
of jets my algorithm was unable to match to g → bb̄-jets are

resolved bb̄ cases (see chapter 2.

26 Chapter 6. Machine Learning

6.1.3 Naive Bayes

This classifier is based on the idea is that every class has a mean and deviation
for each continuous input variable, and you can calculate the chance that a
new datapoint belongs to a certain class. This algorithm can be trained in
linear times by means of Bayesian interference, and is still in use everywhere,
even though it was invented in the 1950s. A nice side effect of using Bayesian
statistics is that you don’t calculate the class of a datapoint, but the chances
to belong to each of the classes. This can give a measure of how sure your
algorithm is of the classification, a very useful feature.

6.1.4 Logistic regression

In it’s simplest form logistic regression is used in cases where the ’answer’
of a datapoint should be yes or no, with a certain level of confidence. It is a
type of linear model, where a result is expressed as a number between 0 and
1 that represents the chance of the answer being ’yes’. One of the most used
examples is predicting whether a student passed his exam based on his hours
of study. The training data can be a survey among students inquiring on the
time they spent on studying and whether they passed. Imagining a second
input variable is not hard, for example the mark they got for the homework
exercises could provide serious improvements on the performance of the al-
gorithm.

6.1.5 Linear regression

This is the most basic for of a regression model. It generalizes logistical re-
gression, but the answers are not bound to the [0,1] interval. Take your dat-
apoint, multiply with the weights, and take the sum, and you have your
answer. This algorithm and many others are trained by using gradient de-
scent [34]. Gradient descent is a technique where you take all of your weights
and slightly change them, thereby sampling the “weight-space”, resulting in
some sort of numerical derivative. You then take a small step in direction
of this derivative, by which you should slowly descent to the point in the
weight-space that minimizes the error.

The logistical regression algorithm can again be generalized to multiple
outputs by making the weights also multidimensional. Now make a step
to minimizing the error function by numerically approximating the gradient
with the current dataset. Several methods exist to speed this up, often using
momentum techniques. The algorithm keeps track of a speed, so if the gra-
dient stays steep in one direction for several steps the algorithm ’speeds up’,
taking bigger steps towards the minimum.

6.1.6 Multilayer perceptron

The essence of a neural network. ’Neurons’ are organized in layers, taking
some inputs from the previous layer, adding some bias, applying a nonlinear

6.2. Tools 27

so-called ’activation function’ and then outputting to the next layer. The lay-
ers are organized as one input layer, then one or more hidden layers and an
output layer. These are also trained by gradient descent, albeit more complex
ones are often employed, see for example the AdamOptimizer [35].

6.1.7 Recurrent neural network (RNN)

RNN’s are used in situations where there is a sequence of datapoints that
all have the same structure but the amount is unknown. You feed the net-
work your sequence and after you fed it all the data of that event you ’ask’
the network for an answer. The network has ’memory’, modifying its own
internal state after each datapoint. A more advanced version of this is the
Long Short-Term Memory network model. Explaining it is beyond the scope
of this document, but it excels at analyzing time series and can even be used
to compose music.

6.1.8 Wide-and-deep neural network

Wide and deep networks are a relatively recent development in the field. It
really isn’t a groundbreaking idea, it just combines a linear or logistic regres-
sor with a deep (≥ 2 hidden layers) neural net, operating them side-by-side,
combining their results. Although this does not sound revolutionary, it turns
out this works very well.

6.1.9 Decision trees

A very aptly named algorithm. A decision tree is a set of nodes in a tree
shape. You start at a specified starting node. Each node contains a “ques-
tion”, for example “if variable x is bigger than 10, go to node 3, else, go to
node 4”. You go through the nodes until you reach an end node that gives
the output for your target variable. They can also be boosted. This boost-
ing has no relation to jets and refers to the practice of emphasizing training
data the algorithm previously got wrong, by assigning a bigger weight to
that particular datapoint.

6.1.10 Random Forests

Used for both regression and classification, this algorithm is based on the
decision tree. By training a lot of trees with some randomness in each tree, as
the name might suggest, this algorithm averages over all those trees. This is
to prevent overtraining and local minima.

