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1 Introduction to cosmology

In 1915 Einstein published his theory of general relativity. This theory described
a model for gravity in which the famous Einstein field equations described the
impact of matter, and other forms of energy, momenta and different forms of
stress on the curvature of spacetime. These equations are given below:

Rµν − 1

2
gµνR = 8πGT eff

µν . (1.1)

In these equations Rµν denotes the Ricci tensor, gµν the metric of the system, R
the Ricci scalar, G Newton’s gravitational constant and T eff

µν the effective stress
energy tensor. These equations are a very important tool for cosmologists to
model the current and past universe.

Another important concept for cosmology is the scale factor a(t). This is a
very useful quantity when talking about the expansion of the universe. The
scale factor is defined by the following formula:

d(t) = a(t)d0 (1.2)

where d(t) is the proper distance between two objects at time t and d0 is the
proper distance between these two objects at a reference time t0. It is convention
to choose t0 as the current time and setting t = 0 at the big bang. This
automatically implies that t0 is equal to the age of the universe. From these
conventions and equation 1.2 it follows that a(t0) = 1. If light travels through
an expanding universe, its wavelength gets expanded bu a factor 1+z, which for
visible light shifts it towards the red part of the light spectrum. This is called
redshift. The redshift z and the scale factor are inversely related by:

z =
1

a(t)
− 1, a(t) =

1

1 + z
. (1.3)

The convention in cosmology is to use redshift as a time parameter, since it is
easily measurable, and it has a simple relation to the scale factor, so this will
also be used in this thesis. Another very important concept in cosmology is the
Hubble parameter H(t). This parameter describes the proportionality between
the proper distance between two objects, and their recessional velocity, which is
the velocity due to the expansion of the universe. The scale factor can be used
to calculate the Hubble parameter with the following formula:

H =
ȧ(t)

a(t)
=

1

a(t)

d

dt
a(t). (1.4)

The Hubble constant H0 is the value of the Hubble parameter at the current
time H0 = H(t0). The Hubble parameter is usually expressed in kilometers per
second per megaparsec, so a Hubble parameter with a value of 1 will mean that
two objects with a proper distance of one megaparsec will have a velocity of 1
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km/s relative to eachother. The Hubble parameter can be measured in mul-
tiple ways, for example by looking at galaxies and determining their redshift.
This redshift has to be corrected for so called ”peculiar motion”. This entails
velocity shifts due to gravitational effects, such as galaxies being gravitationally
affected by other galaxies inside a cluster. These effects are accounted for by
modelling these gravitational effects to find out what corrections have to be
made to the measured redshift. The calculated corrected redshift of these ob-
jects would make it possible to calculate the Hubble parameter if the distance
to these objects is known. To measure distances astronomers use cepheid vari-
ables, which are stars that vary in brightness in a well-defined periodic way, and
type 1a supernovae, which have approximately the same brightness when they
collapse and explode after reaching about 1.44 solar masses[1]. The measured
luminosity of such a star and its absolute luminosity are then used to calculate
its distance to earth. This approach of calculating the Hubble parameter by
measuring redshift and distance gives a present-day value (Hubble constant) of
H late

0 = 73.3±0.8 km/s/Mpc [2]. Another way to measure the Hubble constant
is by looking at the Cosmic microwave background (CMB). This is a relic from
when the photons in the early universe stopped interacting with the subatomic
particle plasma, because the universe cooled down enough for neutral atoms to
form, which effectively stopped Thomson scattering. It is possible to predict
what CMB measurements will look like with your cosmological model and the
Hubble parameter. Changing the Hubble constant to match the model’s predic-
tions with the measurements then gives us the early universe measurement of
the Hubble constant: Hearly

0 = 67.4±0.5 km/s/Mpc [2]. It is important to note
that this measurement relies on the used model to be correct. This difference
between the late and early universe measurements is called the Hubble tension,
and can be seen in figure 1.

Since the early universe measurement is model dependent, this tension can be
solved by changing the model for the universe. In section 2 we list the relevant
conventions. In section 3 we will explain how the current model works, then
in section 4 we will explain our model of the universe, which solves the Hubble
tension. Our model has some interesting properties like matter creation. This
created matter will probably consist of neutrinos, so in section 5 I will be look-
ing at the implications of this neutrino creation on dark matter halos and in
sections 6 and 7 at its effect on the cosmic neutrino background.
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Figure 1: A graph showing the evolving tension between the late and early uni-
verse measurements over the years. It can be seen that as the years progressed,
the probability of the tension being caused by measurement uncertainties de-
creased significantly. Taken from [3]

2 Conventions

Here is a short overview of the used conventions, to make it clear what is meant
by certain notations in the rest of the thesis.
We make use of natural units, which means that unless otherwise stated:

c = ℏ = 1 (2.1)

We make use of Newton’s dot notation for time derviatives:

ȧ(t) =
d

dt
a(t), ä(t) =

d2

dt2
a(t) (2.2)

When using 4-vectors and tensors, the Einstein summation convention is used,
which means we sum over repeated indices:

aµx
µ = a0x

0 + a1x
1 + a2x

2 + a3x
3. (2.3)

The correct hierarchy of neutrino mass eigenstates is currently unknown. We
will denote the three light neutrino mass eigenstates by νi, with i = 1, 2, 3. These
will denote the mass eigenstates in ascending order of mass. It is important to
remember that this means that the lightest neutrino mass eigenstate ν1, will not
have the same flavour components (labeled νe, νµ, ντ ) in the so called ”normal
hierarchy”, as in the ”inverted hierarchy”. A graphical representation of this is
shown below:
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Figure 2: A figure showing the relation between mass and flavour eigenstates of
the light neutrinos in the normal and inverted hierarchy. Taken from [4]

3 Λ-CDM

The standard cosmological model used in the determination of the Hubble pa-
rameter is called the Lambda-Cold Dark Matter (Λ-CDM) model. The Lambda
refers to the cosmological constant present in this model. The cold dark matter
is matter that is non-baryonic, that is non-relativistic when radiation and mat-
ter were equal in the universe, that cannot cool by radiating photons and that
only interacts with other particles by gravity and possibly a weak force. The
Λ-CDM model assumes large scale isotropy and homogeneity which is supported
by [5] for scales larger than around 100 Mpc. The Einstein equations in this
model look like:

Rµν − 1

2
gµνR = 8πGT eff

µν , where T eff
µν = Tmat

µν +
Λ

8πG
gµν . (3.1)

Here Λ is the cosmological constant this model is named after, and Tmat
µν is

the part of the stress-energy tensor containing all contributions by matter and
radiation. This model uses the Friedmann–Lemâıtre–Robertson–Walker metric
which is given by

gFRWµν = diag

(
1,− a2(t)

1− κr2
,−a2(t)r2,−a2(t)r2 sin2(θ)

)
(3.2)

in spherical coordinates. In this equation we have used natural units (c=1)
and κ denotes the intrinsic spatial curvature of the universe. Results from the
Planck collaboration [6] are in agreement with a spatially flat universe, so we
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will set κ to 0 in our model. This reduces our metric to:

gFRWµν = diag
(
1,−a2(t),−a2(t)r2,−a2(t)r2 sin2(θ)

)
. (3.3)

Having now obtained our metric, it is possible to calculate the Christoffel sym-
bols needed for the calculation of the Ricci tensor and Ricci scalar. The Christof-
fel symbols are calculated from the metric by:

Γµ
νρ =

1

2
gµσ (∂νgσρ + ∂ρgνσ − ∂σgνρ) . (3.4)

Here gµσ denotes the inverse metric and ∂ν denotes the partial derivative with
respect to xν . The non-zero Christoffel symbols for the metric are given below
with a ≡ a(t):

Γt
rr = aȧ Γt

θθ = r2aȧ Γt
ϕϕ = r2 sin2(θ)aȧ (3.5)

Γr
tr = Γθ

tθ = Γϕ
tϕ =

ȧ

a
Γr
θθ = −r Γr

ϕϕ = −r sin2(θ)

Γθ
rθ =

1

r
Γθ
ϕϕ = − cos(θ) sin(θ)

Γϕ
rϕ =

1

r
Γϕ
ϕθ = cot(θ).

