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1 Introduction

In 1948 Dutch physicist Hendrik Casimir predicted a force between two un-
charged perfectly conducting metallic plates, the origin of which lies in the vac-
uum energy of a quantised �eld. The thought experiment behind Casimir's pre-
diction is relatively simple; two uncharged perfectly conducting metallic plates,
with surface A, are placed in a vacuum at a small distance d from one another
(where d << A such that A can be seen as in�nitely large compared to d). As
a consequence of Heisenberg's uncertainty principle, we know that the ground
state energy of a single (one-dimensional) harmonic oscillator is given by

E0 =
~ω
2
,

which is non-zero. This implies that for an entire �eld of harmonic oscillators we
will �nd a non-zero ground state energy. In other words: the vacuum state has
non-zero energy as a consequence of the wave modes that constitute the �eld.
In a way the two plates will function as hard walls, meaning that the electric
�eld component parallel and the magnetic �eld component perpendicular to the
plates need to be zero on the surface of the plates. As a consequence of these
boundary conditions the wave modes propagating in between, as well as the
ones outside the plates have to terminate on the surface of the plates. Due
to the limited space between the plates, only waves with wavelength λ = 2 d

m
where m = 1, 2, .. are allowed. Outside, however, there is an entire continuum
of allowed wavelengths. As the total energy of the �eld inside (outside) can be
found by summing (integrating) over all the allowed wavelengths, there will be
an energy di�erence between the vacuum state in between the plates and the
one outside, which gives rise to an attractive force between the two plates. This
is what has come to be known as the static Casimir e�ect. Even though Casimir
made his prediction in 1948 it wasn't experimentally observed until 1998. The
reason for this is that the force goes with F ∝ d−4 and is incredible small such
that one typically needs distances in the submillimeter range in order to detect
the attractive force. In 1948 they simply didn't have the technology to realise
such a set-up.

The next step is then to allow the plates to move away such that the distance
between them changes, as was �rst proposed by Gerald Moore[1]. There are
roughly two types of displacement one can consider; an adiabatic displacement
where the vacuum state has time to adjust to the increased space between the
plates or a non-adiabatic displacement where the change in volume happens too
quick for the system to keep up. As a larger volume means there is a larger
range of allowed wavelengths, we can expect the vacuum to change. In the
adiabatic case the ground state 'extends' in the sense that it will become a state
that allows larger wavelengths as well. This new state, however, will still be a
ground state and therefore it will still be a vacuum. In the non-adiabatic case
we expect that the ground state cannot simply 'extend' as it cannot keep up
with the moving walls. Instead photons will be excited from the vacuum as a
reaction to �eld modes that have suddenly become available. We will come back
to the concepts of adiabatic and non-adiabatic displacement later on.

An experimental set-up often uses "tricks" to make it seem as if the walls are
moving. For example a superconducting circuit in combination with a SQUID
can result in the creation of photons [2].
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In this thesis we will try to determine how many "photons" are being created
and whether or not it is possible to excite massive particles from the vacuum. As
a simpli�cation these "photons" will be treated like massless spin-zero scalars.
For the massless case we expect to �nd the number of created photons to grow
with increasing speed of the walls and to decrease for high-energy �eld modes
(i.e. small wavelength modes). For the massive case we expect similar �ndings;
the number of created particles will grow with increasing speed of the walls and
decrease for higher masses.

In the next section we will start by analysing a paper by D. Dalvit, P. Maia
Neta and F. Diego Mazzitelli [4] and build further upon their results.

2 Massless scalar �eld

Instead of a system consisting of two walls we will consider a cavity C with
perfectly re�ecting walls that have dimensions Lx, Ly and Lz. For t < 0 all
walls are at rest and for t = 0 the wall located at z = Lz will start to move
according to a given trajectory Lz(t) that will be speci�ed later on. The �eld
that de�nes the vacuum inside the cavity is denoted by φ(x, t). It satis�es
the massless Klein-Gordon equation �φ(x, t) = 0 and the boundary conditions
φ(x, t)|walls = 0 at all times. At any given time t the Fourier expansion of the
initial �eld can be written as

φi(x, t) =
∑
n

(
ânun(x, t) + â†nu

†
n(x, t)

)
, (1)

where un(x, t) represents a complete orthonormal set of solutions of the wave
equations with vanishing boundary condition and ân, â

†
n satisfy the bosonic

commutation relations

[ân, ân′ ] =
[
â†n, â

†
n′

]
= 0 and

[
ân, â

†
n′

]
= δn,n′ 1̂. (2)

For t ≤ 0 the wall is at rest and every �eld mode is determined by the positive
integers nx,ny and nz, represented by the three dimensional vector n:

un(x, t < 0) =
1√
2ωn

√
2

Lx
sin

(
nxπ

Lx
x

)√
2

Ly
sin

(
nyπ

Ly
y

)
×
√

2

Lz
sin

(
nzπ

Lz
z

)
e−iωnt,

(3)

where ωn = π

√(
nx
Lx

)2
+
(
ny
Ly

)2
+
(
nz
Lz

)2
. Note that we have used natural

units, for which ~ = c = 1. For t > 0 the wall in the xy-plane moves away, thus
expanding the volume of the cavity (Figure 1), and the corresponding boundary
condition on the moving wall becomes φ(x, y, z = Lz(t), t) = 0. To meet this
demand we consider the expansion of un(x, t) with respect to an instantaneous
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basis

un(x, t > 0) =
∑
m

Q(n)
m (t)

√
2

Lx
sin

(
mxπ

Lx
x

)√
2

Ly
sin

(
myπ

Ly
y

)

×

√
2

Lz(t)
sin

(
mzπ

Lz(t)
z

)
=
∑
m

Q(n)
m (t)ϕmx(x, Lx)ϕmy (y, Ly)ϕmz (z, Lz)

≡
∑
m

Q(n)
m (t)ϕm(x, Lz(t)),

(4)

where ϕm(x, Lz(t)) satis�es the orthonormality condition:∫
C
dxϕm(x, Lz(t))ϕj(x, Lz(t)) = δm,j with

∫
C
dx =

∫ Lx
0

dx
∫ Ly
0

dy
∫ Lz(t)
0

dz de-
noting the spatial integral over the cavity.
From the de�nition of ϕm(x, Lz(t)) it is clear that this expansion satis�es the

Figure 1: Cubic cavity with walls at x = Lx, y = Ly and z = Lz(t)

boundary conditions. To assure that un(x, t > 0) is continuous at t = 0, we
impose the following initial conditions:

Q(n)
m (0) =

1√
2ωm(0)

δm,n and Q̇(n)
m (0) = −ı

√
ωm(0)

2
δm,n. (5)

We now have to demand that un satis�es the massless wave equation, but we
can expect to �nd a set of coupled equations as there will be mixing between
the di�erent �eld-modes. To make this apparent we let the d'Alembertian, �,
work on an expansion of the form of (4) in terms of the �eld-mode j and project
it on the �eld modes m later on. This yields,
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�un(x, t) =
∂2

∂t2

∑
j

Q
(n)
j ϕj

−∇2

∑
j

Q
(n)
j ϕj


=
∑
j

d2Q
(n)
j

dt2
ϕj + 2

∑
j

dQ
(n)
j

dt

∂ϕj

∂t
+
∑
j

Q
(n)
j

∂2ϕj

∂t2

−
∑
j

Q
(n)
j (∇2ϕj)

