Reduction of two-loop Feynman integrals

Rob Verheyen

July 3, 2012

Contents

1 The Fundamentals at One Loop

1.1 Introduction e
1.2 Reducing the One-loop Case
1.3 Unitarity e
14 Expanding fi(q)
2 Two and more loops
2.1 The Two-Loop Case,
2.2 The Relevant iGraphs L.
2.3 Trivial Terms and Beyond
2.4 Solving the Coefficients
2.4.1 Solvability o
2.4.2 Matrix Rank and Tensor Structures
2.4.3 Solving the Coefficients
3 Methods of solving linear systems
3.1 Gaussian Elimination 000
3.2 QR Decomposition
3.21 Existence Lo
3.2.2 Householder Transformations
3.3 Singular Value Decomposition
3.3.1 Existence o
3.3.2 Computation oo
4 Results
4.1 Solvability
4.2 Matrix Rank and Tensor Structure
4.3 Solving the coefficients 0oL
4.4 Unusual behaviour in two dimensions
4.5 Conclusions oL

ot Ot W NN

10
11
11
12
13

14
14
15
15
17
18
19
20

Chapter 1

The Fundamentals at One
Loop

1.1 Introduction

Experimental particle physics is currently a very active field of research. Par-
ticle colliders produced or are producing large amounts of data to be analysed.
To interpret these data, comparison with highly accurate theoretical results is
required. In particular, in order to calculate cross-sections, many contributions
from different Feynman diagrams have to be computed. The corresponding
Feynman integrals become progressively complex as more loops appear in the
associated Feynman diagrams. Many authors have attempted to reduce several
of these integrals to more manageable forms. One of these methods will be
studied in this thesis.

We start by looking at Feynman diagrams with a single loop. An example of
such a diagram is given in Figure 1.1.

Figure 1.1: A general one-loop Feynman diagram. The particles in the loop can
be several things, such as an electron-positron pair

The general form of the relevant integral is

A 4
4 1.1
/Dng...Dnd q (1.1)

2

CHAPTER 1. THE FUNDAMENTALS AT ONE LOOP 3

The numerator A can have many different forms. For our reduction, we will
only focus on the denominator and leave A the same. The typical shape of D; is
D; = (q+p;)? —m?2. The integration variable ¢* is the loop momentum. As this
momentum is unknown within a loop, it has to be accounted for by integrating
over all possible values. The constants p!' and m; correspond to the external
momentum! and mass of particle i. D; is then what is called the propagator of
particle i. From now on, we refer to n (the total number of propagators) as the
order of the integrand.

These integrals do not necessarily correspond with a single Feynmann diagram.
Instead, we will consider the reduction in the most general way possible. To
visualize the integral, we use an integrand graph (or iGraph). Figure 1.2 is an
example of such an iGraph.

Figure 1.2: iGraph with 4 propagators

In general, there is no momentum conservation along the loop of the iGraph. For
instance, our integral may be a combination of several integrals corresponding
to different diagrams. In that case, the resulting integral no longer corresponds
with any physical event, but it can still be reduced.

1.2 Reducing the One-loop Case

Our goal is to reduce the above integrals into a number of integrals that are
all easier to compute. We would therefore like to split up the integrand into
several smaller fractions. Consider an iGraph of order n. A reduction of the
corresponding integral would look like

1 n
L) () B fn(@) (1.2)
DiDs..D, D3D3..D, ' DiDj..D, D1DyDs3.. Dy

L Another, fixed momentum

CHAPTER 1. THE FUNDAMENTALS AT ONE LOOP 4

If we can indeed find functions f1(g"), fa(q*),..., fn(q") that satisfy equation
(1,2), we have found a reduction of the original integral. The reduction is just
a sum of integrands corresponding with iGraphs of order n-1. Rewriting (1,2),
we get

D1 fi(q) + D2f2(q) + ... + Dnfn(q) = 1 (1.3)

Where we multiplied by D1 D, ... D,. We can attempt to reduce the integrand
trivially by just setting f1(q), f(q), ..., f(q) to constants.

file) = ¢ (1.4)

2

Filling in and substituting D; = (¢ + p;)*> — m? in equation (1,3), we find

(¢® +p+2qup —mi) c1+ ...+ (¢ +p2 +2qupti —mi) e, =1 (L5)

Writing out equation (1.5)

qQZciJrQqHZciprqu~(p12*m3):1 (1.6)
i=1 i=1 i=1

We can now easily see that this equation actually has the general form

a-¢+bq,+d=1 (1.7)