6.2 Tools

In the world of machine learning there are a ton of tools that can be used
to build, train and evaluate algorithms. We opted for using TensorFlow and

28 Chapter 6. Machine Learning

Scikit-Learn. TensorFlow is being developed by Google it is gaining traction,
amounting for about 3000 papers since its introduction to the world. It is
supposedly heavily used by Google itself and we see great improvements
by them in the machine learning area. One of the great advantages of Ten-
sorFlow above almost any other library is the fact that you can write your
network in a very abstract form in Python, giving you great freedom in what
you want to do. But due to the fact that the network you write is compiled
with C++, it is also very fast to train. There are also a few tools included,
TensorBoard and the TensorFlow Debugger, that can give you insight into
the training itself, visualizing what might be wrong.

The other framework used Scikit-Learn. Older, but actively developed, it
is the most used machine learning Python library. It has tons of ready-made
algorithms. You have less freedom than with TensorFlow, but for that you
get an easy way to try a lot of different thing in a relatively short amount of
time.

6.3 Algorithm performance

All machine learning algorithm have one thing in common. If given two ver-
sions of an algorithm, you should be able to calculate which one is better.
If this were not the case a human would be needed every step of training,
telling the computer which version did best. In classification problems we
have a few options, but they all result from the question: how many dat-
apoints did the algorith classify correctly, how many did it get wrong. In
regression the choice is also seemingly obvious, you just sum all the errors
of the algorithm, and maybe normalize to the amount of datapoints for easy
comparison. This results in the definition of the root mean squared error:

RMSE =

√∑n
i=1 (yi − ytarget)

2

n
(6.1)

29

Chapter 7

Results

In tables 7.1, 7.2 the results for random forests are displayed and in 7.3 and
7.4 the results for a linear regressor. They each include six different ways of
training: on mass directly, the difference with the reconstructed jet mass and
the ratio with the reconstructed jet mass, as mentioned in Chapter 6. The
results are then split in a weighed and unweighted training set. The weighed
set has factors attached to each event with regards to their truth mass, so that
the resulting weighed mass spectrum is constant over the 70-270 GeV region.
The algorithms are trained with two million events and evaluated with one
million events. During both stages the algorithm is scored with the root mean
squared error.

Immediately something becomes clear. Even though the RMSE of our re-
gressions have always improved over the jet reconstruction, our spectra, the
place were we can “extract” the actual physics, has not. All Higgs boson
peaks get offset. So, even though the quality of individual points has im-
proved, our spectrum has not. This pattern persists with all tested algorithms
(Bayesian, AdaBoost, Decision tree, Extratrees, Wide-and-deep). When look-
ing back at the original question, is it possible multivariate techniques to
improve on this resolution by including jet substructure variables into our
analysis? We can conclude that there is a critical flaw in the way machine
learning algorithms are scored. We have a different goal that most machine
learning problems, that try to optimise their performance on individual cases
and give no value to the correctness of the spectrum. A machine learning al-
gorithm trained with the RMSE has a tendency to err towards the mean. This
is not a weird thing. If asked “I have a random number between 1 and 100,
guess as close as possible.” anyone with sense would answer “50”. The same
thing happens here as with machine learning algorithms. Sure, you have
optimized your performance on the individual events, but your spectrum is
utterly destroyed. Of course here you are guessing a random number, while
in our case the input data gives some clue to the output. But you can eas-
ily visualize the behaviour of the RMSE way of training as function of the
correlation between the input and output, as shown in figures 7.5 and 7.6.

But apart from the RMSE we have other problems. The gluon to bb̄ is
fundamentally different than Higgs boson to bb̄, as explained in Chapter 5.
In the end our training data probably still is unsuitable for the purpose of
learning the Higgs boson to bb̄ process. Of course getting the spectrum right
would be trivial if you would just use the Higgs to bb̄ data directly, as tried
before, even in 2011 by another student [36]. The fundamental problem with

30 Chapter 7. Results

Unweighted Weighted

D
ir

ec
t

A
dd

in
g

Sc
al

in
g

FIGURE 7.1: Results for random forests trained in different
ways on gluon to bb̄ data.

Chapter 7. Results 31

Unweighted Weighted

D
ir

ec
t

A
dd

in
g

Sc
al

in
g

FIGURE 7.2: Results for random forests trained in different
ways on Higgs boson to bb̄ data.

32 Chapter 7. Results

Unweighted Weighted

D
ir

ec
t

A
dd

in
g

Sc
al

in
g

FIGURE 7.3: Results for linear regressors trained in different
ways on gluon to bb̄ data.

