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1 Introduction

My research was done in the context of Quantum Field Theory. The
objects of interest within this theory were the connected Green’s functions,
in particular the numerical coefficients thereof. The first objective was to
actually find these functions, by solving the Schwinger-Dyson equation. It is
the connected Green’s functions, or rather the parameters in these functions,
that I wanted to renormalize. After this process, I wanted to see how the
newly found connected Green’s functions behave, or rather improve, after
renormalization. The concepts mentioned so far will be explained, but the
important thing to note for now is that, before renormalization, the numerical
coefficients in the connected Green’s functions behave as a divergent series
in h̄. I want to know to what extent, if any, the renormalization process
improves this.
I want to start with a brief outline of this thesis. I will start off with the
necessary theory to explain what has been done and why. This is found in
chapter 2. I want to make it clear that this is not my own work, nor is it
part of my actual research. The theory is based on [1]. I have simply used
the definitions described there to perform this research. After chapter 2, I
will explain the content of my own research.
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2 Theory

Let us begin by taking a look at the basics from Quantum Field Theory
(QFT). In [1], the idea of QFT is built up from the starting point of zero
dimensions. Here the basic principles are discussed, like the path integral,
the Schwinger-Dyson equation (SDe) and the (connected) Green’s functions.
Also, Feynman diagrams are linked to the SDe. Additionally, the principles
of the procedure of renormalization are demonstrated and finally all these
notions are extended to our four-dimensional Minkowski space. We will how-
ever, restrict ourselves to zero dimensions. Also Feynman diagrams will not
be covered. The essence of my research is the effect of renormalization, so I
will explain the necessary parts of the theory up and until that point.

2.1 Quantum Field Theory

In zero dimensions, a quantum field ϕ is simply an assignment of a single
number. So ϕ can, in principle, take the value of any real number. The most
that can be known about ϕ, since it is a stochastic variable, is the probability
density. This probability density contains the action, S(ϕ), and since that
is a function of ϕ, it determines the shape of the probability density, and
therefore, one could say the action defines the theory. We will get back to
this action shortly. Again, since ϕ is a random variable, the most that can
be known about it, together with the probability density, is the collection of
its moments, called the Green’s functions. They are defined as follows:

Gn ≡ 〈ϕn〉 ≡ N

∫
exp

(
−1

h̄
S(ϕ)

)
ϕndϕ , n = 0, 1, 2, 3, ... . (1)

This notation means integration from −∞ to ∞. Here N is just a normal-
ization factor. The factor h̄ is assigned to every closed loop in a Feynman
diagram, and will indeed turn out to be the reduced Planck constant in a
four-dimensional universe. However, this goes beyond the purpose of the
thesis, so I will not further explain it. So the Green’s functions contain all
the information about the probability density, where by definition we have
G0 = 1. It is convenient to express the collection of Green’s functions via a
generating function. This generating function is also called the path integral
and it is defined as:
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Z(J) =
∑
n≥0

1

n!

(
J

h̄

)n
Gn = N

∫
exp

(
−1

h̄
(S(ϕ)− Jϕ)

)
dϕ . (2)

In this equation, J is called a source. What this source is exactly, and why it
is called as such, also has to do with Feynman diagrams, so it will not further
be explained. We will simply use it as a tool. The generating function Z(J)
contains all Green’s function and therefore all information available about
the quantum field ϕ. Of course, that same information is also contained in
the logarithm of the generating function. So we get:

W (J) ≡ lnZ(J) =
∑
n≥1

1

n!

(
J

h̄

)n
Cn . (3)

The elements Cn in this equation are called connected Green’s function and
can be regarded as cumulants of the probability density, where always C0 = 0.
As mentioned earlier, these functions are the objects of interest for this re-
search, because it is these functions, or rather the parameters inside them,
that will be renormalized. Finally the same information about the probabil-
ity density of the quantum field is contained in the so-called field function,
defined as follows:

φ(J) ≡ h̄ ∂

∂J
lnZ(J) =

∑
n≥0

1

n!

(
J

h̄

)n
Cn+1 . (4)

This field function, φ(J) can be regarded as the expectation value of the
quantum field ϕ, in the presence of sources. Combining all definitions from
above, it can be easily seen that the field function can be written as:

φ(J) =

[∫
exp

(
−1

h̄
(S(ϕ)− Jϕ)

)
ϕdϕ

]
·
[∫

exp

(
−1

h̄
(S(ϕ)− Jϕ)

)
dϕ

]−1

.