=
∑
j

d2Q
(n)
j

dt2
ϕj + 2

∑
j

dQ
(n)
j

dt

∂ϕj

∂t
+
∑
j

Q
(n)
j

∂2ϕj

∂t2
+
∑
j

ω2
j (t)Q

(n)
j ϕj,

where ωj(t) = π

√(
jx
Lx

)2
+
(
jy
Ly

)2
+
(

jz
Lz(t)

)2
is now time dependent. Using

that
∂ϕj

∂t =
∂ϕj

∂Lz
dLz
dt = L̇z

∂ϕj

∂Lz
and de�ning λ = L̇z

Lz
gives

�un(x, t) =
∑
j

Q̈
(n)
j ϕj + 2λLz

∑
j

Q̇
(n)
j

∂ϕj

∂Lz
+
∑
j

Q
(n)
j

∂

∂t

(
λLz

∂ϕj

∂Lz

)
+
∑
j

ω2
j (t)Q

(n)
j ϕj

=
∑
j

Q̈
(n)
j ϕj + 2λLz

∑
j

Q̇
(n)
j

∂ϕj

∂Lz
+ λ̇Lz

∑
j

Q
(n)
j

∂ϕj

∂Lz

+ λ
∑
j

Q
(n)
j

∂

∂t

(
Lz

∂ϕj

∂Lz

)
+
∑
j

ω2
j (t)Q

(n)
j ϕj.

We can rewrite the �rst term on the last line to

λ
∑
j

Q
(n)
j

∂

∂t

(
Lz

∂ϕj

∂Lz

)
= λ

∑
j

Q
(n)
j L̇z

∂

∂Lz

(
Lz

∂ϕj

∂Lz

)

= λ2Lz
∑
j

Q
(n)
j

∂

∂Lz

(
Lz

∂ϕj

∂Lz

)
.

Now we plug this back in, equate �un(x, t) to zero and project onto the set
ϕm to �nd how the di�erent �eld-modes mix. This gives

∫
C

dx
∑
j

Q̈
(n)
j ϕjϕm +

∫
C

dx
∑
j

ω2
j (t)Q

(n)
j ϕjϕm

= −2λ(t)Lz(t)

∫
C

dx
∑
j

Q̇
(n)
j

∂ϕj

∂Lz
ϕm − λ̇(t)Lz(t)

∫
C

dx
∑
j

Q
(n)
j

∂ϕj

∂Lz
ϕm

− λ2(t)Lz(t)

∫
C

dx
∑
j

Q
(n)
j

∂

∂Lz

(
Lz(t)

∂ϕj

∂Lz

)
ϕm.

As
∫ ∑

|ϕjϕm| < ∞ and
∫ ∑

| ∂ϕj

∂Lz
ϕm| < ∞, we can use Fubini's theorem to

interchange integration and summation. Besides that we can exploit the fact
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that ϕj as well as ϕm belong to an orthonormal set, i.e.
∫
C
dxϕjϕm = δj,m to

�nd

Q̈(n)
m + ω2

m(t)Q(n)
m = −2λ(t)

∑
j

Lz(t)

∫
C

dx
∂ϕj

∂Lz
ϕmQ̇

(n)
j

− λ̇(t)
∑
j

Lz(t)

∫
C

dx
∂ϕj

∂Lz
ϕmQ

(n)
j

− λ2(t)
∑
j

Lz(t)

∫
C

dx
∂

∂Lz

(
Lz(t)

∂ϕj

∂Lz

)
ϕmQ

(n)
j .

To further simplify the di�erential equation we de�ne

Lz(t)

∫
C

dx
∂ϕj

∂Lz
ϕm = Gzjm = −Gzmj ≡ gjzmzδjxmxδjymy , (6)

where

gjzmz ≡ Lz(t)
∫ Lz(t)

0

dz
∂ϕjz (z, Lz(t))

∂Lz
ϕmz (z, Lz(t)). (7)

By de�ning Gzjm as above all mixing of modes is now captured in one variable.
Plugging in Gzjm results in

Q̈(n)
m + ω2

m(t)Q(n)
m = 2λ(t)

∑
j

GzmjQ̇
(n)
j + λ̇(t)

∑
j

GzmjQ
(n)
j

− λ2(t)
∑
j

Lz(t)

∫
C

dx
∂

∂Lz

(
Lz(t)

∂ϕj

∂Lz

)
ϕmQ

(n)
j .

The last eyesore is now the integral in the last line. To bring this term into the
same form as the rest of the equation, we rewrite it and apply the completeness
relation

−λ2(t)
∑
j

Lz(t)

∫
C

dx
∂

∂Lz

(
Lz(t)

∂ϕj

∂Lz

)
ϕmQ

(n)
j

= −λ2(t)
∑
j

Lz(t)

∫
C

dx
∂

∂Lz

(
Lz(t)

∂ϕj

∂Lz
ϕm

)
Q

(n)
j

+ λ2(t)
∑
j

L2
z(t)

∫
C

dx
∂ϕj

∂Lz

∂ϕm

∂Lz
Q

(n)
j

[1]
=== −λ2(t)

∑
j

Lz(t)
∂

∂Lz

(∫
C

dxLz(t)
∂ϕj

∂Lz
ϕm

)
Q

(n)
j

+ λ2(t)
∑
j,l

Lz(t)

∫
C

dx

(
∂ϕj

∂Lz
ϕl

)
Lz(t)

∫
C

dx′
(
ϕl
∂ϕm

∂Lz

)
Q

(n)
j

= −λ2(t)
∑
j

Lz(t)
∂

∂Lz

(∫
C

dxLz(t)
∂ϕj

∂Lz
ϕm

)
Q

(n)
j

+ λ2(t)
∑
j,l

GzjlG
z
mlQ

(n)
j .

(8)
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Analysing the dimensions of the �rst term in the last equality, proves that the
expression within the integral becomes independent of Lz(t) after integration.
Therefore the derivative of the integral yields zero, leaving only the second term.

Plugging in λ2(t)
∑

j,lG
z
jlG

z
mlQ

(n)
j = −λ2(t)

∑
j,lG

z
mlG

z
ljQ

(n)
j �nally results in

Q̈(n)
m (t) + ω2

m(t)Q(n)
m (t) = 2λ(t)

∑
j

GzmjQ̇
(n)
j (t) + λ̇(t)

∑
j

GzmjQ
(n)
j (t)

− λ2(t)
∑
j,l

GzmlG
z
ljQ

(n)
j (t).

(9)

Eq.(9) shows how the massless scalar �eld changes in time. Before the
wall starts its trajectory (t < 0), we are dealing with a free situation where
particles are being created and annihilated by â†n respectively ân. When the
wall stops moving at t = tf , the system has changed and we are yet again
dealing with a free situation. With this "new" system we can associate a
di�erent particle interpretation, by means of a new set of creation and anni-

hilation operators ĉ†m,ĉm. The relation between the new and the old set of
operators can be found through a Bogoliubov transformation [6]

ĉm =
∑
n

(αnmân + β?nmâ
†
n)

ĉ†m =
∑
n

(α?nmâ
†
n + βnmân).