Where a and d are just constants, and b* is a constant four-vector. We now
require this equation to hold for any g*. This immediately implies that a = 0,
b* =0 and d = 1. To see this, consider a situation where for some q*, equation
(1,7) holds for nonzero a. We can now always choose a different g* such that
a-q* +d = 0, violating equation (1.7). The same argument can be used for the
individual components of b¥, and even for combinations of nonzero a and b*, as
we can always change and scale g*to make (1.6) vanish. Thus, equation (1.7) is
in fact a system of equations

a= Zci =0 (1.8)
1=1

B= el =0 (1.9)
=1

d=ZCi~(p?—m?) =1 (1.10)
These six? equations yield constraints that apply to the values of ¢;. As they
are all linear in ¢;, we can fulfill them if we have six or more ¢;, or iGraphs of
order 6 or higher. In general dimension d, we can thus reduce the iGraph if
it has order d + 2 or higher. Of course, if we want to reduce iGraphs of order

2Equation (1.9) actually represents 4 equations

CHAPTER 1. THE FUNDAMENTALS AT ONE LOOP 5

larger than d + 2, we can just keep reducing untill we hit the situation where
every iGraph has d + 1 propagators.

It should be noted that this process does not yet solve the coefficients ¢;. For
that, one has to calculate them through a process we will see later on and check
if they hold true for any value of ¢*. This test is called the '1 = 1 test’, which
refers to filling in equation (1.3) with random values for ¢#, and checking if it
adds up to 1. We can use random values for ¢* because the reduction should
be valid for every value of g*.

We will now consider how we can improve this method by expanding the func-
tions f1(q), f(q), ..., f(g) with terms of higher order in q*. However, before
expanding the functions with larger and larger terms, one might wonder what
the limit of this reduction is.

1.3 Unitarity

We have seen that we can already reduce iGraphs in dimension d to integrals
of order d + 1 by only using constant functions fi(q), f(q), ..., f(g). One
would expect the reduction to go further if we expand the functions. Unfortu-
nately, there is a fundamental limit on how far we can carry reductions with
this method, related to unitarity.

Consider a Feynman integral of order d. To further reduce this integral, the
relevant equation to solve is

D1(q) f1(q) + D2(q) f2(q) + ... + Da(q) fa(q) = 1 (1.11)

Where D; has explicitly been written as a function of ¢g. But ¢* was the inte-
gration variable of the Feynman integral. Therefore, we can freely choose every
component ¢* without changing the content of the integral. For an iGraph of or-
der d in particular, we can choose g* in such a way that every D; vanishes. This
would violate equation (1.11), and as such the conclusion is that no reduction
further than order d can be possible.

1.4 Expanding f;(q)

We now expand the functions f1(q), f(q), ..., f(¢) by adding linear terms

d
fl(qﬂ) = C; —+ Z Ci,jqj (112)
j=1

The additional terms are linear in every component of q. Instead of n, there are
now (1+d)-n coefficients to fulfill equations (1.8) through (1.10). Unfortunately,
these equations now also recieve extra terms.

CHAPTER 1. THE FUNDAMENTALS AT ONE LOOP 6

d d
(P +pi+2q,p5 —m?)- (14> c1;@)+. . AP +PiA2qupl—m?) (cat Y enjg’) =1
=1 j=1
(1.13)
In a similar fashion as before, equation (1.13) splits up into several parts gov-
erned by the powers of g.

Y =0 (1.14)
i=1

2g, > (el + - (p] —m})) =0 (1.15)
i=1
"> cip =0 (1.16)
i=1
2q,q" Z ciopl =0 (1.17)
i=1

> e (pf —mi) =1 (1.18)
=1

Every one of the equations determines a value of our coefficients. Therefore, to
count how many restrictions on the coefficients there are, we just have to count
the amount of tensor structures. In this situation, we see that equation (1.14)
is already contained in equation (1.17), and should therefore not be counted.? .
In total, we then have 0+d+d+ % +1= %dz + ngr 1 independent tensor
structures.*

Reduction with trivial terms was possible until iGraphs of order d + 1, and
unitarity restricts reduction of order d. The only relevant reduction left is that
of order d + 1 to order d. Filling in n = d + 1 in the expression for the amount
of coefficients, we find (d + 1) - (d + 1) = d? + 2d + 1. Comparing this with the
amount of tensor structures, it is clear that for d > 1 the amount of coefficients
surpasses the amount of tensor structures. It would seem that the reduction is
possible.

However, we have to consider that we may be unable to fulfill equations (1.14)
through (1.18) with the coefficients we have. The reason for this is that it might
happen that coefficients only appear in certain combinations. Consider a system
of equations

3¢?is in fact spread out over the equations in (1.17) where u = v
4Equation (1.17) only accounts for % tensor structures because it is symmetric.

CHAPTER 1. THE FUNDAMENTALS AT ONE LOOP 7

r+2y—z=3

2z —4y+32=5

If we rewrite the second equation as 2(x +2y) + 3z = 5, it is clear that variables
x and y only appear in a set combination, and should be considered as a single
variable. If this happens, one of the coefficients is called dependent on the other.
The same may happen to the system (1.14)-(1.18), resulting in dependent c’s.
In fact, it has to happen, because any coefficients that would be left over after
applying (1.14)-(1.18) can be chosen freely, and are therefore dependent. We
conclude that the amount of independent coefficients has to be equal to the
amount of independent tensor structures. If this is the case, the reduction is
possible.