(5)

From this way of writing the field function, it is clear why it was stated that
the action defines the theory in a way. Because remember, the quantum field
ϕ was a random number and the only thing that can be known about it, is
its probability density (determined by the action) and with that of course,
the expectation value.
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Now let us get back to the action, S(ϕ). The theory in which I have done my
research is called the ϕ4 theory, and here the action has the following form:

S(ϕ) =
1

2
µϕ2 +

1

4!
λ4ϕ

4 . (6)

This theory is the simplest theory apart from the free theory, where the action
contains only the first term of equation (6), the quadratic (kinetic) term in
ϕ. The ϕ4 theory is the simplest (well-defined) interacting theory, meaning
that we can see λ4 as the coupling constant. Once the path integral Z(J) is
known, all information about the quantum field ϕ can be extracted/derived.
Calculating the path integral in the free theory is quite easy to do, however,
in the ϕ4 theory, this becomes a much more difficult task. That is why we
need to resort to perturbation theory. This can be done if it is assumed that
the second term in equation (6) is a small perturbation of the free theory, in
other words, if it is assumed that λ4 is a small number. By the way, both µ
and λ4 are assumed to be real and positive (or at least non-negative for λ4)
numbers.

I will not go through the derivations done in [1], to get to the relations that
follow. For the perturbation scheme, we can write for the Green’s functions:

G2n =
H2n

H0

,

H2n =
h̄n

µn

∑
k≥0

(4k + n)!

22k+n(2k + n)!k!

(
− λ4h̄

24µ2

)k
, n = 0, 1, 2, 3, ... .

(7)

In this theory, ϕ4 theory, both Gn and Cn are zero for odd n. For convenience
later on, we can with a slightly different definition of H (and in integral form),
write equation (7) as follows:

Gn =
Hn

H0

,

Hn =

∫
exp

(
−1

h̄

(
µ

2
ϕ2 +

λ4

24
ϕ4

))
ϕndϕ , n = 0, 2, 4, ... .

(8)

So in general, the path integral, and therefore the field function, are quite
complicated functions of J , but there is a way of finding an equation to
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fully describe them, namely the Schwinger-Dyson equation (SDe). We will
focus only on the SDe for the field function, where we need the solution
to correspond to the perturbative expansion. Again, I will not include the
derivation done in [1], I will simply quote the result. For the ϕ4 theory, the
SDe reads:

φ(J) =
J

µ
− λ4

6µ

(
φ(J)3 + 3h̄φ(J)

∂

∂J
φ(J) + h̄2 ∂

2

∂J2
φ(J)

)
. (9)

This equation, or rather the solving of this equation, is the starting point of
this research. Remember that the connected Green’s functions were the ob-
ject of interest. So by solving the SDe, and using equation (4), the connected
Green’s functions can be found.

2.2 Why Renormalization

I do not think it is useful to explain what renormalization actually entails,
without showing an example. Although it might be handy to mention in a few
words what it means. Renormalization is the order-by-order (in perturbation
theory) improvement of the parameters. In this paragraph it will be briefly
mentioned why renormalization is necessary, but as we go along, the principle
itself will become clearer. Chapter 3.2 will then shed further light on the
principle of renormalization, as that chapter serves as an example, as well
as a summary of the methods used in this research. Let me start off my
explanation as to why we are doing renormalization with a quote taken from
[1]. After that, I will further comment on this quote.

”In particular, it cannot be stressed often enough that the renormalization
procedure is necessary simply because one does perturbation theory, not
because loop corrections may contain infinities.”

So it is clear from this quote, that perturbation theory is the reason behind
the necessity for renormalization. Later on this will be discussed in more
detail, but I do want to briefly explain why this makes sense. We are doing
perturbation theory, so from equation (7) it can be seen that we only know
the Green’s functions, and therefore the connected Green’s functions, as a
truncated series in h̄. If one wants to know the values of the parameters µ and
λ4, one can measure two of those connected Green’s functions. And since they
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contain the parameters, the values of the parameters can now be calculated.
Two measurements is important here, as we need two coupled equations with
two unknowns, namely the two parameters. However, it is really important
to consider to which order one wants to calculate the parameters. Because
once the values of the parameters are found, one can use them to predict the
values of other connected Green’s functions. But it is not possible to predict
the other ones to an arbitrary order. In fact, one can only make an accurate
prediction to the same order as to which the parameters have been found.