Chapter 7. Results 33

Unweighted Weighted

D
ir

ec
t

A
dd

in
g

Sc
al

in
g

FIGURE 7.4: Results for linear regressors trained in different
ways on Higgs boson to bb̄ data.

34 Chapter 7. Results

(A) Output spectra of a trained linear regressor on a flat input spectrum, as function
of the correlation between the input and output spectra.

(B) The already trained algorithms evaluated on a different spectrum with a peak,
again as function of the correlation.

FIGURE 7.5: Visualisation of the RMSE mean bias.

Chapter 7. Results 35

FIGURE 7.6: The recoreded peak shift as function of the corre-
lation.

that is that that would mean that you would most likely see the Higgs boson
even if it wasn’t there and your algorithm most likely is not suited to find
new particles in future data. So even though that would work, it doesn’t tick
the wish list box of being a general method that results in an algorithm that
can be used on any data.

Another way to approach this problem would be to use the Z boson to
bb̄ process to train your algorithm and evaluate on Higgs boson to bb̄. These
are still different but at least there is no colour charge involved. Here you
encounter the problem that Z is is a mass resonance again, altough not quite
as narrow as the Higgs peak. Another, more involved way to go about this
is modifying the way MadGraph and PYTHIA work themselves. If you gen-
erate events where the Higgs truth mass is a flat spectrum you get jets that
behave as Higgs jets, obviously, but without encoding any preference for one
mass or another into your algorithm. Another road you could travel is to try
and exploit the fundamental differences found between Higgs and gluon to
bb̄ an train a classification algorithm to separate them.

37

Appendix A

Custom software

During the project I wrote several pieces of software that I deem usable out-
side of this projects scope.

A.1 TreeReBuild

A C++ ROOT Macro that transforms the Delphes output into a tree that is
readable by root_mldata. This macro scans all the events for bb̄-jets and stores
those. There are three different ways to match bb̄-pairs with a jet, depending
on if jet constituent information is available or not. I performed an analysis
on the matching performance by running them on all data and comparing
their results.

A.1.1 Old style matching

Developed in the early stages of the internship. Takes all the bb̄ -pairs from
the event and tries to match them to a jet by looking at angular separation.
There are two versions of this, the older version does not require Delphes
libraries to be loaded but does not output a nice rebuilt ROOT tree to use with
root_mldata. This is the style used for all algorithm training and validation.

A.1.2 Delphes style matching

Inspired by the Delphes flavour association module, which is again based on
internal Monte-Carlo tools, see https://cp3.irmp.ucl.ac.be/projects/
delphes/browser/git/modules/JetFlavorAssociation.cc. Delphes
style matching is almost the same in efficiency and output, but generally has
a bit tighter criteria. This is because Delphes may drop the flavour associa-
tion when the jet is too contaminated by other things happening in the event.
However, events that are contaminated might be the area where the most to
gain might be. It might be useful in other cases but not for our project.

A.1.3 New style matching

A small sidestep was made by trying to enumerate all the particles in a jet
and performing a search through their parent particles on truth level. The

https://cp3.irmp.ucl.ac.be/projects/delphes/browser/git/modules/JetFlavorAssociation.cc
https://cp3.irmp.ucl.ac.be/projects/delphes/browser/git/modules/JetFlavorAssociation.cc

38 Appendix A. Custom software

(A) Absolute g → bb̄ matching efficiency

(B) Relative g → bb̄ matching efficiency

(C) Absolute h0 → bb̄ matching efficiency

(D) Relative h0 → bb̄ matching efficiency

FIGURE A.1: An analysis of matching algorithm performance.

A.2. root_mldata 39

resulting efficiency was suspiciously high. There is probably some mistake
in there, but the bug was not worth finding and fixing due to time constraints.

A.2 root_mldata

Python package to read ROOT trees into numpy arrays (using root_numpy)
in a format that is suitable for any numpy-supporting machine learning li-
brary, suck as TensorFlow, Scikit-Learn and Keras. Can be configured using
standard JSON files for a range of neat options.

A.3 tf-nntrainer

A set of neural networks that can be initialized, trained and retrained with
the TensorFlow library. Includes a command line interface for configurable
sessions. Also able to extensively evaluate the performance of the networks.
Plotting library to visualize spectra included. Includes multilayer percep-
trons, recurrent neural networks, normal linear regression and wide-and-
deep networks. Bindings for the excellent utility tensorboard, a training visu-
alization interface, and tfdebug, a debugging interface, are included as well.

