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Abstract

In this research the asymptotic behaviour of the improvement factor of the numerical coefficients of the Con-
nected Green’s functions before and after renormalisation will be studied for ϕ4 theory, ϕ3 theory and a com-
bination theory, ϕ3 +ϕ4 theory, that can function as the basis for a model for quantum chromodynamics. Using
properties of factorially divergent series, which the Connected Green’s functions are, a simple way of predicting the

asymptotic of the improvement factor is found, e
−a
c f . In order to find the two variables needed in the prediction,

the series is cast into a new form using Stirling’s approximation to find c f and Feynman diagrams are used as an
easy way to determine the first few Connected Green’s functions used in the renormalisation process to eventually

find a. For ϕ4 theory this results in e−
15
4 . For ϕ3 this results in e−

10
3 without tadpole renormalisation and in e−

7
3

with tadpole renormalisation. Forϕ3+ϕ4 theory, complications are discussed and a general form of c f is found to

be c f = (3−y)3

18(1−y)2 . The choice to renormalise λ3 instead of λ4 is made to work out a general form for a, resulting in

a = 5+ 11
6 z without tadpole renormalisation and a = 7

2 + 3
2 z with tadpole renormalisation. Combining those, the

improvement factors without and with tadpole renormalisation were found to be e
3· −30+27y−19y2

(3−y)3 and e
9· −7+5y−4y2

(3−y)3

respectively. An example is studied where y is chosen to be 1
3 , which results in an improvement factor of e−

117
32

without tadpole renormalisation and e−
351
128 with tadpole renormalisation.
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1 Introduction

In this research a zero dimensional model for quantum field theory will be studied. In particular, the asymptotic
behaviour of the improvement factor of the numerical coefficients of the Connected Green’s functions before and
after renormalisation will be predicted for some processes that have already been studied. This will also be studied
for a process that might later function as the basis for quantum chromodynamics. This research was inspired by
the research done by Michael Borinsky in [2], Dirk van Buul in [3] and Ilija Milutin in [4]. Where this was originally
studied for multiple theories by Borinsky and later verified by explicit calculations for ϕ4 theory by van Buul and
for a model of quantum electrodynamics by Milutin. The next step was obviously to find a basis for studying a
model for quantum chromodynamics, for which two theories need to be combined. I was interested in finding
out how the underlying theories worked and what complications would arise in combining them. The approach in
this research is mainly focused on the fact that the Connected Green’s functions are factorially divergent series and
using the properties of those series to study the asymptotic behaviour of the improvement factor.
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2 Connected Green’s functions and renormalisation

2.1 Quantum Field Theory

Quantum field theory (QFT) combines classical field theory with special relativity and quantum mechanics, and
describes particles as an excited state of the underlying field. In our zero-dimensional case, fully explained in [1],
the quantum field ϕ is a stochastic, it assigns a real number to a single point. Since this is a random variable
we cannot say anything about it. However, something can be said about the probability density, P (ϕ), and the
collection of its moments, Gn ≡ 〈ϕn〉, called the Green’s functions. The probability density can be written as

P (ϕ) ≡ Ne−
1
ħ S(ϕ) (1)

where S is the action, specific to a quantum field theory, which we will come back to later. The normalization factor
N can be written as follows

N−1 ≡
∫

e−
1
ħ S(ϕ)dϕ (2)

The Green’s functions are then given by

Gn ≡ 〈ϕn〉 ≡ N
∫

e−
1
ħ S(ϕ)ϕndϕ (3)

where the integral is taken from −∞ to ∞i and G0 must be 1. To make the function more manageable we define Hn

as

Hn ≡
∫

e−
1
ħ S(ϕ)ϕndϕ, (4)

so that of course N = 1
H0

and the Green’s functions can be written as

Gn = Hn

H0
. (5)

The same information contained in the Green’s functions (moments) is also contained in the Connected Green’s
functions, Cn , which are the cumulants of P (ϕ) and can be written as a function of powers of different Green’s
functions in the following way

Cn ≡Gn −
n−1∑
m=1

(
n −1

m −1

)
CmGn−m . (6)

So, by looking at the Connected Green’s functions something can be said about the quantum field theory under
investigation. In order to do that we need to calculate Hn from which we can calculate Gn and eventually Cn . The
easiest theory to take a look at is the free theory, where the action is defined as

S = µ

2
ϕ2 (7)

which is fairly easy to solve since we just get a Gaussian. It becomes a little more complicated when looking at
higher order theories. For example, if we take a look at ϕ4 theory we get an action of the form

S = µ

2
ϕ2 + λ4

4!
ϕ4 . (8)

iThis convention will be used throughout the thesis.
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Since this is a lot more difficult to compute, we see this as a small deviation from the free theory. λ4 is taken to be
very small and perturbation theory is used to write

e−
1
ħ S(ϕ) = e−

µ
2ħϕ

2 ∑
k≥0

1

k !

(
− λ4

24ħ
)k

ϕ4k . (9)

Which can be inserted into the definition of Hn to yield

H2n = ∑
k≥0

(
− λ4

24ħ
)k (ħ

µ

)2k+n (4k +2n)!