In [1] the amount of independent coefficients is calculated using a method called
cancellation probing. The results presented there show that reduction of iGraphs
of order d + 1 is indeed possible with linear terms. This completely solves the
reduction of Feynman integrals in a single loop. We will be able to reproduce
this result with a method used for reduction of integrals with two or more loops.

Chapter 2

Two and more loops

2.1 The Two-Loop Case

Now that we finished decomposition of iGraphs with a single loop, we are ready
to consider diagrams with two or more loops. While these diagrams yield higher
order terms, making them smaller than those of the one-loop diagrams, they still
represent contributions that are not negligible. The general form of the Feynman
integral for two loops is similar to equation (1.1)

1
- d*dY 2.1
/ DyD,..D, 7 (2.1)

There are now two separate loop momenta l; and /5 that both have to be
integrated over. The expression for the propagator changes to D; = (I; +p;)? —
m2, D; = (lo + p;)? — m? or D; = (I; + Iz + p;)?> — m?. That is, a propagator
can have momenta [y , ls or both I; and ls. A two-loop iGraph must have at
least one of each of these propagators, If one is missing, we can consider the
iGraph as a combination of two one-loop iGraphs. We can uniquely represent
the corresponding iGraphs with the expression (nj, ns, ns), where n; represents
the amount of propagators with /1, ng those with [l and ns the amount of shared
propagators. Then n = nj 4+ ns + ng is the total number of propagators. Figure
2.1 displays an example of an iGraph with two loops.

CHAPTER 2. TWO AND MORE LOOPS 9

Figure 2.1: An iGraph with configuration (3,2,3)

When we try to reduce two-loop iGraphs, we will generally use functions f1(l1,l2),
fa(l1,12), ..., fa(l1,l2) that have terms depending on both I; and l5. For exam-
ple, if we would try reduction with linear terms, the functions would consist of
terms that are linear in /; and other terms that are linear in I5.

2.2 The Relevant iGraphs

Fortunately, the amount of different reductions to consider is limited. First of
all, we notice that the integral in equation (2.1) is just a product of the inverse
of propagators. Therefore, if either ny or n3 is r > d, we can simply write the
integral as

1 1
/Dng...D,« Dyyq...D,
We now easily see that because the first r propagators only depend on one loop

momentum, we can simply apply our knowledge of the reduction of one-loop
integrals, reducing the expression to

/{ filly) N f) - fa(l) }
DoDs..D, ' DyDs..D, D1D3D3..D,—1 | Dyi1...Dy

d*lyd*ly (2.2)

d*lyd*ly

(2.3)
When the relevant loop momentum is /;. In fact, because we can freely choose
the path of our loop momentum along the iGraph!, we can use the same pro-
cedure in case ng > d by just redefining how /; and I, move along the iGraph.
These simple observations immediately tell us that any two-loop iGraph of order
n > 3d is reducable.

LAs long as it’s a closed loop

CHAPTER 2. TWO AND MORE LOOPS 10

Furthermore, we should consider unitarity for the two-loop iGraphs. Rewriting
equation (1.11), we find

1=Di(l1)fi(lx) + -+ Dy (L) frr () +
Dpys1(l+12) foy41(l +12) + oo+ Doy ny (I +12) fry 4np (L + 12)+
Dn1+n2+1(l2)fn1+nz+1(l2) .t Dn(l2)fn(l1) (2-4)

If all n; < d, we can again shift [; and l5 such that 2d of the propagators vanish.
This implies that equation (2.4) cannot be true for all I; and Iy if we have
n = 2d. Therefore, reduction is not possible with this method. We conclude
that we are looking to reduce two-loop iGraphs between orders 3d and 2d.

2.3 Trivial Terms and Beyond

We again start with functions that are just constants
fillh+12) = ¢ (2.5)

Analogously to the previous process that resulted in equation (1.3), we find

ni ni+ng n
Z ciDi(l1) + Z ciDi(ly +12) + Z ciDo(l2) =1 (2.6)
=1 i=ni+1 i=ni+no+1

Again, because equation (2.6) has to hold for every [and I , we can count the
number of tensor structures to find the amount of restrictions on the coefficients.
The possibilities are I}’ 15, 1%, 13, 1,15 and the constant term. In total, this adds
uptod+d+1+1+1+1=2d+ 4 conditions for the coefficients ¢;. Therefore,
for every configuration, an iGraph of order 2d+4 can be decomposed to iGraphs
of order 2d + 3.