A.4 scikit-learn trainer

Train and save any scikit-learn regressor, with tools to evaluate performance
and plot spectra. Works with all regressors in Scikit-learn and can be fully
configured with JSON files.

41

Bibliography

[1] The ATLAS Collaboration. “Observation of a new particle in the search
for the Standard Model Higgs boson with the ATLAS detector at the
LHC”. In: (2012). DOI: 10 . 1016 / j . physletb . 2012 . 08 . 020.
eprint: arXiv:1207.7214.

[2] The CMS Collaboration. “Observation of a new boson at a mass of 125
GeV with the CMS experiment at the LHC”. In: (2012). DOI: 10.1016/
j.physletb.2012.08.021. eprint: arXiv:1207.7235.

[3] Matthias Schlaffer. Boosted Higgs Channels. 2015. eprint: arXiv:1509.
04958.

[4] Jonathan M. Butterworth, Inês Ochoa, and Tim Scanlon. “Boosted Higgs
→ bb̄ in vector-boson associated production at 14 TeV”. In: (2015). DOI:
10.1140/epjc/s10052-015-3592-5. eprint: arXiv:1506.
04973.

[5] A. Hoecker et al. “TMVA - Toolkit for Multivariate Data Analysis”. In:
(2007). eprint: arXiv:physics/0703039.

[6] Review of Particle Physics. http://pdglive.lbl.gov. Accessed:
2017-03-05. 2016.

[7] Adriano Di Giacomo. “Understanding Color Confinement”. In: (2013).
DOI: 10 . 1051 / epjconf / 20147000019. eprint: arXiv : 1310 .
2401.

[8] B. R. Webber. “Fragmentation and Hadronization”. In: (1999). eprint:
arXiv:hep-ph/9912292.

[9] The ATLAS Collaboration. “The ATLAS Experiment at the CERN Large
Hadron Collider”. In: Journal of Instrumentation 3.08 (2008), S08003. URL:
http://stacks.iop.org/1748-0221/3/i=08/a=S08003.

[10] Cern Courier: CMS identifies Higgs bosons decaying to bottom quarks. http:
//cerncourier.com/cws/article/cern/61251.

[11] Bruce Mellado Garcia et al. “CERN Report 4: Part I Standard Model
Predictions”. In: (May 2016). URL: https://cds.cern.ch/record/
2150771.

[12] Higgs boson branching ratios. http://hep.wits.ac.za/research/
higgsphys.php.

[13] Jonathan M. Butterworth et al. “Jet substructure as a new Higgs search
channel at the LHC”. In: (2008). DOI: 10.1103/PhysRevLett.100.
242001. eprint: arXiv:0802.2470.

https://doi.org/10.1016/j.physletb.2012.08.020
arXiv:1207.7214
https://doi.org/10.1016/j.physletb.2012.08.021
https://doi.org/10.1016/j.physletb.2012.08.021
arXiv:1207.7235
arXiv:1509.04958
arXiv:1509.04958
https://doi.org/10.1140/epjc/s10052-015-3592-5
arXiv:1506.04973
arXiv:1506.04973
arXiv:physics/0703039
http://pdglive.lbl.gov
https://doi.org/10.1051/epjconf/20147000019
arXiv:1310.2401
arXiv:1310.2401
arXiv:hep-ph/9912292
http://stacks.iop.org/1748-0221/3/i=08/a=S08003
http://cerncourier.com/cws/article/cern/61251
http://cerncourier.com/cws/article/cern/61251
https://cds.cern.ch/record/2150771
https://cds.cern.ch/record/2150771
http://hep.wits.ac.za/research/higgsphys.php
http://hep.wits.ac.za/research/higgsphys.php
https://doi.org/10.1103/PhysRevLett.100.242001
https://doi.org/10.1103/PhysRevLett.100.242001
arXiv:0802.2470

42 BIBLIOGRAPHY

[14] David Krohn, Jesse Thaler, and Lian-Tao Wang. “Jet Trimming”. In:
(2009). DOI: 10.1007/JHEP02(2010)084. eprint: arXiv:0912.
1342.

[15] Stephen D. Ellis, Christopher K. Vermilion, and Jonathan R. Walsh.
“Recombination Algorithms and Jet Substructure: Pruning as a Tool
for Heavy Particle Searches”. In: (2009). DOI: 10.1103/PhysRevD.
81.094023. eprint: arXiv:0912.0033.