3 How to Renormalize

The following section is devoted to showing the way the renormalization
process is done. It is basically a summary of this research and the methods
used.

3.1 Schwinger-Dyson Equation

As stated before, it all starts with solving the Schwinger-Dyson equation,
in order to find the field function φ(J). From equation (4), it is clear that the
field function is a polynomial in J , the coefficients of which are the connected
Green’s functions Cn. So we can write:

φ(J) = C2
J

h̄
+ C4

J3

3!h̄3 + C6
J5

5!h̄5 + ... . (10)

The field function is known, once the SDe is solved. With that, the connected
Green’s functions, the objects of interest, can be extracted. Solving the SDe
is done by iterating the assignment (9), using computer software Maple. As
a starting point, one needs to set φ(J) = 0. From there, the iteration will
lead to the correct form of the field function.

3.1.1 Iteration

There are different ways to iterate the Schwinger-Dyson equation. I will
provide part of the source code I made in Maple, showing both these tech-
niques. On the one hand, one can iterate using an auxiliary variable u. In
principle, this gives a power series in u, truncated at a certain value of u.
This makes iteration easier (although not flawless as explained later), and
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after setting u = 1 in the output, one arrives at the desired expression for
φ. Remember that the field function is a polynomial in J and that the con-
nected Green’s functions are polynomials in h̄, meaning we are considering
two power series simultaneously. In the source code in appendix A, it is
shown where in the SDe this auxiliary variable is inserted. The important
thing to note, is that the auxiliary variable u, was inserted in the SDe in
such a way, that this method of iteration results in a power series where the
powers of h̄ are the same as those of J , again, see the appendix. I shall call
this method the ’triangle’-method, see figure (1).

On the other hand, one can also directly truncate the series manually, with-
out using an auxiliary variable, at both h̄ and J , at different orders, if one
so desires. For reasons that will become apparent later, this method would
seem desirable, as we are looking for series containing as much powers of h̄ as
possible, but we only need powers of J up to an order of around twelve. This
method will be called the ’rectangular’-method, see also the figure below.

Figure 1: This diagram schematically shows the idea of truncating both
power series (in J and h̄) at once.

The last method I explained, works quite a lot faster than the first one,
as it throws away the redundant powers of J while calculating. However, it
turns out that, with the same number of iterations, the same highest power
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of h̄, but a different highest power in J , the two methods do not coincide. In
fact, when one increases the value of the highest power of J in the rectangle-
method, one finds that the result approaches that of the triangle-method.
This means that one cannot simply throw away redundant powers J , mid-
calculation, with impunity. The higher powers are actually required for a
correct result and therefore the triangle-method is the way to go.
This actually makes sense, when looking at the Schwinger-Dyson equation
in relation (9). Consider the fact the we are basically considering two series
at once, namely a series in J an a series in h̄. Since the SDe mixes h̄ with
derivatives with respect to J , one cannot simply truncate the series at dif-
ferent orders.

So, unfortunately, we are stuck with the first method, which takes a lot of
time. In fact, each step just gets slower and slower. And when one finally
arrives at the desired result, one can basically discard all terms with powers
of J higher than around eleven or twelve. That is because we are only in-
terested in the first couple of connected Green’s functions. The order of the
connected Green’s functions corresponds to the number of external lines of
a Feynman diagram, the power h̄ within the connected Green’s function to
the order of loop corrections for such a diagram. Again, I will not go into
further detail as to how exactly all this is related to Feynman diagrams. The
higher ones correspond to increasingly complicated Feynman diagrams and
one can wonder to what extent they are physically relevant. One can also
wonder how many loop corrections are relevant, but the goal of this research
is to determine the effect of renormalization, and therefore we require high
loop accuracy.

3.1.2 Extracting Connected Green’s Functions

Once we have found a proper expression for φ(J), we can extract the
connected Green’s functions. As seen in equation (10), these are just the
coefficients corresponding to certain powers of J . As stated before, we are
doing perturbation theory, therefore we only know the connected Green’s
functions as a truncated series in h̄, so the idea is to write them as polynomials
in h̄. They will be functions of the parameters from the action of our theory,
µ and λ4. The first three non-vanishing connected Green’s functions look
like this:
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C2 =
h̄

µ

(
1− λ4h̄

2µ2
+

2λ2
4h̄

2

3µ4
− 11λ3

4h̄
3

8µ6
+ ...