In [1], it is shown that functions with linear terms
d o d _
f1(11 + ZQ) =c; + Z am-l{ + Z bi,jl% (27)
j=1 j=1

can be used to reduce iGraphs up to order 2d+ 1. Additionally, quadratic terms

d d d d d
fi(ll+l2) = Ci+z ai7jl{+z bl"jl%#* Z di’jkl{llfﬁL Z €i7jkl{l]2€+ Z fkal%l]QC
j=1 i=1 k=1 jk=1 k=1

(2.8)
allow for reduction to order 2d exclusively for d = 2. When adding cubic terms

CHAPTER 2. TWO AND MORE LOOPS 11

d d d d d
fili+ly) = et ai B+ i+ > dipllli+ Y e nlils+ Y figrlilh+
j=1 j=1

k=1 jik=1 jk=1

d d d d
> GiiemB I Y BB+ D il D> ik 51

J,k,m=1 J,k,;m=1 j.k,m=1 J.k,m=1

(2.9)

it was shown that reduction to order 2d was possible for d = 3 as well. Addi-
tionally, it was suspected that cubic terms are also sufficient to reduce d = 4
to 2d. This was not proven, because the numerical method used in [1] met its
limits.

2.4 Solving the Coefficients

In order to tackle the problem of reducing iGraphs of order 2d + 1 for d > 3, we
first introduce the general method of finding the required coefficients. We have
already seen that we should take into account that equation (2.4) has to hold
for any [and l3. To do this, we randomly generate a vector 1§ and 1§ for every
coefficient. For d = 4 and reduction of an iGraph of order 2d + 1 with cubic
terms, this requires 1485 randomly generated [y and l5. We then use random,
but fixed values for m; and p!' to fill in equation (2.4) .> We use random values
for m; and p!' because this eliminates any chance of picking values that might
lead to special cases. If that occurs, reduction may be possible, while it is not
in the general case. Of course, we are just trying to show that a reduction is
possible. If one is trying to calculate the coefficients for specific values of m;
and p!', those would have to be used.

It is now possible to formulate the problem as a system of linear equations that
have to be solved.

Az =1b (2.10)

Where x represents the vector with all coefficients, A is the matrix contains the
randomly generated set of linear equations we produced, and b is just a column
vector with 1 everywhere. In order to prove reductibility, several conditions
have to be met.

2.4.1 Solvability

First of all, the system of equations has to be solvable. To check the solvability of
a system of equations, one usually computes matrix ranks. A matrix is solvable
if and only if

rk(A) = rk(A|b) (2.11)

2The same values of m; and pé‘ for every different value of I1 and [z

CHAPTER 2. TWO AND MORE LOOPS 12

a1 oo Q1np bl
where A|b means the matrix

anl .- Gpn bn

To see this, note that when computing the product Az, we are just making
linear combinations of the columns of A. That is, the columns of A generate
the image of A. If Az = b is solvable, the image of A contains b and it can be
expressed as linear combination of columns of A. But then, if one adjoins b as a
column of A, the rank of the matrix does not change. If we are using numerical
methods to solve systems of equations, this condition can be used to check if
there is a point in attempting to find a solution.

2.4.2 Matrix Rank and Tensor Structures

The second condition confirms the reductibility of the iGraph. It was mentioned
before that the number of independent coefficients has to be equal to the num-
ber of tensor structures. If this is the case, equation (2.4) is solvable and the
reduction is possible. In our matrix notation, the notion of independent coeffi-
cients relates to the rank of the matrix. If every single one of our coefficients
would be independent, it would mean the system A fully determines them. If
there are dependent coefficients, this has to be reflected in A in the form of
linear dependance in the matrix rows. It just means that some of the equations
in A are linear combinations of others, and therefore give no additional infor-
mation about the solution of the coefficients. Every dependent row therefore
corresponds with a dependent coefficient, and to check reductibility, we need to
compare the matrix rank with the amount of tensor structures.

One might now wonder what would happen if we added even more equations
than we already have by just generating more random values for /; and 5. For
every single [; and ls, the new equation would just be linearly dependent on
those we already had. This has to be the case, because if it was not, we could
keep adding equations untill the system is overdetermined, and no reduction
would be possible at all.

Counting the amount of tensor structures is a straightforward exercise. One
just writes down all possible combinations® and substracts all structures that
are contained in others. A formula for general dimension d is given in [1] for
the case of cubic terms with d > 2.

2 22 71 1
T(d)==d*+ =+ —d®>+ =d+1 2.12
(d) 3d+3d+6d+6d+ (2.12)

3Similar to what we did in (1.7)
4For d = 2 the amount of tensor structures turned out to be slightly lower than expected.
However, this only occurs for d = 2

CHAPTER 2. TWO AND MORE LOOPS 13

2.4.3 Solving the Coefficients

Obviously, the last requirement is to solve and test the coefficients. Several
methods of solving systems of linear equations exist, which we will deal with in
chapter 3. To test our solution, we need to require that the coeflicients obey
equation (2.4) for any value of /; and l5. Numerically, we can test this by
generating new random values for {1 and Iy and filling them in in equation (2.4)
together with the solved coefficients. If the result is equal to one for several
randomly generated [y and I, we can safely say we have found a reduction.

