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1 Introduction

Cosmology is the field of physics that investigates the origin, structure and evolution of
the observable universe on the largest scales. It delves into fundamental questions about
the universe: What happened at the big bang? Why do we have structure formation
(like galaxies) instead of a homogeneous distribution of matter and energy? What is the
future of the universe? What information can we extract from the cosmic microwave
background? This last question is what we are going to explore in this thesis. We are
researching an alternative cosmological model to investigate its implications on the in-
terpretation of the cosmic microwave background power spectrum.

The main reason to test for alternative cosmological models is the Hubble tension in-
troduced in the A - cold dark matter model (A-CDM), which is seen as the standard
model of Big Bang cosmology. The Hubble tension could hint at flaws within this model.
The alternative model we are going to explore uses a curvature dependent dark energy
(CDDE) instead of the cosmological constant used in A-CDM. Our CDDE model can
indeed solve the Hubble tension, as confirmed by the work of Bas van den Hoek [2] and
Thijs van Rossum [3] in their theses .

Another result in the CDDE model is that non-relativistic matter and dark energy are
coupled in the evolution equations, resulting in the creation of matter while the universe
expands. We hope that this creation of matter could be explained as the source of dark
matter, therefore we will not be using any other dark matter sources in this thesis.

In the first few chapters we will delve into the main theory of cosmology, namely the
Einstein field equations and necessary assumptions about the universe. We will derive
some equations for the CDDE model from the Einstein field equations and compare
them to the equations in A-CDM. After that we will look into the physics of the photon-
baryon fluid, that is the hot dense plasma present in the early universe. We investigate
the relevant approximations and deduce an equation for the speed of sound in this
plasma. The speed of sound makes it possible to calculate the sound horizon, which is
the maximum distance a sound wave could have travelled in the plasma. We will also
look at the anisotropies of the temperature of the cosmic microwave background. These
anisotropies can be plotted in a power spectrum, which is comparable to how Fourier
series decompose functions into sinusoidal components. We will calculate the expected
location of the first peak in the power spectrum for the CDDE model, including the
correction due to driving effects. These driving effects are mainly the Doppler shift due
to the oscillation of the fluid and the decay of the gravitational potential. The sound
horizon and the first peak’s multipole moment are seen as standard candles in cosmology,
so they provide a good comparison with the observations done by astrophysicists.



2 Conventions

Units

In this thesis we make use of the natural units, where
c=h=kp=p=¢ =1
by absorbing these constants in the relevant fields and quantities. This leads to the
following relation between the units of key quantities
[energy] = [mass] = [length] ~* = [time] .
Tensors

Greek indices are used for spacetime coordinates (¢,z,y,z) or (z%, 2!, 2% 23). Latin
indices are used for the spatial dimensions.

We also make use of the Einstein summation convention, where we sum over repeated
indices. This means that

cprt = E cpat = cox? + crzt + cpx? 4 c3ad.
I

Note: the sum must contain an upper and a lower index.
Raising and lowering indices can be done with the metric

_ v
Cu = g .

The metric has the so-called "mostly minus” signature.

Other Practicalities

When using logarithms, ”log” represents the natural logarithm.

Subscripts used in the scale factor, redshift values etc. often denote moments in time.
The subscript 0 denotes the present time value. For example: Ty is the temperature at
present time, ag is the scale factor at present time etc.

Furthermore we use Newton’s dot notation for differentiation with respect to time:



3 The Basics of Cosmology

3.1 Einstein Field Equations and FRW Maetric

One of the main pillars of cosmology is general relativity, as formulated by Einstein in
1915. General relativity provides the theoretical framework for understanding the large-
scale structure and dynamics of the universe. The basis for this theory are the Einstein
field equations, which relate the curvature of spacetime to the energy, momentum and
stress within that spacetime. The equations are given by

Ry, — %gWR = 8rGTy), (3.1)
where IR, and R are the Ricci tensor and scalar, g,,,, is the metric, G is the gravitational
constant and Tﬁff is the effective (total) stress-energy tensor.

From here we have to make some assumptions about the universe. The first one is that
the universe is isotropic and homogeneous on scales larger than roughly 100 Mpc [} 5].
Isotropic means that there is no preferred direction and homogeneous means that there
is no preferred location in the universe, see figure [I] So the universe will look the same
in all directions and at all locations beyond distances of roughly 100 Mpc.

Figure 1: Left: an anisotropic, but homogeneous pattern on scales much larger than the
stripe width. Right: an isotropic about the origin, but inhomogeneous pattern [4].

Treating the universe as isotropic and homogeneous is called the cosmological principle
or the perfect fluid approximation, which allows us to use the Friedmann-Robertson-
Walker metric (FRW metric). This metric describes the geometry of the universe. In
spherical coordinates (¢, 7,6, ¢), the FRW metric is given by

a(t)

FRW _ j: 2002 2042 @i 2
G = diag (1’_1—/%2’_(1 (t)r=, —a=(t)r< sin ((9)) , (3.2)

where a(t) is the scale factor and x describes the intrinsic spatial curvature of the
universe. The scale factor relates the proper distance, which can change over time,
between two objects moving in an expanding or contracting FRW universe according to

d(t) = a(t)do, (3.3)

here d(t) is the proper distance at time ¢ and dy is the proper distance at a reference
time tg. Thus dg = d(to) and a(tp) = 1.

The intrinsic curvature x of the universe is described by its spatial curvature. Spatial
curvature determines if the universe is positively curved (spherical, k > 0), negatively
curved (hyperbolic, k < 0) or flat (x = 0). This is depicted in figure



Figure 2: The three spatial curvatures for the universe, from top to bottom: positively
curved (spherical), negatively curved (hyperbolic) and flat [6].

The second assumption we make is that the universe is flat, so there is no intrinsic
curvature (i.e. k = 0). This is one of the high certainty measurements that follow from
the A-CDM model [I] (see section [4), and which we will assume to be true in general.
The FRW metric then reduces to

g}jﬁ‘w = diag (17 —aQ(t), —aQ(t)r2, —a2(t)r2 sinz(e)) . (3.4)

Another useful concept is redshift. Redshift is the increase in wavelength of electromag-
netic radiation due to the expansion of the universe. The redshift z is related to the
scale factor as )

1+2z= p (3.5)
In cosmology it makes more sense to use redshift as a time coordinate rather than time
itself. This is because redshift is a measurable quantity, while time is relative and can
be affected by factors such as the motion of the observer and gravitational fields. A
redshift of 0 corresponds to the present time and a redshift greater than 0 corresponds
to the past.

