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Chapter 1

The LHC threats

The Large Hadron Collider (lhc) is a particle accelerator at the Conseil Européen pour la Recherche
Nucléaire (cern). The collisions it produces will reach energies of 14 TeV, which is a new record.
With these high energies unknown physics can be explored. Because physicists are unfamiliar with
such high energies, in principal it is not known what will happen.
Very soon after commencing the building of the lhc various theories arose claiming the destruc-
tion of the Earth due to collision experiments. As a result of internet broadcasting, newspaper
headlines and books predicting the destruction of the Earth when the lhc was tested, lawsuits and
even suicide occurred around the world. Although in the autumn of 2008 the first beams circled
beneath Swiss and France, no high energy collision has taken place yet, which gives us the time to
have a final look at the safety.

The theories proposed are not generally accepted and most of them can be firmly rejected, but,
prior to that, have to be taken seriously. Without any doubt the major fear concerns the creation
of a microscopic black hole. Another doom scenario is the creation of exotic, hypothetical particles
called ‘strangelets’. Furthermore, a magnetic monopole could be created. The last option is the
creation of a vacuumbubble.

In the remaining part of this chapter we will discuss these theories more in depth and provide
arguments to reject them. The most powerful tool to do that is the so called ‘Cosmic ray argument’,
which will be introduced first.

1.1 Cosmic ray argument

Since the first particle accelerators in the early thirties the operating energies of these accelerators
have increased from 1 MeV to 7 TeV in the near future at the lhc. However, this is still miles
away from the energies reached around us by cosmic rays, mostly protons, striking the atmosphere,
which go up to 1020 eV. The Earth exists about 4.5 billion years now and all these years Earth has
been bombarded by these cosmic rays. After all these ‘experiments’ no trace is found of an event
that could lead to Earth’s destruction.
A cosmic proton hitting the Earth’s atmosphere with 1017 eV is comparable with a full speed
collission at cern. The flux of such particles is about 105 per second, leading to 1022 cosmic ray
collisions in Earth’s history. This corresponds with a hundred thousand full length lhc experi-
ments [7].
As far as we know all of the visible objects in the universe are subject to cosmic rays and none of
them reveal a severe consequence of these cosmic rays, nor do we find any remains of astrophysi-
cal objects that are destroyed as a result of cosmic particles smashing upon it. Considering this,
already many of the above stated threats which might occur at the lhc are ruled out. The white
dwarf is of special interest to us, because it is very long-lived and does not seem to disappear,
so that we can state that cosmic rays on white dwarfs do not cause its destruction. The particle
and mass densities of white dwarfs are enormous, so that any crossing object has a relatively high
chance of interacting with the white dwarf. Furthermore, heavy products of cosmic ray collisions
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are very much attracted gravitationally to the white dwarf as a result of its high mass density and
may very well get trapped inside a white dwarf.
However, there is one significant difference between the collisions at the lhc and in the atmosphere:
at the lhc two beams move towards each other, while in the atmosphere a very fast particle strikes
a particle at rest. Since the only relevant energy in a collision is the centre of mass energy, this
difference leads to a lower centre of mass energy and a large final momentum of the particles for
collisions in space. Comparable collisions have the same centre of mass energy and therefore cos-
mic ray collisions comparable with lhc collisions have much higher energies (when measured on
Earth), since the total momentum is not zero. This difference between lhc collisions and cosmic
ray collisions must be considered carefully when we use this argument.

1.2 Vacuumbubbles

For more than 25 years theories have been known concerning the (meta)stability of the universe
that we know [8]. ‘Our’ vacuum might not be the stable state having the lowest energy, but
separated by huge potential walls from the absolute minimum. The time expected for a ‘vacuum
decay’ to occur is more than the age of the universe, because any such decay has not happened
yet. At high energy particle collisions there could be an enhanced probability for such a decay,
leading to a small vacuumbubble. Such a bubble would expand with approximately the speed of
light, consuming Earth and the near universe soon afterwards.
As stated in section 1.1, already a hundred thousand equivalents of a full lhc experiment have
been conducted on the Earth’s atmosphere and no sign of a vacuumbubble has been observed. The
same conclusions can be drawn for other visible objects around us. This leads us to the conclusion
that there is no threat from vacuumbubbles when turning on the lhc.

1.3 Magnetic monopoles

Magnetic monopoles are speculative, just like the vacuum bubbles. However, there is one difference.
Magnetic monopoles serve a greater good, since only one monopole would be enough to explain
the quantization of all electric charge in the universe. It can be shown that for the product of the
magnetic charge g and the electric charge e the following equation must hold [5]:

e · g =
1

2
n~ n ∈ N = {1, 2, . . .} ,

with ~ the reduced Planck constant. Because of the difference in magnitude between e and ~ this
implies a large magnetic charge. Grand unified theories predict that a magnetic monopole could
cause nucleon decay, which would harm the Earth severely. However, such monopoles are expected
to have masses of at least 1015 GeV [7], exceeding the available energy at the lhc. We can state
independently of this that if a magnetic monopole could be created by the lhc, then many of them
would already have been made by cosmic rays. But then white dwarfs would be bombarded with
many magnetic monopoles, which would lead to the white dwarf’s destruction. Since this has not
been observed we conclude that magnetic monopoles are no real disaster scenario for the Earth.

1.4 Strangelets

Strangelets are lumps of up, down and strange quarks. They are proposed as a threat for the
Earth’s existence.
The Pauli-exclusion principle prohibits identical quarks to be in the same quantum state. If there
are a large number of up and down quarks in such an environment they all have to occupy a
different quantum state. The energy corresponding to the highest quantum state may be large
enough to create a heavier strange quark. This strange quark can occupy a low energy state, since
it’s a different particle. In this situation it would be energetically favourable to convert down
quarks to strange quarks and in very large strangelets the number of up, down and strange quarks
would become comparable.
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To create strangelets one clearly looks at places with relatively high numbers of quarks. Heavy-ion
collisions at the lhc are designed to create quark-gluon plasmas with a lot of energetic quarks.
The way strangelets might form a safety hazard is that they are supposed to convert normal matter
to strange matter, leading to an ever growing strangelet. No exact theory prediction exists, since
we are not able to calculate with Quantum Chromo Dynamics (qcd) what will happen. Any
calculations on strangelet production are done using simplifying models, like the ‘bag model’ [2].
Using the bag model it is shown that strangelet production at the lhc is more unlikely than at
the Relativistic Heavy Ion Collider (rhic) [7], which operates at Brookhaven National Laboratory
(bnl) and where no strangelet production is observed. Independently of this, we can exclude any
danger from strangelets by using experimental facts.
Due to the relatively low density of heavy atoms in the atmosphere more stringent limits are
found by studying objects without atmosphere, since collisions there take place in a high density
environment. The moon, for example, has been subject to cosmic rays as long as it exists, and has
a crust that consists mainly of metals. Cosmic rays contain abundances of heavy atoms as well
and colliding with the moon this simulates a heavy-ion collision. As a result of these cosmic rays
the moon should have been converted to strange matter, which it has not.
Stronger limits are obtained by observing so called ‘killer astroids’ [4], [9]. If continually growing
strangelets exist, there should be astroids converted to strange matter due to a cosmic ray while
they were flying through space. When such killer astroids crash upon a star they convert it to
strange matter entirely, which would be observable. The limits these processes generate are very
reassuring and we may conclude that strangelets are no threat.