Chapter 3

Methods of solving linear
systems

3.1 Gaussian Elimination

The first and most straightforward method of solving systems of linear equations
we try is Gaussian elimination. We write down the matrix A|b as

ay;p ... Qin 1

Al --. Qpp 1

which is just the matrix corresponding to the system of equations we intro-
duced earlier. Adjointed is the column of solutions, which is just 1 for every
equation. We now perform elementary row operations to reduce the matrix to
upper triangular form

all PR PR aln 1
0 @ -+ a2 Qng)
0 t 0 Ann Qn(n41)

where «;; indicates changed values from a;;. We can see this process as system-
atically adding and substracting multiples of equations from others.

When the matrix is singular, as is the case here, pivoting has to be used to fully
reduce the matrix. The process of elimination includes division by the elements
on the diagonal. If these values are zero, the elimination fails. We can prevent
this by interchanging rows when necessary. If there is no available row with a
nonzero element on the relevant diagonal, the row should just be skipped.

14

CHAPTER 3. METHODS OF SOLVING LINEAR SYSTEMS 15

When the matrix is in upper triangular form, we can aquire the solution to our
coefficients by backward substitution. One uses the last row to determine the
last coefficient, then substitutes it to solve the second to last equation. This
can be repeated untill all coefficients are solved.

Additionally, the matrix rank is equal to the amount of nonzero elements on the
diagonal. This becomes apparent when performing backward substitution. At
any time, when a diagonal element is zero, the corresponding coefficient is not
determined by the equation, and is therefore linearly dependent.

While Gaussian elimination is one of the fastest ways to solve a system of
equations, it has turned out to be numerically unstable. Reasons for this include
the large amount of divisions that have to be successively computed on the
elements of the matrix. Our algorithm needs a way to determine if a diagonal
element is zero. Inevitably, because of stacking rounding errors, this requires
a limit on a low number below which we consider numbers as zero. This is
a slippery slope for matrices, as more rounding errors requires a higher limit,
which induces more errors. We will use a different method to both calculate the
matrix rank and solve the system of equations.

3.2 QR Decomposition

3.2.1 Existence

Instead, we look at a process called QR decomposition. It allows us to decom-
pose any matrix A as
A=QR (3.1)

where @ is an orthogonal matrix and R is an upper triangular matrix. We first
prove that this decomposition always exists.

Consider an arbirary matrix A. For any vector y, call y* = Ay. Then yT AT Ay =
y*Ty* = |y*|* > 0. Therefore the matrix AT A is always positive definite.
Additionally, AT A is symmetric, because (AT A)T = ATAT" = AT A. We now
need to prove that we can write the matrix A”A = RTR where R is upper
triangular and has positive diagonal elements.

This proof is by induction in the order of the matrix A” A, which we call B. If
the order is 1, A = R works as an upper triangular matrix. Let’s now assume
we can write B* = R*T R* for B* of order n — 1. Then, we create the matrix B

of order n
B* b

In this notation, B* is the previous matrix of order n — 1. Therefore, b is a
vector and [is a scalar. This notation is possible because B is symmetric.
Given the upper triangular matrix R*, we can similarly choose R as

CHAPTER 3. METHODS OF SOLVING LINEAR SYSTEMS 16

R= (Jz* ;) (3.3)

which is still upper triangular. Now, we need to show that R exists and is unique
as a decomposition for B. We write out B = RT R explicitly.

(-5 e

This results in the following 4 equations

B* = R*TR* (3.5)
b=R"r (3.6)
b = TR (3.7)
B =rTr 4 p? (3.8)

We do not have to worry about equation (3.5), as it is covered by our initial
inductive assumption. Obviously, equation (3.7) is just the transpose of equation
(3.6). Additionally, it follows that r = RTflb, which uniquely determines r.
Equation (3.8) yields p = v/ — rTr which is unique and real® as a consequence
of the positive definitiveness of the matrix B. Therefore, through induction,
writing AT A = B = RT R with R upper triangular is possible for any A.

Now, we can choose Q = AR™L. Q is then orthogonal as QTQ = R~ ATAR! =
RV RTRR~! = I. Obviously, QR = AR™'R = A, and therefore, we have
found a decomposition A = QR.

When the matrix is decomposed, the matrix rank is again equal to the amount
of nonzero diagonal elements in R. Filling in the substitution for the matrix
equation (2.13)

Rz =Q"b
we can again find the solution for x by backward substitution.
There are several ways to obtain matrices Q and R, including the well-known

Gram-Schmidt process. Numerically, the most stable method uses Householder
transformations?.