3.2 Ricci Tensor and Scalar

The Ricci tensor and scalar, which are necessary to solve equation (3.1)), can be deduced
from the FRW metric ((3.4). We can do this by first calculating the Christoffel symbols

1 log
Flsz = §gﬂ (a/gap + apgua - 8091//;) , (36)

where ¢g"? is the inverse (FRW) metric and 9, = 9/0z”. The non-zero Christoffel
symbols are

T, =aa T, = r’aa I, = r?sin®(0)ad (3.7)
T}, =Tl = FZ{) = g bo = —T Loy =—1 sin?()

rf, = % Fg¢ = — cos(f) sin(0)

Ff¢ = % Fga = cot(6)



which are all symmetric in the lower two indices. The Christoffel symbols can be used
to calculate the Riemann curvature tensor

R, = 8,1, — 9,07, + %%, ~T%TI7 . (3.8)

uvp up™ av vt ap

The Ricci tensor and scalar are given by

R,, = R;”wp (3.9)
R=g" Ry, (3.10)
resulting in
Ry = —32 (3.11)
a
a a? FRW
R, =0 ifp#v (3.13)
i a?
R=-6(-+—=]). 3.14
(a + a2) ( )

3.3 Stress-Energy Tensors

The only tensor left to be specified in order to be able to solve equation is the
effective stress-energy tensor Tﬁ,ff. For our assumptions the stress-energy tensors are
diagonal. The Tyy component represents the energy density and the Tk components
represent the pressure in the k-th spatial direction.

For relativistic and non-relativistic matter, the stress-energy tensor is given by

T = diag (p, —pgiie > —Pgss ", —Dgss " ) (3.15)

where p = p; + pm represents the energy density of the fluid and p = p; + p, denotes
the pressure term. We use the subscript 'r’ to indicate relativistic particles (radiation)
and the subscript 'm’ to indicate non-relativistic particles (matter). For radiation, the
pressure term is given by p, = %pr, while for matter, it is py, = 0, as discussed in
subsection It is important to note that throughout this thesis, the symbols p and p
will consistently represent the density and pressure for both radiation and matter.
According to quantum field theory, empty space (in the absence of matter and radiation)
is not truly empty but contains a background energy, called the vacuum energy or dark
energy. This vacuum energy, denoted by the stress-energy tensor 7,7, has observable
effects, such as a contribution to the expansion of the universe. However, the origin is still
unknown and has sparked various speculations. We will discuss the main cosmological
model implementing the vacuum energy, known as the A - cold dark matter model, in
the next section.



4 A - Cold Dark Matter Model

The A - cold dark matter model (A-CDM) is often seen as the standard model of Big
Bang cosmology, it is one of the simplest models that successfully explains a wide range
of observations, i.e. the large-scale structure of the universe and the cosmic microwave
background radiation (CMB). In this model the vacuum energy is taken as a constant,
called the cosmological constant A. In the A-CDM model the Einstein field equations
are often given as

1 ,
R, — §9WR —Agu = SWGT/f,lj‘t. (4.1)

This equation can easily be rewritten in the form of equation (3.1)) if we take the effective
stress-energy tensor as

T;jzf/f = T:Lrll/at + 87rGg’“" (42)
In this model the vacuum stress-energy tensor is thus
A
T2 = — g, 4.3
mv snGIr (4.3)
which is constant under the expansion of the universe.
A few results following from the A-CDM model are
. ., a
Pm + pr + E (3pm + 4pr) =0, (44)
a®  8rG A _
S5 = m r = D=1=Q,+Q2,+9Q , 4.5
e 3 (p +p+87TG) + 0+ Q) (4.5)
where Q,, = %pm, Q, = %pr, Qp = # and H(t) = % The quantity denoted as

H(t) is called the Hubble parameter, describing the expansion rate of the universe at a
given time ¢. The );-terms are dimensionless density parameters, enabling us to get a
nice boundary condition for their sum. The Hubble parameter at present time is called
the Hubble constant and is denoted as Hy.

In this model it is assumed that matter and radiation do not interact with each other.
This is a good assumption for the late universe, but not necessarily for the time period
when the universe consisted of a hot photon-baryon fluid. We will delve deeper into this
epoch in section @ This assumption makes it possible to split equation into two
equations, making it possible to solve the system of equations for a, p,, and p,. This
results in the relation between energy densities, scale factor and redshift as [4]

Pm = Pm0a > = pmo(l+2)° (4.6)
Pr = pr,0a74 =pro(l+ 2)4'

4.1 Hubble Tension

The A-CDM model can explain various observations, including the cosmic microwave
background radiation, large-scale structure formation and baryonic acoustic oscillations,
among others. However, this does not imply that the model is flawless. In fact, it in-
troduces the Hubble tension. The tension arises from the fact that there are two main
methods to determine the Hubble constant Hy [7].

The first method is the observation of redshift (to determine the recession velocity) and
the distance of relatively nearby galaxies; therefore, these measurements are referred to
as local measurements. This method is cosmological model independent, because these
are direct measurements from the universe close to the present time. The current value



for this late universe measurement is H{**® = 73.3 + 0.8 km/s/Mpc [7].

The second method is the study of tiny temperature fluctuations in the cosmic mi-
crowave background (CMB) radiation, which we will discuss in section [7] This method
is cosmological model dependent, because the evolution of the universe influences the
interpretation of the data that originates from the early universe. The current value of
this early universe measurement is He™" = 67.4 4 0.5 km/s/Mpc [7].

Both methods result in different values for the Hubble constant, as shown in figure
This difference is called the Hubble tension.

An emerging problem in Physics
faster
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Figure 3: A variety of measurements of the Hubble constant Hy [8]. The blue data
points are the local measurements and the red data points are the cosmic microwave
background measurements. The dimension of Hy on the y-axis is [km/s/Mpc|. It is
clearly visible that two different values are obtained in the A-CDM model.

The Hubble tension prompted Prof. Dr. W.J.P. Beenakker to explore possible solutions
to alleviate this tension. In collaboration with David Venhoek, as presented in their
paper [9], it is shown that two possible ways to solve the tension are:

e A dark energy term which is not a constant over time/redshift.
e Matter that does not evolve according to the conventional p,, o< ¢~ dependence.

These two approaches can be implemented into a new cosmological model, which we
will investigate in this thesis.



5 Curvature Dependent Dark Energy Model

5.1 Solving the Einstein Equations

It is interesting to investigate what happens when we introduce a stress-energy tensor
dependent on the scalar curvature of spacetime for the vacuum energy. In general, this

tensor can be written as N
ve R FRW
ne=c, (-1) o 6.1)

where C is a dimensionful constant for arbitrary v and R is the Ricci scalar. Here we
divide by 6 to eliminate the prefactor in the Ricci scalar (3.14]). The effective stress-
energy tensor is simply the sum of both tensors, resulting in

. _ R\"
Tl = Tmat 4+ Tvac = diag (p, —pgit , —pgsa ", —pgha ) + Cy <—6> gV (5.2)

The u = v = 0 component of equation (3.1]) leads to

@’ 8nG a a?\”
~TE (e (G4 5) ) (53)

a? 3

The p = v # 0 components can be calculated and simplified (by eliminating the vacuum
energy term) by substitution of equation (5.3]), this leads to an acceleration equation

i a2

a
e ArG(p + p). (5.4)

These equations are variations on the Friedmann equations in our model universe. They
are useful because they link together the scale factor a, the total energy density and the
rate at which the scale factor changes over time.

