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1 Introduction

For quite some years now, physicists all over the world have been trying to un-
derstand the discrepancy between two different measured values of the Hubble pa-
rameter. One value is determined from measurements on the CMB from the early
universe and the other from standard candles in the late universe [I]. Early-time
measurements by the Planck collaboration give a value for the Hubble parameter of
Hy = 67.36 + 0.54 km s~ Mpc™' [2]. Multiple late-time measurements combined
resulted in a value of Hy = 73.3+0.8 km s™' Mpc™! [3]. Both values lie outside each
other’s error margin and this gives rise to the need for an explanation to account for
this discrepancy.

Currently, most cosmological models are based on the quite successful Friedman-
nian model, which assumes that our universe is homogeneously distributed at all
scales. This is confirmed to be true on large scales, but this does not necessarily
mean that the inhomogeneity on small scales can be neglected. This homogene-
ity assumption can be translated to a universe having a constant spatial curvature
at any given time. This property has then been used to derive the Friedmann-
Robertson-Walker (FRW) metric, which was thereafter plugged into the Einstein
Field Equations (EFE). Moreover, in the Friedmannian model, it is assumed that
the matter and energy in our universe can be modelled as a perfect fluid. The cor-
responding stress-energy tensor in the EFE in that case takes a very simple form.
Those two assumptions together simplify the EFE, from which an equation for the
Hubble parameter can be derived.

Since the Friedmannian model causes a tension between the two obtained Hub-
ble parameters, this model is perhaps not entirely correct. On one hand, maybe one
should not neglect inhomogeneity on small scales. On the other hand, perhaps the
matter and energy in the universe can in the end not be modelled as a perfect fluid,
causing the stress-energy tensor to take a more complicated form. Consequently, if
such is the case, this may explain the discrepancy between the two different Hubble
parameters.

In this thesis, we therefore test a universe consisting of mass clumps and, conse-
quently, we omit the aforementioned two assumptions of the Friedmannian model,
at least on small scales. Moreover, we would like to determine the effects of this
mass clumping on the properties of the universe. Heinesen and Buchert, in 2020 [4],
proposed a solution to the discrepancy in the two values of the Hubble parameter



by adding an extra term to the stress-energy tensor, which they claim to arise from
structure formation. Hence it is interesting to more specifically investigate how mass
clumping may result in this solution.

Unfortunately it is impossible to describe the entire universe, hence simplifica-
tions have to be made. One possible model is that of a static universe being made
up of numerous mass clumps. These mass clumps can be simplified to spheres, all
having the same radius R and constant density p. Since our universe is expanding
at an accelerating pace, a non-zero cosmological constant will be used throughout
all calculations. We do so because we do not necessarily expect or aim to obtain a
cosmological model that provides an explanation for dark energy as well. The metric
for such a spherical mass clump is derived in section [2]

To be able to use these mass clumps to describe a universe that is homogeneous at
large scales, we placed the spheres on an infinitely large grid. Since it is impossible to
derive the exact metric of the entire universe, consisting of those periodically placed
mass clumps, we have made some more simplifications and applied tricks to create a
metric that approximately resembles our toy universe. This will be done in section

Due to the simplifications, our modelled universe can be described entirely by
only a few different discrete regions and their corresponding metrics. These separate
metrics will then be used to derive the time component of the stress-energy tensor
per region. Consequently, the time component of the stress-energy tensor of the
entire modelled universe will not simply be a certain energy density anymore, as in
a perfect fluid. However, using the requirement that the universe at large is in fact
homogeneous, we can still calculate the average energy density of our toy universe,
which will be done in section [l

This resulting average density can then be compared to the energy density that
the Friedmannian model would give us, taking into account the properties of our toy
universe. Any difference in the two obtained values may indicate that extra energy
density contributions arise when taking mass clumping into account.



2 Metric of a single mass clump

2.1 Setting up the EFE

In this chapter, we will explain step by step, how we obtain the metric of a
sphere with a uniform density and a non-zero cosmological constant. We will do so
by demanding that at the edge of the sphere, this metric should coincide with the
Schwarzschild metric from outside the sphere. For the derivation of this metric, we
use the same technique as Carroll [5], only we have started the derivation using the
EFE with a non-zero cosmological constant A:

1
R, — éRgW + Ag = 81GT,. (1)

Note that we use the convention in which we do not put the A term into our stress-
energy tensor. Moreover, for the time being, we use natural units, i.e. ¢ = 1.

We are currently considering a static, spherically symmetric metric, hence we can
start our derivation using the following general metric:

ds? = —e2Mge? 4 2PN g2 4 252002 where dO? = dO? + sin20de®.  (2)

It is important to note that using this definition of the metric, we will from now
on use the mostly plus convention for any metric. As you can see, the functions
inside the exponentials are only dependent on the radial coordinate, such that the
metric is indeed spherically symmetric. In this general metric we used 7 as the radial
coordinate. We can now make a change in the radial coordinate to simplify the
metric in order to make the following calculations easier. Consequently, the meaning
of the new radial coordinate r is hard to visualise, but we can interpret the result in
the end nonetheless. So let us take r = 7™ and rewrite the metric, such that:

d82 — _62a(r)dt2 + eQﬁ(r)dT2 + TQdQQ. (3)

Now a(r) and B(r) are different functions than a(7) and 3(7). Using this general
metric, the non-zero Christoffel symbols, as given by Carroll, are:

It =0« I}, = e Po.a I’ =0,p
1 1
| [}, =—re %’ ¢ == 4
o= 66 re - (4)
0
T 28 2 0 F@ — _&inf 9 @ _ COS
b re Sin b Sl U COS 06 —Sine



Next we will use the following definition of the Ricci tensor:

arh o,
R#V = R})\l)\l/ = axl;\ - 8—;/ + FZVFg)\ - FZAF;/ (5)

From this, the components of the Ricci tensor and then the Ricci scalar can be
calculated:

Ry = e2@=F) O*a + (0,0)* — 0,00,8 + %&a} (6)
R’rr = — 8304 + (a’/‘a)Q - 8Taarﬂ - %aT6:| (7)
Rog = e |10, — 0,0) — 1} +1 (8)
R¢¢ = Rgg Sin2 0- (9)

R= =220+ (0,0)® — 8,00, + %(ara —0:8) + ;12(1 - (10)

Having all the components of the Lh.s. of the EFE (equation [1)) at this point, let us

have a look at the components of the r.h.s., i.e. the stress-energy tensor. Assuming

the mass sphere to be a static perfect fluid we can take the four-velocity of the sphere

to be pointing in the time direction only. Normalising the four-velocity U*U, = —1,
dx,

we get the velocity U, = Z* = (e*,0,0,0) and hence

T

e p
T = UU, - ey 11
,uzz—(p+p) n 1/+pg,u1/— 7“2p . ( )
2 sin?(0)p

Finally, we can get the tt component of the EFE,

e P12r0.p —1] +1 —r*A = 87Gr?p, (12)
and the rr component,

e P2ro.a +1] — 1+ 172\ = 87Gr?p. (13)

We do not need the other two components in our calculations.