(2k +n)!k !22k+n
(10)

where we have used that ∫
dϕ e−

µ
2ħϕ

2
ϕ2p =

(ħ
µ

)p (2p)!

p !2p . (11)

This only works with even powers of ϕ, hence the 2p, in this case resulting in only even n and thus changing it to
2n in equation 10 for convenience. The same principle applies when looking at other theories. The power series
expressions that are obtained for the Green’s functions after this perturbation expansion are not convergent, but
factorially divergent. This is an important property that we will get back to later.
In this thesis we will take a look at three different theories, ϕ3, ϕ4 and a combination theory. The actions are,
respectively

S = µ

2
ϕ2 + λ3

3!
ϕ3 (12)

S = µ

2
ϕ2 + λ4

4!
ϕ4 (13)

and

S = µ

2
ϕ2 + λ3

3!
ϕ3 + λ4

4!
ϕ4. (14)

The Hn for ϕ4 theory can be found in equation 10 and using the same principles as above we find Hn for ϕ3 theory
and the combination theory, respectively

Hn = ∑
l≥0

(
−λ3

6ħ
)l (ħ

µ

) 3l+n
2 (3l +n)!(

3l+n
2

)
! l !2

3l+n
2

θ(l +n even) (15)

and

Hn = ∑
k,l≥0

(
−λ3

6ħ
)l (

− λ4

24ħ
)k (ħ

µ

) 3l+4k+n
2 (3l +4k +n)!(

3l+4k+n
2

)
! l !k !2

3l+4k+n
2

θ(l +n even). (16)

2.2 Renormalisation

Nothing is known about the parameters µ, λ3 and λ4 so the first few Connected Green’s functions are used as
measurement processes to determine these parameters, after which the rest of the Connected Green’s functions
can be predicted. In order to get the next higher order in perturbation theory for the prediction process, it needs to
be done for the measuring process as well so a new fit of the parameters can be made and we get improved values for
the prediction processes. This order by order improvement is called renormalisation. What we are then interested
in is the improvement factor, the ratio between the coefficients of the Connected Green’s functions before and
after renormalisation. As can be seen in [2] and [3], in ϕ4 theory, for high loop order the improvement factor goes
asymptotically to a certain value for each of the Connected Green’s functions. The same was shown for quantum
electrodynamics in [2] and [4] as well. The rest of the thesis is focused on predicting these asymptotic values for
three different theories.
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3 Factorially divergent series

To understand the asymptotic behaviour of the improvement factor, it is fruitful to look at factorially divergent
series because the Connected Green’s functions are in this category, as can be seen in [1], [2] and references quoted
therein. We shall take a look at this type of series and its properties in this section, based on their description in [1].

3.1 Comparisons

Consider f (x) and g (x), both asymptotic sums of the form

f (x) = ∑
n≥0

xn fn , (17)

where, for large n, we assume the coefficients fn to be of the form

fn ≈ a f cn
f Γ(n +β f ) , (18)

making f (x) factorially divergent. We can then define some comparisons between these series f (x) and g (x),

f (x) ≺ g (x) if lim
n→∞

fn

gn
= 0 (19)

f (x) Â g (x) if g (x) ≺ f (x) (20)

f (x) ∼ g (x) if lim
n→∞

fn

gn
is a finite nonzero constant (21)

f (x) ³ g (x) if lim
n→∞

fn

gn
= 1 . (22)

L( f , x) is defined to be the leading term of f (x), it is the nonzero term in f (x) with the lowest power of x. A series
f (x) is called proper factorially divergent (pfd) if L( f , x) = 1.

3.2 Algebraics

Both f (x) and g (x) are factorially divergent, so

f (x) Â g (x) ⇒ f (x)+ g (x) ³ f (x) (23)

and
f (x)g (x) ³ L( f , x)g (x)+L(g , x) f (x) (24)

If f (x) and g (x) are pfd this changes into

f (x)g (x) ³ f (x)+ g (x) , leading to f (x)p ³ p f (x) (25)

6
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If we then look at the case where both f (x) and g (x) are pfd and g (x) ≺ f (x) with g1 6= 0 we find

f
(
xg (x)

)= ∑
n≥0

xn fn g (x)n

= ∑
n≥0

xn

(
fn + fn−1

(
g1

(
n

1

))
+ fn−2

(
g 2

1

(
n

2

)
+ g2

(
n

1

))
+ ...

)

³ ∑
n≥0

xn
n∑

k=0
fn−k

nk

k !
g k

1

³ ∑
n≥0

xn fn

n∑
k=0

1

k !

(
g1

c f

)k

f
(
xg (x)

)³ f (x) e
g1
c f

(26)

where we used that for large n

fn−k nk ≈ a f cn−k
f Γ(n −k +β f )nk ≈ a f cn−k

f Γ(n +β f ) . (27)

Another important thing to look at is inversion. If f (x) is a pfd with f1 6= 0,

y = x f (x) (28)

can be inverted to give
x = y g (y) , (29)

where g (x) is pfd with g1 =− f1 and

g (x) ³− f (x) e
− f1

c f . (30)

3.3 Improvement factor

Every Connected Green’s function can be written as a prefactor times a powerseries in u, where u is specific to each
theory and dependent on ħ and the parameters µ, λ3 and λ4. This is denoted as

Cn = L (Cn ,ħ)Cn(u) (31)

where Cn(u) is pfd. In the renormalisation procedure u also gets expressed in terms of the renormalised parameters
as ûii. Using the lowest order Connected Green’s functionsiii, û can be expressed as

û = u
(
1+au +bu2 + ...

)
(32)

where the part between brackets is again pfd and we will denote it as f (u), making this an equation of the form of
equation 28. This means that we can invert this equation to yield

u = ûg (û) (33)

with g1 =−a and g (u) ³− f (u)e
− f1

c f . Cn (u(û)) is then of the form of equation 26, resulting in

Cn (u(û)) ³Cn(û) e
−a
c f . (34)

where the improvement factor is found to be e
−a
c f .

iiThe hat notation for renormalised parameters shall be used throughout the thesis.
iiiThis will be elaborated upon later.
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4 Components of the improvement factor

In order to calculate the improvement factor we need to find a and c f in equation 34.