L And obviously positive
2Also called Householder reflections

CHAPTER 3. METHODS OF SOLVING LINEAR SYSTEMS 17

3.2.2 Householder Transformations

The method of Householder transformations uses a series of matrices P; to
gradually reduce the matrix A to upper triangular shape R. The product of all
these P; eventually form the orthogonal matrix Q. Individually, every P; reduces
the elements below the diagonal in ith column to zero. For P;

ai1 a2 v Qg a1 Qi ot Qg

a2 Q2 - G2p 0 ax - agy
Py . . . =

Ain Qp2 e Ann 0 Qap2 e Qnn

Repeating this process, we have

a1 Q12 q1n
0 ao - a

P,P,_1...PobPLA=QTA= . o . =R (3.9)
0 0 o Qpn

Such that QR = A with R upper triangular. To perform this process, we need
to find the shape of P; and have to prove all these matrices are orthogonal.?

We define a Householder matrix H as

H=1-71v" (3.10)

where v is a vector and m = %|v|2. The normalization is normally written this
way because it skips taking a square root. A Householder matrix is symmetrical

H' = (I — 7o)t =17 — T W =T -7 ' = H
Then, orthogonality follows as
H'H = (I-n"'ov?)? = T4+a 2 (vo?) (voT) —2n " tooT = T4+r202m0T 27 oo T
=T+2r ot —2r tw? =1

Householder matrices work on a corresponding vector z, if v is chosen correctly,
as

Hx = —0e; (3.11)

where e; is the unity vector and o = %|z|. To show this, we take v = x + ce;.
Then

1 1
= é(x +oe)t (x4 oer) = i(me + 2021 + 0%) = 0? + o1y (3.12)

3Because products of orthogonal matrices are orthogonal

CHAPTER 3. METHODS OF SOLVING LINEAR SYSTEMS 18

Because 7z = 02 and z; is just the first component of 2. We now calculate

Hzx using equation (3.12)

T

Hr =z — 7 'uu's =z — (6® + ox1) (z + oer)(z + oer)T

=a—(0® +ou) z +oer) @z +oer) =2~ (z+0e1) = —oey

Proving (3.11). Returning to our decomposition, we consider the k-th step where

we have
_(Ry 7, B
am (T B -

Ry, and r, are already part of the final matrix R.* By, and D, are just arbitrary
matrices, and ¢ is the vector we are looking to transform. To do that, we
choose

P, = (s }(}k > (3.14)

With Hj, defined as before with corresponding vector ci. Notice that Py is also
orthogonal. Now

A — P A = I 0 Ri 1, By _ Ry, Tk By
k+1 ktk 0 Hk 0 Ck Dk 0 chk Hka
_(R 1y By,
- < 0 geq Hka) (315)
bringing the reduction one step further. Eventually, A,, = R is upper triangular

and A1A5... A, = Q. Aditionally, since products of orthogonal matrices are
orthogonal, @ is orthogonal because P; is orthogonal.

The large advantage of this method is that we do not actually have to calculate
a matrix product of order n every step. From equation (3.15), it is clear that
the only product to be calculated is Hy Dy, which becomes progessively smaller
as k increases. Additionally, the transformation matrices Hy, Ho, ... H, do not
have to be calculated and stored individually, because for any matrix A of the
size of H;

HA=(I—-7tvw"A=A- 2" u(ATv)T

Showing that we only need to store v to compute any of the transformations.

3.3 Singular Value Decomposition

Singular value decomposition (SVD) is a more advanced method of decomposing
a matrix. It has the possiblity to produce much higher accuracy, but requires

4Capitals stand for matrices, lower case are vectors

CHAPTER 3. METHODS OF SOLVING LINEAR SYSTEMS 19

more computing power. Although QR decomposition is sufficient in most cases,
SVD is preferred for very large matrices.® If computing power is not a problem,
SVD is superior.

3.3.1 Existence

Again, we first have to show the singular value decomposition actually exists.
For any matrix A, the singular value decomposition is

A=UTsv (3.16)

where both U and V are orthogonal matrices and S is a diagonal matrix with
nonnegative, so called singular values on it’s diagonal. As will be proven, sin-
gular value decomposition is similar to eigenvalue decomposition, but is not
limited to only matrices that are diagonizable.

As we have seen before, for any arbitrary matrix A, the matrix AT A is symmet-
rical and positive definite. We now show it also has nonnegative eigenvalues. Let
u be an eigenvector and \ the corresponding eigenvalue of A7 A. Additionally,
call Au =b. Now

1b]? = uT AT Au = u" M = A|ul?

Then [b|? > 0 and |u|? > 0 implies A > 0. We now have all the tools to prove
the existence of the singular value decomposition. Rewriting the decomposition

VTAU = < % 8 > (3.17)

Where ¥ is the diagonal matrix with the nonzero singular values.

We now rename the eigenvalues of AT A as o2, which is possible because they
are positive. We label them in descending order o% > 0% > .. > JTQL. Addi-
tionally, let Uy = (u1, ..., u,) be the matrix of eigenvectors corresponding with
eigenvalues o2 > 0, and let Uy = (u;41,...u,) be the matrix of eigenvectors
corresponding with 02 = 0. Note that U, is not unique, and therefore the

decomposition will not be unique. ¥ is then defined as diag(o1,...,0.).