2.2 Matching Schwarzschild: g,,

Now that we have a useful set of equations, we will in this section impose some
constraints on the metric inside the sphere in order to obtain g,.. At the edge
of the sphere we require all of the components of this metric to coincide with the
Schwarzschild metric from outside the sphere. Hence we need the Schwarzschild
metric for A # 0 [6], which is

2
26M ﬂ] dt* + [1
r 3

2 —1
- 2(iM - %1 dr? + 1202, (14)

dsQ——{l—

In order for our metric to coincide with the Schwarzschild metric at r = R, it is
convenient to write one of the components of our metric in a similar way. We can
for instance write

2Gm(r r2A1 !
o[22 "
such that N
_ " -2 A
m(r) = 2G’(€ 1+ 3 ) (16)

We can interpret m(r) as the mass of the sphere lying within a radius r. Hence at
r = R this expression should be equal to the total mass inside the sphere, which is
m(R) = M. This is not equal to the real mass of the sphere as we are working in a
different coordinate system, but this will be accounted for in section [£.3] For more
insights into the meaning of M, please have a look at appendix [A] For now let us
continue the derivation. Taking the derivative of m(r) with respect to r gives us:

dm 1 28 9 9

— = 2 —1]+1—-r°A) =4 1

Lo (e 0,5— 1]+ 1 - 120 = dmp, (1)
where the tt component of the EFE has been substituted to obtain this well known

result. Consequently, m(r) = 3mr*p and hence we find that at the edge of the sphere

m(R) = 3w R*p = M, such that m(r) = Mr®/R3. Therewith, we can write the radial
component of the metric more conveniently as:

2GM A

Grr € [ T’] , where R3 +3

(18)

2.3 Solving by energy conservation: gy

The next step is to determine the time component of the metric inside the sphere.
Remember that we will need to determine the function «(r) in that case, since

6



gi = —e**(") Substituting the radial component of the metric g,,, i.e. equation

into the rr component of the EFE, i.e. equation |13 one can get an expression for
the partial derivative of «a:

By — 4rGlp(r) + &] — %
" 1— kr2

To be able to integrate this expression, we will need to know the equation for p(r).
Hence, for the next step we are particularly interested in the r component of the
energy conservation equations, being

v, " =0, (20)

(19)

in which g is summed over. For this we need the inverse stress-energy tensor:

—2a

e "p
v 14 672&
TH = g g"T, s = b, (21)

Then, using the definition of the tensor derivative
VT = 0, T + TH, T + Ty, T, (22)

and setting 0 = p and v = r, we can obtain the r component of the energy con-
servation equation. Only the terms for which p equals ¢ or r are non-zero, giving
us
VT = e *2[0,p + dya(p + p)] = 0, (23)
such that
Op=—(p+p)oa. (24)
This differential equation can be solved by substituting the partial derivative of «

from equation into equation 24 Then by separating the variables r and p we
obtain the equation

d d
_ 3 / P — / T_TQ (25)
(p+p)ATG(3p +p) — A) 1—kr
At the edge of the sphere and beyond, the density of the sphere becomes zero, and
so does the pressure. Hence we demand that p = 0 at r = R for determining the
integration constant, giving us the pressure as a function of radius:
V1—kR?2 —+/1—kr? 3p

r) = , where ¢ = ———.
p( ) pqx/l—kR2—|—\/1—k7“2 1 2pvac_p

(26)
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Here we have used that A = 871G pyqee, With pyee being the vacuum mass density, to
express this equation more elegantly. However, in the final expression of the metric
we will be writing the dark energy terms back in terms of A as this is a more familiar
quantity than p,... When using that A = 87Gp,e. and M = %ﬂR?’p, we can write
k = %WG(,O + pvac). Now the above equation for the pressure can be inserted into
equation describing d,a. Then, using the other form of k, this equation can be
rewritten to obtain:

—krdr
= =In(qvV1—kR?+V1—kr?)+C (27

/\/1—kr2(q\/1—kR2+\/1—kr2) (q ) (27)
Since we have two boundary conditions to take into account, we define the integration
constant as C' = In(C,Cy), where C; and Cy are two yet to be determined constants.
Consequently, we can obtain the following expression for gy:

gt = —62a = — [(Q\/]. - kRQ -+ \/]_ — ]{?T’Q)OlCQ]Q. (28)

The two boundary conditions can now be used for determining these constants. First
of all, We require that for A = 0 (i.e. pyee = 0), the time component of our metric
g = —e2® should reduce to the time component of the metric of a uniform sphere,

derived by Carroll [5
1 2
— [g\/ 1-— k0R2 - 5\/ 1— kfoT’Q

/ 2GM 1 [ ece]
2 R? N
(29)

Here ky is simply k(A = 0) = 2GM/R3. For pye. = 0, as a first step, we require for
instance that Cy must equal 1. Moreover, for p,.. = 0 we get ¢ = —3 and hence we
can observe that ' should equal —% in order to obtain the fractions % and —% in
equation [29

Secondly, at r = R the time component of our metric g,; = —e?* should reduce
to the time component of the Schwarzschild metric from equation [I4] such that our
metric can smoothly flow into the Schwarzschild metric at the edge of the sphere.
Remember that for » = R the time component of the Schwarzschild metric reads
gi = —(1 — kR?). Hence, knowing that C; = —3 it follows that Cy, = —2(¢ + 1)~
which is indeed equal to 1 for A = 0. Consequently, C;Cy = (¢+1)~! and therewith,
when writing out the definition of ¢, we get

2
gt = — W(Spv 1—kR? + <2pvac - )0) V31— /{57‘2) (30)



Again using that A = 87Gpye. and k = ng(pquwc), g can be rewritten, giving
us the final metric for a sphere with uniform density and A # 0:

1 2 .
ds? = = |IWVT=FR? = (1 = k) VI = k| di* 4 [1 = kr?] "' dr? 41222,
31)
3GM 2GM A (
where kR? < 1,1 = I and still k£ = B + 3

For A = 0 the metric reduces to the metric of a star derived by Carroll [5]. Moreover,
this metric coincides with the Schwarzschild metric at » = R, as it should.

For kR? > 1, the square root becomes imaginary as at that point the mass is so
big that the sphere must be a black hole and hence a different metric has to be used.
In this thesis, we will not assume that the mass clumps are that dense, just as most
of the matter in our universe. Hence the case kR? > 1 can be omitted.



3 A universe consisting of mass clumps

Now that we have found the metric for a sphere with uniform density and A # 0,
we can continue creating a model of a universe consisting of mass clumps. Since this
universe is consisting of regions of space containing both a mass clump and vacuum
surrounding it, we would like to be able to describe such a region of space by a metric.

As already required, outside the sphere the metric will simply be the Schwarzschild
metric for A # 0 from equation Defining the Schwarzschild metric as gfu and
defining the metric inside a uniform sphere from equation |31 as g[“,, we can define a
new combined metric for both » < R and r > R using the Heaviside step function:

g =11 =0(r=R)]- g, +O(r —R) g, (32)

This metric will be referred to as the indiwidual metric. Upon closer inspection, we
find that actually only the ¢t and rr components differ inside and outside the sphere.
But that is not the case for the 60 and the ¢¢ components. Hence it is convenient
to continue using an alternative but more useful and general shape of gfw being

ggy = diag(gut, grr, 7%, 7° sin 0), (33)

in which g4 and g,, are different for »r < R and r > R.

3.1 Going to Cartesian coordinates

Since we are going to define the metric of our toy universe in Cartesian coordi-
nates, let us first derive what the individual metrics are in Cartesian coordinates.
For this we use the definition of a coordinate transformation:

ox* 0x”

900 = e DB (34

We demanded our universe to be static and hence our spatial coordinates do
not depend on time. Consequently all derivatives of the spatial coordinates w.r.t.
2° equal zero. Hence gy has the same form in Cartesian coordinates, apart from
having to write r in terms of x, ¥y and z. However, the meaning of the modified
radial coordinate r introduced in section [2| is of course different from the coordinate
r that is normally used in a spatial coordinate transformation. More about this can
be found in appendix [A] For now we can simply continue with our transformation
as if there is nothing special about our r, since our conclusion should not depend

10



on the chosen coordinate system. Hence we can simply use the following standard
definitions for going from spherical to Cartesian coordinates:

/22 1 02
r=yx?+y>+ 22 § = arctan VY ¢ = arctan Y (35)
z x

For ease and clarity, from this point onward r is not written out in Cartesian
coordinates, hence e.g. J,r = £. Besides, the ¢¢ component can now be written

down more conveniently as gg¢ =7r?sin® 0 = 22 4+ y%.

Next, we only need to transform the spatial coordinates of gff,,. Therefore, we
need to determine the components of the inverse Jacobian matrix for going from
spherical to Cartesian coordinates.