4.1 Finding c f

To find c f as easily as possible some more properties of factorially divergent series are used. Just as with the Con-
nected Green’s functions, Hn = L (Hn ,ħ)Hn(u) and Gn = L (Gn ,ħ)Gn(u) with Hn(u) and Gn(u) pfd. Now we can
use the comparisons in section 3.1 to find

Hn +1 ÂHn (35)

and

Gn = Hn

H0
= L (Hn ,ħ)

Hn(u)

H0(u)
³ L (Hn ,ħ)Hn(u)−H0(u) ³ Hn ³ H0 . (36)

Cn is a combination of powers of Gm with m = 2...n, where the leading powers of ħ are the same in each term,
meaning if we devide it out we get Cn in terms of Gm . And since again

Gn +1 ÂGn (37)

and we get
Cn ³Gn ³ Hn ³ H0 . (38)

This means that if we want to know the c f for Cn , we can already find it by just looking at Hn or even just H0,
because all their c f ’s are the same. Meaning Hn needs to be cast in the form of equation 17 in order to just read off
the desired c f .

4.2 Finding a

To find the a in equation 34, we take a look at the first few Connected Green’s functions of our respective theory.
Since a is the first non-trivial coefficient only the first loop order of the Connected Green’s functions is needed,
which is found easily using Feynman diagrams. We can express the Connected Green’s funtions Cn in Feynman
diagrams by writing out all connected diagrams with n external lines, where the Feynman rules shown in figure 1
are used.

Figure 1: Feynman rules used in our model for ϕ3, ϕ4 and ϕ3 +ϕ4 theory , taken from [1].

We use this to take a look at our first few Connected Green’s functions for our different theories. Obviously for
ϕ3 theory we only have a three-point vertex and for ϕ4 theory we only have a four-point vertex, whereas in the
combination theory both are used.
The actual process of finding a is best shown using an example, here ϕ4 theory is used. If we look at C2, we get the
series in figure 2 up to second loop order.

8
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Figure 2: Diagrammatic representation of C2 for ϕ4 theory up to second loop order.

When taking symmetry factors and multiplicity into account this results in

C2 = ħ
µ
− ħ2λ4

2µ3 + ħ3λ2
4

µ5

(
1

4
+ 1

4
+ 1

6

)
+ ... = ħ

µ

(
1− 1

2
u + 2

3
u2 + ...

)
(39)

with u = ħλ4
µ2 . The same can be done for C4, for which the Feynman diagrams can be found in figure 3.

Figure 3: Diagrammatic representation of C4 for ϕ4 theory up to first loop order

The resulting series is then

C4 =−λ4ħ3

µ4 + λ2
4ħ4

µ6

(
4

2
+ 3

2

)
+ ... =−ħ3λ4

µ4

(
1− 7

2
u + ...

)
. (40)

In the renormalisation procedure these are set to be equal to their first term, but in renormalised parameters,

C2 = ħ
µ

(
1− 1

2
u + 2

3
u2 + ...

)
= ħ
µ̂

(41)

C4 =−ħ3λ4

µ4

(
1− 7

2
u + ...

)
=−ħ3λ̂4

µ̂4 . (42)

These can be used to determine û,

û = ħλ̂4

µ̂2 =−C4

C 2
2

= u

(
1− 5

2
u + ...

)
(43)

where we can just read off the constant a needed in equation 34 to be − 5
2 .

9
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5 Improvement factors

In this section, we will work through finding the improvement factors for ϕ4 theory, ϕ3 theory and ϕ3 +ϕ4 theory.

5.1 ϕ4 theory

Since this theory was used as an example, a was already found to be − 5
2 . So now only c f needs to be determined in

order to calculate the improvement factor. As we have seen before,

H2n = ∑
k≥0

(
− λ4

24ħ
)k (ħ

µ

)2k+n (4k +2n)!

(2k +n)!k !22k+n
. (44)

In order to find the c f , H2n needs to be of the form of equation 17 with coefficients of the form of equation 18. First,
H2n is rewritten as

H2n = L (H2n ,ħ)H2n(u) =
(ħ
µ

)n (2n)!

n!2n H2n(u) (45)

where H2n is

H2n = ∑
k≥0

(
− u

96

)k (4k +2n)!

(2k +n)!k !

n!

(2n)!
(46)

with of course u = ħλ4
µ2 . Then, in order to find the gamma function involved, we make an educated guess and use

Stirling’s approximation to see if it was correct and what factors are still missing. For the educated guess, one needs
to look at the factorials where k becomes very large, so for a moment we ignore the ones with just n, in this case
(4k+2n)!
(2k+n)!k ! . For the guess we say 4k −2k −k = k and 2n −n = n so we guess Γ(k +n). Turning our H2n into

H2n = ∑
k≥0

(
− u

96

)k
Γ(k +n)

n!

(2n)!

(4k +2n)!

(2k +n)!k !Γ(k +n)
(47)

³ ∑
k≥0

(
− u

96

)k
Γ(k +n)

n!

(2n)!

64k 8n

p
2π

(48)

= ∑
k≥0

(
−2u

3

)k

Γ(k +n)
n!

(2n)!

8n

p
2π

(49)

(50)

where Stirling’s approximation was used. For a full derivation, see appendix A.1. We can now just read off c f =− 2
3 .

Consequently we can determine the improvement factor to be

e
−a
c f = e

5/2
−2/3 = e−

15
4 . (51)
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Figure 4: The improvement factors forϕ4 theory for increasing loop order for C6, C8 and C10 plotted with the predicted asymp-
totic value for the improvement factor.

In figure 4iv this prediction for the asymptotic value of the improvement factors is plotted together with the im-
provement factors for increasing loop order for C6, C8 and C10. We see that the prediction is fairly accurate. It
corresponds to what was found in [2] and [3]. If we take different Feynman rules, where the four-point vertex
with λ4 is positive instead of negative, the absolute values stay the same but c f becomes positive and −a becomes
negative, resulting in the same improvement factor. We conclude from this that taking Feynman rules where the
four-point vertex with λ4 is positive has no effect on the resulting improvement factor and can therefore be done if
desired.

ivIn all the figures showing the asymptotic behaviour of the improvement factors included in this thesis, the improvement factor is taken as
C (û)
C (u) , which results in taking away the minus sign in the exponent.
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5.2 ϕ3 theory

ϕ3 theory varies somewhat from ϕ4 theory in that it contains tadpoles. In our zero dimensional case that is not a
problem, however when looking at higher dimensions sometimes these need to be divided out because they are
unphysical. This process is called tadpole renormalisation and is done to make sure the expectation value of the
vacuum field has the desired value. Since this is quite an important procedure that is often used, the expectation
value shall be investigated both with and without tadpole renormalisation. However, the steps are very similar.