(10)

In order to �nd αnm and βnm we need to de�ne the �eld belonging to the new
free situation (t ≥ tf ). The equivalent of Eq. (3) for the new situation becomes

um(x, t > tf ) =
1√

2ωm(tf )

√
2

Lx
sin

(
mxπ

Lx
x

)√
2

Ly
sin

(
myπ

Ly
y

)

×

√
2

Lz(tf )
sin

(
mzπ

Lz(tf )
z

)
e−iωm(tf )(t−tf )

=
1√

2ωm(tf )
ϕm(x, Lz(tf ))e−iωm(tf )(t−tf ),

which leads to the new �eld

1Where the di�erentiation can be pulled out of the integral since

Lz(t)
∂ϕj

∂Lz
ϕm|z=Lz(t) = 0
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φf (x, t) =
∑
m

[
ĉmum(x, t) + ĉ†mu

†
m(x, t)

]
=
∑
m

1√
2ωm(tf )

[
ĉme

−iωm(tf )(t−tf ) + ĉ†me
iωm(tf )(t−tf )

]
ϕm(x, Lz(tf ))

=
∑
mn

1√
2ωm(tf )

[
(αnmân + β?nmâ

†
n)e−iωm(tf )(t−tf )

]
ϕm(x, Lz(tf ))

+
∑
mn

1√
2ωm(tf )

[
(α?nmâ

†
n + βnmân)eiωm(tf )(t−tf )

]
ϕm(x, Lz(tf ))

=
∑
mn

ân√
2ωm(tf )

[
αnme

−iωm(tf )(t−tf ) + βnme
iωm(tf )(t−tf )

]
ϕm(x, Lz(tf ))

+
∑
mn

â†n√
2ωm(tf )

[
α?nme

iωm(tf )(t−tf ) + β?nme
−iωm(tf )(t−tf )

]
ϕm(x, Lz(tf )).

Next, we need to know what the old �eld φi(x, t) looks like for t > tf . When
the wall stops moving (9) reduces to a simple harmonic oscillator, with solutions

Q(n)
m (t > tf ) = A(n)

m eiωm(tf )t +B(n)
m e−iωm(tf )t, (11)

with this the old �eld can be written as

φi(x, t > tf ) =
∑
n

(
ânun(x, t > tf ) + â†nu

†
n(x, t > tf )

)
=
∑
mn

ân

[
A(n)

m eiωm(tf )t +B(n)
m e−iωm(tf )t

]
ϕm(x, Lz(tf ))

+
∑
mn

â†n

[
A(n)∗

m e−iωm(tf )t +B(n)∗
m eiωm(tf )t

]
ϕm(x, Lz(tf )).

As φi(x, t) for t > tf needs to be equal to φf (x, t), we can deduce that

βnm =
√

2ωm(tf )A(n)
m eiωm(tf )tf =

√
2ωm(tf )A(n)′

m ,

αnm =
√

2ωm(tf )B(n)
m e−iωm(tf )tf =

√
2ωm(tf )B(n)′

m .

The average number of particles created in the mode m is the expectation
value of ĉ†mĉm with respect to the old vacuum state |0i〉, de�ned by âm |0i〉 = 0.
Which results in
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〈0i| ĉ†mĉm |0i〉 = 〈0i| (
∑
n

√
2ωm(tf )B(n)′?

m â†n +
√

2ωm(tf )A(n)′

m ân)

×
∑
n′

(
√

2ωm(tf )B(n′j)′

m ân′ +
√

2ωm(tf )A(n′)′?
m â†n′) |0i〉

=
∑
n,n′

2ωm(tf )B(n)′?
m B(n′)′

m 〈0i| â†nân′ |0i〉+
∑
n,n′

2ωm(tf )B(n)′?
m A(n′)′?

m 〈0i| â†nâ
†
n′ |0i〉

+
∑
n,n′

2ωm(tf )A(n)′

m B(n′)′

m 〈0i| ânân′ |0i〉+
∑
n,n′

2ωm(tf )A(n)′

m A(n′)′?
m 〈0i| ânâ†n′ |0i〉

=
∑
n,n′

2ωm(tf )A(n)′

m A(n′)′?
m δn,n′

=
∑
n

2ωm(tf )A(n)′

m A(n)′?
m

=
∑
n

2ωm(tf )|A(n)
m |2.

(12)
From the equation above we can see that the number of created particles

depends on the energy of the �eld modes m at t = tf and the absolute value

of some constant |A(n)
m |. The exact form of this constant can be derived from

the boundary conditions at t = tf . To do this we need to solve the di�erential
equation (9) .

3 Three-dimensional expansion

Up till now we've been dealing with a three dimensional system expanding in
one direction (z-direction). This means that ω(t) has the form of a square root
of three components where only one of those components is time dependent. As
a consequence we cannot pull the time dependency of ω(t) out of the root and it
becomes rather tricky to solve the di�erential equation. In order to simplify the
problem we will therefore consider a system that expands in three directions.
To be more speci�c we de�ne

Lx(t) = Ly(t) = Lz(t) = L(t). (13)

By doing so we are able to write

un(x, t > 0) =
∑
m

Q(n)
m (t)

√
8

L3(t)
sin

(
mxπ

L(t)
x

)
sin

(
myπ

L(t)
y

)
× sin

(
mzπ

L(t)
z

)
=
∑
m

Q(n)
m (t)ϕm(x, L(t)).

(14)

Of course the transition from a one dimensional displacement to three dimen-
sions will change the di�erential equation as well. By following the same proce-
dure as before we arrive at
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Q̈(n)
m + ω2

m(t)Q(n)
m = 2λ(t)

∑
j

GmjQ̇
(n)
j + λ̇(t)

∑
j

GmjQ
(n)
j

− λ2(t)
∑
j

L(t)

∫ L(t)

0

dx
∂

∂L(t)

(
L(t)

∂ϕj

∂L

)
ϕmQ

(n)
j ,

(15)

where

λ(t) =
˙L(t)

L(t)
,

Gmj = −Gjm ≡ L(t)

∫ L(t)

0

dx
∂ϕm

∂L(t)
ϕj.

(16)

Rewriting the last term on the right-hand side of (15) and applying the com-
pleteness relation leads to an expression similar to (8):

−λ2(t)
∑
j

L(t)

∫ L(t)

0

dx
∂

∂L

(
L(t)

∂ϕj

∂L

)
ϕmQ

(n)
j

= −λ2(t)
∑
j

L(t)
∂

∂L

(∫ L(t)

0

dxL(t)
∂ϕj

∂L
ϕm

)
Q

(n)
j

+ λ2(t)
∑
j,l

GjlGmlQ
(n)
j .

(17)

In (8) we used that the derivative with respect to Lz(t) of the integral in the
�rst term on the right yields 0. It turns out that the same applies to (17), as
the higher dimensions in L(t) are being taken care of by the three dimensional
integral. Checking whether this is really the case is easily done (see section 5)
and we �nd

Gmj = Gxmj +Gymj +Gzmj (18)

Which leads to the three dimensional form of (9)

Q̈(n)
m (t) + ω2

m(t)Q(n)
m (t) = 2λ(t)

∑
j

GmjQ̇
(n)
j (t) + λ̇(t)

∑
j

GmjQ
(n)
j (t)

− λ2(t)
∑
j,l

GmlGljQ
(n)
j (t),

(19)

where

ωm(t) = π

√(
mx

L(t)

)2

+

(
my

L(t)

)2

+

(
mz

L(t)

)2

=
π|m|
L(t)

. (20)

3.1 Massive scalar �eld

So far only the creation of massless particles has been considered. In order to
determine whether it is possible to excite massive particles from the vacuum,

11



one needs to add a mass term to the energy of our system. In this section
we will build the mathematical framework necessary to generalise the previous
calculations to a massive scalar �eld. The only di�erence between the massless
and the massive case is basically that for massive particles there is an extra