[16] Jesse Thaler and Ken Van Tilburg. “Identifying Boosted Objects with
N-subjettiness”. In: (2010). DOI: 10.1007/JHEP03(2011)015. eprint:
arXiv:1011.2268.

[17] Andrew J. Larkoski, Gavin P. Salam, and Jesse Thaler. “Energy Cor-
relation Functions for Jet Substructure”. In: (2013). DOI: 10.1007/
JHEP06(2013)108. eprint: arXiv:1305.0007.

[18] Andrew J. Larkoski, Ian Moult, and Duff Neill. “Power Counting to
Better Jet Observables”. In: (2014). DOI: 10.1007/JHEP12(2014)
009. eprint: arXiv:1409.6298.

[19] The ATLAS Collaboration. Luminosity Public Results Run 2. https://
twiki.cern.ch/twiki/bin/view/AtlasPublic/LuminosityPublicResultsRun2.

[20] J. Alwall et al. “The automated computation of tree-level and next-to-
leading order differential cross sections, and their matching to parton
shower simulations”. In: (2014). DOI: 10.1007/JHEP07(2014)079.
eprint: arXiv:1405.0301.

[21] Snezana Nektarijevic. Jet Vertex Charge Reconstruction. Tech. rep. ATL-
PHYS-PROC-2015-200. Geneva: CERN, Dec. 2015. URL: https : / /
cds.cern.ch/record/2117630.

[22] Torbjörn Sjöstrand et al. “An Introduction to PYTHIA 8.2”. In: (2014).
DOI: 10.1016/j.cpc.2015.01.024. eprint: arXiv:1410.3012.

[23] Bo Andersson et al. “Parton Fragmentation and String Dynamics”. In:
Phys. Rept. 97 (1983), pp. 31–145. DOI: 10.1016/0370-1573(83)
90080-7.

[24] PYTHIA: Fragmentation. http://home.thep.lu.se/~torbjorn/
pythia82html/Fragmentation.html.

[25] J. de Favereau et al. “DELPHES 3, A modular framework for fast sim-
ulation of a generic collider experiment”. In: (2013). DOI: 10.1007/
JHEP02(2014)057. arXiv: 1307.6346.

[26] W Barletta et al. “Future Hadron Colliders: from physics perspectives
to technology R & D”. In: Nucl. Instrum. Methods Phys. Res., A 764.CERN-
ACC-2014-0230 (Jan. 2014), 352–368. 17 p. URL: https://cds.cern.
ch/record/1956771.

[27] Semileptonic b decay. http://www.gla.ac.uk/media/media_
443034_en.png.

https://doi.org/10.1007/JHEP02(2010)084
arXiv:0912.1342
arXiv:0912.1342
https://doi.org/10.1103/PhysRevD.81.094023
https://doi.org/10.1103/PhysRevD.81.094023
arXiv:0912.0033
https://doi.org/10.1007/JHEP03(2011)015
arXiv:1011.2268
https://doi.org/10.1007/JHEP06(2013)108
https://doi.org/10.1007/JHEP06(2013)108
arXiv:1305.0007
https://doi.org/10.1007/JHEP12(2014)009
https://doi.org/10.1007/JHEP12(2014)009
arXiv:1409.6298
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/LuminosityPublicResultsRun2
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/LuminosityPublicResultsRun2
https://doi.org/10.1007/JHEP07(2014)079
arXiv:1405.0301
https://cds.cern.ch/record/2117630
https://cds.cern.ch/record/2117630
https://doi.org/10.1016/j.cpc.2015.01.024
arXiv:1410.3012
https://doi.org/10.1016/0370-1573(83)90080-7
https://doi.org/10.1016/0370-1573(83)90080-7
http://home.thep.lu.se/~torbjorn/pythia82html/Fragmentation.html
http://home.thep.lu.se/~torbjorn/pythia82html/Fragmentation.html
https://doi.org/10.1007/JHEP02(2014)057
https://doi.org/10.1007/JHEP02(2014)057
http://arxiv.org/abs/1307.6346
https://cds.cern.ch/record/1956771
https://cds.cern.ch/record/1956771
http://www.gla.ac.uk/media/media_443034_en.png
http://www.gla.ac.uk/media/media_443034_en.png

BIBLIOGRAPHY 43

[28] P. Cortez et al. “Modeling wine preferences by data mining from physic-
ochemical properties”. In: Decision Support Systems 47.4 (1998), pp. 547–
553.