5.2.1 Without tadpole renormalisation

Again, we need to find a and c f and enter them into our equation for the improvement factor e
−a
c f . We shall start

with finding a, for which we first take a look at C2. In figure 5 a diagrammatic representation can be found.

Figure 5: Diagrammatic representation of C2 for ϕ3 theory up to first loop order without tadpole renormalisation.

When taking symmetry factors and multiplicity into account this results in

C2 = ħ
µ
+ λ2

3ħ2

µ4

2

2
+ ... = ħ

µ
(1+u + ...) = ħ

µ̂
(52)

with u = λ2
3ħ
µ3 . Now, the same is done for C3, for which the diagrammatic representation can be found in figure 6.

Figure 6: Diagrammatic representation of C3 for ϕ3 theory up to first loop order without tadpole renormalisation.

The resulting series is then

C3 =−λ3ħ2

µ3 − λ3
3ħ3

µ6

(
2 ·3

2
+1

)
+ ... =−λ3ħ2

µ3 (1+4u + ...) =− λ̂3ħ2

µ̂3 . (53)

These are then used to determine û,

û = λ̂2
3ħ
µ̂3 = C 2

3

C 3
2

= u (1+5u + ...) (54)

so we end up with a = 5. Next, c f needs to be determined, for which Hn needs to be of the form of equation 17,
with coefficients of the form of equation 18. As seen before,

Hn = ∑
l≥0

(
−λ3

6ħ
)l (ħ

µ

) 3l+n
2 (3l +n)!(

3l+n
2

)
! l !2

3l+n
2

θ(l +n even) (55)

12
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and since l +n needs to be even, we have two possibilities that we will look at separately, n = 2p and l = 2r or
n = 2p −1 and l = 2r +1v. In the first case, Hn becomes

H2p =
( ħ

2µ

)p ∑
r≥0

(
ħλ2

3

288µ3

)r
(6r +2p)!

(3r +p)! (2r )!
(56)

= L
(
H2p ,ħ)

H2p (u) =
( ħ

2µ

)p (2p)!

p !
H2p (u) (57)

where H2p (u) is

H2p (u) =∑
r ≥ 0

( u

288

)r (6r +2p)!

(3r +p)! (2r )!

p !

(2p)!
. (58)

For our Gamma function we guess Γ(r +p), resulting in

H2p (u) =∑
r ≥ 0

( u

288

)r
Γ(r +p)

p !

(2p)!

(6r +2p)!

(3r +p)! (2r )!Γ(r +p)
(59)

³∑
r ≥ 0

( u

288

)r
Γ(r +p)

p !

(2p)!

432r 12p

2π
(60)

=∑
r ≥ 0

(
3u

2

)r

Γ(r +p)
p !

(2p)!

12p

2π
(61)

where Stirling’s approximation was used. For a full derivation, see appendix A.2. We can now just read off c f = 3
2 .

We shall now look at the case where n = 2p −1 and l = 2r +1 to see whether it results in a different c f . In this case
Hn becomes

H2p−1 =
(
− λ3

12µ

)( ħ
2µ

)p ∑
r≥0

(
ħλ2

3

288µ3

)r
(6r +2p +2)!

(3r +p +1)! (2r +1)!
(62)

= L
(
H2p−1,ħ)

H2p−1(u) =
(
− λ3

12µ

)( ħ
2µ

)p (2p +2)!

(p +1)!
H2p−1(u) (63)

where H2p−1(u) is

H2p−1(u) =∑
r ≥ 0

( u

288

)r (6r +2p +2)!

(3r +p +1)! (2r +1)!

(p +1)!

(2p +2)!
. (64)

For our Gamma function we guess again Γ(r +p), resulting in

H2p−1(u) =∑
r ≥ 0

( u

288

)r
Γ(r +p)

(p +1)!

(2p +2)!

(6r +2p +2)!

(3r +p +1)! (2r +1)!Γ(r +p)
(65)

³∑
r ≥ 0

( u

288

)r
Γ(r +p)

(p +1)!

(2p +2)!

432r 12p 3

π
(66)

=∑
r ≥ 0

(
3u

2

)r

Γ(r +p)
(p +1)!

(2p +2)!

12p 3

π
(67)

where Stirling’s approximation was used. For a full derivation, see appendix A.2. Again we find c f = 3
2 , for our

purpose the two approaches give the same result. Consequently we can determine the improvement factor to be

e
−a
c f = e

−5
3/2 = e−

10
3 . (68)

This corresponds to what has been found in [2].

vl cannot become smaller than 0.
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5.2.2 With tadpole renormalisation

First we look for the different value for a. When looking at the diagrammatic representations, found in figure 7 and
8, we see a slight change due to the tadpole renormalisation.

Figure 7: Diagrammatic representation of C2 for ϕ3 theory up to first loop order with tadpole renormalisation.

Figure 8: Diagrammatic representation of C3 for ϕ3 theory up to first loop order with tadpole renormalisation.

This also results in a slight change in the formulas

C2 = ħ
µ
+ λ2

3ħ2

µ4

1

2
+ ... = ħ

µ
(1++...) = ħ

µ̂
(69)

C3 =−λ3ħ2

µ3 − λ3
3ħ3

µ6

(
3

2
+1

)
+ ... =−λ3ħ2

µ3

(
1+ 5

2
u + ...