'source' of energy. That is, ωn(t) = π
√

n2
x+n

2
y+n

2
z

L2(t) should be replaced by ω′n(t) =√
π2 n

2
x+n

2
y+n

2
z

L2(t) +M2, with M the mass of the particle to be. Taking a closer

look at the formulas from which we started out, there are a few observations to
be made. Equivalent to (3) and (4) we can write

u′n(x, t < 0) =
1√
2ω′n

√
2

Lx
sin

(
nxπ

Lx
x

)√
2

Ly
sin

(
nyπ

Ly
y

)
×
√

2

Lz
sin

(
nzπ

Lz
z

)
e−iω

′
nt

and

u′n(x, t > 0) =
∑
m

Q′(n)m (t)

√
2

L(t)
sin

(
mxπ

L(t)
x

)√
2

L(t)
sin

(
myπ

L(t)
y

)

×

√
2

L(t)
sin

(
mzπ

L(t)
z

)
=
∑
m

Q′(n)m (t)ϕm(x, L(t)),

where the spatial part, ϕm(x, L(t)), remains the same but the temporal part,

Q
′(n)
m (t), changes. This last �eld now has to satisfy the Klein-Gordon equation(
∂2

∂t2 −∇
2 +M2

)
u′n(x, t) = 0 and thus our di�erential equation transforms

into

Q̈′
(n)

m +
(
ω2
m(t) +M2

)
Q′(n)m = Q̈′

(n)

m + ω′2m(t)Q′(n)m

= 2λ(t)
∑
j

GmjQ̇′
(n)

j + λ̇(t)
∑
j

GmjQ
′(n)
j − λ2(t)

∑
j,l

GmlGljQ
′(n)
j .

Following exactly the same steps as before we �nd that for t > tf

Q′(n)m (t > tf ) = A(n)
m eiω

′
m(tf )t +B(n)

m e−iω
′
m(tf )t.

This can be used to do another Bogoliubov transformation (10) which eventually
leads to the average number of massive particles

〈Nm〉 = 〈0i| ĉ†mĉm |0i〉

=
∑
n

2ω′m(tf )|A(n)
m |2

=
∑
n

2
√
ω2
m(tf ) +M2|A(n)

m |2.

Yet again we will need to plug in A
(n)
m , this time however we will need the A

(n)
m

corresponding to massive particles.

12



4 Linear movement

Now that we have a three dimensional form of the di�erential equation, we can
try to �nd a solution for the massless case. To this end we write L(t) in a more
de�nite form. Let's consider a constant velocity such that

L(t) = a+ vt

L̇(t) = v

L̈(t) = 0

λ(t) =
v

a+ vt

λ̇(t) = − v2

(a+ vt)2
= −λ2(t).

If we momentarily simplify (9) by neglecting the sums and indices and use that
λ̇(t) = −λ2(t), then the type of di�erential equation to solve becomes

Q̈(t) + ω2(t)Q(t) = 2λ(t)GQ̇(t)− λ2(t)GQ(t)− λ2(t)G2Q(t). (21)

Now let Q(t) = eG ln (L(t)
a )f(t) with f(t) some function we need to determine.

For the �rst and second derivative we �nd

Q̇(t) = λ(t)GQ(t) +
ḟ(t)

f(t)
Q(t)

Q̈(t) = λ(t)GQ̇(t)− λ2(t)GQ(t) + λ(t)G
ḟ(t)

f(t)
Q(t) +

f̈(t)

f(t)
Q(t)

[2]
=== 2λ(t)GQ̇(t)− λ2(t)GQ(t)− λ2(t)G2Q(t) +

f̈(t)

f(t)
Q(t),

from which it follows that

f̈(t)

f(t)
= −ω2(t).

Rewriting ω(t) yields

ω2(t) =

(
π|m|
a+ vt

)2

=

(
aω(0)

a+ vt

)2

=

(
aω(0)

v

)2 (a
v

+ t
)−2

,

where ω(0) = π|m|
a . By setting κ ≡

(
aω(0)
v

)2
we need to �nd f(t) such that

f̈(t)

f(t)
= −κ

(a
v

+ t
)−2

.

2Note that λ(t)G
ḟ(t)
f(t)

Q(t) = λ(t)GQ̇(t)− λ2(t)G2Q(t)

13



As an ansatz we take f(t) = C
(
a
v + t

)α/2
, where C is some constant to be

determined by initial conditions. With this ansatz we �nd

f̈(t)

f(t)
=
α

2
(
α

2
− 1)

(a
v

+ t
)−2

= −κ
(a
v

+ t
)−2

.

Dividing by
(
a
v + t

)−2
and solving for α

α2 − 2α+ 4κ = 0

⇒ α = 1±
√

1− 4κ.

The expression for Q(t) now becomes

Q(t) = eG ln (L(t)
a )C

(a
v

+ t
) 1

2 1±
√
1−4κ

. (22)

To �nd C we ensure that Q(t) satis�es the (unlabelled) initial conditions

Q(0) =
1√

2ω(0)

Q̇(0) = −i
√
ω(0)

2
,

(23)

given that v = 0 for t < 0. This means that each �eld mode and its derivative
will be continuous functions at t = 0. Then

Q(0) = C
(a
v

)1±√1−4κ
=

1√
2ω(0)

⇒ C =
1√

2ω(0)

(a
v

)− 1
2 (1±

√
1−4κ)

.

The second condition implies a relation between v
a and ω(0), according to

Q̇(0) = C · 1

2
(1±

√
1− 4κ)

(a
v

)− 1
2 (1∓

√
1−4κ)

+ CG
v

a

(a
v

) 1
2 (1±

√
1−4κ)

=
1√

2ω(0)

(a
v

)− 1
2 (1±

√
1−4κ)

· 1

2
(2G+ 1±

√
1− 4κ)

(a
v

)− 1
2 (1∓

√
1−4κ)

=
G+ 1

2 ±
1
2

√
1− 4κ√

2ω(0)
· v
a

= −i
√
ω(0)

2

⇒

G+
1

2
± 1

2

√
1− 4

(
aω(0)

v

)2
 v

a
= −iω(0)

⇒ ω(0)v

a
= +∞

which means that the second boundary condition isn't satis�ed for the individual
solutions (22).
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4.1 Adiabatic limit

The term adiabatic displacement refers to the walls moving away at a low enough
speed such that the �eld can keep up. To quantify this we de�ne the external

velocity vext of a system to be the velocity with which the external in�uences
change and the internal velocity vint as the velocity corresponding to the in-
ternal changes of a system. With this we can express the adiabatic limit as
vint >> vext and the non-adiabatic limit (i.e. the internal changes of a system
can not compete with the external in�uences) as vint << vext. In our speci�c
case it will prove bene�cial to express the above limits in terms of time scales.
Let Tint be the time scale on which internal changes take place and Text the
time scale corresponding to external changes. In terms of these time scales the
adiabatic limit becomes 1

Tint
>> 1

Text
and the non-adiabatic limit 1

Tint
<< 1

Text
.

As we are dealing with an expanding cavity, the external in�uence is de�ned
by the movement of the wall and the corresponding inverse time scale is 1

Text
=

L̇(t)
L(t) = λ(t) while the internal time scale is related to the energy of the �eld

modes 1
Tint

= ω(t). In case of the linear displacement described in the previous

section it is possible to write 1
Text

= λ(t) = v
a+vt and 1

Tint
= ω(0)L(0)L(t) =

ω(0) a
a+vt .