5.2 Special Case: v = %

Equation leads to the A-CDM model for v = 0, but it is interesting to check what
happens for a different  value. The unit of the Ricci scalar is [R] = 75 ~ GeV?, thus
the square root of the Ricci scalar results in the lowest possible (integer) value of energy
units. So an educated guess would be to check the special case v = 1/2, which we will
call the curvature dependent dark energy universe (CDDE). The stress-energy tensor
for the vacuum energy then becomes

R\ /2
nie = (-g) o (5.5

which implies that the vacuum energy is not constant during the evolution of the uni-
verse. This is the first of the two conditions mentioned in section @ to be able to solve
the Hubble tension. The effective stress-energy tensor now reads

] . R 1/2
T = ding (5, g™ ol paE) + Coa (<) A 69

As a result equation ([5.3) becomes

a®  8rG i a2\"?



Combining equations (5.4]) and ( . ) leads to

d: 47rG(er3p BEB(p— 3p+ﬂ) (5.8)

a
where we have defined § = 16“G 012 /o to clean up the equation. To check whether the

=+ sign should be positive or negatlve we can use that

T prap) =2 (s BB 1 ) 20 (5.9)

for Cy/5 > 0, as required for obtaining the positively accelerating universe we presently
live in [I0]. The minus sign is therefore the correct one, resulting in a second acceleration
equation independent of a

a 4G
T3 (P+3P B - \/ﬂ(p—3p+ﬂ)). (5.10)
Combining equations (5.4)) and (5.10) and differentiating with respect to time we find

o+ i+
m r 4 perﬁ m
The combination of equations (5.4)) and (5.10) can also be rearranged to

_ 1 O
O=1=Qn+ 0+ [14+,/2+1], (5.12)
2 Qs

where Q,, = g’;ﬁ Pm, & = g’;ﬁ pr, Qg = g}‘ﬁ/ﬁ and H = . Tt can be 1mmed1ately seen
that these equations are fundamentally different from equatlons ) and (| in the
A-CDM model. These equations are useful because they describe the evolutlon of pm

and p; over time. They also give constraints on the values that Q,,, 2, and 25 can take.

+ g (3pm + 4py) = 0. (5.11)

5.3 Benchmark Model

So far we have obtained two equations describing the evolution of the matter- and
radiation density and the scale factor,

L VB .

m+ r+ m+73m+4r :0 513

W 14 o (3pm +4dp;) (5.13)

_ 1 O

Q=1=Qu 4+ %+ [ 14+, /=2 +1]. (5.14)
2 Qg

The problem we now stumble upon is that we want to solve these equations for py,,
pr and a. The value for § is a parameter that follows from a fit, solving the Hubble
tension. These fits were obtained by Bas van den Hoek [2] and Thijs van Rossum [3] in
their theses as part of the CDDE project. This leaves us with 3 unknown variables and
2 equations. To be able to solve this system we need one more equation.

In the late universe we live in today, radiation and matter do not interact with each
other. In this epoch equation can be separated into two equations, one containing
pm and the other p;, enabling us to solve this system of equations.

In this thesis we will look at the early universe, consisting of a hot photon-baryon plasma.
In this plasma there is a lot of interaction between photons and matter (in the form
of Thomson scattering) and equation cannot be separated that trivially. Here
another equation is necessary to solve the system, which we will deduce in subsection

61

10



5.4 Matter Creation

When separating equation (5.13]), which we are allowed to do for the late universe, we
can solve the system of equations and obtain

e = pega™ (5.15)
_1 + Pm+B

1
log(pm) + 7 log — £
1 + /ng‘ﬁ

where the constant is determined by pm o [2]. These equations clearly show that matter
and dark energy are coupled. Equation ([5.16)) can be written in the form

= —3log(a) + constant, (5.16)

Pm = pm,0a737 (5.17)

where B is variable for different values of redshift [2]. Notice how equation ([5.17)) is not
equal to (4.6) for B # 3. This is due to the creation of matter caused by the change in
vacuum energy. The values for B for different redshifts are plotted in figure

The values of B as a function of log(1 + z)

3.0

2.9

2.8

2.6

2.5

2.4

-2 0 2 4 6 8
log(1l +2)

Figure 4: Plot of the values of B in p, = pmoa P as a function of redshift z. The

redshift is plotted as log(1 + z) since this results in a clearer picture of the cosmological
timeline.

From this figure we can deduce that in the early universe the vacuum energy provides
a negligible contribution to the creation of matter, resulting in the same energy density
formula as found in the A-CDM model

Pm = pmﬁoa_?’. (5.18)

For lower values of z the vacuum energy becomes more present and matter is created,
such that equation [5.17] asymptotically becomes

Pm = pm70a_2'4. (5.19)

So a cosmological model of this kind also has the second condition in section [4] imple-
mented.
We assume the created matter to be light (Standard Model) neutrinos, since these are

11



the easiest massive matter particles to create. Dark energy does not couple to radiation,
so there is no creation of radiation. Fortunately this is not the case, otherwise this would
dissipate the black-body CMB spectrum, which we will come back to in section [7]

In the epoch where matter creation does play a significant role, the energy scale of the
dark energy density is not high enough to create massive particles other than neutrinos.
We hope that this creation of weakly interacting matter could explain dark matter and
that a universe with this cosmological model is feasible without the necessity of other
dark matter sources. This means that the energy density of baryonic matter still evolves
as

Pb = ppoa . (5.20)

The reason to stress this will become clear later on.

12



6 Photon-Baryon Fluid Dynamics

A long time ago the universe consisted of a hot plasma of photons and baryons. In
cosmological terms, baryons are the matter components that interact with photons, so
the term baryon does also refer to the electrons in the plasma. These electrons are
needed for having a plasma that has no net charge. The baryons forming the photon-
baryon fluid are created during Big Bang nucleosynthesis, which is the epoch of the
production of nuclei other than hydrogen-1. This happened around zpu ~ 2.79 - 108,
see also subsection

As the universe expanded, it gradually cooled down. When the universe reached a low
enough temperature, protons, heavier ions and electrons were able to combine, forming
neutral atoms [I1]. This transition of a photon-baryon fluid to a gas of neutral atoms
is known as recombination. The end of recombination is called the moment of last
scattering. This is the moment where photons could scatter on free electrons for the
last time. Last scattering happened at a redshift z = 1270, see subsection This
moment is important, because it marks the moment the universe became transparent
to radiation.