1.5 Microscopic black hole disaster scenario

A black hole may be viewed upon as a volume of space that contains so much energy that the
escape velocity exceeds the speed of light. The boundary of this volume is called the Schwarzschild
radius, which is the radius where the escape velocity matches the speed of light.1

This means that it is classically not possible for anything to escape from a black hole. However,
quantum mechanically it is possible for a black hole to radiate by Hawking radiation. In a simplified
picture Hawking radiation can be described as the creation of a pair of a particle and its antiparticle
due to quantum fluctuations near the Schwarzschild radius. One of these particles is attracted
towards the centre of the black hole and the other can be blown into space. This particle can be
observed far away from the black hole, so that the black hole effectively radiates and loses energy.
Calculations show that the emitted power increases with decreasing mass [10].
If black holes could be made at the lhc, we would expect them to decay almost immediately,
because of this Hawking radiation. However, since it has never been identified experimentally,
Hawking radiation might be much weaker or not exist at all. This however does not mean that
black holes will be dangerous.
If the lhc could make them, also cosmic rays bombarding white dwarfs should have made many
black holes. These black holes could become trapped gravitationally in a white dwarf, which would
lead to the white dwarf’s end. Furthermore, a black hole accreting a white dwarf is expected to
emit intense light, which would be observable. However, no destruction of a white dwarf has been
observed. This leads to two possibilities. The first is that no black holes will be made by cosmic
rays, so that no black holes will be made by the lhc.
The second option is that the white dwarf accretion by the black hole takes longer than the age of
the universe to lead to observable effects, since white dwarfs are long-lived. That leads us to the
conclusion that if black holes can be made we expect them either to decay very soon or accrete
matter very slowly.

Now we have argued that all popular doom scenarios for the Earth will not occur, so that we can
safely conduct experiments with the lhc.
Although we know that black holes will not destroy the Earth, we are not entirely certain if they
can be made at the lhc. If it would be possible to make black holes in a controlled environment

1We do not take into account more complicated black holes, like rotating or charged black holes.
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Hawking radiation may be tested. Also experiments on quantum gravity may be conducted, since
this would be the first known system that behaves quantum mechanically in which gravity defi-
nitely may not be neglected. This is a very exciting possibility, which would lead to much new
physics.

In the rest of this thesis we will study if it is possible for harmless microscopic black holes to be
made at the lhc. In chapter 2 we will construct spaces that may allow black hole creation at the
lhc and calculate the gravitational effects. In chapter 3 we will use these results to see if black
hole creation is ruled out by atomic physics.
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Chapter 2

Submillimeter gravitation

Today classical Newtonian gravity has been tested down to scales of tens of microns [1]. Below
these distances not much is known about gravity, although somewhere quantum gravity must be
taken into account. Unfortunately, no theory of quantum gravity exists, so we will operate classi-
cally.

To see how long we can safely operate classically we define the Planck length lP as the unique length
that can be constructed from the speed of light c, the reduced Planck constant ~ and Newtons
constant GN :

lP =

√

~GN

c3
= 1, 62 · 10−35 m (2.1)

To see that this is the scale at which we must include quantum gravity we conduct the following
thought experiment. Suppose we use a photon to measure the position of a particle with an
uncertainty smaller than the Planck length. The uncertainty in the momentum ∆p then becomes

∆p ≥ 1

2

√

~c3

GN

,

which corresponds with a large uncertainty in the energy ∆E = c · ∆p . The photon has enough
energy to create a particle with half a Planck mass mP , which is defined in the same fashion as
the Planck length:

mP =

√

~c

GN

.

This particle has a Schwarzschild radius

rS =
2GN

1
2mP

c2
= lP .

This means that when studying objects at the Planck scale we have to include quantum gravity,
since a black hole with the size of our system appears naturally when doing quantum mechanics
at this scale. To create black holes at the lhc the Planck length should coincide with the length
scale of the lhc, which is just below the attometer (10−18 m). This means that gravity has to
increase at small scales compared to Newtonian gravity, since we see using equation (2.1) that
lP � lLHC [7]. A proposed scenario [3] is that there may be relatively small extra dimensions
increasing the gravitational force at small distances.

In this chapter we will calculate the gravitational consequences of such extra dimensions. Using
the results from this chapter we subsequently try to restrict the possibilities using atomic physics
and see what consequences this has for the creation of black holes at the lhc.
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2.1 Strong gravity

In agreement with classical gravity we will assume that gravity is a classical field theory. This
means that the force ~F a particle experiences matches the flux it absorbes and that the total

amount of flux Φ is conserved. If we integrate over a closed surface with an orientation
−→
dA of a

volume V we have

Φ =

∮

∂V

−→
dA · ~F ⇒ ~F = −dΦ

dA
r̂ , (2.2)

where the minus sign accounts for the attractive direction −r̂ of the force, ∂V denotes the surface

of the volume and d
−→
A is an infinitesimal orientated surface element.

The force is obtained by spreading the gravitational flux K over a three-dimensional sphere. With
m1 and m2 two test masses, choosing K = 4πGNm1m2 yields Newton’s gravitational law:

F = ‖~F‖ =
K

4πr2
with K = 4πGNm1m2 ⇒ F =

GNm1m2

r2

In the standard Newtonian case gravity is too weak for microscopic black holes to be made at the
lhc. So, let us add n extra dimensions and see what happens.
As in a three-dimensional world, also in an (n + 3)-dimensional world the gravitational flux is
conserved. The surface of an (n + 3)-dimensional volume is an (n + 2)-dimensional surface. From
the conservation of flux the length dependent part of the force law is obtained. When we define the

other part as G
(n)
N m1m2, where G

(n)
N is the higher-dimensional gravitational constant, it follows

from equation 2.2 that

Φ =

∮

d ~A · ~F ⇒ F = G
(n)
N m1m2

1

rD−1
, (2.3)

where D is the number of spatial dimensions.
This implies that gravity increases much faster than expected from Newton’s law.