All Christoffel symbols are symmetric in their lower indices, so Christoffel sym-
bols with interchanged lower indices have not been written down. The Riemann
curvature tensor can then be calculated as follows:

Rσ
µνρ = ∂νΓ

σ
µρ − ∂ρΓ

σ
µν + Γα

µρΓ
σ
αν − Γα

µνΓ
σ
αρ. (3.6)

The Riemann curvature tensor makes it possible to calculate the Ricci tensor:

Rµρ = Rν
µνρ. (3.7)

The non-zero components of the Ricci tensor will then be equal to:

R00 = −3
ä

a
(3.8)

Rµν = −
(
ä

a
+ 2

ȧ2

a2

)
gFRWµν , µ = ν ̸= 0 (3.9)

We can then calculate the Ricci scalar as:

R = gµρRµρ = −6

(
ä

a
+

ȧ2

a2

)
. (3.10)

3.1 Stress-energy tensor

The only missing part in Einstein’s equations of gravity is the stress-energy
tensor. This tensor describes the density and flux of energy and momentum
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in spacetime. The Λ-CDM model uses the perfect fluid approximation, which
means we assume negligible viscosity, shear stress and heat conduction. This
choice is motivated by the aforementioned assumptions of homogeneity and
isotropy. The stress-energy tensor only has diagonal components in a perfect
fluid. The 00 component is given by the energy density of all relativistic and non
relativistic matter. The other diagonal components are given by the pressure,
which leads to a stress energy tensor of the following form:

Tmat
µν = diag

(
ρ,−PgFRW11 ,−PgFRW22 ,−PgFRW33

)
. (3.11)

Here ρ denotes the total energy density, which includes the non relativistic mat-
ter component and the relativistic radiation component: ρ = ρm + ρr. Here the
subscript m indicates the matter component, and the subscript r indicates the
radiation component of this density. For non-relativistic particles, the kinetic
energy associated with the particles’ temperature, which is responsible for the
matter contribution to the pressure, is very small compared to the much larger
energy density from the mass, i.e. ρm ≫ Pm. So the total pressure produced
by all types of relativistic and non-relativistic matter is approximately given
by just the pressure from radiation. The radiation component of the pressure
has the following dependence on the radiation part of the energy density term:
P = 1

3ρr. This is explained later in this thesis by looking at equation 6.7 and
6.13 in the ultra-relativistic limit. The Einstein equations in the Λ-CDM model
lead to the following equations:

˙ρm + ρ̇r +
ȧ

a
(3ρm + 4ρr) = 0, (3.12)

H2 ≡ ȧ2

a2
=

8πG

3

(
ρm + ρr +

Λ

8πG

)
⇒ Ω̄ ≡ 1 = Ωm +Ωr +ΩΛ. (3.13)

Here Ωm ≡ 8πG
3H2 ρm, Ωr ≡ 8πG

3H2 ρr and ΩΛ ≡ Λ
3H2 are defined as dimensionless

parameters that express the density of the constituent parts. These parameters
allow us to get an upper boundary on the parts in this model. In this model
it is assumed that matter and radiation do not interact with eachother. While
matter and radiation do interact in the very early universe, there was a thermal
equilibrium between the two [7], which is implied by the observation that the
cosmic microwave background is a perfect black body [8]. Since the amount of
photons was large enough to ionize the atoms, it is valid to assume that the
thermal equilibrium was present before the creation of the CMB. Now being
able to describe the photons as a black body photon gas, Tijmen Melssen was
able to show in his bachelor thesis that the radiation energy density has a scale
factor dependence of [9]:

ρr ∝ a−4 (3.14)

This means that while the two components do interact in the early universe, it is
still possible to split equation 3.12 into two equations, that show the dependency
of these energy densities on the scale factor and the redshift:

ρm = ρm,0a
−3 = ρm,0(1 + z)3 (3.15)
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ρr = ρr,0a
−4 = ρr,0(1 + z)4. (3.16)

Here ρm,0 denotes the mass energy density at a redshift of z = 0, and ρr,0
denotes its radiation counterpart. These proportionalities make sense, because
a fixed amount of mass energy density would change inversely proportional to
the volume, which scales with a3 in three spatial dimensions. The (average)
radiation energy density has the same property, but also gets its wavelength
stretched in an expanding universe, causing the total radiation energy to scale
inversely proportional to the scale factor, which is why the total radiation energy
density scales proportional to a−4.
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4 Curvature Dependent Dark Energy model

The Hubble tension can be solved by using a different model of the universe.
Prof. Dr. W.J.P. Beenakker devised a new model to potentially solve this
tension based on the observations in [10]. In this paper it was shown that it
is possible to solve the Hubble tension by introducing a dynamical dark energy
term, which unlike the Λ in Λ-CDM is not constant with respect to time and
may cause matter to not evolve according to ρm ∝ a−3.

4.1 Effect on the Einstein equations

A toy version of this model introduces a scalar-curvature dependency in the
vacuum energy, which turns the vacuum part of the stress-energy tensor into a
dynamical dark-energy contribution

T vac
µν = Cγ

(
−R

6

)γ

gFRWµν (4.1)

that changes while the universe expands. Here Cγ denotes a positive propor-
tionality constant with its dimensions depending on γ. Cγ is required to be
positive to model the measured accelerated expansion of the late time universe.
The prefactor of − 1

6 is to get rid of the factor −6 in the Ricci scalar which is
seen in equation 3.10. We justify this by being able to control the prefactor
with the proportionality constant Cγ . The effective stress-energy tensor is then
given by simply adding the vacuum and matter/radiation part:

T eff
µν = diag

(
ρ,−PgFRW11 ,−PgFRW22 ,−PgFRW33

)
+ Cγ

(
−R

6

)γ

gFRWµν . (4.2)

We can see that if we choose γ to be equal to 0, then our model reduces to the
Λ-CDM model, with Cγ = Λ

8πG .

4.2 CDDE model

To solve the Hubble tension, a γ of 1
2 was chosen, which we will call the Curva-

ture Dependent Dark Energy model (CDDE). This value for γ was chosen due
to the dimension of the Ricci scalar, which is 1

length2 , which in natural units is

proportional to eV2. This means that γ = 1
2 provides the lowest integer solution

for the mass dimension of
(
−R

6

)γ
, and means that Cγ has units of eV3, since

the vacuum part of the stress-energy tensor has units of eV4. Implementing
the stress-energy tensor with a γ of 1

2 into the 00 component of the Einstein
equations gives us:

ȧ2

a2
=

8πG

3

(
ρ+ C1/2

(
ä

a
+

ȧ2

a2

)1/2
)
. (4.3)

Calculating the spatial ii components of the Einstein equations and eliminating
the vacuum term in these equations by a substitution of equation 4.3 we obtain:
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ä

a
=

ȧ2

a2
− 4πG(ρ+ P ). (4.4)

Combining equations 4.3 and 4.4 we obtain the following equation:

ä

a
= −4πG

3

(
ρ+ 3P − β ±

√
β(ρ− 3P + β)

)
. (4.5)

In order to clean up this equation we defined the parameter β ≡ 16πG
3 C2

1/2. To
find out whether the plus or minus sign is correct, we rewrite the equation in
the following form:

ä

a
+

4πG

3
(ρ+ 3P ) = −4πG

3

(
−β ±

√
β(ρ− 3P + β)

)
(4.6)

We know due to the accelerating expansion of the universe that the left-hand
side of the equation has to be larger than 0. We know that C1/2 is positive, so
β is also positive by definition. It is then trivial to see that the minus sign is
the correct one. This yields our acceleration equation:

ä

a
= −4πG

3

(
ρ+ 3P − β −

√
β(ρ− 3P + β)

)
. (4.7)

If we now combine equations 4.4 and 4.7 and then differentiate with respect to
time we obtain:

ρ̇m + ρ̇r +

√
β

4
√
ρm + β

ρ̇m +
ȧ

a
(3ρm + 4ρr) = 0, (4.8)

which alternatively can be expressed in the dimensionless density parameters:

Ω ≡ 1 = Ωm +Ωr +
1

2
Ωβ

(
1 +

√
1 +

Ωm

Ωβ

)
, (4.9)

where we now have the new parameter Ωβ ≡ 8πG
3H2 β. These density parameters

make the difference between the equations in the CDDE model and equation
3.13 in the Λ-CDM model very apparent.