For the individual solutions we can recognise the condition we found for Q̇(0)
as the adiabatic limit

1

Tint
� 1

Text

⇒ ∀t ω(0)
a

a+ vt
� v

a+ vt

⇒ ∀t
ω(0)a

v
=
√
κ� 1

which means that

Text
Tint

=
ω(0)a

v
=∞

corresponds to the extreme adiabatic limit where v → 0 or ω(0) → ∞. Unfor-
tunately this means that the simpli�ed di�erential equation (21) reduces to

Q̈(t) + ω2(t)Q(t) = 2λ(t)GQ̇(t)− λ2(t)GQ(t)− λ2(t)G2Q(t)

⇒ Q̈(t)

ω2(t)
+Q(t) = 0

as λ(t)
ω(t) → 0. The only information we can extract from this equation is that for

a disappearing velocity (i.e. the wall is stationary) we are left with the harmonic
oscillator corresponding to a free situation.

As for the non-adiabatic limit, κ� 1, we �nd even in the limit where v = c
and ω(0) takes the lowest allowed value (mx = my = mz = 1) that

√
κ =

aω(0)

v
=
π |m|
v
≥ π
√

3. (24)

This means that κ � 1 will never be satis�ed and the system cannot reach
the non-adiabatic regime. As a consequence our system will either be in the
adiabatic regime or close to it, which we will exploit in what follows.
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4.2 Linear combination

There is another possibility to solve (21) that we haven't tried. As the di�er-
ential equation (21) is linear in Q(t) we can try to �nd a solution that satis�es
the initial conditions by constructing a linear combination of the positive and
negative roots α± = 1±

√
1− 4κ by writing

Q(t) = C+Q+(t) + C−Q−(t)

= C+e
G ln (L(t)

a )
(a
v

+ t
)α+

2

+ C−e
G ln (L(t)

a )
(a
v

+ t
)α−

2

For t = 0 this yields

Q(0) = C+

(a
v

)α+
2

+ C−

(a
v

)α−
2

= F+ + F−.

If we now apply the �rst initial condition then F− can be expressed in terms of
F+ according to

F− =
1√

2ω(0)
− F+ =

√
a

2v
κ−1/4 − F+.

The exact form of F+ can be found from the second initial condition:

Q̇(0) = C+

(a
v

)−α−
2
[
G+

α+

2

]
+ C−

(a
v

)−α+
2
[
G+

α−
2

]
=
v

a
F+

[
G+

α+

2

]
+
v

a
F−

[
G+

α−
2

]
=
v

a

(
α+ − α−

2
F+ +

√
a

2v
κ−1/4

[
G+

α−
2

])
= −ı

√
ω(0)

2
= −ı

√
v

2a
κ1/4.

Using that α+−α−
2 =

√
1− 4κ we �nd F+ to be

F+ =

√
a

2v
κ−1/4

[
1

2
−
ıκ1/2 +G+ 1

2√
1− 4κ

]
,

which gives for C+ and C−

C+ =
1√
2
κ−1/4

[
1

2
−
ıκ1/2 +G+ 1

2√
1− 4κ

](a
v

)−√1−4κ
2

=
1√

2ω(0)

[
1

2
−
ıκ1/2 +G+ 1

2√
1− 4κ

](a
v

)−α+
2

C− =
1√
2
κ−1/4

[
1

2
+
ıκ1/2 +G+ 1

2√
1− 4κ

](a
v

)√1−4κ
2

=
1√

2ω(0)

[
1

2
+
ıκ1/2 +G+ 1

2√
1− 4κ

](a
v

)−α−2
16



and we �nd the solution to our di�erential equation to be

Q(t) =
1√

2ω(t)

[a+ vt

a

]α+−1

2 +G
[

1

2
−
ıκ1/2 +G+ 1

2√
1− 4κ

]

+

[
a+ vt

a

]α−−1

2 +G
[

1

2
+
ıκ1/2 +G+ 1

2√
1− 4κ

] .

(25)

The next step is then to take the limit t ↑ tf and compare with (11) to determine
the coe�cient A:

Q(t ↑ tf ) =
1√

2ω(tf )

[a+ vtf
a

]α+−1

2 +G
[

1

2
−
ıκ1/2 +G+ 1

2√
1− 4κ

]

+

[
a+ vtf

a

]α−−1

2 +G
[

1

2
+
ıκ1/2 +G+ 1

2√
1− 4κ

] .

AsA corresponds to the positive frequency part of the solution and eı
∫ tf
0 ω(t′)dt′ =

e
ı
∫ tf
0

πm
L(t′)dt

′
= eı

πm
v [lnL(tf )−lnL(0)] =

[
a+vtf
a

]+ı√κ
we �nd that

A =
1√

2ω(tf )

[
a+ vtf

a

]α+−1

2 +G
[

1

2
−
ıκ1/2 +G+ 1

2√
1− 4κ

]
. (26)

Evaluating (26) we see that for 1− 4κ < 0 and
√

1− 4κ = ı
√

4κ− 1 there will
be a singularity for κ = 1

4 . Fortunately, by a similar comparison as (24), we �nd

that ı
√

4κ− 1 ≥ ı
√

12π2 − 1 ≈ 10, 8ı and thus the singularity lies well below
the allowed region of values for κ.

4.2.1 Adiabatic limit

It is also possible to evaluate the adiabatic limit in the case of our linear com-
bination of solutions:

1

Tint
� 1

Text
⇒ κ� 1,

thus
√

1− 4κ ≈ ±2ıκ1/2 and we �nd (choosing the positive solution)
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Q(t) =
1√

2ω(t)

[a+ vt

a

]α+−1

2 +G
[

1

2
−
ıκ1/2 +G+ 1

2√
1− 4κ

]

+

[
a+ vt

a

]α−−1

2 +G
[

1

2
+
ıκ1/2 +G+ 1

2√
1− 4κ

]
κ� 1
======

1√
2ω(t)

[
a+ vt

a

]G−ıκ1/2 (
1 +

G+ 1
2

2ı
√
κ

)

+
1√

2ω(t)

[
a+ vt

a

]G+ıκ1/2 (
−
G+ 1

2

2ı
√
κ

)
,

where the last term corresponds to the positive frequency part (eı
∫ t
0
ω(t′)dt′),

which falls o� with 1√
κ

= λ(t)
ω(t) indicating that the production of particles with

a high energy (large ω(t)) compared to a relatively low external velocity (small
λ(t)) is, as expected, suppressed.

5 Labelling

The next step towards properly solving (9) is to �gure out how to incorporate the
correct labels. To do this we don't only need to know how the modes m, j and l
interact with each other but also how they relate to the original modes n. The
integral contained in Gzmj contains information about the projection of modes
m and j. Or more explicitly, gmzjz does. To extract this information we will
now calculate gmzjz . Realising that the integral as well as the di�erentiation
are both with respect to the z-component, the x- and y-components will be
temporarily left out in order to keep the following calculations more structured:

gmzjz =Lz(t)

∫
C

dz
∂ϕmz
∂Lz

ϕjz

=− Lz(t)
∫
C

dz

[
1

L2
z(t)

sin

(
mzπ

Lz(t)
z

)
sin

(
jzπ

Lz(t)
z

)
+

2πmz

L3
z(t)

z cos

(
mzπ

Lz(t)
z

)
sin

(
jzπ

Lz(t)
z

)]
.