We can now read off what consequences this has for the Planck scale. We can see from a dimensional

analysis that
[

G
(n)
N

]

= Ln [GN ] with L some quantity with the dimension of length. Using equation

2.1 we see that
[

G
(n)
N

]

= L2+n [c]
3
[~]

−1
. Since the Planck length is the unique length scale

constructable from c, ~ and the gravitational constant G
(n)
N , we obtain for the Planck scale in our

space with n added dimensions

(

l
(n)
P

)2+n

= (lP )2
G

(n)
N

GN

. (2.4)

For more precise formulas the actual compactifications of space is required. An example of this can
be found at the end of this chapter. Following the same steps as before we find that this modified

Planck length l
(n)
P is the Schwarzschild radius of a particle with half the Planck mass mP , using

the higher-dimensional Schwarzschild radius for an object with mass M :

rS =

(

2G
(n)
N M

c2

)
1

1+n

This means that the modified Planck length is still the length scale we expect quantum gravity to
become important.
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2.1.1 Differences with other forces

We know four forces building up the universe, of which the gravitational and electromagnetic force
are two examples. Newton’s gravitational law and Coulomb’s electrostatic law are two classical
expressions for these forces.

One might wonder why Coulomb’s law does not increase at small distances. This is much easier
to verify and has not been observed. Coulomb’s law falls off with 1

r2 as well and seems to do this
all the way down to the electroweak length scale, lω = 10−18 m.
At least for now, the answer is hypothetic. Suppose that the graviton carries the gravitational
force, just like the photon carries the electromagnetic force. If there exist some extra dimensions
through which the photon cannot propagate but the graviton can, Coulomb’s law will not change,
but Newton’s law can [6].
There are no obstructions to this hypothesis right now, as long as we demand that at macroscopic
lengths Newton’s law is again recovered.

2.2 Compact submillimeter dimensions

We assume that we have a space with ‘small extra dimensions’. How can a dimension become in-
visible and why does it look like R

3 at ‘large scales’? Imagine a high-voltage cable. For a human in
a meadow staring at the cable it looks like a one-dimensional string. An insulated bug walking on
the cable sees it as a two-dimensional surface. A similar mechanism works for a three-dimensional
space.
In the above example we added one dimension, but of course more dimensions and more construc-
tions may be possible. We have neither a limit for the number of extra dimensions, nor for the size
of the dimensions. This makes it hard to handle and therefore we make a few assumptions.
The first is that we will only add spherical dimensions S1, because in this way it is possible to
calculate many things explicitly and fairly easily. Since these extra dimensions are spherical they
should have a radius, in this case also referred to as the size of the extra dimension. This radius
is called the ‘crossover radius’ RC . For different dimensions there may be different crossover radii,
often denoted by R1, R2, . . . , Rn. At distances much larger than the crossover radius the extra
dimension is not visible or experienced, so that submillimeter dimensions will not change daily life.
At or below this radius gravity increases much faster than expected from Newton’s law.
The second assumption we make is that we will assume sometimes that all the crossover radii are
the same. Sometimes we want to limit the number of extra dimensions, so we do not want to have
to include every configuration of sizes possible. Then this assumption makes our equations easier
and restricts the number of parameters. The following reasoning explains why we are allowed to
do so.
If we study gravity at a certain scale we can ignore any dimension with a size significantly smaller
than that scale, since it cannot be observed at that scale yet.
The way we will restrict the possibilities is by calculating the effects of adding dimensions on the
energy levels of the hydrogen atom. A stronger gravitational force gives a higher potential differ-
ence as compared to the system without added dimensions. A higher potential difference is easier
to measure.
Consider a gravitational experiment at a certain length scale. Taking all crossover radii the same,
we will find that for RC equal to the length scale of the experiment there is a maximum number of
extra dimensions n that cannot be excluded by the present data. If one of the dimensions would
have a significantly larger size, the potential difference would increase, resulting in a larger extra
dimensional effect. So the limits that we obtain are conservative. Dimensions with significantly
smaller sizes should not be counted, since they have no effects at this scale.
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2.3 R × S
1

Using the concepts and the assumptions from the previous paragraph we can see what it results
in for a fairly easy space. We take a one-dimensional space R and one added dimension S1 with
crossover radius RC . This yields, visualized in three dimensions, the cylinder in figure 2.1.
In R

3 the distance between two points is determined by the length of the straight line connecting
the two points. On a cylinder there are many straight lines from one point to another, since the
cylinder is periodic, and each of these lines has its own length.

When we look how this relates to gravity we notice that in R
3 the force is determined by the length

of the straight line connecting the two masses and that the force is directed along that straight
line. On this cylinder we have many straight lines between the two masses and they all contribute
to the total force. Each line corresponds to a contribution to the force with its strength determined
by the length of the line and its direction by the direction of the line. The total force now is simply
obtained by summing all these lines.
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x

r���:�
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ϕ = 0

r
m1

rm2

k = 0k = 1

k = 1
ϑ

Figure 2.1: S1 × R visualized in three dimenions.

Because we want to make this quantitative we need coordinates (x, ϕ), with ϕ ∈ (−π,−π] the cir-
cular coordinate and x ∈ R the translational coordinate, and we place two masses m1 and m2 on
the surface of our cylinder. Due to the rotational symmetry around the cylinder axis it is only the
difference in ϕ that matters and we are allowed to put m1 at (x = 0, ϕ = 0) and m2 at (x > 0, ϕ).
To see what the straight lines are on the cylinder we unfold it (figure 2.2). This shows that the
trajectories with ϕ̈ = 0 and ẍ = 0 are indeed straight lines.

Since we want to know the force we need to sum all the straight lines from m1 to m2. These lines
can be labeled by k, the number of revolutions a line makes. The (k = 1)-line is drawn in figure
2.1. Finally, the surface of the cylinder is two-dimensional, so that all straight lines emanating
from m1 can be parametrized by one angle ϑ ∈ (−π, π], since we have only one line per direction.
The angle ϑ fixes the direction of the force contribution belonging to a specific line. The lengths of
the lines determine the corresponding strengths. The total force is obtained by summing all force
vectors.