Prior to recombination, the universe was opaque due to the Thomson scattering of
photons by free electrons. However, after recombination, photons could travel freely.
These moments are represented in the timeline in figure[5} The photons originating from
the photon-baryon fluid are still observable and are referred to as the cosmic microwave
background (CMB) [4], a topic we will delve into further in section [7] In the present
section we will investigate the physics involved in the dynamics of the photon-baryon
fluid.

z=0 1270 2.79 - 108

present time last scattering creation of plasma

Figure 5: Timeline of the universe, where important moments and their corresponding
redshift values are marked.

6.1 Black Body Approximation

The cosmic microwave background spectrum closely approximates a perfect black body
[12], this implies a thermal equilibrium of the baryons, electrons and photons at the
moment of recombination [I3]. Since the number of photons is large enough to ionize
the atoms in the fluid, it is valid to assume that the photon-baryon fluid was also in
thermal equilibrium before recombination. The photons can therefore be described by
a black body photon gas [14]. In a black body photon gas, the relation between the
average photon energy E’W, its average wavelength A and the gas’ temperature T is given
by

_ 2
E, = 7” = 2.70T. (6.1)
The mean photon wavelength expressed in terms of the temperature of the gas is then
- 233
A= ——. 6.2
= (62)

Redshift can be expressed in terms of the emitted and observed wavelengths [15]

L )\Obser\ied — )\emitted. (6.3)

)\emitted

13



It is now possible to deduce an expression for the redshift as function of the temperature
by substituting (6.2]), this becomes

Temitted

z+1= (6.4)

Tobserved .
Now we have a relation between the redshift (and, consequently, the scale factor) and
the temperature

T=Ty(z+1)=Tpa ", (6.5)

where T} is the observed temperature at the present time, denoted with the subscript
0. This means that the temperature is proportional to the scale factor as

Toxa . (6.6)
The Stefan-Boltzmann law for the black body radiation energy density [15] is
pr = 40T?, (6.7)

where o is the Stefan-Boltzmann constant. The energy density - scale factor dependence
then follows as

xT* = xa”? 6.8
p"’ pr )

by substituting equation (6.6). We have now found the third equation necessary to solve
the system of equations in our benchmark model in subsection It is now clear that

equation (5.13)) can also be split in the photon-baryon fluid epoch, resulting in the same
equations we got for the late universe:

Pr = Pr,Oa_4 (6.9)
1 _1 + ng”ﬁ
log(pm) + = log | ———— ] = —3log(a) + constant. (6.10)

6.2 Fluid Components

It is now useful to take a closer look at the composition of p, and py,, the reason for
this will become clear in the next few subsections. The radiation energy density is the
sum of the energy densities of the photons and the so-called cosmic neutrino background
(CvB) neutrinos, which are relativistic during the plasma phase of the universe. These
neutrinos are only weakly interacting and are therefore decoupled from the rest of the
components of the universe a long time before the photon-baryon fluid epoch [4]. We
can write the radiation energy density as

Pr = p’y + Pu, (611)

where the subscript v denotes photons and v the CvB neutrinos. In the epochs when the
photon energy density is not negligible, the photon energy density can be approximated
as the energy density of the CMB photons [4], which are the same photons present in the
plasma. Since the CMB spectrum approximates a perfect black body, we can calculate
the (CMB) photon energy density at the present time [15] as

a0 = 40Ty, (6.12)

where o is the Stefan-Boltzmann constant and 7} is the CMB temperature at the present
time, which we will discuss in section To calculate the photon energy density at a
given redshift, we can substitute equation ([6.12)) into equation and find

py = 40Tya™* = 40Ty (1 + 2)*. (6.13)
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The neutrino-to-photon energy density ratio [12] is given by

5 7 4 4/3
% = g Ner (11) , (6.14)
2l

where Neg = 3.044 is the effective number of neutrino species. This equation is based
on A-CDM, but since it is based on physics before Big Bang nucleosynthesis, which
happened at z ~ 3-10%, we can assume this to be a good approximation (see subsection
. The total radiation energy density is thus

7 4\Y3
7 40\ 43
=4oTy(1+2)* [ 1+ gNeﬂc (11) , (6.16)

where we have substituted equation (6.13)).

Matter consists of baryonic matter and created matter, as explained in subsection [5.4
So the energy density of matter can be written as the sum of baryonic and created dark
matter, respectively

Pm = Pb + Pcreated - (617)
Since the creation of matter does not play a significant role in this epoch, see also
subsection[5.4] the energy density of matter is equal to the energy density of the baryons.

This means that dark matter does not play any role in this plasma, in contrast to the
A-CDM model where dark matter is a crucial component.

6.3 Equations of State

The equation of state, relating the pressure p; and the energy density p; of a substance
i, can in general be written in a linear form as

Pi = W;ipPi, (618)
where w; is a dimensionless number. For non-relativistic matter, w, = 0, because
the kinetic pressure is negligible relative to the mass. For radiation, w, = % [4]. From
equations (|b.5)) and (|5.6)), it can be deduced that the vacuum energy density and pressure
are given by

1/2 1/2
R R
Pvac = 01/2 <_6> ) Pvac = —01/2 (_6) ) (6.19)
i.e. wyac = —1. The total pressure is simply the sum of all separate equations of state

1 RN\ 12
Pioy = Zpi = Zwi& =3P Ciyo % ) (6.20)

where we sum over ¢ = r, m, vac. It is important to note that only interacting fluid
components can exert a pressure in the plasma. The interacting components are photons
and baryons, as mentioned in subsection [6.2} This means that the total pressure on the
fluid components is

R

1 1/2
Payia = gpfy - 01/2 <6) . (621)
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The Ricci scalar can be rewritten using both acceleration equations ([5.4]) and (5.10) as

R (i  a
—= = (a n a2> (6.22)

- 2% +47G(p + p) (6.23)

- # (p—3p+2ﬂ+2\/5(P—3p+ﬂ)>. (6.24)

In the vacuum energy pressure term, the CvB (and negligible created matter) compo-
nents still do play a role and cannot be omitted, so we still have p, and p,, terms. By
inserting p = p; + pr and p = Py + pr = %pr in (6.24) we can find the total fluid

pressure
1 47 G m 1/2
Pauiq = 3P~ Ci/2 <3 (Pm +283 (1 +4/1+ %))) - (6.25)