4.3 Matter creation

In the late universe we know that matter and radiation do not interact. This
means we are able to split equation 4.8 into a matter and a radiation part.
Integrating both of these components of equation 4.8 gives us the dependence
of the matter and radiation energy density on the scale factor.

ρr = ρr,0a
−4, (4.10)

ρm

1− 2

1 +
√

ρm+β
β

 1
4

= c0a
−3 (4.11)

11



Here c0 is a constant that is dependent on ρm,0. Comparing this to equations
3.15 and 3.16, we see that the radiation energy density evolves in the same
manner as in the Λ-CDM model, but the matter energy density does not. In
the late universe we know that the matter energy density is going to become a
lot smaller than the dark energy density. This means we can evaluate the limit
of small ρm/β by using Taylor expansions:

lim
ρm/β→0

ρm

1− 2

1 +
√

ρm+β
β

 1
4

≈ ρm

(
1− 2

1 + 1 + ρm

2β

) 1
4

(4.12)

Cleaning this equation up a little and using a second Taylor expansion we see
that:

lim
ρm/β→0

ρm

(
1− 1

1 + ρm

4β

) 1
4

≈ ρm

(
1−

(
1− ρm

4β

)) 1
4

= ρm

(
ρm
4β

) 1
4

(4.13)

Equation 4.11 then gives the following relation between the matter density and
the scale factor:

ρ
5
4
m = c0(4β)

1
4 a−3 ↔ ρm = c

4
5
0 (4β)

1
5 a−2.4 (4.14)

We recall that the proportionality of the matter energy density to the scale fac-
tor in the Λ-CDM model is a−3. This is expected, because an energy density
of a fixed amount of total mass energy will change inversely proportional to the
volume, which scales with a3 due to the expansion in three spatial directions.
The CDDE model has a slower decrease of the matter energy density, meaning
that a fixed amount of total mass energy does not describe the matter energy
density in our model, and there must be matter creation!

This conclusion of course begs the question of what this created matter is com-
posed of. Actually there is a quantum mechanical process that allows the cre-
ation of matter in curved spacetimes with a changing metric[11][12][13]. The
dark energy in the CDDE model is dependent on the curvature, and this means
that the energy scale of our dark energy will be indicative of what type of matter
creation is possible. In order to look at the energy scale of our dark energy term
we recall that this term is part of equation 4.9

Ωm +Ωr +
1

2
Ωβ

(
1 +

√
1 +

Ωm

Ωβ

)
= Ωm +Ωr +ΩDE. (4.15)

If we then recall that the dimensionless density parameters were defined by
Ωi ≡ 8πG

3H2 ρi, the dark energy density will be given by:

ρDE =
1

2
Ωβ

(
1 +

√
1 +

Ωm

Ωβ

)
3H2

8πG
(4.16)

12



The dark energy density here has units of Energy4, so we are actually interested

in ρ
1
4

DE. Thijs van Rossum showed in his master thesis that this energy density is
in the meV range[14]. He also showed that the amount of extra created matter
was equal to 57% of the amount of original matter. We know the created particle
has to have mass, because the R term in our model does not talk to radiation.
The only possible particle that can then be made with this energy scale in the
Standard Model is the neutrino. We will not discuss exotic particle creation and
its consequences in this thesis. Our energy scale implies we will only be able to
create light neutrinos and this imposes two major questions which we will try to
answer in the following sections. First of all, since neutrinos have the properties
of dark matter, we will investigate in section 5 if these produced neutrinos can
explain the observed dark matter which is bound to galaxies. Second of all, the
CDDE model creates an extra 57% extra matter in the form of neutrinos. If
a significant amount of these neutrinos are not bound to galactic halos, then
these neutrinos would form some sort of a background radiation. This begs
the question of possible interference of the CDDE background neutrinos with
the neutrinos of the cosmic neutrino background (CNB). This effect of CDDE
neutrinos on the CNB neutrinos will be investigated in sections 6 and 7.
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5 Phase space density

5.1 Dark matter halos

Cosmologists found an unexpected result when looking at the rotational speed
of objects in galaxies. The rotational velocity of objects in the outskirts of a
galaxy was predicted to diminish with distance from the centre of the galaxy.
This would make sense, because at sufficiently large distances an increase in
the distance from the centre of the galaxy would decrease the strength of the
gravitational effect. This decreased gravitational effect would in turn limit the
rotational velocity of anything bound to the galaxy. However, this expected de-
crease was not measured[15]. At distances beyond the stellar disc of the galaxy
the measured rotational velocity would not decrease immediately, but the rota-
tional velocity would decrease significantly more slowly as shown in figure 3.

Figure 3: Graph showing the expected and measured values of the rotational
velocity as function of distance of objects in a galaxy. Taken from [16]

This result led to the hypothesized existence of a dark matter halo whose parti-
cles exist far beyond the observable part of the galaxy. The effects of this halo
can also be observed in the movement of individual galaxies in galaxy clusters,
gravitational lensing, etc. Dark matter has the properties of not interacting
through the electromagnetic force, which means it has a neutral charge. It also
only interacts with itself or ordinary matter via gravity and at best a weak
force. In his bachelor thesis, Tijmen Melssen showed that (possibly exotic) dark
matter was neccesary in order to explain the CMB measurements. This dark
matter could (partially) consist of the CDDE neutrinos, so we will investigate
this possibility in this section.

Investigating the effect of bound CDDE neutrinos is done by looking at dif-
ferent constraints on the phase space in which these neutrinos live. First we
take a look at the so called fine grained phase space density. This means look-
ing at the fermions at a microscopic level. Second we look at the so called
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coarse grained phase space density which looks at the distribution of neutrinos
at a larger scale belonging to gravitational structures. This larger scale is im-
plemented by assuming a continuous mass distribution, which of course does
not hold at smaller scales, on which the mass is collected into very small dense
regions like stars instead of a continuous density distribution like a gas cloud.
This assumption ”averages” the density, thus making it a less stringent bound
than its fine grained counterpart.

5.2 Fine grained

Looking at a Fermi-Dirac distribution it is possible to see that the fine grained
momentum phase space number density of relativistic neutrinos is bounded from
below in the ultra relativistic limit (p ≡ |p⃗| ≫ mν) by:

ffg(p) =
gν
h3

1

ep/(KBT ) + 1
≤ gν

2h3
. (5.1)

Here gν = 4 for the number of combinations of two spin states and particle
or antiparticle for one neutrino species, KB denotes the Boltzmann constant,
p the momentum and T the temperature. After the neutrinos decouple, both
their energy and temperature decrease proportional to 1+ z which implies that
the shape of the Fermi-Dirac distribution remains unchanged. The quantity ffg
describes the number density of neutrinos per unit volume in momentum space,
which works well for relativistic neutrinos in view of the direct relation Ekin =
p between kinetic energy (which features in the exponent) and momentum.
However when the neutrinos become non-relativistic it is useful to write the
phase space density as the mass density of neutrinos per unit volume in velocity
space. We will denote this as Ffg. This will cause an extra factor of m3

νi
from the

change of momentum to velocity space in three dimensions, where mνi denotes
the mass of mass eigenstate i = 1,2,3 of the neutrino. Changing the number
density into a mass density gives another factor mνi

. Swapping the kinetic

energy from relativistic to non-relativistic Ekin = p → Ekin = 1
2mv2 = p2

2m then
results in the fine grained non relativistic mass density in velocity phase space:

Ffg(v) =
gνm

4
ν

h3

1

emνv2/(2KBT ) + 1
≤ gνm

4
ν

2h3
. (5.2)

5.3 Coarse grained

Our coarse grained phase space density Fcg(x, v) will describe the phase space
density of a finite volume in six dimensional phase space ∆3x∆3v. Here we will
model the mass density as a continuous mass density to look at gravitational
effects, instead of using the very small very dense regions of mass due to a galaxy
constisting of mainly compact objects. Due to this ”macroscopic approach”, the
coarse grained density will be bounded from above by the fine grained density:
Fcg ≤ Ffg. If we take a closer look at galactic halos, we assume the mass density
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of the dark matter in the halo to follow

ρh(r) =
ρ0(

r
rc

)1+β (
1 + r

rc

)2−β
(5.3)

with ρ0 the core density, r the distance from the centre of the galaxy, rc the
radius of the core of the halo and β a free parameter with −1 ≤ β ≤ 0. This
parameter β is introduced to show what happens to different profiles in these
calculations. For example by setting β to 0 we obtain the Navarro-Frenk-White
profile (NFW profile). The restriction on β is implemented to ensure the density
in the inner part of the galaxy does not increase faster than NFW, which matches
observations[17]. In the very outer parts of the dark matter halo (r ≫ rc),
this density distribution has the same properties as the NFW density profile,
regardless of the value of β. Looking at the inner core of the galaxy (r ≪ rc),
it can be seen that the density equation becomes less complex. Both results are
shown below:

ρh(r) =

{
ρ0
(
rc
r

)1+β
for r ≪ rc

ρ0
(
rc
r

)3
for r ≫ rc

. (5.4)

In order to further investigate the behaviour of neutrinos in bound systems we
take a look at the Jeans equations. In this section we will use the previously
mentioned β parameter density profile. In appendix A we do the same calcula-
tions for the isothermal density profile, which is constant for small r and falls of
∝ r−2 for large r. The Jeans equations describe the motion of a collection of col-
lisionless objects in a gravitational field. With these equations we will be able to
find the one dimensional velocity dispersion of the particles in this gravitational
field, which will be used to determine maximum neutrino density in velocity
phase space. The Jeans equations are quite complex, but become significantly
more manageable when we assume a steady state hydrodynamic equilibrium
(∂/∂t = 0 and v̄r = 0), where v̄r denotes the average radial velocity. Spherical
symmetry is also assumed for the dark matter halo, which implies that v̄θ = 0,
where v̄θ denotes the tangential velocity. Lastly the velocity dispersion tensor
is assumed to be isotropic, which means that σr(r)

2 = σθ(r)
2 ≡ σ(r)2, the

square of the one dimensional velocity dispersion, which is the variance of a
Gaussian velocity distribution. This one dimensional velocity dispersion σ(r)
is the standard deviation of the velocities. In spherical coordinates the radial
Jeans equation is then given by:

∂(ρσ(r)2)

∂r
+ ρ

∂Φ

∂r
= 0. (5.5)

In this equation ρ denotes the mass density, which in our case is equal to ρh(r),
and Φ denotes the gravitational potential. This equation gives us the velocity
dispersion if the gravitational potential is known, so we will solve Poisson’s
equation for gravity to get this potential:

∇2Φ = 4πGρ. (5.6)
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Writing this in spherical coordinates and substituting the halo mass density
ρh(r) as the mass density ρ, turns this equation into:

1

r2
∂

∂r

(
r2

∂Φ

∂r

)
=

4πGρ0(
r
rc

)1+β (
1 + r

rc

)2−β
. (5.7)

Multiplying by r2, integrating both sides from 0 to r with respect to r′ and
introducing x ≡ r′/rc for practical purposes:

r2
∂Φ

∂r
= 4πGρ0r

3
c

∫ r
rc

0

x1−β(1 + x)β−2dx. (5.8)

This gives the required value for the radial derivative of the gravitational po-
tential:

∂Φ

∂r
=

4πGρ0r
3
c

r2

[
x2−β

2− β
2F 1(2− β, 2− β; 3− β;−x)

] r
rc

0

. (5.9)

Here 2F1(a, b; c;x) denotes the hypergeometric function. For small x the ex-

pression x2−β

2−β 2F1(a, b; c;x) behaves as x2−β

2−β , which means that as x → 0 the
previous expression also goes to 0. This means equation 5.9 evaluates to

∂Φ

∂r
= 4πGρ0r

3
c

(r/rc)
2−β

r2(2− β)
2F 1(2− β, 2− β; 3− β;−r/rc). (5.10)

This expression makes it possible to solve the Jeans radial equation. To solve
the radial Jeans equation for our dark matter distribution ρh(r), we need to
integrate equation 5.5 with respect to r:

ρh(r)σ(r)
2 = ρ0C −

∫ r

0

ρh(r
′)
∂Φ

∂r′
dr′. (5.11)

Here ρ0C is a constant due to the boundaries of the integration. In the outer
parts of the galaxy, our density profile goes as ρh(r ≫ rc) ∝ r−3. Implementing
this into the radial Jeans equation shows that the r dependency of σ(r)2 is
less than r3. This means that when r goes to infinity, ρh(r)σ(r)

2 goes to 0.
Implementing this condition into the equation above yields:

lim
r→∞

ρh(r)σ(r)
2 = ρ0C −

∫ ∞

0

ρh(r
′)
∂Φ

∂r′
dr′ = 0 ⇒ ρ0C =

∫ ∞

0

ρh(r
′)
∂Φ

∂r′
dr′.

(5.12)
Substituting this result and the result from equation 5.10 into equation 5.11:

ρh(r)σ(r)
2 =

∫ ∞

r

4πGρ20r
3
c (r

′/rc)
2−β(

r′

rc

)1+β (
1 + r′

rc

)2−β

2F 1(2− β, 2− β; 3− β;−r′/rc)

(r′)2(2− β)
dr′.

(5.13)
Again substituting x ≡ r′/rc yields

ρh(r)σ(r)
2 =

4πGρ20r
2
c

2− β

∫ ∞

r/rc

2F 1(2− β, 2− β; 3− β;−x)

(1 + x)2−βx1+2β
dx. (5.14)
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This gives us an expression for σ(r)2 which can be used to calculate the maxi-
mum velocity phase space density. Velocity distributions in dark matter halos
are usually modelled by a Maxwellian velocity distribution [18]. This models a
large number of non relatvisitic, non interacting particles. This model is backed
up by the fact that equation 5.2 turns into a Maxwellian distribution when
mνv

2 ≫ 2KBT . The fraction of particles in an infinitesimal volume of velocity
phase space d3v is equal to

f(v)d3v =
1

(2πσ(r)2)
3
2

e
− v2

2σ(r)2 d3v. (5.15)

The maximum value of this function is equal to (2πσ(r)2)−
3
2 . This will be used

when we are looking for the maximum coarse grained six-dimensional phase
space mass density. The coarse grained six-dimensional phase space mass den-
sity is equal to the product of the velocity phase space number density and the
position space mass density. These values can be found in equations 5.15 and
5.3. Combining these two yields a coarse grained six-dimensional phase space
mass density of

Fcg(r) =
ρh(r)

(2πσ(r)2)
3
2

. (5.16)

The maximum value for the coarse grained six-dimensional phase space mass
density can now be calculated for any value of β if the core radius and core
density for this model are known. One of the most popular models is the
Navarro–Frenk–White density profile. Our β dependent density profile becomes
the NFW profile when β is set to 0. The values for the core density and core ra-
dius in this model are known to be rc = 24.42 kpc and ρ0 = 0.184 (GeV/c2)/cm3.
When β is set to 0, equation 5.14 shows σ(r)2 to be equal to:

σ(r)2 = 2πGρ0r
2
c

(
r

rc

)(
1 +

r

rc

)2 ∫ ∞

r/rc

2F 1(2, 2; 3;−x)

(1 + x)2x
dx. (5.17)