In a two-dimensional space a surface is a one-dimensional line. We will assume that at m1 the
space is isotropic, i.e. locally the directions x̂ and RC ϕ̂ are equivalent. This means that at small
scales the space looks two-dimensional.
The flux in the narrow band (ϑ, ϑ+dϑ) at unity from m1 is K

2π
dϑ, because the total flux is conserved

and spread equally over all directions. The force on m2 in the direction −λ̂(ϑ) defined by one of
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Figure 2.2: A few trajectories with ϕ = 0.

Note that m′
2 is a mirror image of m2. Furthermore, the interval (−π, π] has

been shifted to (0, 2π].

the straight lines around the cylinder with length L becomes

F−λ̂(ϑ)(ϑ) =
dΦ

dA
=

K
2π

dϑ

L(ϑ)dϑ
=

K

2πL(ϑ)
, (2.5)

with λ̂(ϑ) the unit vector along the straight line from m1 to m2 with an angle ϑ with respect to the
positive x-direction. We separate R×S1 according to the different behaviour of the two parts: the
extended translational part and the periodic part. For every line we define its angle with respect
to the positive x-direction by:

tan(ϑ) ≡ (2πk + ϕ)RC

x
⇒ ϑ = arctan(

(2πk + ϕ)RC

x
) . (2.6)

With this equation the travelled length becomes

L =
√

x2 + R2
C(2πk + ϕ)2 =

x

cos(ϑ)
(2.7)

and the total force

~F =
K

2π

∑

k∈Z

−λ̂(ϑ)
√

x2 + R2
C(2πk + ϕ)2

. (2.8)

Note that the values for which cos(ϑ) < 0 correspond with negative x, so that L remains positive.
We only use positive x and therefore ϑ ∈ (−π

2 , π
2 ). The negative part of this interval is for the part

with negative k. We could have defined ϑ positive, but then we would have needed an additional
variable to account for the direction of the force.

2.3.1 Macroscopic limit

Since we expect this space to behave one-dimensional macroscopically, only the x-component should
remain in the macroscopic limit. This is why we are more interested in the x-component. Using
equations 2.7 and 2.8 we find for the x-component of the total force:

F−x̂ =
K

2π

∑

k∈Z

cos2(arctan( (2πk+ϕ)RC

x
))

x
(2.9)

From equation 2.3 we know that flux conservation requires gravity to fall off with r1−D . Since
R × S1 behaves one-dimensional at large scales we expect that gravity becomes constant, i.e.
equation 2.8 should in the limit x

RC
→ ∞ converge to a constant.

9



For x
RC

→ ∞, the angle between the k- and (k + 1)-line is very small and the sum from equation
2.9 becomes an integral:

F−x̂ =
∑

k∈Z

K

2πRC

cos2(arctan(
(2πk + ϕ)RC

x
))

(

(k + 1)RC

x
− kRC

x

)

⇒

lim
x

RC
→∞

F−x̂ =

∫ ∞

−∞

K

2πRC

cos2(arctan(
(2πk + ϕ)RC

x
))d

RCk

x

This is a Riemann integral, which we can easily solve now using equation 2.6:

lim
x

RC
→∞

F−x̂ =
K

2πRC

∫ π
2

−π
2

dϑ cos2(ϑ)
RC

x

dk

dϑ
=

K

4π2RC

∫ π
2

−π
2

dϑ =
K

4πRC

(2.10)

Indeed, this becomes a constant.

For the ϕ-component of F−λ̂(ϑ)(ϑ) we obtain

F−ϕ̂(ϑ) = F−x̂(ϑ) tan(ϑ) ⇒ Fϕ̂ =
K

4π2RC

∫ π
2

−π
2

tan(ϑ)dϑ = 0

Equation 2.10 is not only the expression for the x-component of the gravitational force, it is the
expression for ~F as well.

2.3.2 Microscopic limit

At small scales the x and ϕ-directions are equivalent and it would be surprising if there were any
effects due to the shape of the space macroscopically. Thus we expect gravity to decrease like r−1.
Let the two masses be separated by a vector ~λ that points in both the extended dimension R and
the extra dimension S1. The distance has to be small compared to the length scale of the cylinder

RC , so that ‖~λ‖
RC

−→ 0. Then x2 � R2
C(2πk + ϕ)2, if k 6= 0. Neglecting x2, we compare the

(k = 0)-term with all the (k 6= 0)-terms from equation 2.8:

lim
‖~λ‖
RC

→0

∥

∥

∥

∥

∥

∥

∑∞
k=1

K
2π

(

1
RC(2πk+ϕ) + 1

RC(−2πk+ϕ)

)

K
2π

1

‖~λ‖

∥

∥

∥

∥

∥

∥

= lim
‖~λ‖
RC

→0

∥

∥

∥

∥

∥

‖~λ‖
RC

∑

k∈N

2ϕ

ϕ2 − 4π2k2

∥

∥

∥

∥

∥

= 0 (2.11)

In the microscopic limit only the (k = 0)-term contributes, which leads to the expected behaviour:

~F =
K

2π

−λ̂(ϑ)
√

R2
Cϕ2 + x2

(2.12)

2.4 The easier way

Now that the results for the easiest case are obtained it is time to wonder how practical this way
of computing is. That is a relevant question, since the goal is to be able to make some statements
about the behaviour of gravity at small scales. In the above case everything was easy to imagine
and the number of variables was limited. However, for more than one added dimension it is not
possible to visualize this space in three-dimensions anymore and the equations will not get prettier
either.

These problems can be solved using the following construction: for p extended dimensions and n

extra compact dimensions we use R
p+n. Instead of a periodic dimension we now have an infinite

axis that describes how much a straight line has travelled in the extra dimension. By doing this
we construct a space in which all the straight lines on the cylinder from paragraph 2.3 are straight
lines in R

(p+n) as well.
We gave up the geometrical point of view, but in return we got a space where all straight lines are
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nicely distributed in a n-dimensional subspace. Since we did not change the lengths in the extended
translational and extra dimensions our angle ϑ from equation 2.6 is the same. Furthermore, notice
that the space around m1 has not changed. It was flat and (p + n)-dimensional and it still is. For
R × S1 × S1 the obtained space looks like figure 2.4.

2.4.1 R × S1

When we now return to R×S1 we see that the acquired space corresponds with a rag of unfolded
cylinders patched together, figure 2.3. One only has to sum all the forces belonging to the straight
lines from m1 to either m2 or one of its copies m′

2 shifted by multiples of 2πRC along the ϕ-axis
to obtain the total gravitational force.
To make any sense this has to yield the same results as in paragraph 2.3.The total flux K spreads
equally over all directions of a unit circle around m1 and the force along a straight line then is

K
2πL

. Summed over k ∈ Z equation 2.9 is retreived. Using the same method as in paragraph 2.3.2
we recover the microscopic limit.