)
,

C4 = −λ4h̄
3

µ4

(
1− 7λ4h̄

2µ2
+

149λ2
4h̄

2

12µ4
− 197λ3

4h̄
3

4µ6
+ ...

)
,

C6 =
10λ2

4h̄
5

µ7

(
1− 8λ4h̄

µ2
+

1535λ2
4h̄

2

3µ4
− 6405λ3

4h̄
3

2µ6
+ ...

)
.

(11)

The perturbation scheme is quite evident here. All expansions are polyno-
mials of the same variable, which we will discuss later on, and therefore also
in h̄.

3.2 Finding Renormalized Parameters

As promised, in this chapter, the necessity for renormalization will be-
come clearer, while it is also explained in more detail what renormalization
actually entails. Therefore, this chapter serves as an example, but it is also
the way I have performed the renormalization process.

So, let us assume that, hypothetically, the exact values of the first two con-
nected Green’s functions, C2 and C4, have been experimentally found. Call
these values E2 and E4. For simplicity, there are no measurement uncer-
tainties whatsoever. These are, in principle, numerical values that cannot
change under improvement of the theory. After all, we have measured them
with infinite precision and they are not determined by the theory itself. For
convenience, we assume the measured values to correspond to the form of
the first terms of C2 and C4, their lowest order in perturbation theory (and
h̄). So we require:

C2 = E2 ≡
h̄

µR
and C4 = E4 ≡ −

λ4Rh̄
3

µ4
R

. (12)

From there, we can measure/extract the values of the parameters µ and λ4.
They must obviously be some sort of expression of µR and λ4R (the R stands
for real, although not in the sense one might think, as explained later). Once
the parameters are known in terms of µR and λ4R, they can then be used to
predict the (numerical) values of the other connected Green’s functions.
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Again, the important thing to note here, is that we can only make predic-
tions about the values of the other connected Green’s functions to the same
order as to which the parameters have been found. In other words, to which
order the coupled set of equations (12) has been solved for µ and λ4. In fact,
this statement also goes for C2 and C4. That is because equation (12) must
hold, for arbitrary order of perturbation theory. So, given the form we have
chosen the experimentally obtained values to have, C2 and C4 cannot have
higher powers of h̄, after we reinsert the values of µ and λ we are about to
calculate.

To first order (perturbation theory in C2 and C4) one would be tempted to
assume µ = µR and λ4 = λ4R. However, when plugging these values back
in the first two connected Green’s functions, one finds that for higher or-
der perturbation theory, relation (12) is no longer satisfied. The order to
which perturbation theory is done, determines how precisely one knows C2

and C4 (and the other connected Green’s functions), and therefore it deter-
mines what equation (12) actually looks like. From this, it follows that our
parameters must be refined (order-by-order) as we are doing higher orders in
perturbation theory. What this means, is that µ and λ4 must be functions
of µR and λ4R. So the R does not mean real in the way one would naively
assign values to the parameters such that µ = µR and λ4 = λ4R. But we
have chosen, simply for convenience, that the experimental values can be
expressed in terms of µR and λ4R, such that one can write them in the same
form as the first terms in C2 and C4. So these ’real’ values are real, only in
the sense that certain combinations of them correspond to the real values E2

and E4. The R is just notation.
From the definition (11), we see that the first two connected Green’s func-
tions, C2 and C4, can be written in the following form:

C2 =
h̄

µ
f2(x) and C4 = −λ4h̄

3

µ4
f4(x) , with x ≡ h̄λ4

µ2
. (13)

So f2 and f4 are polynomials in x. We can then define the ’real’ value of
x to be (again, note that this is only real in the sense that it really does
correspond to a measured value; we have already stated that that µ 6= µR
and λ4 6= λ4R for higher orders, so needless to say x 6= xR):

xR ≡
λ4Rh̄

µ2
R

. (14)
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The way x and xR are related, or rather, how that relation is determined will
be discussed in the next paragraph. With the above definition of xR, we can
write equation (13) in the following way:

C2 =
h̄

µ
f̃2(xR) and C4 = −λ4h̄

3

µ4
f̃4(xR) . (15)

We are trying to find µ and λ4 as functions of µR and λ4R and now we have
written the first two connected Green’s functions in a convenient way to do
just that. Remember that equation (12) must still be true. We do not know
the forms of f̃2 and f̃4 yet, however we do know exactly what f2 and f4 look
like. The first thing we must do now, is find x as a function (polynomial) of
xR, let us call it x ≡ F (xR). We can manipulate the expressions for C2, C4,
x and xR in such a way, that we can find xR as a function (polynomial) of x.
This goes as follows:

−C4

C2
2

= x
f4(x)

f 2
2 (x)

= xR . (16)

Using the computer software ’Maple’, we can invert this expression, to find
the desired result for x, namely the function F . Now all we have to do is
substitute this result in equation (13). Then, using relation (14), we can
write equation (15), combined with equation (12) in the following manner:

C2 =
h̄

µ
f2(F (xR)) =

h̄

µ
f̃2

(
λ4Rh̄

µ2
R

)
=

h̄

µR
and

C4 = −λ4h̄
3

µ4
f4(F (xR)) = −λ4h̄

3

µ4
f̃4

(
λ4Rh̄

µ2
R

)
= −λ4Rh̄

3

µ4
R

.

(17)

Again, using Maple, we now know what f̃2 and f̃4 look like, where it is
convenient to express these as polynomials in h̄. Consider first the expression
for C2 in equation (17). This one is easy to solve, as λ4 and λ4R only appear
inside the polynomial. From the last equality, we can immediately see:

µ = µRf̃2

(
λ4Rh̄

µ2
R

)
. (18)

Now that we have obtained an expression for µ, let us take a look at the
expression for C4 in equation (17), again at the last equality. After a little
bit of rearranging and using the expression (18) for µ, we find that:
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λ4 = λ4R

f̃ 4
2

(
λ4Rh̄
µ2R

)
f̃4

(
λ4Rh̄
µ2R

) . (19)

And that is it. We have now found the renormalized parameters. For reasons
that will become apparent in the next chapter, we can write these parameters
in the following way:

µ = µRg1(xR) and λ = λRg2(xR) . (20)

Here we simply used g1 ≡ f̃2 and g2 ≡ f̃42 (xR)

f̃4(xR)
. So using Maple to expand

these expressions, g1 and g2 are also just polynomials in xR. Without calcu-
lating anything, it can actually be derived from the starting point of equation
(12), that it is possible to express the parameters is this way. So as some
polynomials of the variable xR. This statement is important for the next
paragraph.

3.3 Error check

In order to make sure we have not made any mistakes along the way and
to determine to what order the iteration of the SDe still produces accurate
results, one has to find a another relation that must be satisfied after doing
the renormalization process we just went through. Plugging the renormalized
parameters back in the equations for C2 and C4, to find that they match
the measured values, is not really an honest test. After all, the starting
assumption for the derivation of our renormalized parameters µ and λ4, was
that equation (12) must be satisfied. In order to perform a check, we need
a consistency relation, for which we need to revisit some of the definitions
from chapter 2.

3.3.1 Derivation

Let us start with equations (2) and (3). These definitions, among others
will be used to test the correctness of the results calculated so far. Having said
that, we will now try to find a relation between the first two (not counting
n = 0) Green’s functions and connected Green’s functions. The way to do
this, is to combine the expressions above and writing out the sums explicitly,
to find:
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C2
J2

2!
+ C4

J4

4!
+ ... = ln

(
1 +G2

J2

2!
+G4

J4

4!
+ ...

)
. (21)

Next we need to expand the logarithm, so that we can compare the powers of
J . This will lead to a relation between Gn and Cn for n = 2 and n = 4. Since
we are only interested in the first two (connected) Green’s functions, we can
immediately discard anything with a power of J higher than four throughout
the derivation. Conveniently, the expression inside the logarithm has a term
1, since the expansion we will use is ln (1 + x) = x − x2

2
+ x3

3
+ ... , where

we have expanded around x = 0. So here x is the rest of the summation of
Green’s functions with n > 0. After rewriting this and truncating both series
at J = 4, we find:

C2J
2 + C4

J4

12
= G2J

2 +G4
J4

12
−G2

2

J4

4
. (22)

So now we can compare the powers of J . Doing this gives us the desired
relation, the coupling between the Gn and Cn, which we we will need later,
namely:

G2 = C2 and

G4 = C4 + 3C2
2 .

(23)

Now consider equation (8). Instead of looking at derivatives of the field
function with respect to J , as we have done before, we now look at derivatives
of Hn with respect to µ and λ4. A first order derivative with respect to either
of these parameters will result in:

∂

∂µ
Hn = − 1

2h̄
Hn+2 and

∂

∂λ4

Hn = − 1

24h̄
Hn+4 .