)
=− λ̂3ħ2

µ̂3 . (70)

(71)

In the same way as before û is determined

û = λ̂2
3ħ
µ̂3 = C 2

3

C 3
2

= u

(
1+ 7

2
u + ...

)
, (72)

resulting in a = 7
2 . To determine c f here, we include a tadpole counterterm in the action,

S(ϕ) = µ

2
ϕ2 − λ3

6
ϕ3 +Tϕ . (73)

Where obviously we need to find out more about this extra term. T is tuned such that the tadpoles vanish so not
only is G0 = 1 as always, but also G1 = 0. We can express all Green’s functions in terms of T, for example G2 = 2

λT .

We already know that L(G2,ħ) = ħ
µ , from which we can determine L(T,ħ) = ħλ3

2µ . Where we see that T starts with

ħ, meaning T 2 ≺ T . In this way, using the other Green’s functions, T can be determined up to increasing powers
of ħ. However, this is a lengthy task so we shall use a different method. We start again with a different field with a
different action,

S(ψ) = m

2
ψ2 − λ3

6
ψ3 . (74)

Where we look at the Schwinger-Dyson equationvi with source J ,

mψ(J ) = J + λ3

2

(
ψ(J )2 +ħψ′(J )

)
. (75)

viFor an explanation of the origin of this equation, see [1].
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This field ψ containes a tadpole, t =ψ(0), so if we take φ(J ) =ψ(J )− t it is free of tadpoles. When substituted into
equation 75, we find

(m −λ3T )φ(J ) = J + λ3

2

(
φ(J )2 +ħφ′(J )

)− (mt − 1

2
λ3t 2) . (76)

Where the tadpole-free action can be found if µ = m −λ3t and T = mt − 1
2λ3t 2 are chosen. If J = 0 is put into

equation 75, a relation for t is found.

mt = λ3

2

(
t 2 +C2

)= λ3

2

(
t 2 + ħ

m
+ ħλ3

m

∂

∂m
t

)
(77)

From its Feynman diagram, we know t must be of the form t = ħλ3
2m2 τ(x) with x = ħλ2

3
m3 . This can be put into the

former equation, resulting in

τ(x) = 1+xτ(x)+ 1

4
xτ(x)2 + 3

2
x2τ′(x) , (78)

where it is easy to see that τ= 1+ 5
4 + ..., cτ = 3

2 and βτ = 1 and τ can be written as

τ(x) ³∑
n

A

(
3

2

)n

Γ(n +1)xn . (79)

Here, τ is still a function of x, which in turn is a function of m, but we want to know it as a function of µ, for which

we use our regular u = ħλ2
3

µ3 . To make this switch, u is determined as a function of x as

u = x
(
1+ x

2
τ(x)

)−3
³∑

n
A

(
3

2

)n

Γ(n)xn , (80)

which is then inverted to yield x = ug (u), where we have

g (u) ³−e−1
∑
n

A

(
3

2

)n

Γ(n)un ≺ τ(u) (81)

so τ(x) becomes
τ(x) = τ(ug (u)) ³ e−1τ(u) (82)

meaning cτ stays the same. Now with this τ(u) the original tadpole counterterm T can be determined as follows.

T = mt − λ3

2
t 2 = ħλ3

2m
τ(x)

(
1− x

4
τ(x)

)
³ e−1 ħλ3

2µ
τ(u) (83)

which does not change the cT = 3
2 . Now the Hn can be written down including this tadpole counterterm,

Hn = ∑
l ,k≥0

(
λ3

6ħ
)l (

−T

ħ
)k (ħ

µ

)q 1

l !k !

(2q)!

q !2q θ(2q even) (84)

where q = (3l +k +n)/2. Since cT = 3
2 and c f = 3

2 without tadpole renormalisation, now c f = 3
2 as well. This is no

surprise since full tadpole renormalisation and one-loop tadpole renormalisation result in the same asymptotic, as
demonstrated in [1] and [4].
Since c f is the same as without tadpole renormalisation, we get an improvement factor of

e
−a
c f = e

−7/2
3/2 = e−

7
3 . (85)
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Figure 9: The improvement factors for ϕ3 theory with tadpole renormalisation for increasing loop order for Cn , n = 4, ...,10,
plotted with the predicted asymptotic value for the improvement factor.

In figure 9 this prediction for the asymptotic value of the improvement factors is plotted together with the im-
provement factors for increasing loop order for Cn , n = 4, ...,10. We see that the prediction is fairly accurate and it
corresponds to what has been previously found in [2] and [4].
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5.3 ϕ3 +ϕ4 theory

In the combination theory we have both three-point vertices and four-point vertices, resulting in terms with λ3 and
λ4, making this more complicated than the previous theories. These vertices might be connected through a ratio of
their respective u’s, or they might not be connected at all. Another issue is the renormalisation process, if the two
are connected, should we renormalise λ3 or λ4, or if they are not connected, should we renormalise both? For this
theory, we shall use Feynman rules where the four-point vertex is positive instead of negative, this will not affect
the outcome, as said in section 5.1. To find a general c f , we must take a look at Hn , which is in a slightly changed
form from equation 16 due to the choice of positive four-point vertex,

Hn = ∑
k,l≥0

(
−λ3

6ħ
)l (

λ4

24ħ
)k (ħ

µ

) 3l+4k+n
2 (3l +4k +n)!(

3l+4k+n
2

)
! l !k !2

3l+4k+n
2

θ(l +n even) . (86)

From ϕ3 theory we know it does not matter what we choose to make l +n even so we choose n = 2p and l = 2r ,
resulting in

H2p =
( ħ

2µ

)p ∑
r,k≥0

(
λ2

3ħ
288µ3

)r (
λ4ħ
96µ2

)k (6r +2p +4k)!

(3r +p +2k)! (2r )!k !