Substituting this result into equation 5.16 shows that Fcg(r) has no maximum,
as it diverges to infinity as r goes to 0. Our calculations however, depend on
the assumption of a continuous density profile. This assumption is not justified
for the very inner parts of the galaxy, because these parts of the galaxy are
more granular. Black holes for example will trap a lot of matter into a small
part of space, which resembles a more discrete mass distribution. The transition
between a more continuous to a more discrete looking distribution of mass is
not exactly defined, but for profiles that are similar to our β dependent density
profile innermost resolved radii ∼ 10−2rvir ≈ 2 kpc are used, and we will denote
this minimum value for the radius as r∗ [19]. Since this is a bit of a flexible
cutoff, we will also look at a radius of 3 kpc to see the impact of moving this
cutoff point. The NFW profile has a known core density and radius, being
rc = 24.42 kpc and ρ0 = 0.184 (GeV/c2)/cm3[20]. Substituting these values
into the above equations yields the maximum six-dimensional coarse grained
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phase space mass density:

Fcg,NFW(r∗) =

(
r∗
rc

)− 5
2
(
1 + r∗

rc

)−5

(2π)3ρ
1
2
0 r

3
c

(
G
∫∞
r∗/rc

2F 1(2,2;3;−x)
(1+x)2x dx

) 3
2

(5.18)

We know that the maximum coarse-grained six dimensional phase space mass
density is bounded from above by its fine-grained counterpart from equation
5.2, which leads to a bound on the neutrino mass:

Fcg,NFW(r∗) ≤
gνm

4
ν

2h3
. (5.19)

mν ≥
(
2h3Fcg,NFW(r∗)

gν

) 1
4

. (5.20)

This leaves us with a constraint on the allowed mass of the neutrino mass
eigenstates bound to the centre parts of a dark matter halo. Taking gν = 4 for
the number of combinations of two spin states and particle or antiparticle for
one neutrino species, we obtain

mν ≥
(
2h3Fcg,NFW(r∗)

gν

) 1
4

= 44.89
eV

c2
. (5.21)

The same process for an innermost resolved radius of r∗ = 3 kpc gives a value of
mν ≥ 37.27 eV/c2. This equation only takes into account one type of neutrino,
but the sum of the neutrino masses is orders of magnitude smaller than this
number [21], so dark matter has to be predominantly explained by some other
(exotic) form of dark matter. It is important to note here that we solved the
Jeans equations for a mass density profile which only accounted for dark matter.
This means that a part of this mass can be supplied by the non-dark matter.
Since our result shows that the required neutrino mass is multiple orders of
magnitude larger than the masses the CDDE model can produce, it is safe to
say that even when all the assumptions are accounted for, bound neutrinos
cannot explain all dark matter. This leads us to a follow-up question; we have
only investigated neutrinos that are bound to galaxies, but the CDDE model
can also produce neutrinos that are not bound to galaxies. These neutrinos will
function as a ”background”, and its effects on the cosmic neutrino background
(CNB) will be investigated in sections 6 and 7.
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6 CNB temperature

6.1 Introduction to the CNB

As discussed at the end of section 4, it is possible for the neutrinos created in the
CDDE model to impact the so called cosmic neutrino background (CNB). As
such it is instructive to look at what the CNB is, and to look at its properties.
The CNB is a relic of the Big Bang, where all electrons, protons, neutrons and
neutrinos were in thermal equilibrium, due to weak force interactions. When
the universe cooled to approximately 1 MeV at z = 3 ·109 [14], neutrinos decou-
pled from the other matter [22]. Neutrino decoupling means that the neutrinos
do not have a significant amount of interaction anymore with the other matter
present. Neutrinos only very rarely interact with matter, and as such there is a
background of neutrinos all over the universe, which is called the CNB. One im-
portant property of the CNB is its current temperature, and this will be derived
in subsection 6.3. This temperature can be used to take a look at the current
CNB neutrino number density in the universe. Comparing this number density
to the number density of the CDDE neutrinos gives insight into the possibility
of ”noise” in the CNB due to CDDE neutrinos.

6.2 CNB pressure and energy density

In order to derive the CNB temperature and number density in subsection 6.3,
some intermediate results are neccesary. In this section the energy density and
pressure of the CNB will be derived along with the photon energy density in
order to calculate the so called effective number of degrees of freedom gf . I how-
ever find ”effective energy density contribution parameter” a better descriptor
for what this parameter entails, and as such this will be what gf will be called
in this bachelor thesis.

To calculate the energy densities it is assumed that the universe is isotropic,
which is supported by the measurements that show large scale isotropy in the
current universe [5]. A thermal equilibrium is also assumed, because the collision
rate between photons and charged particles was significantly larger than the ex-
pansion rate of the early universe. Thermal equilibrium in an isotropic universe
implies that the matter in the universe expands adiabatically. The entropy per
comoving volume stays constant over an adiabatic reversible process[23], and as
the universe expands, this comoving volume will scale with a3 so:

s(T )a3 = constant, (6.1)

with s(T ) the entropy density of the universe which depends on the temperature.
The second law of thermodynamics then tells us that the change in entropy in
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a system of volume V due to an adiabatic change is given by:

d(s(T )V ) =
d(ρ(T )V ) + p(T )dV

T
(6.2)

Expanding the brackets leads to

ds(T )V + dV s(T ) =
dρ(T )V + ρ(T )dV + p(T )dV

T
, (6.3)

and looking at the terms with dV gives us the entropy density:

s(T ) =
ρ(T ) + p(T )

T
(6.4)

Equating the dT terms and using equation 6.4 gives us conservation of energy:

T
dp(T )

dT
= ρ(T ) + p(T ) (6.5)

In order to find the energy density of the CNB and the photons we start out
with the number density of a species of particle/antiparticle with |p⃗| between p
and p+ dp, which is given by:

n(p, T )dp =
4πgsp

2dp

(2πℏ)3

(
1

e
√

p2+m2/KBT ± 1

)
(6.6)

This result is obtained by taking the number of momentum states per volume
element with |p⃗| between p and p+dp and multiplying this by the average distri-
bution (Fermi-Dirac or Bose-Einstein) for this momentum state. This equation
uses a + for fermions and a − for bosons. Here KB denotes the Boltzmann
constant and the gs in this equation is equal to the amount of independent spin
states of the particle, which for spin 1/2 fermions is 2. For photons this is also 2
due to the two possible helicity values. It is now possible to express the energy
density as follows:

ρ(T ) =

∫ ∞

0

n(p, T )dp
√
p2 +m2 (6.7)

Here the energy density equation is simply given by integrating the number
density multiplied by the corresponding energy over the entire momentum space.
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The derivation for the pressure is a little more complex. Assume space to be
homogeneously and isotropically filled with particles and let’s look at a small
area dA, with a normal vector to this area called n̂. We then know that all
the particles that hit this area with a velocity of v⃗ = |v⃗|v̂ ≡ vv̂ between t and
t+dt must be located on a spherical shell with radius R = vt and a thickness of
vdt. A graphical representation of this is given in figure 4 below: We can then

Figure 4: A graphical representation of the volume element dV . Modified from
[24]

express the corresponding volume element dV on this shell by using the solid
angle spanned by this volume element dΩ ≡ sin θdθdϕ:

dV = R2vdΩdt (6.8)

Multiplying this by the number density 6.6 we obtain the number of particles
in this volume element dNdp with |p⃗| between p and p+ dp;

dNdp = n(p, T )dpR2vdΩdt (6.9)

We need to take into account that only the particles directed at the surface area
will reach the area, so with the previous condition of isotropy we can find the
total number of relevant particles reaching the area element dA with velocity
direction v̂ to be:

dNAdp =
|v̂ · n̂|
8πR2

dAdNdp =
|v̂ · n̂|
8π

n(p, T )vdpdΩdtdA, (6.10)

where we have an extra factor 1
2 due to only the negative values of v̂ · n̂ con-

tributing. We know that pressure can be seen as the change of momentum per
unit of area per unit of time, and we know that a particle that bounces elasti-
cally off a wall with normal vector n̂ transfers 2|p⃗ · n̂| of its momentum. This
means the total pressure contribution of the particles with |p⃗| between p and
p+ dp will be given by:

ρP (p, T )dp = 2pdp

∫
|v̂ · n̂|
dAdt

dNA =
n(p, T )

4π
pvdp

∫
(v̂ · n̂)2dΩ, (6.11)
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where we have used that the direction of p⃗ and v⃗ are the same, so |p⃗ ·n̂| = p|v̂ ·n̂|.
If we then use that v = p/E we obtain:

ρP (p, T )dp = n(p, T )
p2dp

4πE

∫ 2π

0

dϕ

∫ π

0

cos2(θ) sin(θ)dθ, (6.12)

where we have used that the area element dΩ = sin(θ)dθdϕ and that |v̂ · n̂|2 ≡
cos2(θ). Integrating over dp gives the equation for the total amount of pressure:

P (T ) =

∫ ∞

0

n(p, T )dp
p2

3
√
p2 +m2

(6.13)

In the early universe all matter is ultra relativistic, so we take a look at the
ultra relativistic limit: p ≫ m. In this limit equations 6.7 and 6.13 show
that P (T ) = ρ(T )/3 which in turn makes equation 6.5 turn into the Stefan-
Boltzmann law (ρ = gfaBT

4) where gf denotes the effective energy density
contribution parameter and aB is a constant. These coefficients follow from the
equation below:

ρ(T ) = gs

∫ ∞

0

4πp3dp

(2πℏ)3

(
1

ep/KBT ± 1

)
. (6.14)

Here the minus sign is for bosons, and the plus sign for fermions. When we
substitute x = p

KBT , this simplifies to:

ρ(T ) =
gs

2π2ℏ3

∫ ∞

0

p3dp

ep/KBT ± 1
=

gsT
4K4

B

2π2ℏ3

∫ ∞

0

x3dx

ex ± 1
. (6.15)

The integral part evaluates to:∫ ∞

0

x3dx

ex ± 1
=

{
6Li4(1) =

π4

15 for bosons(−)

−6Li4(−1) = 7π4

120 for fermions(+)
, (6.16)

where Li represents the polylogarithm. This means that ρ(T ) evaluates to:

ρ(T ) =

{
gsK

4
Bπ2

30ℏ3 T 4 =
K4

Bπ2

15ℏ3 T 4 for photons
7gsK

4
Bπ2

240ℏ3 T 4 =
7K4

Bπ2

120ℏ3 T 4 for spin 1
2 fermions

, (6.17)

where gs is 2 for spin-
1
2 fermions due to the two spin states and also 2 for photons

due to the helicity. If we now introduce a constant aB =
K4

Bπ2

30ℏ3 then equation
6.17 reduces to:

ρ(T ) =

{
2aBT

4 for photons
7
4aBT

4 for spin 1
2 fermions

. (6.18)

23



6.3 CNB temperature and number density

The universe was at thermal equilibrium before neutrinos decoupled, and since
both the photon temperature and the neutrino temperature cooled by cosmic ex-
pansion, both temperatures stayed equal. This is until the temperature dropped
below the temperature needed for two photons to create an electron-positron
pair (γγ → e+e−), and only electron-positron annihilation (e+e− → γγ) re-
mained. The positrons and electrons transferred their heat and entropy to the
photons which in turn increased the photon temperature. This means the ratio
of the temperature of the photons before the electron-positron annihilation and
the temperature after is the same as the ratio of the temperature of the neu-
trinos and the temperature of the photons after annihilation. We assume the
entropy to be approximately conserved, giving us:

s ∝ gfT
3 (6.19)

This equation is obtained by recalling that in the ultra relativistic limit P (T ) =
ρ(T )/3, and using this result with equation 6.4. Once all the reactions stop,
the entropy will vary very little for temperatures below the temperature where
most positrons and electrons annihilated and we can use equation 6.19 to find:

T1

T2
=

(
g2
g1

) 1
3

(6.20)

The neutrino temperature T1 ∝ Tν is the lowest temperature where the produc-
tion and annihilation of electron-positron pairs are still in equilibrium and the
photon temperature T2 ∝ Tγ is a slightly higher temperature, because of the
transferred heat from the positron-electron annihilation. The coefficients g1 and
g2 are determined by a sum, based on the effective energy density contribution
parameters of the associated particles. These can be seen in equation 6.17. T1

has electron-positron creation and annihilation influencing the photon temper-
ature, so it sums the influence of these three particles. T2 only has photons, so
g2 is simply 2, and this gives us the ratio between the temperatures:

Tν

Tγ
=

T1

T2
=

(
g2
g1

) 1
3

=

(
2

2 + 7
4 + 7

4

) 1
3

=

(
4

11

) 1
3

≈ 0.714 (6.21)

With a present-day CMB temperature of Tγ,0 = 2.725K [25] we can then calcu-
late the present-day CNB temperature:

Tν,0 =

(
4

11

) 1
3

Tγ,0 ≈ 1.95K (6.22)

Note that the result of the equation above assumes the neutrinos to be ultra-
relativistic, and as such will almost certainly not be applicable to the highest
mass eigenstate. The CNB temperature is needed to calculate the current CNB
number density, which will be used to look at the effect of the neutrinos created
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in the CDDE model on the CNB. Integrating the number density of a neu-
trino with its momentum |p⃗| between p and p+ dp from equation 6.6, gives the
(anti)neutrino mass eigenstate number density as a function of temperature in
the relativistic limit:

ρN (T ) =

∫ ∞

0

4πp2dp

(2πℏ)3

(
1

ep/KBT + 1

)
(6.23)

=
1

π2ℏ3

∫ ∞

0

p2dp

ep/KBT + 1
=

T 3K3
B

π2ℏ3

∫ ∞

0

x2dx

ex + 1
=

T 3K3
B

π2ℏ3
3ζ(3)

2
. (6.24)

It is now possible to find the current CNB (anti)neutrino mass eigenstate number
density, by substituting the current CNB temperature value and multiplying by
c3, to compensate for natural units;

ρN (Tν,0) ≈ 5.62 · 107m−3. (6.25)

This is the number density for one single mass eigenstate of neutrino, or one mass
eigenstate of antineutrino. This calculation rests on the assumption of enough
energy in the early universe, to not have a preference for mass eigenstates, and
equal amounts of matter and antimatter being produced. This result cannot be
used for the highest mass eigenstate, due to the assumption of relativistic par-
ticles. A follow-up study will need to look at the epoch when certain neutrinos
become non relativistic. The influence of this assumption on our results will be
discussed in section 7.2.
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7 Filling the universe and CNB noise

To obtain the correct numerical results, this section will not use c = ℏ = 1.

7.1 Filling the universe

Neutrinos cannot all be bound, so can neutrinos be the particles that describe
our matter creation. To look into this question we take a look at the fermi
energy of ground state neutrinos in a box, which is equal to:

EF =
ℏ2

2mν

(
6π2

2S + 1

) 2
3

ρ
2
3

N =
ℏ2

2mν
(3π2)

2
3 ρ

2
3

N . (7.1)

Here S denotes the spin value of the particles, which for neutrinos is equal to
1
2 . Rewriting this as a function of ρN gives:

ρN =

(
2mνEF

ℏ2

) 3
2 1

3π2
. (7.2)

We recall that the CDDE model only has the possibility to create non-relativistic
particles, so the Fermi energy, which is equal to the kinetic energy of the highest
energy particle is given by Ekin = 1

2mνv
2
F = EF . Substituting this in the

previous equation gives us the particle density as a function of the velocity of
the neutrino with the highest velocity

ρN =
1

3π2

(mνvF
ℏ

)3
. (7.3)

The total contribution to the mass of the observable universe is given by the
number density multiplied by the volume of the universe VU and the mass of
the neutrino mν :

mtot,ν = ρNVUmν =
VUmν

3π2

(mνvF
ℏ

)3
. (7.4)