It is for the macroscopic limit that the usefulness of this method becomes evident. The integral
extracted from the sum is an integral over the entire extra-dimensional space R

n ⊂ R
p+n. For

higher dimensions with various crossover radii such an integral is much easier to calculate than n

sums.
First of all we notice that all paths from m1 to m2 with length L have the same value for |ϑ|:

L =
x

cos(ϑ)
=
√

x2 + (2πk)2R2
C (2.13)

Because not every point we integrate over corresponds with a line from m1 to m2 we introduce the
‘path density’ ρp. This is a way to express how many paths from m1 to m2 there are in an area
of the extra-dimensional space. Although this may depend on the coordinates in general, we will
not encounter such examples and therefore view it as a constant for every space.
For R × S1 there is one path from m1 to m2 in every interval with length 2πRC . From this we
obtain:

ρp =
1

2πRC

(2.14)

To sum over all the paths from m1 to m2 we integrate over the n extra dimensions. Since the
lengths of the paths are conserved we have to integrate the paths at the coordinates of m2 in R

p.
For R × S1 this means we have to integrate over the subset (x, R) ⊂ R

(1+1).
We use ~τ as the vector in R

n that points from 0 ∈ R
n to a point q ∈ R

n. For every ~τ it is easy to
calculate the value of |ϑ|, so that we can express the force per straight line in terms of ~τ :

|ϑ| = arctan(

√
~τ · ~τ
x

)

We calculate the surface of the extra-dimensional space and multiply by the path density to obtain
the number of paths. Every path is multiplied by the force, as defined by equation 2.5. The force
is projected on the x-axis as we did in paragraph 2.3.1:

F−x̂ =

∫ ∞

0

2 d‖~τ‖ ρp

K

2πx
cos2(ϑ(~τ )) =

Kx

4π2xRC

2

∫ π
2

0

dϑ =
K

4πRC

(2.15)

2.5 R
3 ×

(

S1
)n

In this section we will replace our toy model with one extended dimension by a more realistic
model with three extended dimensions. Because we use R

3 instead of R as the extended space the
position vector x ∈ R is replaced by (x, y, z) = ~r ∈ R

3. This has two consequences. The first is
that the gravitional flux is spread over (n + 3) dimensions. The second is that at very large scales,
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Figure 2.4: The path space for R × S1 × S1, where m2 is placed at (x, 0, 0).
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the macroscopic limit, we expect gravity to decrease with r−2 instead of becoming constant.
The surface the flux spreads on depends on n. To make the equations easier to understand we
write the surface of a n-dimensional unit sphere as I(n). At the end of the paragraph we will
calculate I(n). Instead of one added cylinder we now have many of them. A sensible choice of
coordinates then is: (x, y, z, ϕ1, . . . , ϕn). We have k1, . . . , kn to count the number of windings. As
before we have ϕi ∈ (−π, π] and ~r = (x, y, z) ∈ R

3. We place m1 at ~0 and m2 at (~r, ϕ1, . . . , ϕn).
Because the extra-dimensional space has more dimensions now we cannot account for all directions
with just a plus and a minus sign for ϑ, like in paragraph 2.3. For n extra dimensions and one
direction in the extended space ~r we need n angles to specify these vectors. We already have ϑ and
we use α1, . . . , αn−1 as the usual spherical coordinates in the extra dimensions R

n. This defines
the direction of the vector entirely. For usage we denote: Θ ≡ (ϑ, α1, . . . , αn−1).
At m1 the space is still isotropic, but now there are (n + 3) dimensions for the flux to move in.
The flux per straight line is K

I(n+3) . From this we can obtain the force per straight line of length L

F−λ̂(Θ)(ϑ) =
dΦ

dA
=

K
I(n+3)dΩ

Ln+2dΩ
=

K

I(n + 3)Ln+2
, (2.16)

where Ω is a solid angle in (n + 3) dimensions. The flux decreases with L−(n+2), which is what we
would expect from equation 2.3. Furthermore, notice that the direction of one term is given by:

−λ̂(Θ) =
−1

N

(

~r +

n
∑

q=1

Rqϕ̂q (2πkq + ϕq)

)

, (2.17)

where 1
N

is a normalization factor.

In paragraph 2.4 we introduced the vector ~τ in the extra-dimensional part R
n ⊂ R

(n+p). Its length
is

‖~τ‖ =

√

√

√

√

n
∑

ζ=1

(2πkζ + ϕζ)2R2
ζ (2.18)

In general n will be larger than 1. In that case there is a sign ambiguity for ϑ, because then the
extra-dimensional space contains more than two directions. Therefore we take ϑ ∈ [0, π

2 ] and define
ϑ by

tan(ϑ) ≡ ‖~τ‖
‖~r‖ , (2.19)

which means that rotation of the extra-dimensional space does not affect ϑ. If we now sum all
possible paths, we obtain an expression for the total force:

~F =
K

I(n + 3)

∑

k1∈Z

. . .
∑

kn∈Z

−λ̂(Θ)

Ln+2(~r, k1, . . . , kn, ϕ1, . . . , ϕn)
(2.20)

2.5.1 The macroscopic limit

If we now use the relation

L =
‖~r‖

cos(ϑ)
.

we find

F−r̂ =
K

I(n + 3)‖~r‖n+2

∑

k1∈Z

. . .
∑

kn∈Z

cosn+3(ϑ) (2.21)
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We calculate the force in the limit ‖~r‖
Ri

→ ∞ for i ∈ {1, . . . , n} as described in paragraph 2.4 by
using the path density

ρp =

n
∏

ζ=1

1

2πRζ

, (2.22)

which is the n-dimensional analogue of equation 2.14. The force per path from equation 2.16 times
the path density over the entire extra-dimensional space gives:

F−r̂ =
K

I(n + 3)‖~r‖n+2

∫ ∞

0

d‖~τ‖‖~τ‖n−1I(n)





n
∏

ξ=1

1

2πRξ



 cosn+3(arctan(

√

∑n
ζ=1(2πkζ + ϕζ)2R2

ζ

‖~r‖ )) ,

(2.23)

where d‖~τ‖‖~τ‖n−1I(n) is the shell of a n-dimensional sphere with a radius between ‖~τ‖ and
‖~τ‖ + d‖~τ‖.
This we can further evaluate using equations 2.18 and 2.19:

F−r̂ =
KI(n)

I(n + 3)‖~r‖2





n
∏

ξ=1

1

2πRξ





∫ ∞

0

d‖~τ‖‖~τ‖
n−1

‖~r‖n
cosn+3(ϑ) =

KI(n)

I(n + 3)‖~r‖2





n
∏

ξ=1

1

2πRξ





∫ π
2

0

dϑ sinn−1(ϑ) cos2(ϑ)

This can be calculated (Appendix A) and from equation A.2 we obtain:

F−r̂ =
KI(n)

I(n + 3)‖~r‖2





n
∏

ξ=1

1

2πRξ





(n − 2)!!