(24)

Combining these results, along with the expression for Gn in relation (8),
means that we can write the first two Green’s functions as follows:

G2 = −2h̄
∂

∂µ
W and

G4 = −24h̄
∂

∂λ4

W , where

W ≡ lnH0 .

(25)
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Now evaluate H2n in equation (7), for n = 0. With that expression for H0,
it can be stated that, after some algebra and using Stirling’s approximation,
W should have the following form:

W = log
√

2πh̄− 1

2
lnµ+ L(x) . (26)

Here x is the same as defined earlier in relation (13). The exact form of
the function L(x) is both unknown and unimportant. The only thing that
matters is that it depends on x and therefore on µ and λ4. The next step is to
plug the expression for W back into equation (25). The resulting expressions
obviously both contain L′(x). But we know what the measured values for
C2 and C4 are, or rather, what we defined them to be, see equation (12).
We can insert these measured values into equation (23), and equate them to
relation (25), where the expression for W is already included. The next step
is to express both relations resulting from the previous steps in terms of the
’real’ parameters. This is done by using equation (20). All x in the equation
can be substituted with the following relation:

x = xR
g2(xR)

g2
1(xR)

. (27)

Finally, we can equate the two resulting relations. This way, we can get rid of
the derivative of L(x) with respect to x (now written like in equation (27)),
but at the same time, we can combine and rearrange everything, so that we
arrive at a consistency relation that must hold, our check! This expression
links the polynomials g1 and g2 to each other via xR. The relation has the
following form:

g2 =
6(1− g1)

xR(3− xR)
. (28)

In the derivation we just went through, nothing has actually been calculated.
Similar as in the renormalization process, everything mostly follows from
definitions, and both use equation (12) as the starting point. To find explicit
form of g1 and g2, one needs to actually perform the renormalization process.
Basically the only actual calculation performed there, was the iteration of
the SDe. With that result we finally arrived at an exact form of g1 and g2.
And now we have a consistency relation linking these power series together,
and giving us an idea to which order the results are consistent.
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3.3.2 Consistency results

After a lot of experimenting, I finally iterated the SDe to an order of
200, and naturally, the order to which I have expressed the polynomials and
inverted the series was also 200. After plugging the renormalized parameters
back into the first two connected Green’s functions, I found that equation
(12) holds up to an order of 200. However, after performing the check we
just derived, I found that equation (28) is only valid for an order up to 134.
In fact, it turns out that relation (28) only holds for an order of around 2/3
of the order to which one iterates the SDe (and performs the rest of the
operations). This means that the the field function itself is only accurate up
to powers of J and h̄ of around 2/3 of the number of iterations.
This reinstates the importance of this check. Because in the next step, we will
try to analyze the behaviour of the numerical coefficients of the connected
Green’s functions, before and after renormalization. Since the connected
Green’s functions are expressed as polynomials in h̄, this check tells us that
we can only say something about the coefficients belonging to a power of h̄
that is 2/3 of the order of iteration.

It is hard to make an accurate statement as to why it is apparently 2/3 of
the order of iteration, however it does make sense that the higher orders
are not accurate anymore. The SDe contains derivatives, and even second
derivatives, with respect to J . Furthermore, the SDe is not linear in φ(J).
And since φ is a polynomial of J , a derivative of φ with respect to J lowers
the power of J by one. So truncating the series, or the iteration, at a certain
order, can never lead to full accuracy of the higher order terms; the next
order result is also needed and so on.

One can solve this by letting the program iterate the SDe a certain number of
times more than the highest order of J one desires to obtain. The output will
still be a polynomial of the same order as before, only this time, the higher
order terms will in fact be accurate. This was not done in this research
however. As the results will show, it most likely would not have mattered
that much anyway.
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4 Results

After we have found the renormalized parameters µ and λ4, we can plug
them back into the connected Green’s functions Cn. As stated before, for
the first two connected Green’s functions C2 and C4, this should lead to the
expressions in equation (12). This means that they cannot have higher orders
in h̄ than their lowest orders, one and three respectively. Since this criterion
was also the starting point of the derivation of our re-tuned values for µ and
λ4, the relation is obviously satisfied. But I also want to have a look at the
effect of renormalization on the higher order connected Green’s functions.
In fact, that is precisely the goal of this paper. For simplicity, let us refer
to the connected Green’s functions where we have inserted the renormalized
parameters as Cn,R.