This equation is only valid in the early universe, when the universe consisted of a baryon-
photon fluid [16]. The radiation pressure and gravity set up oscillations in this fluid,
called acoustic density waves. If only a single density perturbation in the plasma is
considered, the wave will propagate outwards as an acoustic wave with the speed of sound
(see the next subsection). After the moment of last scattering, photons can travel freely,
propagating as a free stream of photons forming the cosmic microwave background.
After the drag epoch, when the baryons are decoupled from the photons, the baryon
wave stalls. This results in density fluctuations that are present on a comoving scale
(this is a distance scale that is constant under the expansion of the universe), called
baryonic acoustic oscillations. We will briefly discuss the drag epoch in subsection [6.§|

6.4 Speed of Sound

In a photon-baryon fluid it is possible to have pressure waves, which are more intuitively
referred to as sound waves, that could move through the photon-baryon fluid. The speed
of sound squared [17, [18] is defined as

Pa
= (d ﬂuld) , (6.26)
dpfuia / ¢

where pgyiq is the energy density of the components in the fluid that can feel the pressure

PAuid = Py T Po- (6.27)

The subscript S refers to a constant entropy. We assume this to be the case, because
the change in entropy due to the interactions of photons and baryons is accounted for
by electron-photon Thomson scattering terms [I7]. Furthermore, we can safely ignore
matter creation in the early universe.

The speed of sound is not solvable for equation . In the photon-baryon fluid of the
early universe, photons were the most dominant substance in terms of total pressure on
the fluid components, so we can make the assumption that

1
Phyia = py = 3P (6.28)

We can now calculate the speed of sound as

-1 —1
2= Sbo by by Aoy dpy (diwia) Ly O g
dp- 3

dp~y

B dpauid - dpfuia B dpy dpauia - dp,
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It is helpful to rewrite this equation in terms of redshift z. This allows us to study the
evolution of the speed of sound. Equation (6.29)) then becomes

-1
1 dpn (9py\ "
= 3 (1 + = <a; . (6.30)
substi — (z+1)° - G+1)* -
We can substitute p, = pp1s 735 and py = py1s oFiys B0 get an equation dependent

on only the energy densities. The subscript ’ls’ denotes the moment of last scattering.
The speed of sound in the photon-baryon plasma can then be expressed as

1
1
d=g (1 + 3’“) . (6.31)

6.5 Sound Horizon

The maximum distance a sound wave could have travelled in the photon-baryon plasma
before recombination is called the sound horizon. The sound horizon is seen as one of the
standard candles in cosmology and is therefore an important quantity. The comoving
length of the sound horizon, ry, is related to the proper distance of the sound horizon,
ds, as

ry =dy(1 + 25) = /Ot ‘;((f)) at (6.32)
dy = a(tis) /O ) ‘Zf((f)) d, (6.33)

where we have used that a(t;s) = ﬁ The integral over time can be rewritten as an

integral over redshift, which makes it easier to do calculations. The relation between
redshift z and the scale factor a is given in (3.5)), this can be rewritten to

z=-—1. (6.34)

_ 5 G — 6.35
== a aH, ( )
from which it follows that 1 1
——dz = —dt. .
7 a (6.36)

A boundary condition of ¢ = 0 corresponds to z = oo and t = ¢ corresponds to z = 0.
The sound horizon can then be expressed as
~a(2)

de. (6.37)

’]"S =
Zls

6.6 Moment of Last Scattering

The CMB photons we can detect have been travelling as a free photon stream through
the universe since the moment they last scattered off a free electron. The probability
that a photon undergoes a scattering during a short time ¢t — ¢ + dt is given by

dP =T(t)dt, (6.38)
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where I'(t) is the scattering rate at time ¢. For the physics behind T'(¢), I would like to
refer to Thijs van Rossum’s thesis [3], where he spent a great deal of time implementing
this quantity in his Python script, making it simple for us to use it for calculations. For
a CMB photon measured at the present time ¢y, the expected number of scatterings
since an earlier time ¢ is

() = /t " P, (6.39)

We can rewrite this equation in terms of the scale factor a as

T(a)z/alr(a)d; :/al 2(“) da (6.40)

(a) a

Following the same procedure as in subsection we can also write this in terms of
redshift z “TG) 1
z
= d 6.41
7(2) /0 H(z)14 2 * ( )

The moment of last scattering is defined as the moment when 7 = 1. This leaves us the
following equation to solve the redshift value of last scattering

e 1
o H(z)1+z

(6.42)
This gives us a value of z; = 1270, according to the calculation in section [9]

6.7 Moment of Big Bang Nucleosynthesis

The infinity in the integral in (6.37) does not really represent true infinity, but rather
the moment at which the sound wave could begin its journey. We assume this to be
right after big bang nucleosynthesis (BBN). The sound horizon can thus be expressed

as B Znuc CS(Z)
s —/Z H(z)dz (6.43)

1s

BBN occurred when the nuclei had a temperature of Ty = 7.6- 103 K [4]. The universe
was in thermal equilibrium in this epoch, since this is before last scattering. We also
found that T o a~! in , so we can use the temperature of the CMB photons to
calculate the corresponding redshift value as

T Tnuc
T=Ta'=To(z+1) = z:?—l = e = 7 -1, (6.44)
0 0

where Ty = 2.7255 4 0.0006 K [12] is the present time temperature of the CMB photons.
So the redshift value for BBN is

7.6-10°
me = —maee — 1 2 2.79 - 108, 6.45
: 2.7255 (645

In reality the sound wave could even begin during (or before) BBN, but integrating up
t0 zpue provides a very good approximation for the sound horizon. We will discuss this
in section

6.8 Drag Epoch

The ratio of the number densities of baryons and photons is constant over time since the
baryons were formed. This so-called baryon-to-photon ratio [4] is n = (6.104-0.06)-10~10.
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Due to the much larger number density of photons, the moment of decoupling of photons
from the baryons and the moment of decoupling of the baryons from the photons is not
the same. Since there are less baryons than photons, the average photon does not feel
the influence of the baryons from a certain moment. Meanwhile due to the much larger
number of photons, the baryons still feel the influence of the photons. The moment
the baryons are released from the drag of the photons is called the drag epoch (denoted
with redshift z4) [I9]. The moment the photons are decoupled from the baryons is called
the moment of last scattering (z15). The drag epoch happens at a later stage than the
moment of last scattering, i.e. zq < 2.