Oy Oyr  0O,r . v v
_ Tz z —(z2+y?)
J b= aaze aye aze = fr2\/:02+y2 T2\/y12+y2 7,2\/332_~_y2 (36)
00 0yp 0:0 e S 0

Performing the coordinate transformation and again leaving r as it is, gives us
a convenient notation for the spherically symmetric individual metric inside a cube
gffl, in Cartesian coordinates:

gt = Gut
IQ y2 +22 IZ
Gzz = ﬁgr‘r + 2 = ﬁ(grr - 1) +1
2 2 2 2
oy 422y
Gyy = 7”_29rr + 7”2 - ﬁ(grr - 1) + 1
22 .TQ + y2 22
G2z = 71_297“7“ + 2 = T_Q(grr - 1) +1 (37)
Ty
Guy = T_Q(grr - 1) = Gyz
xrz
Gzz = _2(97’7‘ - 1) = G2z
T
yz

Oyz = ﬁ(grr‘ - 1) = Gzy

11



3.2 Designing a universe

Now we want to define a toy universe containing mass clumps by using their
corresponding metric from equation As it is impossible to perfectly model the
real universe, we will create a more simplistic model. It should however still satisfy
the assumptions that our universe is homogeneous at large scales. Moreover, this toy
universe should still be isotropic and we should still be able to model it as a perfect
fluid. In that way we can compare our model to the Friedmannian model and focus
on the effects of inhomogeneity at small scales. In order to facilitate this comparison,
we require our universe to be static. Consequently, the metric of our toy universe
will be time independent and hence it will not contain a scale factor. Furthermore,
for simplicity all the mass clumps will have the same values for M and R. Of course
A will be the same throughout the entire universe.

To satisfy homogeneity and isotropy at large scales, we position infinitely many
spheres on a grid, such that the resulting metric is periodically invariant. A visuali-
sation of this set up can be found in figure[I] As you can see, this periodic placement
of spheres is equivalent to stacking infinitely many cubes in all three directions. This
causes the metric contribution inside all cubes to be exactly the same.

O O

O O

Figure 1: A visualisation of how the spheres are periodically placed, by using a stack
of cubes with spheres in the middle of them.

Unfortunately, there is no convenient way to derive an exact solution for the total
metric of this toy universe. Also, one cannot simply add two individual metrics of
two neighbouring spheres as the metric near one sphere would depend on the other
sphere. Nonetheless, to start with, we will anyway define the total metric to be

12



an infinite sum of individual metrics. However, simply taking this infinite sum is
problematic, since consequently infinitely many metrics act on each point in space.
Hence we would like to make sure that inside a certain cube only the metrics of the
nearest neighbouring spheres contribute to the total metric inside that cube.

We do not want to simply turn off the individual metric of one sphere, when cross-
ing the edge of the cube, and then turn on the metric of the adjacent sphere. This
discontinuity causes non-existing second derivatives of the total metric at the edge
of the cube. However, we will need these second derivatives for the Ricci tensor in
order to be able to plug the total metric in the EFE. Hence we will apply a function,
that we will call the transition function f(z), to each individual metric, once for each
direction. This function makes sure that the contribution of the metric due to one
sphere smoothly vanishes inside the adjacent cube when passing the edge of the cube.

The total metric of our toy universe will be defined as:

o0

gul/(xv Y, Z) = Z ggu(xmvynzv Zna)f(xv nl)f(y>n2)f(z7n3) (38)

n;=—00

The individual metric ggy from equation , is the metric corresponding to a
certain cube, hence the C' in the superscript. The coordinate x,,, = x —n,d has been
used for periodically positioning the spheres, which are all located in the middle of
a cube having width d. Using this definition, the positions of the spheres, defined
using the three integers ny, ny and ns, are (nid,naod, n3d). All three integers can
admit values between —oo and oo.

3.3 Determining the transition function

Normally, the metric near one sphere would be dependent on the sphere in the
adjacent cube. In this simplified model, we would like to omit having to adjust the
metric near one sphere due to adjacent spheres. Hence we assume that the effects
of a sphere on the metric near a neighbouring sphere is negligible. Consequently, we
require that inside each cube, there is effectively a region of space in which only the
metric from the sphere of that cube is active. The transition function makes sure
that all other individual metrics do not contribute to the total metric in that region
of space.

In between two neighbouring spheres, the transition function smoothly trans-
forms the metric of one sphere into the metric of the other. In that region it would

13



be strange to suddenly let one metric contribution vanish, while the other has not
yet appeared. Hence we require that the transition function is defined such that ef-
fectively exactly one metric is contributing to the total metric at each point in space.

As you can see in equation [38], the transition function is applied to each individual
metric three times, once for each direction. The combination of the three transition
functions can now be called the weight factor of an individual metric as the sum of
all weight factors is always equal to one. This factorisation of the weight factor in the
three directions makes it easier to define the actual function for f, since in that case
you only need to look at the two sides of the cube in one direction. A visualisation
of the setup is shown in figure

O | O

| T | |
-d -(d+b)/2 -di2 -(d-b)i2 0 x —>

b
1
1 1
| 1

Figure 2: A 2D representation of our definitions of the width of the border region
b and the width of the cube d, using the cross section of only two cubes. Namely
the zeroth cube located at (0,0,0) and a neighbouring cube located at (-d,0,0). The
green dashed rectangle indicates the border region, which is the region in which the
transition function acts. 2R is of course the diameter of the sphere.

We will define a transition function that slowly neglects the effects of one metric
and clears the path for another over a certain distance b. The region in which this
function does so will be called the border region. For simplicity, we want the transi-
tion function to not influence the metric inside the spheres. With d being the width
of a cube (and thus the distance between two spheres) and 2R being the diameter of
a sphere, we require b < d — 2R.

14



Let us now be more specific about the values the transition function f will take.
Outside the cube to which f is applied and more specifically outside the border re-
gion, extending a distance %b into the adjacent cube, the effect of the metric should
vanish, i.e. f = 0. The function at the outer edge of the border region should then
start with zero, i.e. for the left side of the zeroth cube f(—3(b+d),0) = 0. Then this
function smoothly rises from zero to one at the other side of the border region, i.e.
f(3(b—d),0) = 1. Inside the cube and meanwhile outside the border regions, the
function remains one, meaning that only the individual metric of that cube is active.
On the other side of the cube inside the border region, the function should decrease
again in exactly the same way from 1 to 0, such that f(x) is symmetric around the
centre of the cube in all directions.

At this point we will define the transition function to be as follows:
f(z,n) =S(x—nd)-[1 - Sz —{n+1}d)] (39)

Here S(x) is a function going smoothly from 0 to 1 around the edges of a cube over
a distance b. The left term in equation [39|is responsible for the increase on the left
side of the cube and the right term for the decrease on the right side of the cube.
Consequently, S(z) will be defined such that it increases inside the border region on
the left side of the zeroth cube, whose boundary conditions have been mentioned in
the previous paragraph.

To make sure that the increase on the left side equals the decrease on the right
side, we demand that 1 — S(x — {n + 1}d) = S(—z + nd). For the zeroth cube, this
would mean that 1 — S(z — d) = S(—x). Since S(x) is a piecewise function, this
symmetry requirement can be satisfied by taking S(x) to be a kind of smooth step
function.

Moreover, we require that the metric should not suddenly start to deviate from
the original metric at the border, hence the first derivative of S(x) at both edges of
the border region should vanish. Otherwise, a kink in the total metric would occur,
causing a discontinuity or jump in the first derivative. This causes the second deriva-
tive to be undefined at the edges of the border region as a slope cannot be taken.
However, we need the second derivative to be able to calculate the EFE in the end,
since we need the Ricci tensor which contains second derivatives. Consequently we
require that the second derivative of S(x) should exist at any point in space.

15



This function should furthermore not be responsible for significant density con-
tributions in the result as the most important and interesting part is the influence of
the spheres, rather than the quite unphysical border regions. However, at this point
we cannot account for that yet, as we cannot very well predict the eventual effect of
the border region. So for now the following relatively simple function for S(x) will
be used, which satisfies the previously mentioned requirements:

0 if v < —1(b+d)
Sa) =S 24z + Lo+’ + 3L [z + L0+ d)])” it —Lb+d) <z <i(b—d)
1 if > 2(b—d)
(40)
Its first and second derivative inside the border region are:
6/1 1 1\° ) 12 1
As can be seen, the first derivative of S(z) is indeed equal to 0 at © = —1d + 3D, i.e.

at the edges of the border region, and the second derivative exists, as desired.

3.4 Implications of the smooth step function

We could have of course chosen many other functions fulfilling the same require-
ments. At this point there is not really a physical reason for a preference, so our
choice is still arbitrary. One advantage of this function is that this function is rela-
tively simple and this will likely save computation time in the end. Moreover, this
function really has a beginning and an end. Hence, by choosing the right values
for b, d and R, we can make sure that S(x) does not act on the metric inside the
sphere, but only on the Schwarzschild metric, which again saves computation time.
Other effects of this function, that make this definition a good first trial function,
will become clear in the rest of this section.