Γ(r +p +k)

Γ(r +p +k)
(87)

= L
(
H2p ,ħ)

H2p =
( ħ

2µ

)p (2p)!

p !
H2p (88)

(89)

with

H2p = ∑
r,k≥0

( u3

288

)r (u4

96

)k
Γ(r +p +k)

p !

(2p)!

(6r +2p +4k)!

(3r +p +2k)! (2r )!k !Γ(r +p +k)
(90)

Since we do not know if either of the u will dominate for large r and k, we define r = s −k and rewrite

H2p = ∑
s≥0

s∑
k=0

( u3

288

)s−k (u4

96

)k
Γ(s +p)

p !

(2p)!

(6s +2p −2k)!

(3s +p −k)! (2s −2k)!k !Γ(s +p)

= ∑
s≥0

( u3

288

)s
Γ(s +p)

s∑
k=0

(
3u4

u3

)k p !

(2p)!

(6s +2p −2k)!

(3s +p −k)! (2s −2k)!k !Γ(s +p)

(91)

For simplicity, we shall say 3u4
u3

= z and we will look at H0,

H0 =
∑
s≥0

( u3

288

)s
Γ(s)

s∑
k=0

(z)k (6s −2k)!

(3s −k)! (2s −2k)!k !Γ(s)
. (92)

We now define

Cs,k = (6s −2k)! zk

(3s −k)! (2s −2k)!k !Γ(s)288s (93)

and

Fs =
s∑

k=0
Cs,k , (94)
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which contains everything needed to determine c f . We want it to not have great influence if we have one more λ4

relative to λ3, so we want Cs,k+1/Cs,k ³ 1,

Cs,k+1

Cs,k
= (6s −2k −2)! (3s −k)! (2s −2k)!k ! z

(6s −2k)! (3s −k −1)! (2s −2k −2)! (k +1)!

³ (3s −k) (2s −2k)2 z

(6s −2k)2 k

= (s −k)2z

k(3s −k)

(95)

which is 1 at k = y s, with y a constant. where we can see that

z = y(3− y)

(1− y)2 (96)

y = 3+2z −p
9+8z

2(1+ z)
. (97)

(98)

Then we again use Stirling’s approximation to evaluate Cs,k , for a full derivation see appendix A.3, resulting in

Cs,k = (2π)−
3
2 s−

1
2 (3− y)3s (1− y)−2s (y(1− y))−

1
2 18−s

=
(

(3− y)3

18(1− y)2

)s
1√

(2π)3 s (y(1− y))
.

(99)

Which we can then use to determine the asymptotic behaviour of Fs ,

Fs ³Cs,y s

√
2π

|(ln(Cs,y s ))′′| (100)

where

(ln(Cs,k ))′′ = ln
Cs,k+1Cs,k−1

C 2
s,k

(101)

for which we first determine

Cs,k+1Cs,k−1

C 2
s,k

= (6s −2k +1)(2s −2k)(2s −2k −1)k

(6s −2k −1)(2s −2k +2)(2s −2k +1)(k +1)
. (102)

Then, taking a series expansion of the logarithm of this we find

ln
Cs,k+1Cs,k−1

C 2
s,k

=− y +3

s(y −3)(y −1)y
+ ... (103)

Fs ³
(

(3− y)3

18(1− y)2

)s
1√

(2π)3 s (y(1− y))

√
2πs(y −3)(y −1)y

y +3

=
(

(3− y)3

18(1− y)2

)s
1

2π

(
3− y

3+ y

) 1
2

(104)
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where c f = (3−y)3

18(1−y)2 is found as a function of y = k
s . If this ratio is known, it can be entered into the formula for

c f . To check that the correct asymptotic value for Fs was found, the value from the calculation of Fs =
s∑

k=0
Cs,k was

compared to the asymptotic value that was found.

Figure 10: Comparison of the calculated value of Fs compared to the asymptotic.

A graph of this comparison can be found in figure 10. It can be seen that the calculated value matches the asymp-
totic very nicely, from which we conclude that our prediction is correct.
We can not determine a as straightforwardly as with the other theories since we need to choose what to renormalise
on. If a choice is made, a can be determined as a function of y as well. We choose to renormalise λ3 to show this
derivation of a. The choice to renormalise λ3 instead of λ4 is based on a hunch that everything will work fine
this way but the other way around may cause issues when looking at C3. These issures might arise since for the
renormalisation of λ4 we need C4 and renormalisation affects all the next Connected Green’s functions but not the
ones before it. However, it is important to keep in mind that this was not checked and the choice was made just to
show the process.
In this theory, tadpoles play a role as well, so just as in ϕ3 theory, we shall predict the improvement factor with and
without tadpole renormalisation. As explained in section 5.2.2, this will not affect c f , only a.

5.3.1 Without tadpole renormalisation

As always, first we consider the Feynman diagrams.
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Figure 11: Diagrammatic representation of C2 for ϕ3 +ϕ4 theory up to first loop order.

In figure 11 a diagrammatic representation of C2 can be found. When taking symmetry factors and multiplicity into
account this results in

C2 = ħ
µ
+ λ4ħ2

2µ3 + 2

2

λ2
3ħ2

µ4 + ... = ħ
µ

(
1+ 1

2
u4 +u3 + ...

)
= ħ
µ̂

(105)

where u3 and u4 are the same as before.

Figure 12: Diagrammatic representation of C3 for ϕ3 +ϕ4 theory up to first loop order.

In figure 12, the diagrammatic representation of C3 can be found, for which we do the same as for C2, resulting in

C3 =−λ3ħ2

µ3 − λ3
3ħ3

µ6

(
2 ·3

2
+1

)
− λ3λ4ħ3

µ5

(
3

2
+ 3

2
+ 1

2

)
+ ... =−λ3ħ2

µ3

(
1+4u3 + 7

2
u4 + ...