This results in two different calculations of the sound horizon, one for a sound wave
travelling in the plasma until z)s, as calculated in equation , and one sound horizon
as a result of a baryonic density fluctuation travelling until zq. In the A-CDM model
this results in a small difference of the sound horizon [20], related by

rs(za) = 1.01847r4(215). (6.46)

Our expectation is that in the CDDE model the two sound horizons also differ just
slightly, since these calculations are based on pre-recombination physics, where dark
energy is negligible.
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7 Cosmic Microwave Background

The cosmic microwave background (CMB) is a faint, uniform glow of microwave radia-
tion that radiates through the entire universe. It is an observable remnant of the photon-
baryon fluid in the early universe, offering insights into the physics of this plasma. Its
spectrum closely approximates that of a perfect black body, which allows us to deter-
mine its temperature. The mean present-day temperature across the sky is measured as
To = (Tp) = 2.7255+0.0006 K [I2]. There are also tiny fluctuations (anisotropies) in the
temperature, which are of the order of 107% — 107° K. These fluctuations are depicted
in figure[6] The tiny fluctuations in temperature provide us with information about the
distribution of energy in the photon-baryon fluid.

Figure 6: A heat map of the temperature fluctuations in the cosmic microwave back-
ground [21].

7.1 Power Spectrum

The temperature fluctuations can be expressed as density fluctuations 67'/T, where we
define T'= (T'). The fluctuations can be seen as a function defined on the surface of a
celestial sphere and can therefore be written as a sum of simpler components:

6%(07¢) = L Z Z amY] lm ) (71>

=0 m=—1

where (T) is the average temperature and Y}, are the spherical harmonics. This is
comparable to how Fourier series decompose functions into sinusoidal components. The
most important statistical property of 67/T is the correlation function C(¢). The
correlation function quantifies how similar the temperature fluctuations are at different
points on the celestial sphere at the moment of last scattering. The correlation function
can be obtained by considering two points on the sphere, in the directions 7(6, ¢) and
7/(0',¢') and separated by an angle ¢ relative to an observer. The relation between ¢,
7 and 7' is cosp = 7 - n/. The correlation function is then found by multiplying 67 /T
at the two points and averaging the product over all points separated by the angle ¢:

Cto) = (i) (72

By plugging in equation (7.1]), the correlation function can be written in the form

o0

1
— ) (214 1)C;Py(cos @), (7.3)
T =
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where Pj(cos ) are the Legendre polynomials. The measured correlation function can
now be broken down into its angular power spectrum C; = {|a;,|?). Since the statistical
properties are independent on the choice of the origin (rotational invariance), the result
cannot depend on the index m. The angular power spectrum is therefore only dependent
on [. The index [, which is the multipole moment, can be thought of as the angular scale.
As a rule of thumb, Cj is telling us something about the anisotropies on an angular scale
of [22]
_180°

p=—" (7.4)

The [ = 0 (monopole) term vanishes if the mean temperature is correctly defined. The
[ =1 (dipole) term is primarily a result of the Doppler shift due to the motion of the
earth through space. The multipole moments with [ > 2 tell us something about the

temperature fluctuations at the moment of last scattering [4].

In presenting the CMB observations, it is a convention to plot I(I +1)C;/(27) = (%)2

as a function of the multipole moment [. This plot is called the power spectrum and is
depicted in figure[7] In power spectrum plots the dipole is always removed, since this is
not interesting to study from a cosmological point of view.
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Figure 7: The power spectrum of the cosmic microwave background temperature
anisotropies as a function of the multipole moment as measured by a variety of ex-

periments [I]. Note that in this plot C; is defined using AT rather than %, therefore

the y-axis is equal to (AT)>.

7.2 Multipole Moment of the First Peak

Since the multipole moment is related to the angular scale in equation (7.4)), it is possible
to calculate the multipole moment of the first peak in the power spectrum via

0a = 180° _ 7 (radians) = o (7.5)
lA lA 0A

The characteristic angle 0, is defined as [23]

On = TS(ZE) (7.6)



where rg is the sound horizon as in equation and da is the angular diameter
distance. The angular diameter distance is a distance measure defined in terms of the
objects physical size and its angular size as seen from Earth. In a spatially flat universe,
the angular diameter distance is given by

s dz
da = . 7.7
o T 77)
Combining equations (6.37)), (7.5), (7.6) and (7.7) makes it possible to calculate the
multipole moment as
21s dz o CS(Z/) />—1
Ia=m dz . 7.8
= ( o HE@) (78)

7.3 Shift on the Multipole Moment

The multipole moment as given in will not correspond to the multipole moment
of the first peak in the power spectrum. This is a result of driving effects, such as
the Doppler shift due to the oscillating fluid as well as the decay of the gravitational
potential. The latter implies that baryonic matter is pulled towards regions of higher
baryonic density, due to the gravitational pull. The gravitational potential is therefore
converted into kinetic energy. This leads to a decay of the gravitational potential in
lower density regions. Higher density regions become more bound. Both driving effects
strengthen the oscillations and result in an increase in power [24]. This results in a
phase shift. Investigating the numerical shift of the CMB power spectrum peaks is a
complicated study in its own right and falls outside the scope of this thesis, but other
papers investigating the shift can be found. One of the papers [25] presenting a general
formula for the shift gives for the multipole moment of the first peak

= 1a(1 - X). (7.9)

Here the shift x is given by

X = (1.466 — 0.466n,) |air + 0.29152;1@} (7.10)
ay = 0.286 + 0.626Q, oh? (7.11)
as = 0.1786 — 6.3080, oh> + 174.9 (4, 0h?)” — 1168 (4, oh?)° (7.12)
S ICORUICTH) (7.13)

Pm(21s) Qm (215)
late
T km]rjsro—1 Mpc—1 (7.14)
Qf = tl—sl/otls Q9 (t)dt. (7.15)

During this epoch, p,, =~ py. The variable ng is the scalar spectral index. The scalar
spectral index describes whether the density fluctuations in the plasma are spatial scale
invariant. A value of ng = 1 corresponds to spatial scale invariance. The value of the
scalar spectral index is a result of inflationary models [26]. The Planck Collaboration
[27] found ns = 0.965 &+ 0.004. According to the Planck Collaboration, this result is
weakly dependent on the A-CDM model and it remains stable, with slightly increased
errors, when considered in most other extensions. Therefore, we will use ns = 0.965 in
the CDDE model and leave it to future research to show if this is indeed the correct
value in this model (see section .
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The notation for Qf; is taken from [28] and is the average dimensionless quintessence
energy fraction before last scattering, i.e. for z > z,. The quintessence component
represents a dark energy that changes over time, just like in our model. Here the as-
sumption is made that the fraction of quintessence energy does not change rapidly before
last scattering, which is the case in our CDDE model. Formula is obtained using
a standard exponential potential for the quintessence component. The writers of the
paper expect the results to be approximately correct for any realization of quintessence.
For example, this formula is also applied (in a more simplified form) in the A(¢)-CDM
model, where the cosmological ’constant’ A is dependent on time [29].
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8 Baryonic Acoustic Oscillations