As required, due to our definition of f(z), the sum of just two transition functions
(without its corresponding individual metric), inside the border region of two adja-
cent cubes, adds up to 1. This can be shown by looking at the remaining transition
functions of two adjacent cubes, inside their corresponding border region:

flx,n—1)+ f(z,n)
=Sz —{n—-1}d)[1 — S(z —nd)] + S(x —nd)[1 — S(z — {n + 1}d)] (42)
=1-[1-S(x—nd)]+Sx—nd)-1=1
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Even when the transition functions of other directions are applied, and when looking
at border regions in which 4 or 8 transition functions overlap, the sum of the weight
factors adds up to 1. Hence f(x) makes sure that effectively no more than one metric
is acting on each point in space, as required. Of course, outside the border region
only one of all the weight factors equals 1, causing only one metric to be active there.

It is also good to note that the transition functions of two adjacent cubes are each
others mirror functions, when placing a mirror at the edge between the two cubes.
That is because S(z —d) =1 — S(—=x) and thus 0,5(x — d) = —0,S(—x). In other
words, if you would shift S(z) such that the transition is centred at x = 0, rather
than x = —d/2, the relations S(z) = 1 — S(—=x) and hence 9,5(z) = —0,5(—=z) can
be proven. Hence the derivative of two transition functions of two adjacent cubes
are also mirrored around the centre of the border region and they are of opposite sign.

These properties actually already follow from our previously mentioned require-
ments, but it is useful to explicitly show them anyway. In that way, we are able
to more easily get a grasp of what the components in the EFE should look like,
using our total metric. This will even help us simplify calculations in the upcoming
chapters.

3.5 Symmetries in the EFE

Let us now look at the effects of S(x) on the total metric. For that we will first
look at the effects of the spherically symmetric definition of a distance, after which
we will see that these effects also apply to the individual metric in Cartesian coordi-
nates. Having ds? = g, dz"dz” and knowing that ds? is spherically symmetric, we
see for 1 = v that da#daz” is symmetric in all directions and hence g,,, must be so
too. However, simply dz* is antisymmetric with respect to the plane orthogonal to
the axis denoted by p. In the upcoming paragraphs, we will use a simpler way of
saying the latter, namely: “dx* is antisymmetric in the direction of u.” So if u # v,
then dx*dz" is an odd function only in the direction of ;1 and v and hence g, must
be so too, such that ds? is symmetric again in all directions.

We already know that the components g¢,, and gy of the individual metric are
spherically symmetric around the centre of the cube. Furthermore, the transition
function f(z) is symmetric around the centre of the cube in all three directions.
Then one can quickly observe the following two properties by looking at the individ-
ual metric in Cartesian coordinates gfu from equation :
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Firstly, the components on the diagonal are indeed all symmetric functions in the
direction of z, y and z around the centre of the cube. Consequently, when applying
the weight factor, the on-diagonal components of the total metric g,, is also sym-
metric in the three directions around the centres of all the cubes. On top of that, it
is symmetric around the planes between the cubes in all three directions.

Secondly, the off-diagonal components of ggy are indeed antisymmetric in the di-
rections denoted by its indices around the centres of the cubes. So for instance ¢<, is
antisymmetric in the direction of  and y, and symmetric in z. Consequently, those
components of the total metric g, are also antisymmetric in the directions denoted
by its indices around the centres of the cubes, but symmetric in the direction that
is not denoted by its indices. On top of that, those components transition smoothly
from a certain value at the left side of the border region to minus that same value
at the right side of the border region. Hence, the off-diagonal components of the
total metric are antisymmetric in the direction denoted by its indices around all the
planes between the cubes, but again symmetric in the direction that is not denoted
in its indices.

Moreover, one can see that the derivative of a symmetric function will result in
an antisymmetric derivative. For instance, this implies that the total metric com-
ponents for which p = v will have antisymmetric derivatives around the border and
the sphere centres in the direction of the chosen derivative. If one would extrapolate
these symmetries even further to the other symbols needed for the EFE, one would
eventually come to the following conclusion: The function of the symbol (e.g. T'g, ) is
symmetric/antisymmetric in the direction of e.g. « if there is an even/odd number
of indices equal to « present in that symbol.

Consequently, the Ricci scalar, which has no indices, is symmetric in all three
directions. Moreover, the entire EFE is symmetric around the planes between the
cubes and around the centres of the cubes in all three directions for y = v, and
antisymmetric in the direction denoted by its indices for u # v. As such, the tt
component of the stress-energy tensor is symmetric around both the centres of the
cube and the border region, in all three directions. The latter is a useful property in
simplifying the upcoming steps in the next sections.
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4 Sifting the total metric

Now that we have obtained a well defined total metric, we would like to be able to
actually do something with it. In the end, as already mentioned in the introduction,
we would like to compute the average density of our toy universe and compare this to
what density the Friedmann model would expect for our toy universe. But in order
to get there, some tricks have to be performed, which will be elaborated in the rest
of this chapter.

4.1 Defining usable regions

In this section, we are going to split up the total metric into a few more practical
metrics. Earlier, we have made sure that our toy universe is homogeneous at large
scales, since we required all cubes to look exactly the same. Consequently, we only
have to look at the metric inside one cube and with that we know exactly what the
metric looks like in all the other cubes. Hence, from now on we only consider the
metric inside the zeroth cube, which is positioned at the origin.

Moreover, due to our piecewise transition function, the zeroth cube can be split
up into numerous discrete regions. In total, there are five different kinds of regions
and hence we only need to choose and consider five specific regions and their corre-
sponding metrics. These five different regions together are then sufficient to describe
the entire universe. Let us first define the five regions that have been visualised in

figure [3]

Figure 3: A 3D representation of the five different regions inside a single cube that
are enough to represent our entire toy universe.
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First of all, we have the region inside the sphere having radius R, which is
positioned at the origin.

Then we have the region outside the sphere and outside the border region,
in which simply the Schwarzschild metric operates. Only the first octant (i.e.
z,y,z € [0,5(d — b)]) has been evaluated, to save computation time.

We have regions in which two metrics overlap. The region representing such
an overlap region is chosen to be the border region of the zeroth cube (0,0,0)
and its neighbouring cube (1,0,0). Hence, the total metric is composed of two
Schwarzschild metrics on which one transition function for the z-direction is
acting, as the transition functions in the other two directions are equal to 1.
Furthermore, we only look at the first octant of the zeroth cube again, causing
this third region to be described by the coordinates:

0, Y, 2 = [%(d - b)? %d]a [07 %(d - b)]v [07 %(d - b)]

As can be seen more easily in figure [3] this third kind of volume is present three
times in the first octant. Hence the third region is present 3 x 8 = 24 times in
the zeroth cube.

Also, we have the regions in which four metrics overlap. Hence, the total metric
is the sum of four Schwarzschild metrics on which two smooth step functions
are acting per term, for instance the ones in the x and z direction of the first
octant depicted in figure Hence this particular region is described by the
coordinates:

Y, 2 = [%(d - b)> %d]v [07 %(d - b)]> [%(d - b)? %d]

This kind of volume is also present 24 times in the cube.

Lastly, we have regions in which eight metrics overlap. Consequently, the total
metric is the sum eight Schwarzschild metrics on which three smooth step
functions are acting per term. For the first octant this region corresponds to:

This kind of volume is present only 8 times in the cube.

For the latter three regions, we only need to look at parts of the border region,
as the other parts again act similarly. That is because the metric without transition
functions is spherically symmetric, and the applied transition functions are alike in
the z, y and z direction, as has been explained in section So, for instance the
border region in which 8 metrics overlap in the first octant (region 5) is the same
as similar overlap regions in the other octants, up to a reflection in a certain plane.
Knowing the metric of a region, we can simply extrapolate its properties to the rest
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of the border region if this is needed.

In this way we can choose a part of the border region where some of the smooth
step functions are equal to zero or one, causing the corresponding metric to be less
extensive. Consequently, we will be able to take for instance the inverse of each
separate metric with much greater ease than taking the inverse of the total metric
(being an infinite sum of individual metrics with a certain weight factor). Not only
does this approach save time in describing the entire cube, but it also saves a lot of
computation time in the end.