)
=− λ̂3ħ2

µ̂3 . (106)

Then, these are used to determine û3,

û3 =
λ̂2

3ħ
µ̂3 = C 2

3

C 3
2

= u3

(
1+5u3 + 11

2
u4 + ...

)
= u3

(
1+

(
5+ 11

6
z

)
u3 + ...

)
(107)

where we used that u4 = z
3 u3. Here, we find a = 5+ 11

6 z and using z = y(3−y)
(1−y)2 we can determine

−a

c f
= −30+27y −19y2

6(1− y)2 · 18(1− y)2

(3− y)3 = 3 · −30+27y −19y2

(3− y)3 (108)

which leads to an improvement factor of e
3· −30+27y−19y2

(3−y)3 .
We will test our prediction by giving an example where we have set z = 2, from which we can calculate y = 1

3 ,

resulting in an improvement factor of e−
117
32 .
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Figure 13: The improvement factors for ϕ3 +ϕ4 theory without tadpole renormalisation for increasing loop order for Cn , n =
4, ...,10, plotted with the predicted asymptotic value for the improvement factor.

In figure 13 the improvement factors for increasing loop order for Cn , n = 4, ...,10, without tadpole renormalisation
are plotted with the prediction for the asymptotic value of the improvement factor. Again, we see that the prediction
is fairly accurate.

5.3.2 With tadpole renormalisation

Just as in ϕ3 theory, tadpole renormalisation changes the first few Connected Green’s functions in the following
way.

Figure 14: Diagrammatic representation of C2 forϕ3+ϕ4 theory up to first loop order when taking tadpole renormalisation into
account.

To start, in figure 14 a diagrammatic representation of C2 with tadpole renormalisation can be found. When taking
symmetry factors and multiplicity into account this results in a slight change,

C2 = ħ
µ
+ λ4ħ2

2µ3 + 1

2

λ2
3ħ2

µ4 + ... = ħ
µ

(
1+ 1

2
u4 + 1

2
u3 + ...

)
= ħ
µ̂

(109)

where u3 and u4 are the same as before.
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Figure 15: Diagrammatic representation of C3 forϕ3+ϕ4 theory up to first loop order when taking tadpole renormalisation into
account.

In figure 15, the changed diagrammatic representation of C3 when taking tadpole renormalisation is taken into
account can be found, which leads to a slight change in the equation as well, resulting in

C3 =−λ3ħ2

µ3 − λ3
3ħ3

µ6

(
3

2
+1

)
− λ3λ4ħ3

µ5

(
3

2
+ 3

2

)
+ ... =−λ3ħ2

µ3

(
1+ 5

2
u3 +3u4 + ...

)
=− λ̂3ħ2

µ̂3 . (110)

These are once again used to determine û3,

û3 =
λ̂2

3ħ
µ̂3 = C 2

3

C 3
2

= u3

(
1+ 7

2
u3 + 9

2
u4 + ...

)
= u3

(
1+

(
7

2
+ 3

2
z

)
u3 + ...

)
(111)

where we used u4 = z
3 u3. Here, we find a = 7

2 + 3
2 z and using z = y(3−y)

(1−y)2 we can determine

−a

c f
= −7+5y −4y2

2(1− y)2 · 18(1− y)2

(3− y)3 = 9 · −7+5y −4y2

(3− y)3 (112)

which leads to an improvement factor of e
9· −7+5y−4y2

(3−y)3 .
The same example as before, with z = 2 and y = 1

3 is worked out, now taking tadpole renormalisation into account.

The prediction for the improvement factor then becomes e−
351
128 .
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Figure 16: The improvement factors forϕ3+ϕ4 theory with tadpole renormalisation for increasing loop order for Cn , n = 4, ...,10,
plotted with the predicted asymptotic value for the improvement factor.

In figure 16 the improvement factors for increasing loop order for Cn , n = 4, ...,10, with tadpole renormalisation are
plotted with the prediction for the asymptotic value of the improvement factor. As can be seen in this figure, our
prediction for the improvement factor seems to be accurate.
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6 Discussion

For ϕ3 +ϕ4 theory it would be interesting to study the ratio between the couplings, y . As demonstrated, if a ratio is
chosen the calculation of the improvement factor is fairly straightforward, however it might not make much sense
if it is just chosen at random. Therefore it would be interesting to study what has the outcome closest to reality,
perhaps in a quantum chromodynamics context.
For the same theory, we chose to renormaliseλ3 instead ofλ4, it would be interesting to see what impact this choice
has and whether one is better than the other. A reason for the choice in this thesis was given, however that was not
studied and it would be interesting to see if that reasoning is correct or not.
This combination theory, ϕ3 +ϕ4 theory, is the basis for gluonic quantum chromodynamics (QCD), since it uses a
three-point vertex and a four-point vertex. With the knowledge from our basic ϕ3 +ϕ4 theory, a zero dimensional
toy model for QCD can be studied, just as Michael Borinsky and Ilija Milutin did for quantum electrodynamics in
[2] and [4] respectively. This might provide some insight on the best value of y to choose.
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A Stirling’s approximation

The two important things from Stirling’s approximation we use are

ln p ! ³
(

p + 1

2

)
ln p −p + ln

p
2π (113)

lnΓ(p) ³
(

p − 1

2

)
ln p −p + ln

p
2π (114)

for large p.

A.1 ϕ4 theory

In equation 47 we take a look at the last part and therefore define

A ≡ (4k +2n)!