8.1 Correlation Function

The baryonic density fluctuations present in the photon-baryon plasma are called bary-
onic acoustic oscillations (BAO). After the drag epoch, the baryon overdensities were
small in amplitude. These low-amplitude fluctuations grew to detectable levels at the
present time (but still small enough to not undermine the assumption that the universe
is homogeneous and isotropic). The best way to detect these overdensities on large
scales is to look at the correlation function £ of galaxies. Assume the number density
of galaxies at the present day to be ng,. Pick a random galaxy, then look at a small
volume dV at a comoving distance r around that galaxy. The correlation function then
tells you how many other galaxies you would expect to find in this volume [4]. As a
mathematical equation this can be expressed as

AN = nga [1+ €(r)] AV (8.1)

If the galaxies would follow a Poisson distribution, the correlation function would vanish.
It turns out galaxies do not follow a Poisson distribution. Due to gravitational effects,
you would expect galaxies to attract each other, leading to the clustering of galaxies.
The correlation function of galaxies ¢ as a function of the comoving separation s is
depicted in figure [8 This comoving separation is determined by measuring the redshift
of galaxies [30} BI], which is related to the comoving separation by the formula

z = Hys, (8.2)

where z is the redshift, Hy is the Hubble constant and s is the comoving separation
[4]. We will use H** as defined in subsection to derive s, since this is assumed to
be cosmological model independent. It is a convention to use h as a parameter for the
Hubble constant, h is defined as h = M—?MW = 0.733.

8.2 BAO Bump

Around a comoving separation of spump = 105h~! Mpc = 143Mpc, there is a bump
in the correlation function. This BAO bump is due to the sound waves present in the
photon-baryon fluid and corresponds to the sound horizon calculated at the drag epoch
za [16]. This gives us as a measured value of Spump = 7s(2a) = 143 Mpc.

We will not discuss the BAOs in any more depth, since this thesis focusses on the CMB.
Nevertheless, the BAO bump provides us with a rough approximation for what we should
expect for the sound horizon at the moment of last scattering. The two sound horizons
should only differ by a small factor, as discussed in subsection This results in an
expected value for the sound horizon at last scattering of

(1) ~ rs(24) _ 143 Mpc
S\ 10184~ 1.0184

= 141 Mpec. (8.3)
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Figure 8: Correlation function of galaxies £ plotted against the comoving separa-
tion s [30]. The BAO bump is clearly visible at spump = 105h~! Mpec, where h =

Hlate . . . .
mm{msg—lMprl = 0.733. This results in a comoving separation spump = 143 Mpc.
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9 Numerical Results

9.1 Dimensionless Density Parameters and Hubble Parameter

Using the Python script Thijs van Rossum wrote for his master thesis [3], we can gen-
erate a variety of variables for a range of redshift values [3]. We can extract values
for H, Q, O, Qgand (). All the additional code required to do the calculations is
provided in appendix[A] This code should be added on top of Thijs van Rossum’s script.
The moment of last scattering can be calculated using equation , which results in
z1s = 1270. This allows us to make plots of the evolution of the dimensionless density
parameters (2; and the Hubble parameter H. These plots are depicted in figures [9
and [T11

The values of Q; plotted against log(1 + 2)

1.0
0.8 0.,
N Qr
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— Q,G
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00 25 50 75 100 125 150 175 200
log(1l +Z2)

Figure 9: The evolution of the dimensionless density parameters {2; during the plasma
phase up to the present time. This graph shows that radiation was the most dominant
substance during the plasma phase.
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Figure 10: The evolution of the Hubble parameter H during the plasma phase up to
the present time. The Hubble parameter increases rapidly for high redshift values.
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Figure 11: The evolution of the Hubble parameter H during the late universe. This plot
shows that the Hubble parameter also grows rapidly during the late universe epoch.

In figure @ we can see that radiation-matter equality occurred around log(1 + z) ~ 6.
In the A-CDM model, this equality occurred at log(1l + z) & 8, which is even earlier
than the moment of last scattering (in A-CDM, log(1 + z15) = 7) [4]. This difference is
due to the larger dark matter component in A-CDM, making the non-relativistic matter
component more significant during an earlier stage.

Matter-dark energy equality happened around log(l + z) ~ 1. In the A-CDM model,
this occurred around log(l+ z) =~ 0.3. Therefore, in the CDDE model dark energy
becomes more important at an earlier moment and, subsequently, matter becomes less
important at an earlier stage when compared to the A-CDM model. This is due to the
smaller (dark) matter component in CDDE compared to the A-CDM model.

In the near future, the universe will be completely dark energy dominated, i.e. equation
(5.14) will become Qg = 1, where Qg = g’;g (3. This results in a constant Hubble
parameter. If we examine the Ricci scalar in equation and we set the matter and

radiation energy densities to zero, we can deduce that (—%)1/ ? becomes a constant.
The vacuum energy density in equation (6.19)) also becomes constant, specifically:

167G
Pvac = 01/2 3 B. (91)

In the future, our CDDE model will behave like a model with a cosmological constant.

9.2 Speed of Sound

Now that we have the Q;-values for radiation (and therefore for the CMB photons, see
equation (6.15))) and matter, we can calculate Qo using that according to our model
Qy, = Qy, for high values of redshift, such as zj5. Since baryons still evolve as p}, a3,

we can rewrite equation (5.20) and calculate Qy, ¢ as follows:
Q10,0 = Qb,lsa?s = Qm,lsai))s = Qm,ls(1 + 215)73~ (92)

In this equation we replaced Qs by Q15 in order to numerically calculate 2y, o. It is
now possible to calculate the speed of sound in the photon-baryon fluid. The speed of
sound is approximately ¢, ~ 1.73 - 103 m/s, see also figure
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Figure 12: The speed of sound in the photon-baryon fluid epoch. Please note that the
y-axis should be shifted by 1.7308 - 108. The graph then clearly shows that the speed of
sound is nearly constant during most of the fluid phase.

9.3 Sound Horizon and Multipole Moment

The sound horizon is 74 = 153 Mpc, where s expected = 141 Mpc is expected (see section
8.

\.Ne can also calculate the theoretical multipole moment of the first peak with equation
(7.8). This gives us o = 513. The phase shift can be implemented, such that the
corrected first peak can be calculated, which is found to be l; = 322. In figure [7] we can
see that the measured value is l1 measurea = 220.

These is a significant mismatch between the predictions in the CDDE model and the
measured values, although they are in the correct ballpark. Therefore, a universe with
as only dark matter source the creation of matter due to the curvature dependent dark
energy is not viable.