The created dark matter particles in the CDDE model add 57% extra mass on
top of the mass in the Λ-CDM model. Using this information it is possible to
calculate the relation between the neutrino mass and the Fermi velocity which
makes this amount of mass possible:

mtot,ν = 0.57mtot,U ⇒ m4
νv

3
F =

1.71π2ℏ3mtot,U

VU
. (7.5)

Using this ratio it is possible to determine the needed mass of neutrinos in
order to achieve this amount of extra mass. We recall that we cannot produce
relativistic neutrinos, and since the threshold for relativistic particles is a little
ambiguous, we will take relativistic particles to be particles whose kinetic energy
is in the same order of magnitude as the mass. The kinetic energy of a relativistic
particle with mass m0 is given by:

Ekin = (γ − 1)m0c
2. (7.6)
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Here γ ≡ 1/
√
1− v2/c2. Equating this to the mass energy of a particle at rest:

m0c
2 = (γ − 1)m0c

2 ⇒ γ = 2 ⇒ v =

√
3

2
c ≈ 0.866c. (7.7)

We substitute this result into the Fermi velocity of equation 7.5 to obtain the
minimal value for the lowest neutrino mass eigenstate which allows this neutrino
to account for the 57% mass increase

mν ≥
(
8 · 1.71π2ℏ3mtot,U

3
√
3VUc3

) 1
4

≈ 3.99
meV

c2
. (7.8)

Here the value for mtot,U has been taken to be approximately 1
0.15 · 1.2 · 1053 =

8·1053kg. Where 1.2·1053kg is the total ”non-dark” mass of the universe[26], and
the fraction 1

0.15 comes from 85% of the total mass being dark matter and 15%
”non-dark” matter[27]. The value for VU is equal to 3.57·1080m3 [28]. With this
minimal neutrino mass eigenstate mass, it can now be said that in the CDDE
model, the 57% extra mass can be accommodated by neutrino production, if
two conditions are met.

1: The mass of the lowest neutrino mass eigenstate must be larger
than the bound in equation 7.8.
2: The neutrino mass must be in the meV range to be eligible for
production in the CDDE model.

The order of mass eigenstates is currently unknown, but has been reduced to
two options: normal hierarchy and inverted hierarchy as can be seen in figure
2. If the so called ”normal hierarchy” is correct, then the difference between
the two lightest mass eigenstates is around 8 meV [8]. This means that if the
lightest mass eigenstate is below the above-given bound, the second lightest
mass eigenstate will be eligible for production in the CDDE model, and can
thus account for the 57% mass increase. If the ”inverted hierarchy” is correct,
then the difference between the lowest two eigenstates is around 50 meV. This
means that if the lowest mass eigenstate neutrino is lighter than the above-given
minimum, neutrinos cannot account for the 57% mass increase, due to the fact
that, if at all possible, the production of the second lightest mass eigenstate by
the CDDE model will be heavily suppressed. This means some other particle
will have to provide an additional contribution to the extra 57% of mass in the
universe, or the mass creation in the CDDE model has ended prematurely. An
explicit model for mass creation is needed to research the second possibility,
which is outside the scope of a bachelor thesis.

7.2 CNB noise

The creation of the highest neutrino mass eigenstate is, if at all possible, heav-
ily suppressed in the CDDE model. This means that the noise produced by
CDDE neutrinos when measuring the CNB will be negligible for heavy mass
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eigenstates. This means we will only look at the lighter mass eigenstates, which
justifies the assumption of ultrarelativistic CNB neutrinos when calculating the
CNB number density. In order to take a look at this possible noise in CNB
measurements due to CDDE neutrinos, the neutrino number density needs to
be calculated. This is done by combining equations 7.4 and 7.5 to yield:

ρN =
0.57mtot,U

mνVU
(7.9)

The question now arises of what mass to choose for this equation. The CDDE
model only allows for creation in the meV range, so we will choose a mass of 10
meV to probe the density. This gives us an expression for the neutrino number
density:

ρN =
0.57 · 4.49 · 1089eV

3.57 · 1080m3 · 10 meV
≈ 7.17 · 1010m−3. (7.10)

This is the number density for all neutrino mass eigenstates and all antineu-
trino mass eigenstates combined. This shows there will be a significantly higher
amount of neutrinos present in a CDDE universe than expected from just the
CNB. Trying to detect neutrinos is notoriously difficult, and experiments like
PTOLEMY detect neutrinos by using an interaction involving an electron neu-
trino. This type of experiment only measures neutrinos that are in the elec-
tron flavour eigenstate, and since certain mass eigenstates favour certain flavour
eigenstates, experiments using such a detection method will have a bias towards
certain mass eigenstates. This means that until experiments have a sufficiently
high resolution to be able to distinguish the mass eigenstates of the electron
neutrino, it is important to take the differing flavour components of the mass
eigenstates into account when predicting noise. The order of the hierarchy of
masses is currently unknown, but it has been narrowed down to two options
called ”normal hierarchy” and ”inverted hierarchy”. In the following two sub-
sections we will take a look the impact of CDDE neutrinos at experiments that
only detect electron neutrinos, such as PTOLEMY.

7.2.1 Inverted hierarchy

In the inverted hierarchy, the gap between the lowest two neutrino mass eigen-
states is approximately 50 meV. This means the production of ν2 is either not
possible or heavily suppressed, so we only have to take a look at ν1. Since
ν1 has in that case an electron flavour component of ≈ 2.5% [8], 2.5% of the
produced CDDE neutrinos will be in the electron flavour eigenstate. Let’s as-
sume the CNB neutrino mix to consist of equal parts electron, muon and tau
neutrinos. This is justified because the early universe was energetic enough to
produce all three mass eigenstates and neutrino oscillation will then cause an ap-
proximately equal flavour split for CNB neutrinos. Let’s also assume CNB and
CDDE neutrinos to be made up of an equal amount of neutrinos and antineu-
trinos. Combining these assumptions and the results from equations 6.25 and
7.10, we can calculate the amount of electron (anti)neutrinos from the CDDE
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model per electron (anti)neutrino from the CNB. The total number density of
CDDE electron (anti)neutrinos will be equal to

0.025 · 0.5 · 7.17 · 1010m−3 = 8.96 · 108m−3 (7.11)

because 2.5% of ν1 are in the electron flavour eigenstate, and half the neutrinos
are assumed to be antineutrinos. This factor of 0.5 should be removed in the
case that neutrinos are majorana particles. A similar approach for CNB electron
neutrinos with indistinguishable mass eigenstates, would be done by multiplying
the CNB density from equation 6.25 by 3, for the three mass eigenstates, and
subsequently dividing by 3, because one third of those neutrinos is in the electron
flavour eigenstate. There is no factor 0.5 for antineutrinos here, since equation
6.25 already gives the density for neutrinos or antineutrinos. This calculation
trivially returns the value of 5.62 · 107m−3, which would mean there would be
approximately 15.9 CDDE neutrinos measured for every CNB neutrino. If it is
the case that the experiment can distinguish between the mass eigenstates of
the measured electron neutrinos, then the CNB electron flavour density of ν1
would be given by:

0.025 · 5.62 · 107m−3 ≈ 1.41 · 106m−3. (7.12)

This means that an experiment that can distinguish between mass eigenstates
will detect approximately 635 CDDE ν1 electron neutrinos for every CNB neu-
trino in the same state. This noise means that the CNB cannot properly be
observed by measuring the lowest mass eigenstate component of the electron
neutrinos. An important assumption here is that this result is dependent on
the lowest mass eigenstate being equal to 10 meV. If the energy of the low-
est mass eigenstate was equal to 1 meV, there would be 10 times more CDDE
neutrinos, as can be seen from equation 7.9, and the ratio would become 1
CNB neutrino to 159 CDDE neutrinos for experiments that cannot distinguish
mass eigenstates, and 1 to 6350 for experiments that can. A lowest mass eigen-
state of 30 meV would yield 3 times less noise on CNB measurements, but the
production of neutrinos around this mass would get increasingly surpressed.
This implies that if the universe gains 57% extra mass, due to CDDE model
neutrino production, electron based CNB detection experiments will measure
significantly more CDDE neutrinos then CNB neutrinos. If the mass is lower
than 10 meV, the share of CNB neutrinos will become substantially smaller.