4.2 Computing the EFE’s

Now that we have defined those five different regions, we would like to obtain
the corresponding EFE per region, which together can describe the properties of our
entire toy universe. For that we will first need the inverse metric of all those regions,
such that we can calculate the Christoffel symbols, and so on.

The inverse metric of the first and second region can still be obtained algebraically
with relative ease. Having the definition of the spherically symmetric metrics in
Cartesian coordinates, defined in equation [37] we can take its matrix inverse to
obtain the inverse metric. After some rewriting, the inverse metric for the first and
second region result to be:

gtt — g;l
2 2
T Yy +z _ _
g = r2 (1 - grr1> + grrl
2% + 22 _ _
gyy = r2 (1 - grrl) + grrl
. yta? Sy, (43)
g = r2 (1 — Grr ) + Grr
x ry -
g V= _7’_2(1 - grrl)
Tz Lz —
g = _7”_2(1 - grrl)
z y= -
gy = _ﬁ<1 - grrl)

The last three regions, however, are not described by spherically symmetric met-
rics anymore and hence the inverse metric cannot be calculated using equation
Fortunately, inside these overlap regions, the corresponding metrics have taken a
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much more comprehensible shape already. That is because S(z) in such a region
does not need to be described by a piecewise function anymore. However, finding
the inverse metric will still take some time as one will have to determine the matrix
inverse of the metric tensors and this will likely not result in such an elegant solution
as before. Moreover, in order to obtain the necessary components of the EFE;, i.e.
the Ricci tensor and scalar, one would have to spend lots of time calculating these
components.

Hence from now on, everything has been computed in a computer program, which
is appended to this thesis. For some extra elaborations on this program (besides the
comments in the file), you might want to have a look at the appendix, as some not so
straightforward steps and tricks have been taken in order to save computation time.
The general idea is still important to mention now as this determines the result.
Hence we will briefly describe what steps we have taken.

The steps in obtaining the time component of the stress-energy tensor are straight-
forward. Having the metrics and the inverse metrics inside and outside the sphere
(regions 1 and 2), we only need to compute the inverse of the metrics of the border
regions (regions 3, 4 and 5) by matrix inversion. Then the Christoffel symbols and
subsequently the Ricci tensor and scalar can be computed, for each of the five re-
gions separately. Finally, one can calculate the stress-energy tensor by plugging in
the components in the left hand side of the EFE as defined in equation [I}

4.3 The average mass density of the universe

The components of this stress-energy tensor from all the regions together will not
resemble a perfect fluid anymore inside the cube as both the pressure and density are
different throughout the five different regions. However, one may argue that when
looking at the universe as a whole at large scales, such that one cannot distinguish
the individual spheres anymore, then the universe may be treated as homogeneous
and isotropic again. Since we set up our spheres to be static and non-interacting, we
can consider our toy universe as a whole at large scales to contain a perfect fluid.

The latter remark is consistent with the assumptions forming the basis of the
Friedmann equations. As many years of research have already shown, these assump-
tions about the universe are able to explain our observations very well. Hence, despite
the fact that our model is different on small scales, it should in the end have some
concordance with the standing Friedmann model at large scales. Consequently, it is
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not so strange to consider our modelled universe to be a perfect fluid at large scales.
Yet we have to investigate what the effects of inhomogeneity on small scales are.

The assumption of our modelled universe being a perfect fluid is very useful, since
we can now determine the average mass density of our toy universe and compare this
to the mass density we would have expected for our model using the Friedmann
equations. To get the average mass density of our toy universe, we again only have
to look at one cube and determine its average mass density. With that we directly
know the average mass density of our entire modelled universe.

Let us now find out how to get this average mass density. By using the definition
of the stress-energy tensor of a perfect fluid from equation [I1] the following equation
holds for the time component of the stress-energy tensor of a perfect fluid:
_Tu

Gt

p= (44)

The region inside the sphere is a perfect fluid already, as this was demanded at
the beginning. By calculating the needed components of the EFE one can find out
that the time component of the stress-energy tensor divided by —gk, results in the
constant density of the sphere, as expected.

The density of the second region, resulting from the Schwarzschild metric, will
vanish after performing the same steps. This on the one hand seems very logical
as we are looking at a vacuum. But on the other hand, one might expect to see a
density resulting from the cosmological constant, being interpretable as the energy
density of the vacuum. However, this is not the case, since we did not put the A
term of the EFE (equation [1)) into the stress energy tensor.

The mass densities resulting from the metrics of the different border regions
happen to be dependent on the location inside the border region. Hence we have to
average over the border regions in order to obtain the average density. This averaging
can be done by taking the integral of the densities over the volume of the specific
region to get its total mass, and then divide by its volume. Since we are averaging
in a curved space, we have to take the curvature into account, after which we obtain
the correct mass, volume, and with that the average mass density. To this end, we
have to use the following integration measure:
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Here |g;;| is the determinant of the spatial components of the metric, hence the ij
subscript. Sometimes it is denoted as Det(g), but we already have another use of g.
The mass resulting from the n'* region with volume V}, is then obtained as:

M, = [ pdV = / prr/9ij, | (46)
Vn Vo

Note that this integration also has to be performed for the first region to obtain
the real mass of the sphere. The density still is constant throughout the sphere in the
coordinates in which the constant density has been defined. However, the curvature
arising from the mass of the sphere and the cosmological constant causes the actual
mass inside the sphere M; to be different from the quantity M that has been put
into for instance the Schwarzschild metric.

We then choose to divide the mass by V¢, the volume of the entire cube, to ob-
tain the average mass density. In that way, the average mass density is not the mass
density of that component inside its own region, but it really is the mass density
inside the cube. Thereby, the average mass density p,, directly is the average mass
density inside the universe, resulting from that n*® region:

M,
Ve
The volume of the n'® region is defined by:

v, = / g & (48)

Since only a part of each of the kinds of regions has been used, we have to multiply
the obtained volume by a certain factor in order to obtain the entire volume of such
a kind of region inside a cube. For instance in the first octant, the third region
is present in two other orientations, also having a volume V3. And since there are
eight octants inside a cube, the total volume V3, , resulting from the third region is:
Vs,., = V3 -3 - 8. Consequently the total volume of the cube can be written down as:

Vo = Vi + 8V, + 24V3 + 24V, + 8V (49)

P = (47)

Similarly, the masses of the sphere M_I and the border region inside a cube Mg
are My = M, and Mg = 24M3 + 24M, + 8M 5 respectively. Consequently, the
average mass density of the universe is

_ _ My
p =P+ pp, where p; = o and pp = ——. (50)
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Here p; is the average mass density resulting from the mass clumps and pp is the
mass density resulting from the border regions.

4.4 Expectations from the Friedmannian model

For a homogeneous perfect fluid with mass density p, constant spatial curvature
and A # 0, the first Friedmann equation [7] is given by:

N 2 A
HZZ(%) :¥p+§—%zgﬂG<p+pyac)—% (51)
This is only one of the two Friedmann equations, but this is the only one we will need
right now. In this equation a represents the scale factor, which indicates the size of
the universe, whereas a represents the velocity at which the universe is expanding.
Together they form the expansion rate a/a, better known as the Hubble constant,
H. The Hubble constant at present time is known as the Hubble parameter Hy,
whose measured values are inconclusive. In our model we are trying to see whether
this equation still holds, or whether extra contributions to the expansion rate arise
due to mass clumping.

In order to check if the first Friedman equation will hold for our modelled uni-
verse, we will have to plug in the parameters corresponding to our toy universe.
Firstly, we assumed our toy universe to be static, causing the expansion rate a to
equal zero. Secondly, there is a curvature term in the Friedmann equation, described
by k. The curvature of our model universe is equal to zero, which we will elaborate
using the following thought experiment.

Imagine a photon travelling along the border exactly between two cubes. Since
the influence of both spheres cancel each other out, the photon must be travelling in
a straight path. Due to periodicity, any such photon would be travelling in a straight
line anywhere in the universe. This causes us to have a flat universe, i.e. k = 0.
Even when the photon is not travelling exactly between the two cubes, the photon
will on average travel in a straight line on large scales, as it is randomly distorted
by the local curvature due to the mass clumps. We omit the case in which the pho-
ton scatters on a sphere, as this has nothing to do with the curvature of the universe.