4.1 Behaviour

For the connected Green’s functions Cn, we can say µ = 1 and λ4 = 1.
Equivalently, for the renormalized ones, Cn,R, we shall assume µR = 1 and
λ4R = 1. The reason we do this, is because now it is easier to analyze
the numerical coefficients, which we call C

(k)
n and C

(k)
n,R, for Cn and Cn,R

respectively. We can now write the connected Green’s functions as follows:

Cn(µ = 1, λ4 = 1) =
∑
k≥n−1

C(k)
n h̄k and

Cn,R(µ = 1, λ4R = 1) =
∑
k≥n−1

C
(k)
n,Rh̄

k .
(29)

Let us first have a look at the raw behaviour of the coefficients, before and
after renormalization. For all Cn I have evaluated, n = 6, n = 8, n = 10
and n = 12, the behaviour is very similar. So I will only provide plots for
C

(k)
6 and C

(k)
6,R. This is shown is the figures below. Immediately it is clear

that the behaviour has not really changed much. Note that in all the figures,
the absolute values of the coefficients are plotted. This is because all the
connected Green’s functions are alternating series, also after renormalization.
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Figure 2: This graph shows
behaviour of numerical coeffi-
cients of C6.

Figure 3: This graph shows
behaviour of numerical coeffi-
cients of C6,R.

It can be derived, using Stirling’s approximation, that the kth coefficient
of the (connected) Green’s functions contains a factor k!. When plotting
the logarithm of the coefficients divided by k!, one can further analyze the
behaviour of these coefficients. This is done in the figure below.

Figure 4: This diagram shows the logarithm of the coefficients of the higher
connected Green’s functions (before and after renormalization) divided by k
factorial.
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Obviously, the factorial in the expressions for the numerical coefficients
of the connected Green’s functions is the dominant factor. The next most
dominant part of the expression would then be a constant to the power of
k. After plotting the values of the coefficients C

(k)
n and C

(k)
n,R and slightly

adjusting the parameters λ4 and λ4R respectively, it can safely be concluded
that both coefficients behave as follows:

C(k)
n ∼ k!αk · P (k) and C(k)

n ∼ k!αk · PR(k) . (30)

Here, P and PR are polynomials of k, and α is just a constant. Because
of the dominance compared to the polynomials (especially after large k),
this constant, or its natural logarithm rather, gives approximately the slopes
of the graphs in figure (4). These graphs appear to have the exact same
slope. Calculating the slope, gives α ≈ 0.66. So again, for large k, the
coefficients are dominated by k!, while αk also has a significant influence. The
renormalized coefficients still contain a factorial of k, but it turns out that
not even the base α is changed. The only difference between the coefficients
before and after renormalization must be in the polynomials P and PR2,
whatever their exact form might be. It is not really necessary to compute
these polynomials. For large k, they can certainly be neglected and besides,
we are dealing with a divergent series regardless of the exact form of the
polynomials. So in this case, knowing precisely how the coefficients approach
infinity is irrelevant.

4.2 Comparing

By plotting the (natural) logarithm of the ratio of these coefficients versus
k, one can quickly see how they compare to each other. It turns out that for
larger k, this function seems to approach a constant. This is the case for all
the Cn I have plotted.
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Figure 5: This diagram shows the ratios of the coefficients of four connected
Green’s functions, before and after renormalization.

I do not really know why all the higher connected Green’s functions be-
have in such a similar way. So, now it is roughly known how the coefficients
behave, and given that the ratio seems to approach a constant, we can say
(for large k):

C
(k)
n,R

C
(k)
n

=
PR(k)

P (k)
≈ 1

40
. (31)

Note that this only holds for the numerical coefficients of the connected
Green’s functions, not necessarily for the functions themselves! After all, we
have set µ = λ4 = µR = λ4R = 1, in order to easily evaluate the numerical
coefficients. In reality however, we do not know beforehand what these pa-
rameters are. This is only a test to see how the connected Green’s functions
behave. It can be concluded that they behave as an (extremely) divergent
series, also after renormalization, unfortunately.