[29] Karl Pearson F.R.S. “LIII. On lines and planes of closest fit to systems of
points in space”. In: Philosophical Magazine Series 6 2.11 (1901), pp. 559–
572. DOI: 10.1080/14786440109462720. eprint: http://dx.doi.
org/10.1080/14786440109462720.

[30] Stack Overflow: Making sense of PCA. https://stats.stackexchange.
com/questions/2691/making-sense-of-principal-component-
analysis-eigenvectors-eigenvalues.

[31] J. MacQueen. “Some methods for classification and analysis of mul-
tivariate observations”. In: Proceedings of the Fifth Berkeley Symposium
on Mathematical Statistics and Probability, Volume 1: Statistics. Berkeley,
Calif.: University of California Press, 1967, pp. 281–297. URL: http:
//projecteuclid.org/euclid.bsmsp/1200512992.

[32] Anil K. Jain and Richard C. Dubes. Algorithms for Clustering Data. Up-
per Saddle River, NJ, USA: Prentice-Hall, Inc., 1988. ISBN: 0-13-022278-X.

[33] Renato Cordeiro de Amorim and Boris Mirkin. “Minkowski metric,
feature weighting and anomalous cluster initializing in K-Means clus-
tering”. In: Pattern Recognition 45.3 (2012), pp. 1061–1075. ISSN: 0031-
3203. DOI: https : / / doi . org / 10 . 1016 / j . patcog . 2011 .
08.012. URL: http://www.sciencedirect.com/science/
article/pii/S0031320311003517.

[34] Marcin Andrychowicz et al. Learning to learn by gradient descent by gra-
dient descent. 2016. eprint: arXiv:1606.04474.

[35] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Opti-
mization. 2014. eprint: arXiv:1412.6980.

[36] W Clark Smith. Extracting bb̄ Higgs decay signals using multivariate tech-
niques. http://www2.slac.stanford.edu/suli/2011/PAPERS/
PAPERS/Smith_suli_paper.pdf. 2011.

https://doi.org/10.1080/14786440109462720
http://dx.doi.org/10.1080/14786440109462720
http://dx.doi.org/10.1080/14786440109462720
https://stats.stackexchange.com/questions/2691/making-sense-of-principal-component-analysis-eigenvectors-eigenvalues
https://stats.stackexchange.com/questions/2691/making-sense-of-principal-component-analysis-eigenvectors-eigenvalues
https://stats.stackexchange.com/questions/2691/making-sense-of-principal-component-analysis-eigenvectors-eigenvalues
http://projecteuclid.org/euclid.bsmsp/1200512992
http://projecteuclid.org/euclid.bsmsp/1200512992
https://doi.org/https://doi.org/10.1016/j.patcog.2011.08.012
https://doi.org/https://doi.org/10.1016/j.patcog.2011.08.012
http://www.sciencedirect.com/science/article/pii/S0031320311003517
http://www.sciencedirect.com/science/article/pii/S0031320311003517
arXiv:1606.04474
arXiv:1412.6980
http://www2.slac.stanford.edu/suli/2011/PAPERS/PAPERS/Smith_suli_paper.pdf
http://www2.slac.stanford.edu/suli/2011/PAPERS/PAPERS/Smith_suli_paper.pdf

	Abstract
	Acknowledgements
	Introduction
	Research question
	Motivation
	Prior work

	The Standard Model
	Particle processes
	Higgs

	Jet structure
	Simple properties
	Missing neutrinos
	Jet Substructure
	Jet trimming example
	Jet substructure variables

	Event simulation
	Motivation
	Software

	Simulation results
	Data spectra
	Input and Output format

	Machine Learning
	Algorithms
	Principal Component Analysis (PCA)
	K-means
	Naive Bayes
	Logistic regression
	Linear regression
	Multilayer perceptron
	Recurrent neural network (RNN)
	Wide-and-deep neural network
	Decision trees
	Random Forests

	Tools
	Algorithm performance

	Results
	Custom software
	TreeReBuild
	Old style matching
	Delphes style matching
	New style matching

	root_mldata
	tf-nntrainer
	scikit-learn trainer

	Bibliography