Having H = 0 and k = 0, the first Friedman equation reduces to

G

T(p + pvac) = O’ (52)
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Hence one can conclude for our model that if the Friedmann equation would hold,
the average energy density of our toy universe should be equal to minus the vacuum
energy density and hence p = —pyq.. Consequently, if A = 0, then p should exactly
equal zero.

You might already expect at this point that the computer program will return a
non-zero average energy density for A = 0 using the following reasoning. The model
consists of mass clumps with a certain density and outside the spheres there is a
vacuum described by the Schwarzschild metric, having a zero energy density. Also
there is the nonphysical transition function acting on the Schwarzschild metric in
the border region, whose width can at this moment be chosen arbitrarily. Hence its
contribution to the density can be anything, but it is not logical that this function
will exactly compensate for the mass inside the spheres. However, the latter is not
trivial and hence we must check if not somehow in the end the total average den-
sity will indeed be zero, causing our model to be in line with the Friedmannian model.

As just mentioned, the width of the border region can yet be anything. The
only requirement is that the energy density contribution from the rather unphysical
border region should be minimal, compared to that of the rest of the more physical
volume. Or more precise, the energy density resulting from the border metric should
be small compared to that from the mass clumps. Requiring this, you might already
want to conclude that the total energy density is not zero. However, we do not know
if we are able to minimise its contribution at this point. If there is no dependence on
the width of the border, it may even be possible that the density of the border always
exactly cancels the density of the mass clumps. In order to exclude this possibility
for our model we should have a look at the dependence of the total average energy
density on b.

In conclusion, we only need to check if the total average mass density does not
always satisfies the following equation: p = —p,q.. Besides, we would like to be able
to minimise the contribution of the unphysical border region. In that case we can
say with more confidence whether we have made a physical model that is not in line
with the Friedmannian model.
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5 Results

5.1 Clarification of the choice of input values.

Now that we have a method to compute p, we would like to choose some sets
of input values such that we can investigate the dependence on the different pa-
rameters of the model. We will need these dependencies to see if we are able to
minimise the contribution of the border region. The only parameters appearing in
the total metric that we can adjust are the mass of the sphere M, its radius R, the
cosmological constant A, the width of the cube d and the width of the border region b.

Before we choose different sets of those input values, please note that we have
used cosmological units in the computer program, such that G = ¢ = 1. Hence we
will choose values for the mass of the sphere by actually choosing a value for the
combination GM/c?, rather than simply M. In the results presented in tables|1| and
we therefore both give the exact input value for GM/c? in meters and the rounded
value for M in kilograms. The latter value will be given as it makes the comparison
to the output values easier.

In the computer program we are unable to choose realistic values for the input
values M, R and A as the limited precision of floats causes the numerical errors to
become too large. Hence we choose the terms occurring in our metrics to have about
the same order of magnitude, i.e. 1 ~ 2GM/c*R ~ AR?/3, which in addition saves
computation time. The consequences of choosing such unrealistically large numbers
will be discussed in section [5.3]

Now we will quickly elaborate why we have chosen some sets of input values. As
a first step, we will choose R = 1 m in all calculations and we will vary M, A, b and
d to investigate their effects.

First of all, we would like to test the effects of changing b, d and M in the simple
case in which A = 0. This case takes less computation time and will thus be easier
to test on. Of course we have to watch out for all the singularities and extreme
behaviours of the Schwarzschild metric. So we have to choose M such that we are
not dealing with a black hole. In the case that A = 0, we can do so by positioning
the Schwarzschild radius within the sphere, i.e. 2GM/c?> < R. Having R = 1 m, we
will simply choose GM/c* = 1/6 m. Furthermore, we would like to test what the
effects are of adjusting the properties of the border, hence d =4 m & b = 1/2 m and
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d=4m & b =1/32 m have been chosen as well as d = 8 m & b = 1/32 m. The
corresponding results can be found in table [I}

Next it would be interesting to observe the effects of dark energy in our model.
However, when choosing A # 0, we have to avoid a second singularity, namely the
de Sitter cosmological horizon, which occurs at large radii. Hence we have to choose
A and M, such that this horizon lies outside the cube. Moreover, it would be inter-
esting to choose a value for A such that the density of the sphere equals the dark
energy density, i.e. p = pyqc, @s in our real universe the overall matter energy density
is currently about the same as the vacuum energy density. However, when having
eg. GM/* =1/6m & d =8 m & b = 1/32 m, it is not possible to choose a A
such that p = pye due to the singularities. Hence the value of A = 1/18 m~2 has
been chosen, with the aim that pyq. is at least of the same order as p (p = 18py4c),
such that the effects of the cosmological constant are still noticeable in the results.
For comparison, it would anyhow still be interesting to have a situation in which
P = Puac does hold. Hence having A = 1/18 m™2, we have to choose GM/c? = 1/108
m in that case. Then again the two cases d = 4 and 8 m will be tested. This gives
us three cases for A # 0, which can be found in table [2|

We did not compute more than three results for A # 0 simply because those
computations took about twice as long as those for A = 0, which already took a few
days. Yet we will be able to perform an investigation of the results for A # 0 that
is sufficient for our goals, also partially because we have added two more cases for
A=0m?% & GM/c* = 1/108 m, which we can then compare to the A = 1/18 m—2
cases.

5.2 Comparison to the Friedmannian model

Results in the case of A = 0 m—2

Let us first show and discuss the results in the case that A = 0, as it consists
of the most extensive set of output values. Moreover it is easier to interpret as we
do not yet have to take dark energy into account. As a reminder, in this case we
especially would like to see if p always equals zero or not.
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Table 1: In this table the input values R =1 m and A = 0 m~2 have been used. Here
My and Mg are the integrated masses inside the sphere and the border region of one
cube, respectively. Vg is the volume of the cube. The average mass density in the
universe resulting from the mass clumps is p; = M;/Vy and that resulting from the
border region is py = Mp/Ve. Then the sum of p; and pg gives the average mass
density of our toy universe p. As can be seen, none of the average mass densities
equal zero. Moreover, there are some useful dependencies on the input parameters,
as will be discussed in the text. Note that we have not shown any numerical errors,
as all the errors are (way) smaller than the numbers presented in the table. Hence we

choose to write down the values using only four digits, which is the biggest number
of digits for which no error occurs.

GM/c* (m) 1/6 1/108
g | M (10% ke) 2244 124.7
= d (m) 4 8 4 8
b (m) 12 | 1/32 | 1/32 | 1/32 1/32
M; (10% kg) 2838 | 2838 | 2838 | 126.1 126.1
Mp (102 kg) 2571 | -2566 | -2392 | -125.5 | -125.1
2| Vo (m?) 78.27 | 78.26 | 568.1 | 64.64 514.8
Z | pr (10% kgm™) | 3626 | 3627 | 4.996 | 1.951 | 0.2449
Pp (102 kg m™3) | -32.84 | -32.78 | -4.210 | -1.942 | -0.2430
7 (102 kg m=3) | 3.421 | 3.486 | 0.7859 | 0.008566 | 0.001905

In table [1} pp keeps having a value being close to that of —p;, regardless of the
values chosen for M, b and d. Hence, it is as if the transition function is in some
way compensating for the mass density resulting from the mass clumps, but it does
not completely succeed to do so. Consequently, none of the average mass densities
equals zero in this model for A = 0, contradicting the expectations given by the first
Friedman equation. The latter contradiction is then the result of mass clumping, as
the mass in the Friedmannian model of the universe is uniformly distributed.

Let us now check that in the limit that mass clumping does not contribute to the
average mass density of the universe, that p = 0 again, such that our model is in
line again with the Friedmannian model. First of all, when lowering the mass of the
sphere M we see that the ratio p;/pp approaches -1 for decreasing M, meaning that
the border region is more easily able to compensate for the mass density arising from
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the mass clumps. Consequently, as we can see in table |1} p decreases for decreasing
M, just as expected. Even when we would compare the relative decrease of p with
respect to for instance p;, i.e. p/p;, a decrease can be observed. This decrease can
be interpreted as approaching the Friedmannian model for decreasing M.