(27)

Substituting v = z
Lz(t)

leads to

gmzjz = −
∫ 1

0

dv sin (mzπv) sin (jzπv)− 2πmz

∫ 1

0

dvv cos (mzπv) sin (jzπv)

≡ I + II.
(28)

The integrals I and II will be solved separately and added later on. The
�rst integral contributes

18



I = −
∫ 1

0

dv sin (mzπv) sin (jzπv)

=
1

2

∫ 1

0

dv (cos (π(mz + jz)v)− cos (π(mz − jz)v))

=
1

2π

(
sin (π(mz + jz)v)

mz + jz
− sin (π(mz − jz)v)

mz − jz

)∣∣∣∣1
0

=
1

2π

(
sin (π(mz + jz))

mz + jz
− sin (π(mz − jz))

mz − jz

)
(29)

As both mz and jz are positive integers, the �rst sine-term will always yield
zero. The second term only contributes when mz = jz. Hence we �nd

I = − 1

2π
δmzjz

sin (π(mz − jz))
mz − jz

∣∣∣∣
mz=jz

= −1

2
δmzjz . (30)

So I contributes − 1
2 when mz = jz and zero otherwise. Rewriting II gives

II = −2πmz

∫ 1

0

dv v cos (mzπv) sin (jzπv)

= −πmz

∫ 1

0

dv v (sin (π(mz + jz)v)− sin (π(mz − jz)v))

= −πmzv

(
−cos (π(mz + jz)v)

π(mz + jz)
+

cos (π(mz − jz)v)

π(mz − jz)

)∣∣∣∣1
0

+ πmz

∫ 1

0

dv

(
−cos (π(mz + jz)v)

π(mz + jz)
+

cos (π(mz − jz)v)

π(mz − jz)

)
= −mz

(
cos (π(mz − jz))

(mz − jz)
− cos (π(mz + jz))

(mz + jz)

)
+mz

(
sin (π(mz − jz)v)

π(mz − jz)2
− sin (π(mz + jz)v)

π(mz + jz)2

)∣∣∣∣1
0

= mz

(
cos (π(mz + jz))

(mz + jz)
− cos (π(mz − jz))

(mz − jz)

+
sin (π(mz − jz))
π(mz − jz)2

− sin (π(mz + jz))

π(mz + jz)2

)
.

(31)

Just as with I we consider mz = jz and mz 6= jz. In the �rst case we �nd

II|mz=jz = mz

(
cos (π(mz + jz))

(mz + jz)
− cos (π(mz − jz))

(mz − jz)
+

sin (π(mz − jz))
π(mz − jz)2

− sin (π(mz + jz))

π(mz + jz)2

)∣∣∣∣
jz=mz

= mz

(
1

2mz

)
=

1

2
.

(32)
So for mz = jz we �nd gmz,jz = − 1

2 + 1
2 = 0. In the mz 6= jz case I does not

contribute and if we use yet again that mz and jz are both positive integers,
then
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gmz,jz 6=mz = II

= mz

[
(−1)mz+jz

mz + jz
− (−1)mz−jz

mz − jz

]
= (−1)mz+jz

−2mzjz
m2
z − j2z

(33)

With this Gzmj with mz 6= jz becomes

Gzmj = gmzjzδmxjxδmyjy

= (−1)mz+jz
−2mzjz
m2
z − j2z

δmxjxδmyjy ,
(34)

which is indeed independent of Lz(t) as stated before.
Likewise we need to determine (G2)mj. From (8) we can derive that∑

j,l

GjlGmlQ
(n)
j =

∑
j

L2(t)

∫
C

dx
∂ϕj

∂L

∂ϕm

∂L
Q

(n)
j .

Evaluating the integral in the above equation solely for the x-components (i.e.
mx 6= jx and my,z = jy,z) yields

L2(t)

∫
C

dx
∂ϕj

∂L

∂ϕm

∂L

mx 6= jx====== π2mxjx
sin (π(my − jy))

π(my − jy)

sin (π(mz − jz))
π(mz − jz)

×
[

sin (π(mx − jx))

π(mx − jx)
+ 2

(
cos (π(mx + jx))

π2(mx + jx)2
+

cos (π(mx − jx))

π2(mx − jx)2
− sin (π(mx − jx))

π3(mx − jx)3

)]
= 2mxjx

[
(−1)mx+jx

(mx + jx)2
+

(−1)mx−jx

(mx − jx)2

]
δmyjyδmzjz

= 2mxjx(−1)mx+jx
2m2

x + 2j2x
(m2

x − j2x)2
δmyjyδmzjz

= 4(−1)mx+jx
m3
xjx

(m2
x − j2x)2

δmyjyδmzjz + 4(−1)mx+jx
j3xmx

(m2
x − j2x)2

δmyjyδmzjz

= −2gmxjx

(
m2
x + j2x

m2
x − j2x

)
δmyjyδmzjz .

The x and y-components give similar expressions. In the case of the single G
-term it was not possible to �nd a contribution to the integrals when mi = ji.
The squared G-term does not have this problem. For mi = ji with i = x, y, z
the above calculation (for all three components) becomes

L2(t)

∫
C

dx
∂ϕj

∂L

∂ϕm

∂L

mi = ji======
3

4
+
π2

3
m2
x +

π2

3
m2
y +

π2

3
m2
z.

Lastly there will be mixing terms of the form gmxjxgmyjy which can be calculated
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from

L2(t)

∫
C

dx
∂ϕj

∂L

∂ϕm

∂L

mx,y 6= jx,y
======== π2mxjy

sin (π(mz − jz))
π(mz − jz)

×
[

cos (π(mx − jx))

π(mx − jx)
− cos (π(mx + jx))

π(mx + jx)

]
×
[

cos (π(jy −my))

π(jy −my)
− cos (π(jy +my))

π(jy +my)

]
+ π2myjx

sin (π(mz − jz))
π(mz − jz)

×
[

cos (π(my − jy))

π(my − jy)
− cos (π(my + jy))

π(my + jy)

]
×
[

cos (π(jx −mx))

π(jx −mx)
− cos (π(jx +mx))

π(jx +mx)

]
=
(
gmxjxgjymy + gmyjygjxmx

)
δmzjz

= −2gmxjxgmyjyδmzjz

Taking all the terms under consideration we �nd

L2(t)

∫
C

dx
∂ϕj

∂L

∂ϕm

∂L
=

(
3

4
+
π2

3
(m2

x +m2
y +m2

z)

)
δmxjxδmyjyδmzjz

− 2gmxjx

(
m2
x + j2x

m2
x − j2x

)
δmyjyδmzjz − 2gmyjy

(
m2
y + j2y

m2
y − j2y

)
δmxjxδmzjz

− 2gmzjz

(
m2
z + j2z

m2
z − j2z

)
δmxjxδmyjy

− 2
(
gmxjxgmyjyδmzjz + gmxjxgmzjzδmyjy + gmyjygmzjzδmxjx

)
.

(35)

We can double check these results by comparing the above calculations with
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the gmlglj term found in (9). Focusing on the (g2)mxjx term we �nd∑
lx

gmxlxgjxlx = −
∑
lx

gmxlxglxjx

= −(−1)jx+mx
∑

lx 6=jx,mx

4
mxjxl

2
x

(m2
x − l2x)(l2x − j2x)

= (−1)jx+mx
∑

lx 6=jx,mx

(
−4

m3
xjx

(m2
x − j2x)(m2

x − l2x)
+ 4

mxj
3
x

(m2
x − j2x)(j2x − l2x)

)

= (−1)jx+mx
∑
lx 6=mx

(
−4

m3
xjx

(m2
x − j2x)(m2

x − l2x)

)
− (−1)jx+mx

(
−4

m3
xjx

(m2
x − j2x)(m2

x − j2x)

)

+ (−1)jx+mx
∑
lx 6=jx

(
4

mxj
3
x

(m2
x − j2x)(j2x − l2x)

)
− (−1)jx+mx

(
4

mxj
3
x

(m2
x − j2x)(j2x −m2

x)

)
[3]
=== (−1)jx+mx

(
3
mxjx
m2
x − j2x

+ 4
m3
xjx

(m2
x − j2x)2

)
+ (−1)jx+mx

(
−3

mxjx
m2
x − j2x

+ 4
mxj

3
x

(m2
x − j2x)2

)
= (−1)jx+mx4

mxjx
m2
x − j2x

m2
x + j2x

m2
x − j2x

= −2gmxjx
m2
x + j2x

m2
x − j2x

.