Now U{' AT AU, = 2 per definition. Rewriting, X~ 1Uf AT AU X~ = I. Fur-
thermore, U AT AU, = 0. We now choose V; = AU %71, Then V; is orthog-
onal, because V;TV; = X"1U'AT AU~ = I. Finally, choose V5 such that
the matrix (V1,V5) is orthogonal, which we can always do. Filling in equation
(3.17)

5For 3 or more loops, or dimensionality of 8 or higher

CHAPTER 3. METHODS OF SOLVING LINEAR SYSTEMS 20

VIAU = (Wi, Vo) A(UL, Us) = ((VOYAU, ViE(AU,)) _

Vi (AUY) Vi (AUS)

(S 58)-(5 4)

Proving the decomposition exists. In the last two steps, we have used some of
the identities showed earlier, orthogonality and eigenvalue relations.

3.3.2 Computation

We will only briefly sketch the current method of computing the SVD of a
matrix. In reality, the process of computation is much more complex, because
of the existence of many different techniques and transformations that can be
applied to the initial matrix that make the computation both faster and more
accurate. We will only describe some of the more prevalent of these techniques.

We have previously determined that computing the SVD of a matrix is just an
eigenvalue problem for the matrix A7 A. There are different methods to calculate
eigenvalues of large matrices, some faster or more accurate than others. We
decribe a popular one based on QR decomposition. The method is usually called
the QR algorithm and relies on successive applications of QR decompositions.

Consider a arbitrary matrix B, and call it By. On step k, the QR algorithm
decomposes By = QR by regular QR decomposition. Then we define By 1 =
Ry Q) and start by decomposing again. Note that

Bii1 = RiQr = QL QuRxQr = QF BrQy,

Because @y, is orthogonal, all By, are similar, meaning they have the same eigen-
values. The shape of By converges to a so-called Shur form, where the matrix
is upper triangular with it’s eigenvalues on the diagonal. When n iterations
are completed, we can write By = QT B,Q with Q = QyQ1...Q,,. With the
eigenvalues known, calculating the eigenvectors of the matrix B,, is quite easy,
as it is upper triangular. If x; are eigenvectors of B,, the eigenvectors of the
original matrix By are Qx;.

Practically, this algorithm is quite expensive. There are some techniques to
reduce the amount of calculations by manipulating the matrix before the algo-
rithm is applied. First, the matrix is usually transformed into upper Hessenberg
shape as

hyp - hin

0 hn(n— 1) hnn

CHAPTER 3. METHODS OF SOLVING LINEAR SYSTEMS 21

This is achieved with Householder transformations similar to what is done when
computing QR decomposition. It turns out that this transformation significantly
speeds up the QR algorithm.

The more the QR algorithm is applied, the more accurate the eigenvalues and
eigenvectors can be calculated. However, it can mathematically be proven that
the eigenvalues converge faster when there is a larger separation between them.
Therefore, several shifting methods are used to shift eigenvalues in order to
compute them more easily. Once the shifted eigenvalues are computed, they
can be shifted back to find their actual values.

Chapter 4

Results

Having described some methods to calculate solutions to large systems of equa-
tions, we are now ready to tackle our problem. We will discuss all points dealt
with in section 2.4

4.1 Solvability

To check solvability of the relevant systems of equations, we use the condition

rk(A) = rk(Alb) (4.1)

In our case, the matrix A is the matrix of equations described in chapter 2, and
the solution vector b is just a column of ones.

For confirmation, both QR and SVD were used to calculate the results listed
in Table 4.1. The program was written in Python. Numpy, which is a library
within Python, allowed for easier handling of large array-like object such as the
matrices and vectors required. Withing Numpy, the linalg package was used to
calculate both QR and SVD of the matrix. This package is a wrapper around
LAPACK!, which was originally written for Fortran. The package includes
many different state-of-the-art methods of various calculations within the field
of numerical linear algebra, including extremely fast and precise algorithms for
QR and SVD. The matrix rank was distinctly visible with both methods, even
with the largest matrices.

'Linear Algebra PACKage

22

CHAPTER 4. RESULTS 23

’ Dimension \ 2 \ 3 \ 4 \ b) \ 6
Propagators | 3 4 5 5 6 717 8 919 10 11|11 12 13
Order 1 vV vV V][X X[X X X X X X X X X
Order2 [& vV [K X (X X X/ X X XX X X
Order 3 X X vV X X vV X X vV X X v X X vV

Table 4.1: Solvability for several dimensions, amounts of propagators and order
of terms

Note that only the number, and not the configuration of propagators is a relevant
coefficient. All configurations of propagators have been tested, and it never
made any difference. From these results we can already draw some significant
conclusions. In [1], it was conjectured one would need higher order terms for
higher dimensions. Instead, these results indicate that d = 2 is a special case.
For higher dimensions, there is a strict pattern where the last possible reduction
by unitarity is solvable, but only with terms of order 3.