7.2.2 Normal hierarchy

If normal hierarchy is the correct hierarchy, there will be a mass gap of ap-
proximately 8 meV/c2 from ν1 to ν2. ν1 and ν2 will have an electron neutrino
component of approximately 2/3 and 1/3 respectively [8]. The CDDE model has
a possibility of producing two neutrino mass eigenstates, and information about
the working of neutrino production in the CDDE model, and values for the
mass eigenstates are needed to calculate the ratio of produced ν1 to ν2. This
means we will make the assumption that the production of ν2 is suppressed,
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since the production of higher masses gets supressed by the CDDE model. If all
the neutrinos are in the lowest mass eigenstate, that leads to a number density
of

ρN =
2

3
· 0.5 · 7.17 · 1010m−3 ≈ 2.39 · 1010m−3 (7.13)

ν1 in the electron flavour state. This will result in approximately 425 times more
CDDE electron neutrinos than CNB for experiments that do no distinguish
mass eigenstates, and 635 times more CDDE neutrinos for experiments that
do distinguish between mass eigenstates. It is important to note that these
calculations depend on all the neutrinos being in the lowest mass eigenstate. In
this hierarchy it is very plausible that the second mass eigenstate is eligible for
creation by the CDDE model. But the production of this mass eigenstate will
be supressed because it is heavier, and even if the model produces significantly
less ν1, because of ν2 production, the CDDE neutrinos will still significantly
outnumber the CNB neutrinos.
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8 Outlook and conclusions

In this thesis we showed a process for determining the minimum mass that a
fermionic particle must have to obey the Jeans equations for a gravitationally
self sustained density profile. Calculations were done for two different density
profiles (NFW and isothermal) with similar results. These calculations showed
that neutrinos produced by the CDDE model cannot explain all dark matter,
and thus a different form of (exotic) dark matter still has to account for the
effects seen in galaxies. This lead to the investigation of neutrinos that are not
bound to galaxies. It was shown that all the extra matter created in the CDDE
model can be explained by neutrinos, if a produced neutrino mass eigenstate is
heavier than 3.99 meV

c2 . This means that if the neutrino mass eigenstates are or-
dered as the normal hierarchy, then the 57% mass increase will be accomodated
by neutrinos if ν1 is light enough to be produced by the CDDE model. It was
shown that in the inverted hierarchy, ν1 has to be light enough to be produced
and heavier than 2.24 meV

c2 to account for the 57% mass increase. The number
densities of the CNB and the neutrinos produced by the CDDE model were cal-
culated, and the electron components of the respective models were compared.
It was shown that for a lowest mass eigenstate of 10 meV

c2 , the lowest ratio be-
tween CDDE and CNB neutrinos, is equal to 15.9 CDDE neutrinos for every
CNB neutrino. This is the case when neutrino masses are ordered by inverted
hierarchy, and the experiment cannot distinguish between mass eigenstates of
the electron neutrinos. This shows that even if the lowest neutrino mass is heav-
ier than 10meV

c2 , CDDE neutrinos will outnumber CNB neutrinos significantly
if the CDDE neutrinos can account for the 57% mass increase in the universe.
This would make detecting the influence from CNB neutrinos in electron based
detection very hard, if possible at all for light ν1.
Possible future research could look deeper into the workings of the CDDE model,
to discover what the limits on particle production are. These limits would make
it possible to make more precise statements about the amount of noise in the
CNB due to CDDE neutrinos, without knowing the neutrino mass.
Lastly I would like to mention the upcoming research by Pieter Oosterhoff. He
will be doing additional research about the effects of neutrino production in the
CDDE model on the measurements of the upcoming PTOLEMY experiment
and the non-relativistic aspects of late-time neutrinos.
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A Jeans equations for an isothermal density pro-
file.

The isothermal mass profile is given by:

ρiso(r) =
ρ0

1 +
(

r
rc

)2 . (A.1)

The poisson equation is again:

∇2Φ = 4πGρ. (A.2)

Writing this in spherical coordinates, substituting the isothermal mass density
ρiso(r) as the mass density ρ and recalling that ρiso(r) is spherically symmetric
turns this equation into:

1

r2
∂

∂r

(
r2

∂Φ

∂r

)
= 4πG

ρ0

1 +
(

r
rc

)2 . (A.3)

Multiplying by r2, and integrating both sides with respect to r′ from 0 to r:

r2
∂Φ

∂r
=

∫ r

0

4πGρ0
r′2

1 +
(

r′

rc

)2 dr′ = 4πGρ0r
2
c

(
r − rc arctan

(
r

rc

))
. (A.4)

Dividing both sides by r2 yields the spatial derivative of the gravitational po-
tential in our density profile

∂Φ

∂r
= 4πGρ0

(rc
r

)2(
r − rc arctan

(
r

rc

))
. (A.5)

It is now possible to solve the spherical Jeans equation as described in equation
5.5, by substituting the expression found above for ∂Φ

∂r , and the isothermal
density profile ρiso(r) as the density:

∂

∂r
ρiso(r)σ(r)

2 = −4πGρ20

(rc
r

)2 (r − rc arctan
(

r
rc

)
1 +

(
r
rc

)2 . (A.6)

This equation can be solved by integrating both sides from 0 to r:

ρiso(r)σ(r)
2 = ρ0C − 4πGρ20rc

∫ r

0

(rc
r′

)2 r′

rc
− arctan

(
r′

rc

)
1 +

(
r′

rc

)2 dr′. (A.7)

Introducing the substitution x = r′/rc to solve the integral gives:

ρiso(r)σ(r)
2 = ρ0C − 4πGρ20r

2
c

∫ r/rc

0

dx

x2(1 + x2)
(x− arctan(x)). (A.8)
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Here C is a constant due to integration. To find a value for ρ0C we again
implement the constraint that ρiso(r)σ(r)

2 must go to 0 when r goes to infinity.
This gives us

lim
r→∞

ρiso(r)σ(r)
2 = ρ0C − 4πGρ20r

2
c

∫ ∞

0

dx

x2(1 + x2)
(x− arctan(x)) = 0, (A.9)

ρ0C = 4πGρ20r
2
c

∫ ∞

0

dx

x2(1 + x2)
(x− arctan(x)). (A.10)

This result can be substituted in equation A.8 to obtain:

ρiso(r)σ(r)
2 = 4πGρ20r

2
c

∫ ∞

r/rc

dx

x2(1 + x2)
(x− arctan(x)), (A.11)

ρiso(r)σ(r)
2 = 4πGρ20r

2
c

(
π2

8
− 1

2
arctan2

(
r

rc

)
− rc

r
arctan

(
r

rc

))
. (A.12)

This gives a value for σ(r)2, which can be used in equation 5.16 to find the
maximum coarse grained phase space density:

Fcg,iso(r) = ρiso(r)
5
2

(
8π2Gρ20r

2
c

(
π2

8
− 1

2
arctan2

(
r

rc

)
− rc

r
arctan

(
r

rc

)))− 3
2

.

(A.13)
This function has a global maximum for r = 0. The isothermal density profile
has a core density of ρ0 = 1.387 GeV/cm3 and a core radius of rc = 4.38 kpc[20].
These values at the global maximum give the minimum neutrino mass needed
to explain all dark matter:

mν ≥
(
2h3Fcg,iso(0)

gν

) 1
4

= 40.59
eV

c2
. (A.14)

Comparing this result with the result from equation 5.21, we can see that the
mass bound is similar for the isothermal and NFW profile. We can again see
that the minimum neutrino mass is orders of magnitude larger than the upper
limit on the sum of neutrino masses, which shows neutrinos cannot account for
all dark matter in a CDDE universe.
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