(n − 1)!!

(

1 − n

(n + 1)

)

·
{

1 , n even
π
2 , n odd

Here we used the definition of the double factorial (n)!!:

n!! ≡
{

n · ((n − 2)!!) n ≥ 2
n!! = 1 n = 0, 1

For n = 1 the (−1)!! should be read as 1 to obtain the correct formula.

If there are n submillimeter dimensions we know from paragraph 2.3.1 that gravity would still fall
off with r−2 at large scales. Furthermore, we know the force should converge to Newton’s law.
Using this we find for K:

K =
GNm1m2I(n + 3)

I(n)





n
∏

ξ=1

2πRξ





(n − 1)!!

(n − 2)!!

n + 1

1
·
{

1 , n even
2
π

, n odd
(2.24)

We can simplify this equation further if we know I(n), the surface of a n-dimensional unit sphere.
We can calculate it from the volume of a sphere in n dimensions:

V (n) =
2πR2

n
V (n − 2) with V (1) = 2R and V (2) = πR2 .

I(n) =
dV (n)

dR

)

R=1

From this we obtain the following equation:

I(n) =







(2π)
n
2

(n−2)!! , n even

2 (2π)
n−1

2

(n−2)!! , n odd
(2.25)
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Inserting this result in equation 2.24:

K = 4πGNm1m2





n
∏

ξ=1

(2πRξ)



 (2.26)

2.5.2 The microscopic limit

For application in the next chapter we want to know what the gravitational force is in the micro-

scopic limit, i.e. ‖~λ‖
Rζ

→ 0, for all ζ ∈ {1, . . . , n}. We split ~F from equation 2.21 in two parts: ~F0

contains the term with all ki = 0 and ~Fδ contains all the other terms. In Appendix B is shown
that we can overestimate ‖ ~Fδ‖ with equation B.1:

‖~Fδ‖ ≤ C

Rn+3
min

,

where C is a positive real constant. For the ~F0 term we will call such a constant D:

∥

∥

∥

~F0

∥

∥

∥ =

∥

∥

∥

∥

∥

K

I(n + 3)

−λ̂(0)

‖~λ‖n+2

∥

∥

∥

∥

∥

=
D

‖~λ‖n+3

If we now compare the two terms in the microscopic limit:

lim
‖~λ‖

Rmin
→0

‖~Fδ‖
‖~F0‖

= 0 ,

we see that the total contribution to the force in the microscopic limit comes from the term with
all ki zero:

~F =
−K

I(n + 3)‖~λ‖n+2
λ̂(~r, ϕ1, . . . , ϕn) (2.27)

Combining this with equation 2.26 we obtain the final expression for the force in the microscopic
limit.

F−r̂ =
4πGNm1m2

I(n + 3)‖~r‖n+2





n
∏

ξ=1

(2πRξ)



 (2.28)

From this also an equation for the (n + 3)-dimensional Newton’s constant G
(n)
N can be obtained:

F−r̂ = m1m2
G

(n)
N

‖~r‖n+2
⇒ G

(n)
N =

4πGN

I(n + 3)

n
∏

ξ=1

(2πRξ) (2.29)

Now we know how gravity behaves at small scales under our assumptions. For different numbers
of added dimensions n and values for the crossover radii we can calculate the force, as well as the
microscopic limit. In the next chapter we will study if it is possible to create microscopic black
holes at the lhc using this force.
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Chapter 3

Gravitational effects on the

hydrogen atom

In chapter 2 we found a result for gravity in a space parametrized by the number of extra dimensions
n and their crossover radii R1, . . . , Rn. Adding extra dimensions modifies the Planck length and
thus the scale at which quantum gravity appears. For distances down to 10 µm direct measurements
have been done. This excludes larger crossover radii. But we can do better.
Compared with the forces that are known to dominate the collisions at particle colliders, gravity
is very weak. If any black hole will be made at the lhc gravity has to increase much at small
scales. This increase must have some effects on a somewhat larger scale as well and that might be
observable.
One of the best-known systems at relatively small scales is the hydrogen atom. Although well-
described, no gravity is needed for this. This tells us that any gravitational effect on the energy
levels of the electron in the hydrogen atom must be very small.
A very precisely known property of the hydrogen atom is the transition frequency of the 2s to the
1s [11]:

f2S→1S = 2 466 061 102 474 851± 34Hz , (3.1)

This value has an uncertainty of 1.4 parts in 1014 and improvements to decrease the relative
uncertainty to several parts in 1018 are expected to be possible.
Theory has not yet developed to such an accurate value, but this should be possible with a lot of
work. We will determine whether it would be possible with such calculations to exclude black hole
production at the lhc.

3.1 Newtonian gravitation

For comparison we will calculate the correction of Newtonian gravity on the transition frequency
2s→ 1s. This we will do using time-independent perturbation theory, since the potential is time-
independent. Furthermore, the potential is spherically symmetric, so we will only need the nor-
malized radial part of the wave functions.
We write Rnl(r) for the normalized radial wave functions of the hydrogen atom. The two wave
functions we need are

R10(r) =
2

a
3
2

0

e
− r

a0 and

R20(r) =
1

√
2a

3
2

0

e
− r

2a0

(

1 − r

2a0

)

. (3.2)

The first order correction on the transition frequency then is:

f
[1]
2S→1S =

1

h
〈R(0)

20 |VG|R(0)
20 〉−

1

h
〈R(0)

10 |VG|R(0)
10 〉 =

a−3
0

h

∫ ∞

0

dr r2−GNmemp

r

1

2
e
− r

a0

(

1 − r

2a0

)2
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−a−3
0

h

∫ ∞

0

dr r2

(−GNmemp

r

)

4e
− 2r

a0 =
3GNmemp

4a0h
= 2.2 · 10−24Hz . (3.3)

This tells us that even the most precise measurements thinkable at this moment cannot measure
effects of Newtonian gravity. Furthermore, since the term from classical gravitation is so small, we
will ignore it. In the situations where this term is large compared with other terms we know that
the total effect is too small to be measured.