21



5 Conclusion

I hoped that the factorial would have disappeared in the behaviour of the
coefficients of the renormalized parameters, but it turns out that this is not
the case. In fact, it seems that after a while, the renormalized coefficients are
simply a constant factor of around 40 smaller than their original counterparts.
So while they did get a little bit smaller, they still tend towards infinity at
quite an alarming rate. In short, we are still dealing with an extremely
divergent series.
Furthermore, the behaviour of the coefficients is, for large k extremely similar.
So while the results regarding the improvements after renormalization are
quite disappointing, they do raise interesting questions nonetheless. In other
words, renormalization, at least in this 0-D toy model, is very ineffective, but
nevertheless, still necessary!
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Appendices

A Source code

Below is the source code I used. The only difference between the two
methods, is the way iteration has been done. Since the triangle-method is
the one used in the end, I have also included more steps of the renormalization
process. From there, plotting the results, or finding the consistency relation
is a trivial matter and is therefore not included. The rectangle-method only
shows the iteration part.

A.1 Triangle-method

restart;

phi:=0:

for k from 1 to 200 do print(k):

phi:= u*J/mu - lambda[4]/6/mu*(phi^3 + 3*hbar*phi*diff(phi,J)

+ hbar^2*diff(phi,J$2));

phi:=expand(series(phi,u=0,k+1));

phi:=convert(phi,polynom);

od:

phi:=subs(u=1,phi):

C[2]:=sort(convert(series((hbar^1)*coeff(phi,J,1)*1!,

hbar=0,200),polynom),hbar,ascending):

C[4]:=sort(convert(series((hbar^3)*coeff(phi,J,3)*3!,

hbar=0,200),polynom),hbar,ascending):

C[6]:=sort(convert(series((hbar^5)*coeff(phi,J,5)*5!,

hbar=0,200),polynom),hbar,ascending):

C[8]:=sort(convert(series((hbar^7)*coeff(phi,J,7)*7!,

hbar=0,200),polynom),hbar,ascending):

C[10]:=sort(convert(series((hbar^9)*coeff(phi,J,9)*9!,

hbar=0,200),polynom),hbar,ascending):

C[12]:=sort(convert(series((hbar^11)*coeff(phi,J,11)*11!,

hbar=0,200),polynom),hbar,ascending):

f[2]:=algsubs(hbar*lambda[4]/mu^2=x, convert(series(mu

*coeff(phi,J,1)*1!,hbar=0,200),polynom)):
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f[4]:=algsubs(hbar*lambda[4]/mu^2=x, convert(series(

(-mu^4/lambda[4])*coeff(phi,J,3)*3!,

hbar=0,200),polynom)):

K:=convert(series(x*f[4]/f[2]^2,x=0,200),polynom):

Order:=200:

S:=solve(series(K,x)=x[R],x):

f[2,X,R]:=expand(series(subs(x=S,f[2]),x[R]=0,200)):

f[2,R]:=subs(x[R]=hbar*lambda[4,R]/mu[R]^2, f[2,X,R]):

f[2,X]:=solve(series(mu[R]*f[2,X,R],x[R])=mu,mu):

MU:=subs(x[R]=hbar*lambda[4,R]/mu[R]^2, f[2,X]):

f[4,X,R]:=expand(series(subs(x=S,f[4]),x[R]=0,200)):

f[4,R]:=subs(x[R]=hbar*lambda[4,R]/mu[R]^2, f[4,X,R]):

f[4,X]:=solve(series(mu[R]^4*f[4,X,R]/lambda[4,R]

/f[2,X]^4,x[R])=1/lambda[4],lambda[4]):

LAMBDA:=subs(x[R]=hbar*lambda[4,R]/mu[R]^2, f[4,X]):

C[2,R]:=expand(series(subs(mu=MU, lambda[4]=LAMBDA, C[2]),

hbar=0,200)):

C[4,R]:=expand(series(subs(mu=MU, lambda[4]=LAMBDA, C[4]),

hbar=0,200)):

C[6,R]:=expand(series(subs(mu=MU, lambda[4]=LAMBDA, C[6]),

hbar=0,200)):

C[8,R]:=expand(series(subs(mu=MU, lambda[4]=LAMBDA, C[8]),

hbar=0,200)):

C[10,R]:=expand(series(subs(mu=MU, lambda[4]=LAMBDA, C[10]),

hbar=0,200)):

C[12,R]:=expand(series(subs(mu=MU, lambda[4]=LAMBDA, C[12]),

hbar=0,200)):
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A.2 Rectangle-method

restart;

phi:=0:

for k from 1 to 200 do print(k):

phi:= J/mu - lambda[4]/6/mu*(phi^3 + 3*hbar*phi*diff(phi,J)

+ hbar^2*diff(phi,J$2));

phi:=convert(series(phi,hbar=0,k+1),polynom);

phi:=convert(series(phi,J=0,20),polynom);

od:

phi:
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