Second of all, when increasing the size of the cube d we see a decrease in p again.
However, the ratio —p;/pp increases for increasing d, meaning that the border region
is less easily able to compensate for the mass density resulting from the mass clumps.
Moreover, we observe an increase in p/p;, which can be interpreted as a departure
from the Friedmannian model. This means that the effects of mass clumping is more
significant if the mass clumps occupy smaller fractions of space. In other words, the
less homogeneous our toy universe is, the less the Friedmannian model is in line with
our toy model. Even though we cannot explicitly show (using table [1)) that p = 0
again, in the limit that mass clumping does not contribute to p, we could at least
show that our model is heading towards that result when decreasing M or d.

As already mentioned, we would like to minimise the contribution of the rather
unphysical border region, such that we obtain a universe in which only the more
physical mass clumps determine the average density of the universe. In other words,
we should check if we can minimise |pp| with respect to |p;|, meaning that p; is non-
zero if |pp| is zero or small with respect to |p;|. Fortunately, we can find out that we
can indeed do so by investigating the dependencies on the different input parameters.

In table [T} it turns out that adjusting the width of the border region b barely
makes a difference in the resulting pj in the case that GM/c? =1/6 m & d = 4 m.
Yet there is a dependence on b. Namely, if b gets smaller, then the volume of the
cube becomes smaller as well. Of course, M is independent of b, hence if b becomes
smaller, then p; becomes bigger. Moreover, we see that shrinking the border region
causes M p to be bigger, i.e. its absolute value gets smaller, as is thus the case for
pp- However, again it does not change very much. So we could decrease b many
orders, such that perhaps the unphysical [p5| can be minimised with respect to the
more physical |p;|. However, the dependence on b at such low values of b is unknown.
Hence we do not know for sure if we can remove this unphysical mass density con-
tribution in our model for A = 0 by altering b.

Fortunately, we may be able to do so by altering d, after which our model is still

not in line with the Friedmannian model. It appears that for bigger d, Mg gets
closer to zero from below, even though the volume of the border region gets bigger,
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causing pp to approach zero from below as well. Meanwhile, M of course remains
constant for bigger d, causing p to remain non-zero. This would indicate that for
A = 0 one would have to increase d drastically to be able to minimise |[pgz| with re-
spect to [p;|. One can also simply compute the ratio —p;/pg, which becomes bigger
when increasing d from 4 m to 8 m. From this we can conclude again that one can
minimise [pg| w.r.t. ;| by increasing d.

This makes sense as for large distances from the sphere, the Schwarzschild metric
for A = 0 approaches the flat Minkowski metric. Hence, if the border region is
located far from the spheres, the transition function will have barely any effect on
the total metric, as the individual metrics are already nearly flat. This causes Mg
to approach zero, whereas M remains constant. However, this is not necessarily the
case for A # 0 as then the Schwarzschild metric approaches the De Sitter metric,
which is certainly not flat for large distances from the sphere.

Results in the case of A =1/18 m™2

To test if p = —pyqe holds, we would now like to know what the value of p,.. is
for the only used value of A in the computations, which is A = 1/18 m™2. Using
A = 87pyacG, we find that p,q. should have a value of 2.977 - 10?* kg m=3. Hence we
would like to see if p = —2.977 - 10?* kg m~3, which is the case if the Friedmannian

model holds for A = 1/18 m™2.

As one can see in table 2] 7 is not equal to —2.977 - 10> kg m~2 in any of the
three cases. The value for p in the case of GM/c* = 1/108 m & d = 4 m lies
surprisingly close to that number, however, it is certainly not the same taking into
account the error margins. Moreover, the cases for GM/c* = 1/108 m & d = 8 m
and GM/c* =1/6 m & d = 4 m give significant deviations. Hence we can conclude
that our model for A # 0 is not (always) in line with the Friedmannian model.

Now we would like to investigate the possibility to minimise of pg for A # 0
as well. In that case, the resulting p seem to be very sensitive to A as it is not
naturally true anymore that pgz ~ —p;. Moreover, a very peculiar result is that for
GM/c* = 1/108 m & d = 8 m the mass density resulting from the border region
pp is positive, whereas all the other computed p; are negative. Changing d from
8 to 4 m, or changing A from 1/18 to 0 m~2 causes M p to become negative. So,
when choosing an intermediate value for d or A, one can even make sure that Mg
completely vanishes.
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Table 2: In this table the input values R =1 m, b=1/32 m and A = 1/18 m™? have
been used. Again M; and Mp are the integrated masses inside the sphere and the
border region of one cube, respectively. V¢ is the volume of the cube. The average
mass density in the universe resulting from the mass clumps is p; = M;/Ve and that
resulting from the border region is pyp = M p/Ve. Then the sum of p; and pg gives
the average mass density of our toy universe p.

| GM/c* (m) 1/6 1/108

2| M (10 kg) 2244 124.7

~ | d (m) 4 4 8
M; (10% kg) 2883 | 127.5 | 127.5
Mp (10% kg) 5164 | -2216 | 44.87

2| Ve (m?) 85.83 | 69.98 | 779.5

g 7, (103 kg m=3) | 3359 | 1.822 | 0.1636
pp (102 kg m™3) | -60.16 | -31.67 | 0.05756
7 (108 kg m=3) | -26.57 | -29.85 | 0.2212

Let us now check that even when M g vanishes, M does not vanish. When look-
ing at for instance the case that GM/c? = 1/108 m & d = 8 m in both tables [1| and
, we see that increasing A, such that M g vanishes, causes M to increase as well.
Of course, adjusting d such that M p vanishes, does not affect M;. Hence for a finite
M and R, M; does not necessarily become zero when M g does, causing ]MB| to be
minimizable with respect to |[M;|. Consequently, [z really is minimizable w.r.t |5;|
in the case that A = 1/18 m~2, as desired.

Now we would only like to check if in the case that py vanishes, the Friedman-
nian model still does not hold. We can do so by again looking at the cases in which
GM/c* = 1/108 m & d = 8 m. In both the A = 0 m™? and the A = 1/18 m™?
case, p is positive. For the intermediate value of A, such that Mp becomes zero,
M remains positive and hence we do not expect 7 to suddenly become negative.
When having found this positive A and thus a positive p,.., we do not expect the
equation p = —pyqee to hold. Consequently, it is possible to create a universe (using
this model) in which |pg| is minimised, while this universe is still not in line with
the Friedmannian model.
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In other words, for A # 0, we are able to create a universe, in which not the
unphysical border region, but only the mass clumps in combination with the dark
energy, contribute to the average mass density of the universe. And such a universe
does not need to be in line with the Friedmannian model. Since we were not able
to predict beforehand for what input values we could minimise pg, it is good to see
that there is at least a possibility to do so.

In short: our model is not in line with the Friedmannian model for any of our cho-
sen set of input values. However, our model does seem to approach the Friedmannian
model if M or d is decreased, causing our toy universe to become more homogeneous.
Moreover, for at least some sets of input values we can create a universe in which the
unphysical energy density resulting from the border region is minimizable. Even in
that case our model does not have to be in line with the Friedmannian model, due
to the additional effects of mass clumping.

5.3 Extreme input values

Now that we have come to some pretty interesting results, let us now discuss a
potential flaw of our model and then try to derive how much sense the results would
still make as a consequence. As already mentioned, the choice of the sets of input
values is somewhat unrealistic. For instance our chosen cosmological constant is
about 50 orders of magnitude larger than its measured value. Moreover, we obtained
mass densities inside the sphere in the order of 10?4 kg m~3, which is about six orders
of magnitude denser than a neutron star. Consequently, our toy universe is far from
uniformly distributed. This is of course exactly what we are testing, however, this
test would be particularly interesting in a more realistic case. Hence we would like
to determine whether our conclusion of the previous section still holds, if we would
have chosen somewhat more natural values for M, R and A.