9.4 Convergence of the Sound Horizon

We have already noted that integrating the sound horizon up to zuy. is not perfectly
accurate. However, it does provide a good approximation because the sound horizon is
converging for high z-values. This convergence can be observed in the following:

For high z-values the universe is radiation-dominated, and the Hubble parameter can
be approximated as the Hubble parameter for a one-component universe [4]

H(z) ~ constant - /(z + 1)4 = a(z + 1)2. (9.3)

The sound horizon is almost constant and can be approximated as ¢s(z) & constant = ¢;.
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The difference between two sound horizons with integrations up to z; and zs is as follows:

" ocs(2) 2 cs(2) " oes(2)
z— = z 9.4
L HEY T HEY L, HE) o)
Z1 CS
c (1 1
~2(5-2) )
~ 0 forlargez, zo. (9.7

Therefore, H(z) increases faster than z and, consequently, faster than the domain of
integration.

The convergence can be numerically demonstrated by comparing the sound horizon
integrated up to zyue = 2.79-10® with the sound horizon integrated up to z = 10°. This
difference in the integration range results in a change in the sound horizon of Ary = 0.8.
As a consequence, the difference in multipole moment of the first peak is Al; = 1.5.
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10 Conclusion and Outlook

Our predictions do not match the expected values for the sound horizon and the location
of the first peak in the power spectrum, but they are in the correct ballpark, so the CDDE
model is not completely dead (yet). This means that a universe with a creation of dark
matter due to the curvature dependent dark energy as the only dark matter source is
not feasible. This model can be tweaked to include other sources as well, this can be
done by implementing a third non-relativistic matter component in equation :

Pm = Pb + Pcreated + Pdark,other- (101)

By creating another parameter one could investigate the necessary energy density of this
third term to get the correct sound horizon and multipole moment.

Other studies can focus on determining the redshift value of the drag epoch within the
CDDE model, allowing for a more accurate comparison of the sound horizon at zq and
the BAO peak.

To obtain a more accurate calculation for the sound horizon, one should also consider
the physics during BBN and before. This is a challenge to implement in the equations
because during BBN the mixture of the plasma was changing due to the creation of
elements heavier than hydrogen through fusion. Furthermore, the transition of non-
relativistic matter to relativistic matter in the very early universe adds another layer
of complexity, since the dark energy density explicitly depends on the amount of non-
relativistic matter.

One could also focus on the physics of the shift of the multipole moment, and implement
this specifically for the CDDE model. You can even calculate the entire CMB power
spectrum for the CDDE model. Using already available software, such as CAMB or
CMBFAST, is not viable for models that differ a lot from A-CDM, because the soft-
ware is written for constant dark energy models and would need a lot of modification
for dynamical dark energy models. Writing your own program makes this easier to do.
One paper that shows a self-contained description on how to do this is [32]. To do this
accurately, one should investigate the physics of the scalar spectral index, as described
in [Z3]

Our fellow student Jesse Cools will focus on the cosmic neutrino background in the
CDDE model. He will investigate the physics involved in the creation of this back-
ground and potential distortions caused by the matter creation effect within the CDDE
model.
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A Python Code

Please note that the code should be incorporated into the code written by Thijs van
Rossum [3].

# Importing libraries

import numpy as np

import matplotlib.pyplot as plt
from scipy import integrate
from scipy import constants

# Constants and u-values ---> u = log(1+z)
u = Sol.t
h = 0.733

HO = 73.3 # km/s/Mpc
HOp = HO * 10**3 # m/s/Mpc
HOs HOp / (constants.mega*constants.parsec) # m/s/m = s"-1

H = HOp * np.exp(Sol.y[0]) # m/s/Mpc --> all H values, same index as u

# Calculating z_ls

index_for_present_time = np.argmin((u_array) **2)
u_array_past_time = u_array[index_for_present_time:]
Gamma_H_past_time = taudot_array[index_for_present_time:]

tau = np.array([])
for ii in range(len(u_array_past_time)):

tau = np.append(tau, integrate.simpson(y = Gamma_H_past_time[:ii+1], x
= u_array_past_time[:ii+1]))
u_ls = u_array_past_time[np.argmin((tau - 1)*x2)]
z_1ls = np.exp(u_ls) - 1

# Calculating Omega R/M at moment of last scattering
OmegaRls = Sol.y[2] [np.argmin((np.exp(Sol.t)-1-z_1s)**x2)]
OmegaMls = Sol.y[1] [np.argmin((np.exp(Sol.t)-1-z_1s)**2)]

# Calculating the sound horizon at the moment of z_1ls
def speed_of_sound(u):
’?? Function to calculate the speed of sound as function of u, u
should be larger than u_ls
Dimension = [m/s]
220
return constants.c/np.sqrt(3) * ( 1 + 3/4 * constants.c*3*HOs**2/(8%np
.pi*constants.G) * OmegaMO/(4x*
constants.sigma*TO**x4 * 1/(np.exp

(w)))) *+(-1/2)

def integral_sound_horizon(u_1ls):
’?? Function provides the sound horizon for given u_value,integrates
for u_ls to inf
220

index_u = np.argmin((np.exp(Sol.t)-np.exp(u_1ls))**2) # Finds index
number corresponding with given u

-value

integrand = speed_of_sound(ulindex_u:])/H[index_u:]*np.exp(ulindex_u:]
)

return integrate.simpson(y = integrand, x = ulindex_u:])

def integrand_hubble(u_1ls):

’?2 Function to integrate 1/H*¥e"u du from 0 to u_ls
)220

index_u = np.argmin((np.exp(Sol.t)-np.exp(u_1ls))**2) # Finds index
number corresponding with given u
-value
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integrand = np.exp(ul:index_ul)/H[:index_ul
return integrate.simpson(y = integrand, x = ul:index_ul)

# Calculate sound horizon
sound_horizon = integral_sound_horizon(mnp.log(l + z_1s)) # Sound horizon [
Mpc]

# Calculate 1A
1_A = constants.c * np.pi * integrand_hubble(np.log(l + z_1s)) /
sound_horizon

# Calculating the shift

omega_b_0 = OmegaMls * (z_1ls + 1)#**x(-3)

r_ls = OmegaRls / OmegaMls # radiation-to-matter ratio at last scattering
omega_b_h = omega_b_0 * h**x2

al = 0.286 + 0.626*omega_b_h

a2 = 0.1786 - 6.308*omega_b_h + 174.9*omega_b_h#**2 - 1168*omega_b_hx**3

# Calculating Omega_bar_phi

index_1ls = np.argmin((np.exp(Sol.t)-1-z_1s) **2)
Omega_phi = Omega_beta_z[index_ls:]
u_values_phi = ulindex_1s:]

Omega_bar_phi = 1/(np.log(1l + z_max) - np.log(l + z_1s)) * integrate.
simpson(y = Omega_phi, x =
u_values_phi)

# Calculating 11

n_s = 0.965

phi = (1.466 - 0.466*n_s)*( al*r_ls*+xa2 + 0.291+*0mega_bar_phi)
11 = 1_A * (1 - phi )
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