(2k +n)!k !Γ(k +n)
, (115)

since this is the part for which Stirling’s approximation is used.

ln A =
(
4k +2n + 1

2

)
ln(4k +2n)−4k −2n + ln

p
2π

−
(
2k +n + 1

2

)
ln(2k +n)+2k +n − ln

p
2π

−
(
k + 1

2

)
ln(k)+k − ln

p
2π

−
(
k +n − 1

2

)
ln(k +n)+k +n − ln

p
2π

(116)

ln A =
(
4k +2n + 1

2

)(
lnk +2ln2+ n

2k

)
−2n

−
(
2k +n + 1

2

)(
lnk + ln2+ n

2k

)
+n

−
(
k + 1

2

)
ln(k)

−
(
k +n − 1

2

)(
lnk + n

k

)
+n

− ln2π

(117)

ln A = lnk

(
4k +2n + 1

2
−2k −n − 1

2
−k − 1

2
−k −n + 1

2

)
+2ln2

(
4k +2n + 1

2

)
− ln2

(
2k +n + 1

2

)
− ln2π

(118)

ln A = ln2

(
6k +3n + 1

2

)
− ln2π (119)

A ³ 26k 23n
p

2/2π= 64k 8n

p
2π

(120)
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A.2 ϕ3 theory

In equation 59 we take a look at the last part and just as in ϕ4 theory, we define

A ≡ (6r +2p)!

(3r +p)! (2r )!Γ(r +p)
(121)

since this is the part for which Stirling’s approximation is used.

ln A =
(
6r +2p + 1

2

)
ln(6r +2p)−6r −2p + ln

p
2π

−
(
3r +p + 1

2

)
ln(3r +p)+3r +p − ln

p
2π

−
(
2r + 1

2

)
ln(2r )+2r − ln

p
2π

−
(
r +p − 1

2

)
ln(r +p)+ r +p − ln

p
2π

(122)

ln A =
(
6r +2p + 1

2

)(
lnr + ln6+ p

3r

)
−2p

−
(
3r +p + 1

2

)(
lnr + ln3+ p

3r

)
+p

−
(
2r + 1

2

)
(lnr + ln2)

−
(
r +p − 1

2

)(
lnr + p

r

)
+p

− ln2π

(123)

ln A = lnr

(
6r +2p + 1

2
−3r −p − 1

2
−2r − 1

2
− r −p + 1

2

)
+ ln3

(
6r +2p + 1

2
−3r −p − 1

2

)
+ ln2

(
6r +2p + 1

2
−2r − 1

2

)
− ln2π

(124)

ln A = ln3
(
3r +p

)+ ln2
(
4r +2p

)− ln2π (125)

A ³ 33r 3p 24r 22p /2π= 27r 16r 3p 4p /2π= 432r 12p

2π
(126)

We want to do the same for H2p−1, for which we take a look at the last part of equation 65 and again define

A ≡ (6r +2p +2)!

(3r +p +1)! (2r +1)!Γ(r +p)
(127)

since this is the part for which Stirling’s approximation is used.

ln A =
(
6r +2p + 5

2

)
ln(6r +2p +2)−6r −2p −2+ ln

p
2π

−
(
3r +p + 3

2

)
ln(3r +p +1)+3r +p +1− ln

p
2π

−
(
2r + 3

2

)
ln(2r +1)+2r +1− ln

p
2π

−
(
r +p − 1

2

)
ln(r +p)+ r +p − ln

p
2π

(128)
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ln A =
(
6r +2p + 5

2

)(
lnr + ln6+ p +1

3r

)
−2p

−
(
3r +p + 3

2

)(
lnr + ln3+ p +1

3r

)
+p

−
(
2r + 3

2

)
(lnr + ln2)

−
(
r +p − 1

2

)(
lnr + p

r

)
+p

− ln2π

(129)

ln A = lnr

(
6r +2p + 5

2
−3r −p − 3

2
−2r − 3

2
− r −p + 1

2

)
+ ln3

(
6r +2p + 5

2
−3r −p − 3

2

)
+ ln2

(
6r +2p + 5

2
−2r − 3

2

)
− ln2π

(130)

ln A = ln3
(
3r +p +1

)+ ln2
(
4r +2p +1

)− ln2π (131)

A ³ 33r 3p 3 ·24r 22p 2/2π= 27r 16r 3p 4p 6/2π= 432r 12p 3

π
(132)
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A.3 ϕ3 +ϕ4 theory

The stirling approximation is used to evaluate Cs,k in equation 93.

lnCs,k = k ln z − 3

2
ln2π+

(
6s −2k + 1

2

)(
ln s + ln2+ ln(3− y)

)−6s +2k

−
(
3s −k + 1

2

)(
ln s + ln(3− y)

)+3s −k

−
(
2s −2k + 1

2

)(
ln s + ln2+ ln(1− y)

)+2s −2k

−
(
k + 1

2

)(
ln s + ln y

)+k

−
(

s − 1

2

)
ln s + s − s ln288

(133)

lnCs,k = l ln z − 1

2
ln s − 3

2
ln2π

+ ln2

(
6s −2k + 1

2
−2s +2k − 1

2

)
+ ln(3− y)

(
6s −2k + 1

2
−3s +k − 1

2

)
− ln(1− y)

(
2s −2k + 1

2

)
− ln y

(
k + 1

2

)
− s ln288

= l ln z − 1

2
ln s − 3

2
ln2π

+4s ln2+ ln(3− y) (3s −k)−
(
2s −2k + 1

2

)
ln(1− y)−

(
k + 1

2

)
ln y − s ln24 − s ln18

= l ln z − 1

2
ln s − 3

2
ln2π

+ s(3− y) ln(3− y)−2s(1− y) ln(1− y)− 1

2
ln(1− y)−

(
y s + 1

2

)
ln y − s ln18

=−1

2
ln s − 3

2
ln2π

+3s ln(3− y)−2s ln(1− y)− 1

2
ln(y(1− y))− s ln18+ y s

(
ln z − ln(3− y)+2ln(1− y)− ln y

)
=−1

2
ln s − 3

2
ln2π+3s ln(3− y)−2s ln(1− y)− 1

2
ln(y(1− y))− s ln18

(134)

Cs,k ³ (2π)−
3
2 s−

1
2 (3− y)3s (1− y)−2s (y(1− y))−

1
2 18−s (135)
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