First, we will argue that the values we have obtained so far are still useful, de-
spite them being unrealistic. As already mentioned, we choose these large numbers,
because otherwise the numerical errors would be too large. But on top of that, the
number of digits of a float is limited. Consequently, when using more realistic num-
bers, certain dependencies may not have been noticeable, or perhaps the resulting p
could have seemed to be zero after all. Hence, it may have been a blessing that we
have used such extreme values.
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Yet we have to take into account that when not using these extreme cases, special
situations may not occur anymore after all, causing us to be not allowed to draw
certain conclusions from the previous section. For instance, the positive value of pg
may not be present anymore, causing us to to be unable to conclude that the mass
density resulting from the border region can vanish. So, let us now show that we
can still create a toy universe using more realistic values, that is not in line with the
Friedmannian model and in which the unphysical |pp| is minimizable.

The dependence on certain input values in the less extreme regime may become
minimal, but it is certainly not nonexistent anymore. Hence for A = 0 the average
mass density will not always be exactly equal to zero all of a sudden. Similarly for
A =1/18 m~2, p will not be exactly equal to —2.977-10%* kg m~2 and hence the same
can be said for (almost) any A. Consequently, we can still conclude that our model
is not (always) in line with the Friedmannian model in the more realistic regime of
input values.

Again, we would like to see if [p| remains minimizable. The dependence of M p
on d will logically still exist in the natural regime. Le. for A = 0, M g approaches
zero from below for increasing d, whereas M remains constant. Hence we can still
say that |[pg| is minimizable for A = 0. Meanwhile 5 remains positive, contradicting
the first Friedmann equation.

Having chosen a specific M for A # 0, let us show that we can still make sure that
M p completely vanishes. By looking at tables (1] and [2| in the case GM/c? = 1/108
m, one can see that increasing A either causes M g to increase or decrease, depending
on the value of d. If it would cause M 5 to decrease below zero, then we can simply
increase d again to satisfy Mp = 0. If it would cause M g to increase to above zero,
we have to decrease d again. But mind that we cannot decrease d to values smaller
than 2R + b of course. So in that case we should actually lower A instead to obtain
Mp = 0 again.

Still for A # 0 there is no reason why M will suddenly become zero in the mean
time, causing pgz to minimizable w.r.t p;. That is because a positive A only causes
M to be bigger than the value of M; for A = 0. For negative values of A, M;
would be smaller, however, we observed that our universe is accelerating and hence
A must be positive. Hence we expect M to neither become zero, nor negative. Con-
sequently, do not expect 5 = —pyq. to hold in the case that M 5 completely vanishes.
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In conclusion, it is still possible to minimise the average mass density resulting
from the border region in the natural regime of input values, however, since we re-
quired d > 2R + b, it is not possible for all sets of input values. Also p will not
suddenly become —p,4.. So now we can conclude that even in the natural regime,
we will be able to create a universe (using this model) in which the border region
does not contribute to the average mass density of the universe, while still not obey-
ing the Friedmannian model. This is interesting since our modelled universe is still
homogeneous at large, but apparently the mass clumps, that cause inhomogeneity
at small scales introduce extra energy contributions, which was not expected by the
first Friedman equation.

However, one has to keep in mind that in this model many assumptions have been
made in an attempt to create a physical model, but yet unphysical negative mass
densities existed in our toy universe. So we cannot conclude that the real universe is
indeed not in line with the Friedmannian model due to mass clumping. Those extra
mass densities may simply be an artefact of our toy model. But at least it indicates
that the solution of the discrepancy between the two values of the Hubble parameter
may very well be due to a lack of mass clumps in the Friedmannian model.
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6 Outlook

For future research, it would at first be interesting to see whether the conclusions
that have been drawn are indeed true, in the case that less extreme input values are
used. In this research we have reached those conclusions using only a few sets of in-
put values. However, we have not been able to actually see that they are indeed true.
In order to obtain these numerical confirmations, one would need to adjust the com-
puter program, such that it allows small values in the total metric without causing
the resulting energy densities to be inaccurate, due to numerical precision limitations.

In future research, one could also make an adjustment to the definition of S(z). In
that case, other results could arise, which could result in different interesting conclu-
sions. Yet there is no physical reason why one would have to prefer another definition
of S(z) satistying the same requirements. It should simply cause the universe to be
homogeneous on large scales and hence all cubes should look exactly the same. Apart
from smooth step functions, which are similar to the one we used so far, one could
also choose another sigmoid function, from which the smooth step functions are a
family member. However, many sigmoid functions will ask more computation time
than the one used in this thesis.

More importantly, it would be interesting to investigate what the effects of mass
clumping is on the Hubble parameter directly. However, our model would not be very
suitable for such research, because we demanded our universe to be static. Hence
there was no possibility to see whether and how the masses could influence the evo-
lution of our modelled universe. Consequently, we were unable to try to comprehend
the discrepancy between the two different Hubble parameters. Hopefully, such a time
dependent model, in which inhomogeneity on small scales due to mass clumping is
taken into account, will cause the discrepancy between the two Hubble parameters
to disappear.

All in all, we have been able to model a universe that does not obey the Fried-
mannian model due to the mass clumps causing inhomogeneity on small scales, even
though homogeneity on large scales is still satisfied. Furthermore, in such a universe
the effect of mass clumping is more significant if the modelled universe is less homo-
geneous at small scales. Fortunately, the unphysical negative mass densities turned
out to be minimizable, though only artificially, even when using more natural sets of
input values. The latter two statements make our model more consistent and phys-
ical and hence more reliable. Nonetheless, this model is in its current form unable
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to compensate for the discrepancy between the two values of the Hubble parame-
ter. Hence further research is needed, for instance to investigate how mass clumping
can create extra compensating terms in the EFE, just like the terms introduced by
Heinesen and Buchert [4]. In conclusion, this model hints that this discrepancy may
very well be due to a lack of mass clumps in the Friedmannian model.
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Appendices

A The real meaning of our quantities

Just for clarity, this section will elaborate on the real meaning of the quantities
in our system. At the very start, we chose a coordinate transformation to simplify
the general spherically symmetric metric from equation [3| making us able to derive
the metric inside the sphere. The same trick has been applied in the derivation of
the Schwarzschild metric. Hence from then on, all coordinates in this thesis are not
the coordinates as one would expect them to be from our physical world.

In the derivation of the metric of a uniform sphere, we have defined a certain
total mass M. But in these new coordinates this quantity does not really have a
meaning other than that it can be called mass-like. The same holds for the density,
which is constant in the new coordinate system, but not necessarily in the old one.
When trying to derive the real mass, one would have to integrate using the deter-
minant of the spatial components of the metric, as has been done for the density.
This integration accounts for the curvature, which causes volumes to appear bigger
as compared to flat spaces. After this integration the obtained values for the mass
and densities are the correct ones and hence we do not anymore have to worry about
the strange coordinates.

Even when we would have used the original coordinates, we would have to per-
form the integration, such that curvature is taken into account. In the end, it does
not matter which coordinate system you use for this integration as for instance the
resulting mass is independent of the chosen coordinate system. It is a property of
the theory of General Relativity that any property is independent of the chosen co-
ordinate system. If it would be dependent, the theory would fail, and up to now, the
theory has been shown to be very consistent with observations. Hence, even though
reality may be strange and hard to grasp in this strange new coordinate system, one
is allowed to use it to simplify expressions.

One thing should be noted however. We defined and stacked the cubes using the
special coordinates. But when you would transform back to real coordinates, you
would find out that the surfaces of the border regions do not appear flat anymore,
even when you would observe them in a flat Minkowski space. But we could as well
have defined those cubes in the original coordinates, causing the integration bounds
in each region to be different. Hence in the end, it does make a difference in which
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coordinate system you define the cubes. However, again we are not modelling the
real universe. We can in fact create any arbitrary model, satisfying some coordinate
independent restrictions, and test what its properties are.

B Computer program notes

In this section a few additional remarks will be mentioned that may be needed
to clarify the code, which we were unable to do in the text and the code.

Eventually in the computer program, the smooth step function is defined slightly
differently, such that it takes a simpler form in the first octant, in order to save
computation time. The function was defined such that it decreases from 1 to 0 on
the positive side of the chosen axis. That means that the new smooth step function
S'(x) is defined as S'(x) = 1 — S(xz — d), such that:

1 if © < 3(d—0) . .
S'(x) = —2X3+3X? if 3(d—b) <z < 3(d+b), where X = —Elx—é(b—i-d)}
0 if 2 > L(d+0)

(53)
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