3.2 Extra-dimensional corrections

As mentioned in paragraph 2.2 we get conservative limits if we assume that all crossover radii are
the same. Therefore we will take all crossover radii to be RC .
To calculate what the gravitational effects of the extra dimensions on the 2s→ 1s spectral line are
we need a new potential. In paragraph 2.5.2 we noticed that for low momenta F−r̂ = ~F and we
use that now.
Since the actual expression for the gravitational force is quite complicated as we know from chapter
2, we use an approximation here. We use the microscopic limit between 0 and 10 RC as the force.
We know that we cannot use the microscopic limit above RC , but the microscopic limit decreases
faster than the real force. Any effect we calculate is weaker than the actual effect, due to this
approximation. Above 10 RC we use the macroscopic limit. This is a classical term. It is even
smaller than equation 3.3, so we will ignore it.
From equations 2.25 and 2.28 we obtain the gravitational potential for n added dimensions:

V
(n)
G = −4πGNmemp

rn+1
(2π)

n−3

2 Rn
C((n − 1)!!)

{ √

π
2 , n even

1 , n odd
(3.4)

For n = 1 we can calculate the correction now using equation 3.2:

f
[1]
2S→1S ≈ 1

h

∫ 10RC

0

r2 dr R∗
20(r)V

(1)
G R20(r) −

1

h

∫ 10RC

0

r2 dr R∗
10(r)V

(1)
G R10(r) =

GNmemp

a0h

RC

a0

(

7

2
− 4e

−20
RC
a0 +

1

2
e
−10

RC
a0

(

50

(

RC

a0

)2

− 10
RC

a0
+ 1

))

Hz (3.5)

This behaves for large RC . The frequency correction as a function of the crossover radius
(

RC

a0

)

can be found in figure 3.1 and we see that these effects are not measurable, since the values are
too small. Note that RC

a0
≈ 106 corresponds with RC ≈ 50 µm, which has been excluded by direct

measurements.

3.2.1 The cutoff length

For higher numbers of added dimensions n equation 3.5 will diverge, because the power of r−(n+1)

becomes too high. However, this is no surprise. The integral diverges because we are probing
classical gravity too close to our test mass m1. We handle this by introducing two cutoff lengths.

From the theory we know that this classical expression for gravity is not valid below the Planck

scale. Therefore we integrate from the cutoff length, l
(n)
P to infinity and ignore the part between

0 and l
(n)
P , because we do not know what happens there. Notice that in this theory the Planck

length depends on the number of extra dimensions and the crossover radii of these dimensions, as
stated in equation 2.4.

However, it is possible that at l
(n)
P quantum gravity should already be included. Therefore we may

also use 100 l
(n)
P as the cutoff length. Furthermore, this gives us an idea how strong the dependence

on the cutoff length is. It is a way to measure the error we make. For example, a strong dependence
of the results on the cutoff length implies that the obtained result is not very meaningful, since a
small change in the cutoff length changes the results severely.
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The horizontal axis gives the crossover radius in
RC

a0
and the vertical axis gives the corresponding

frequency correction in Hertz for one added dimension.

200 000 400 000 600 000 800 000 1 ´ 106

2. ´ 10-18

4. ´ 10-18

6. ´ 10-18

8. ´ 10-18

1. ´ 10-17

Figure 3.1: The frequency correction for one added dimension as function of the crossover radius
for the 2s→ 1s transition.

Another possible cutoff can be found inside the system, because there may be a scale at which the
electron and the proton are no longer spacially separated. This roughly would be the radius of
the proton. There is an identifiable radius for the proton, although not very stringent, a charge
radius rPr. Roughly we state that within the charge radius the quarks and the mass are contained.
Again, for comparison, we like to know how strong our results depend on the cutoff length. So, we
also use 10 rPr .

We know from paragraph 2.1 that lP = 1, 616252 × 10−35 m and that l
(n)
P should be at least

10−19 m for the lhc to create microscopic black holes. Using this and the relation between the
number of extra dimensions and the crossover radii, equations 2.4 and 2.29, we can see if these
extra dimensions make the creation of microscopic black holes at the lhc possible. The results
of this can be found in table 3.1. It gives the crossover radius needed for a space with n extra

dimensions to make black hole creation at the lhc possible, when we use l
(n)
P (= 10−19 m) as our

cutoff length.

3.3 Results from the transition energy

In this section we will discuss the limits on extra dimensions obtained from the integrals using
the argumentation from the previous paragraphs. We want to know what possible configurations
of extra-dimensional spaces may be excluded by the hydrogen atom. Anticipating upcoming im-
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n RC ∆f2S→1S

1 9.70× 1010 m 1.86× 10−2 Hz
2 6.96× 10−5 m 3.13× 102 Hz
3 5.36× 10−10 m 2.65× 101 Hz
4 1.40× 10−12 m 1.24× 101 Hz
5 3.82× 10−14 m 1.17× 101 Hz

Table 3.1: Crossover radii needed for black hole production at the lhc and the corresponding
frequency corrections.

On the horizontal axis is given the number of added dimensions and on the vertical axis the smallest

crossover radius that could be excluded by experiments. The grey shaded area is excluded, since

the Newtonian power law has been confirmed experimentally there. The lhc line lLHC shows the

smallest excluded crossover radius when no black holes are produced at the lhc. For different cutoff

lengths the other lines give the smallest crossover radius that is excluded by the hydrogen atom.

Figure 3.2: The smallest excludable values for the crossover radii for n extra dimensions using
gravitational corrections of 1 Hz on the 2s→ 1s transition. The continuous line is just to guide the
eye, since we do not use fractional dimensions.
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provements we used a correction on the 2s→ 1s transition frequency of 1 Hz.

In the left figure of 3.2 the black line denotes the smallest excluded crossover radius for n added

dimensions using l
(n)
P as the cutoff length. Since larger crossover radii give larger corrections on

the transition frequency, this must be the smallest exluded crossover radius.

When 100 lP is used instead of l
(n)
P the grey line in the left figure of 3.2 is found. As we would

expect it has higher values for RC than the black line, since the area between l
(n)
P and 100 l

(n)
P is

more sensitive than the other part of the integral.
In the right figure of 3.2 the same is done for the other cutoff lengths, the proton charge radius,
rPr (black) and 10 rPr (grey).
If experiments progress quickly enough the limit may be 10−3 Hz. If we used this instead of 1 Hz
all crossover radii would be at least one order of magnitude smaller, which would alter the results
strongly. In this case black hole creation at the lhc may be excluded by both measuring and
calculating the hydrogen atom very carefully.