The same analyses can be applied to the mi = ji term to �nd that∑
lx

gmxlxgmxlx

=
∑
lx 6=mx

4
m2
xl

2
x

(m2
x − l2x)(m2

x − l2x)

= −
∑
lx 6=mx

(
4m2

x

(m2
x − l2x)

− 4m4
x

(m2
x − l2x)2

)

= 3 +
∑
lx 6=mx

4m4
x

(m2
x − l2x)2

= 3 +m2
x

∑
lx 6=mx

(
1

mx − lx
+

1

mx + jx

)(
1

mx − lx
+

1

mx + jx

)

= 3 + 2
∑
lx 6=mx

m2
x

m2
x − l2x

+m2
x

∑
lx 6=mx

(
1

(mx + lx)2
+

1

(mx − lx)2

)
[4]
=== 3− 3

2
+m2

x

(∑
kx

1

k2x
− 1

m2
x

− 1

4m2
x

+
∑
kx

1

k2x

)
∑
k

1
k2 = π2

6=========== 3− 3

2
+
π2m2

x

6
− 1− 1

4
+
π2m2

x

6

=
1

4
+
π2m2

x

3
,

3Where it was used that
∑∞

k=1,k 6=m
1

(m+k)(m−k)
= − 3

4m2 for m an integer.[7]
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which gives indeed the required term when the y and z components are taken
into account as well.

Now that we know how the di�erent modes relate to one another we can
focus on solving the di�erential equation including the proper labels. For the
linear case we know that the non-adiabatic regime is o� limits due to constraints
imposed by the range of the integers mx, my and mz. Consequently we'll focus
on the adiabatic regime. As was shown in 4.1 the extreme adiabatic limit allows
one to neglect virtually all mixing terms generated by Gmn. Continuing this line
of thought we'll �rst apply an adiabatic approximation to (9) to �nd out whether
there are any terms that can be neglected under all (adiabatic) circumstances.

Including labels we �nd up to zeroth order in κm

Q̈(n)
m (t) + ω2

m(t)Q(n)
m (t) = 0.

Similar to before we write the solution as

Q(n)
m (t) = C

(n)
m+

(a
v

+ t
)αm+/2

+ C
(n)
m−

(a
v

+ t
)αm−/2

where αm± = 1±
√

1− 4κm. Considering the adiabatic limit αm± � 1 including

labels, we �nd αm± ≈ ±2ıκ
1
2
m + 1. Demanding that Q

(n)
m (t) satis�es the labeled

boundary conditions (5) gives the solution

Q(n)
m (t) =

δmn√
2ωn(t)

 ı

4κ
1
2
n

(
L(t)

a

)ıκ 1
2
n

+

(
1− ı

4κ
1
2
n

)(
L(t)

a

)−ıκ 1
2
n


≈ δmn√

2ωn(t)

(
L(t)

a

)−ıκ 1
2
n

,

(36)

up to zeroth order in 1/
√
κm. If we now wish to apply a �rst order correction

then we need to include the Q̇
(n)
j (t) term (which is �rst order in 1/

√
κj) such

that the equation to solve becomes

Q̈(n)
m (t) + ω2

m(t)Q(n)
m (t)− 2λ(t)

∑
j

GmjQ̇
(n)
j (t) = 0. (37)

Next we need to add a correction to our zeroth order solution such thatQ
(n)
m (t)→

Q
(n)(0)
m (t) +Q

(n)(1)
m (t), where the �rst term is the zeroth order solution (36) and

the second term a �rst order correction that we want to determine. While sub-
stituting Q

(n)
m (t) into (37) one should keep in mind that if we wish to solve the

�rst order di�erential equation the �rst part of the di�erential equation now
requires the full form of (36) and not just the zeroth order approximation. For
the second (additional) term the zeroth order solution will su�ce. Discarding
any terms other than �rst order yields

Q̈(n)(1)
m (t) + ω2

m(t)Q(n)(1)
m (t)− 2λ(t)

∑
j

GmjQ̇
(n)(0)
j (t) =

Q̈(n)(1)
m (t) + ω2

m(t)Q(n)(1)
m (t)− 2λ(t)GmnQ̇

(n)(0)
n (t) = 0.

4The addition of the sums yield two sums of the type
∑∞

kx=1
1
k2
x
where lx = 0 and lx = mx

need to be subtracted.
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To solve this equation for Q
(n)(1)
m (t) we need to demand once again that Q

(n)
m (t)

satis�es the boundary conditions. However, we already know that Q
(n)(0)
n (t),

Q̇
(n)(0)
n (t) alone produce the right terms for t = 0. In that case we can determine

the proper boundary conditions for Q
(n)(1)
m (t):

Q(n)
m (0) = Q(n)(0)

m (0) +Q(n)(1)
m (0) = Q(n)(0)

m (0) =
δmn√
2ωm(0)

⇒Q(n)(1)
m (0) = 0

Q̇(n)
m (0) = Q̇(n)(0)

m (0) + Q̇(n)(1)
m (0) = Q̇(n)(0)

m (0) = −ı
√
ωm(0)

2
δmn

⇒Q̇(n)(1)
m (0) = 0.

With the help ofMathematica the solution of the �rst order correction is found
to be

Q(n)(1)
m (t) =

Gmn(1− 2ı
√
κn)√

2ωn(t)
·

 2
(
L(t)
a

)− 1
2

√
1−4κm

√
1− 4κm(

√
1− 4κm − 2ı

√
κn)

+

2
(
L(t)
a

) 1
2

√
1−4κm

√
1− 4κm(

√
1− 4κm + 2ı

√
κn)
−

4
(
L(t)
a

)−ı√κn

(
√

1− 4κm − 2ı
√
κn)(
√

1− 4κm + 2ı
√
κn)

 ,
which gives for the total solution

Q(n)
m (t) =(
L(t)
a

)−ı√κn√
2ωn(t)

[
δmn

(
1− ı

4
√
κn

)
−

4Gmn(1− 2ı
√
κn)

(
√

1− 4κm − 2ı
√
κn)(
√

1− 4κm + 2ı
√
κn)

]

+

(
L(t)
a

)ı√κn√
2ωn(t)

ıδmn

4
√
κn

+
2Gmn(1− 2ı

√
κn)√

2ωn(t)
√

1− 4κm


(
L(t)
a

)− 1
2

√
1−4κm

√
1− 4κm − 2ı

√
κn

+

(
L(t)
a

) 1
2

√
1−4κm

√
1− 4κm + 2ı

√
κn

 .
Formally one should expand the exponent of the zeroth order term up to order

1/
√
κn, but as the exponent will drop out during the calculation of

∣∣∣A(n)
m

∣∣∣2 we

will leave it out. We see then that the solution constitutes of a part where the
delta function requires m = n and a part that only contributes when m 6= n as
imposed by Gmn. The positive frequency solution that we need in order to de-

termine A
(n)
m is hidden in the combination of the

(
L(t)
a

)ı√κn

and
(
L(t)
a

) 1
2

√
1−4κm
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terms. Using the adiabatic approximation once more we can write