4.2 Matrix Rank and Tensor Structure

To confirm that we can indeed reduce iGraphs of order 2d+1 with cubic terms for
d > 2 as the above results suggest, we compare the amount of tensor structures
with the matrix ranks calculated with both QR and SVD. To calculate the
tensor structures, equation (2.12) is used. Results are listen in Table 4.2

Dimension 3 4 5 6
Tensor Structures | 360 | 831 | 1631 | 2876
Matrix Rank 360 | 831 | 1631 | 2876

Table 4.2: Comparison of matrix rank and tensor structures for order of terms
3 and propagators 2d + 1

In every case, the matrix rank is equal to the amount of tensor structures. This
indicates that terms of order 3 are enough to reduce any reducible iGraph with
two loops. Because we now know these reductions are possible, we can explicitly
solve them.

4.3 Solving the coefficients

To definitively confirm the reduction of iGraphs of order 2d+1 with cubic terms,
we solve the corresponding linear systems. In order to check if the calculated
coefficients apply globally to all values of /;and I, we check them against ran-
domly generated [; and [y as described in section 2.4.3. Table 4.3 shows the
result of a numerical computation of the coefficients which are checked against

CHAPTER 4. RESULTS

random /; and 5.2 These were done in d = 4 with cubic terms.

| Propagators | 8 9
Random [y and I | 0.999999997206 | -0.599001394349
0.999999999578 | 3.458581682780
0.999999999534 | 0.827390263649
1.000000000169 | 0.406886263765

1.000000000652
1.000000000233
0.999999999523
1.000000000559

1.323267241981
0.184702651816
0.719414617007
0.157197961494

0.999999999522 | 1.341094285732
1.000000000093 | 1.218648200823
Previous [; and Iy | 0.999999999534 | 0.733363900901

24

Table 4.3: Numerical checks of calculated coefficients against random /; and Iy
for 8 propagators (left) and 9 propagators (right)

Clearly, the reduction exists for 9 propagators, but fails with 8. Note that we
also check against one of the equations from the original system in the last line.
For 8 propagators, we see that the computed solution is not an actual solution
to the equations in the system, which is consistent with the results from section
4.1 where we saw the 8 propagator case is not solvable.

4.4 Unusual behaviour in two dimensions

In our proces of reducing several iGraphs, there have been some unusual prop-
erties that only appeared in the case of d = 2. The first one shows in Table 4.1.
There, we see that the pattern of solvability is very different in d = 2. This also
reflects in the fact that we only need quadratic terms to fully reduce two-loop
iGraphs, while in higher dimensions we need cubic terms. Additionally, in [1] it
was mentioned that the number of tensor structures is lower than expected in
d = 2, while for higher dimensions it is exactly as expected.

Figure 4.1 displays a Feynman diagram with five propagators.

2Shows results were calculated with QR decomposition. SVD obviously yields identical
results, but with slightly higher accuracy

CHAPTER 4. RESULTS 25

Figure 4.1: Feynman diagram of a special case in 2 dimensions

Normally, the corresponding iGraph should be reducable in d = 2 with quadratic
terms. However, it turns out that in this specific case, it is possible to choose
values for [{'and [4 such that all propagators vanish. As such, for this specific
case, reduction is actually not possible.

4.5 Conclusions

We have explored the possibilities of reduction of iGraphs with one and two
loops. We have shown that the number of reducible iGraphs is limited by
unitarity, and we have seen that we can carry out all possible reductions in two-
loop iGraphs with cubic terms. To do this, we have used efficient programming
to solve the associated large systems of equations with the described techniques
of QR and SVD. We can now consider both the one-loop and two-loop cases
solved.

Unfortunately, the techniques used here are not suitable for practical use. While
our method of solving the coefficients is straightforward, it is also not fast enough
to be used for actual calculations. Finding a way to calculate the associated
coefficients for specific integrals is the next step that can lead to much faster
computation of Feynman integrals.

Additionally, iGraphs with three or more loops have not yet been fully solved.
While these iGraphs represent smaller contributions to the calculation of cross
sections, they cannot be ignored. To show if reduction is possible, it is possible
to use the same method as above, but one would expect to require more time
and faster computers to solve the large systems of equations that result from
these larger iGraphs.

Bibliography

[1] Toannis Malamos, Reduction of one and two loop Amplitudes at the Integrand
level

[2] G.W. Stewart, Introduction to matriz computations, Academic Press 1973

[3] Gene H. Golub, Charles F. Van Loan, Matriz computations, The Johns Hop-
kins University Press 1996

[4] The used Python script can be found at: http://codepad.org/mrlYkkIe

26