3.4 Implications for the LHC

The line l
(n)
P lies entirely below lLHC . This means that the Planck length is currently the only

cutoff length suitable for excluding black hole creation at the lhc. So, if it is justified to use l
(n)
P as

the cutoff length precise calculations of the transition frequency f2S→1S may exclude the possibility
that black holes are created at the lhc. We can see from table 3.1 that n = 1 is excluded by direct
measurements and that for n = 2, 3, 4, 5 this may be done by accurately calculating and measuring
the transition frequency 2s→ 1s of the hydrogen atom.
The line 100lp lies partially below lLHC and both the lines from the charge radius ly above the
lhc-line for the interesting dimensions 3, 4 and 5. However, for a correction on the energy of 10−3

Hz all lines probably may be used for certain dimensions to exclude black hole creation at the lhc

and our conclusions will be much stronger, since they do not depend on the chosen cutoff length.
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Chapter 4

Conclusions and Outlook

In chapter 1 of this thesis we have argued that the best known doom scenarios for the lhc do
not form a threat. In chapter 2 we have worked out what Newton’s gravitational law becomes in
spaces with added circular dimensions and we have shown that the gravitational force increases
with added dimensions. These results were applied in chapter 3 on the 1s→ 2s transition of the
hydrogen atom. This we have compared with the lhc, which has led to the conclusion that black
hole creation at the lhc may be excluded by improved measurements and calculations on the
1s→ 2s transition of the hydrogen atom.
We have done this under the assumption that we can only add circular dimensions to space, which
is not the only possibility. There are many more ways of adding compactified dimensions and often
Calabi-Yau manifolds are used for adding dimensions to space. With these manifolds more general
results may be found.
Furthermore, also in our calculations we have made certain assumptions and estimates. Improve-
ments here will give better results as well. This can be done when the actual gravitational force
is used for the potential in paragraph 3.2, instead of the microscopic limit. But also finding a way
to the make the results independent of the cutoff length would mean a serious improvement, since
any conclusion drawn now depends heavily on the used cutoff length. This may be done by either
using other models or by finding a decisive argument for a certain cutoff length.
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Appendix A

Integrals

Using partial integration twice the following relation is found:

∫ π
2

0

sinn(ϑ)dϑ =

[

− sinn−1(ϑ) cos(ϑ)

n

]

π
2

0

+
n − 1

n

∫ π
2

0

sinn−2(ϑ)dϑ for n > 0

Applying the boundaries to the recursive formula yields

∫ π
2

0

sinn(ϑ)dϑ =
n − 1

n

∫ π
2

0

sinn−2(ϑ)dϑ

Because of the recurrence we need to know the value for n = 1, 2:

∫ π
2

0

dϑ sin(ϑ) = 1

∫ π
2

0

dϑ sin2(ϑ) =
π

4

We bring the integral down to n = 1, 2 and end up with the following answer for n ≥ 3:

∫ π
2

0

dϑ sinn(ϑ) =

{

π
4

∏
1
2
n−1

µ=1
2µ+1
2µ+2 , n even

∏
1
2
(n−1)

µ=1
2µ

2µ+1 , n odd
=

{

π
2

(n−1)!!
n!! , n even

(n−1)!!
n!! , n odd

(A.1)

Here we used the definition of the double factorial:

n!! ≡
{

n · ((n − 2)!!) n ≥ 2
n!! = 1 n = 0, 1

Now we use this result to integrate the following function.

∫ π
2

0

dϑ sinn−1(ϑ) cos2(ϑ) =

∫ π
2

0

dϑ
(

sinn−1(ϑ) − sinn+1(ϑ)
)

=
(n − 2)!!

(n − 1)!!

(

1 − n

(n + 1)

)

·
{

1 , n even
π
2 , n odd

(A.2)
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Appendix B

Calculating Fδ in paragraph 2.5.2

Every term in Fδ has exactly one opposite term, which means that Θi → −Θi for all i. Using
equation 2.17 way we can write:

λ̂(Θ) + λ̂(−Θ) =

(

1

N(Θ)
+

1

N(−Θ)

)

(

~r +

n
∑

q=1

ϕqRqϕ̂q

)

= N(0)

(

1

N(Θ)
+

1

N(−Θ)

)

λ̂(0) ,

with N(Θ) =
√

~r2 +
∑n

q=1 R2
q (2πkq + ϕq)

2
and N(0) the same term with all ki = 0. Furthermore

we can group all terms in Fδ with the same number y = #{i|ki = 0}. Since these terms are
symmetric in ki we can rearrange and relabel the sums in such a way that we can write:

Fδ = 2n−1−N(0)Kλ̂(0)

I(n + 3)

n−1
∑

y=0

(

n

y

)

∑

kn−y∈N

. . .
∑

k1∈N









1
(

‖~r‖2 +
∑n

q=1 R2
q (2πkq + ϕq)

2
)

n+3

2

+

1
(

‖~r‖2 +
∑n

q=1 R2
q (−2πkq + ϕq)

2
)

n+3

2









y = # {i|ki = 0}

In the above equation

(

n

y

)

is the number of combinations possible to have y ki = 0. In this way

we have only summed 2−(n−1)th part of space, so we should mutliply by 2n−1, since we can treat
all these parts in the same fashion. If we denote the smallest crossover radius with Rmin:

Fδ ≤ −N(0)Kλ̂(0)

Rn+3
minI(n + 3)

n−1
∑

y=0

(

n

y

)

∑

kn−y∈N

. . .
∑

k1∈N

2
(

∑n
q=1 (2πkq − |ϕq |)2

)
n+3

2

≤ −2N(0)Kλ̂(0)

(2πRmin)
n+3

I(n + 3)

n−1
∑

y=0

(

n

y

)

∑

kn−y∈N

. . .
∑

k1∈N

1
(

∑n
q=1 k2

q − |ϕq |
2π

)
n+3

2

≤

−2N(0)Kλ̂(0)

(2πRmin)
n+3

I(n + 3)

n−1
∑

y=0

∫ ∞

1
2
−

r

|ϕkn−y
|

2π

dkn−y . . .

∫ ∞

1
2
−

q

|ϕk1
|

2π

dk1
1

(

k2
1 + . . . + k2

n−y +
∑n

b=n−y+1 ϕ2
b

)
n+3

2

Using spherical coordinates in n− y dimensions this can be shown to be finite for every y, so that
we end up with the following formula:

‖Fδ‖ ≤ C

Rn+3
min

C ∈ R
+ , (B.1)

in which C is the constant that comes from the integral and the constants in front of the integral.
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