Q(n)
m (t) ≈

(
L(t)
a

)−ı√κn√
2ωn(t)

[
δmn

(
1− ı

4
√
κn

)
−

2ı
√
κnGmn

κm − κn

]

+

(
L(t)
a

)ı√κn√
2ωn(t)

ıδmn

4
√
κn

+
ı
√
κnGmn√

2ωn(t)
√
κm


(
L(t)
a

)−ı√κm

√
κm −

√
κn

+

(
L(t)
a

)ı√κm

√
κm +

√
κn

 ,
(38)

which gives for A
(n)
m

A(n)
m =

ı
√
κnGmn√

2ωn(tf )
√
κm(
√
κm +

√
κn)

+
ıδmn

4
√

2ωn(tf )
√
κn
. (39)

Now that the coe�cient A
(n)
m has been determined we can calculate the average

number of produced particles by plugging (39) into (12):

〈Nm〉 =
∑
n

2ωm(tf )
∣∣∣A(n)

m

∣∣∣2
=
∑
n

2ωm(tf )

(
(Gmn)

2
κn

2ωn(tf )κm(
√
κm +

√
κn)2

+
δmn

32ωn(tf )κn

)

=
∑
n

√
κn (Gmn)

2

√
κm(
√
κm +

√
κn)2

+
1

16κm

=
∑
n

|n| (Gmn)
2

|m| (|m|+ |n|)2
v2

π2
+

v2

16π2 |m|2
,

(40)

where it was used that ωn(tf )κm =
√
κnκmωm(tf ).

6 Results and Conclusion

Taking a closer look at (40) we �nd it consists of two parts. Before we discuss
the individual terms we can make the overall observation that for increasing ve-
locity, v, of the walls the average number of created particles increases as well.
As we are working with an adiabatic approximation v will always be relatively
small compared to π |m|. This brings us to the second term, which is rather
straightforward; it only contributes when |n| = |m| and it decreases quadrati-
cally with |m| as was predicted. The �rst term requires a deeper analysis.

For the low energy modes |m| � |n| we see that the denominator goes with

|m| |n|2 (for increasing |n|) and the numerator with |n| (Gmn)
2
. The Gmn term

itself behaves approximately as Gmn ∼ |m|
|n| . In that case the �rst term itself

will behave as ∼ |m||n|3
v2

π2 .

In the exact opposite limit where themmodes are highly energetic compared
to n we �nd that the denominator goes with |m|3 while the numerator goes with
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|n| (Gmn)
2
. Here the Gmn will behave approximately as |n||m| . Thus we �nd that

this �rst term goes as ∼ |n|(Gmn)
2

|m|3
v2

π2 ∼ |n|3

|m|5
v2

π2 .

The case where |m| and |n| are of similar order gives some interesting fea-
tures. As we are working with integers, similar order means ni = mi + l
for l a small integer value. In that case we �nd that the individual compo-

nents of Gmn behave as (Gxmn)
2 ≈ 4m4

x

(−2mxl)2 δ
(2)
myjy

δ
(2)
mzjz

=
m2
x

l2 δ
(2)
myjy

δ
(2)
mzjz

for

large values of mx, with similar terms for y and z. Plugging this in the �rst

term of (40) and using that
∑
l=1

1
l2 = π2

6 we �nd our sum becomes �nite:∑
n
|n|(Gmn)

2

|m|(|m|+|n|)2
v2

π2 ≈ v2

π2
2

4|m|2
∑
l=1

m2
x+m

2
y+m

2
z

l2 = v2

12 .

Figure 2: Number of particles N created for the mode mx = my = mz = 50
and v = 0.3 while the range ni of the nx,ny and nz sums in (40) increases.

Figure (2) shows the number of created particles as a function of the max-
imum value ni for the summation indices nx, ny and nz, while the mode m is
kept �xed. In this speci�c case we chose v = 0.3 and indeed the value converges

to v2

12 ≈ 0.0075. We see then that the lowest contribution to the sum in (40)
comes from the case where the modes n are much smaller than the modes m
of the particles we want to create (|n| � |m|). The opposite situation has a
slightly higher contribution (|n| � |m|) but the largest contribution comes from
the case where the modes m and n are roughly equal (around ni = 50 in �gure
(2)). Intuitively the above result is what can be expected. The creation of

particles depends mainly on (Gmn)
2
which peaks around mi = ni for i = x, y, z

as mixing of modes occurs predominantly for modes that have similar spatial
properties. The last 'region' corresponds to the energy of mode |m| � |n| and
we see the creation rate saturates, as for |m| � |n| the �rst term in (40) goes as

∼ |m|
|n|3

v2

π2 and is thus suppressed. This would mean that it is possible to create

v2

12 particles for every su�ciently large mode m (the modes |m| < |n| contribute
less). However, there is an in�nite amount of modes m and thus the possibility
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to create an in�nite amount of massless particles. To explain this in�nity we
have to take a closer look at our original setup.

Before the wall acquired a velocity the system was free. At t = 0 the
walls instantly moved away with a velocity v for a time interval ∆t = tf , thus
expanding the initial vacuum. When the walls stop moving the system is free
once again and we �nd a di�erent vacuum. However, this 'new' vacuum does
not only di�er from the initial vacuum by the new modes that are now allowed,
but also by the particles that have been created for every mode m during the
expansion. This means that besides a shift in the (formally in�nite) vacuum
energy we can expect a correction term appearing in the energy of the new
system that accounts for the energy required to create particles. To calculate

this shift in energy we consider the di�erential equation for Q
(n)
m (t) = δmnQ

(n)
n .

Thus, we only consider those modes m that were already present before the
walls started moving. In that case we �nd

Q̈(n)
n (t) + ω2

n(t)Q(n)
n (t) = −λ2(t)

(
G2
)
nn
Q(n)

n (t)

as the other terms yield zero due to Gnn = 0. From (35) we know
(
G2
)
nn

=

− 3
4 −

π2

3 (n2x + n2y + n2z), which yields

Q̈(n)
n (t) + ω2

n(t)

(
1− v2

3
− 3v2

4π2 |n|

)
Q(n)

n (t)

= Q̈(n)
n (t) + ω̄2

n(t)Q(n)
n (t) = 0.

We see then that ωn(t) is shifted to ω̄n(t) as a result of the movement of the
walls and consequently the mixing of modes. We can use ω̄n(t) to calculate the
shift in the vacuum energy. Using a conventional factor 1

2 yields in the adiabatic
approximation

ω̄n(t)

2
=
ωn(t)

2

√
1− v2

3
− 3v2

4π2 |n|2

≈ ωn(t)

(
1

2
− v2

12
− 3v2

16π2 |n|2

)
.

The �rst term corresponds to the new vacuum energy (ωn(t) ∼ 1
L(t) ). The sec-

ond term gives a redshift correction proportional to −v
2

12 that should correspond
to the energy extracted from the initial vacuum to create particles, which we
indeed found as the �rst term of (40).

Future research could focus on �nding di�erent forms of L(t) for which the
di�erential equation can be solved exactly. Besides that there is still the issue
of creating massive particles. Unfortunately we were unable to �nd a solution
for the massive Klein-Gordon equation in the case of a linear displacement of
the walls. The use of a di�erent form of displacement might solve this problem
as well.
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