
C  

G  B

B T

J , 

FNWI
R U N

Contents
1 Introduction 2

2 Feynman Diagrams 2

3 Counting Tensor Structures 4
3.1 A Two Loop Example . 4
3.2 Two Dimensions . 6
3.3 In General . 6

4 Results 7

A Notation 7

B Number Of Elements In A Symmetric Tensor 8

References 9

1

1 Introduction
Particle accelerators become more powerful and accurate, and to test the
outcomes from the experiments to the predictions of theories, higher order
loop corrections have to be calculated. The bottleneck there is the calculation
of loop integrals. A method is described to simplify these integrals and new
results are derived.

About notation, there is a reference in the appendix for the notation used.
The appendix also contains a mathematical derivation that would be too much
of a digression from the flow of the text.

2 Feynman Diagrams
Feynman diagrams are the prime method for calculating all kinds of things in
high energy physics. They are diagrams consisting of lines (propagators) and
parts where two lines join or branch (vertices). Two examples are shown in
Figure 1. Every possible diagram describes a process that can occur between

(a) A single loop (b) A double loop

Figure 1: Two Feynman diagrams, a particle and an anti-particle scatter off
each other, with two different processes in between.

particles. They work like a perturbation series and the larger1 the diagram,
the smaller it’s contribution. All vertices and propagators contribute to the
diagram, but I will be concerned with loops like the ones in the diagrams.
Diagram (a) has one loop and diagram (b) has two loops. Of course one can
imagine more loops.

To get more accurate values, higher order terms have to be considered. I
will discuss arbitrary numbers of loops. One loop represents an integral of
the form ∫

dq
D(q+ p1)D(q+ p2) · · ·D(q+ pn)

(1)

with the denominators – also called the inverse propagators – D(q + pj) =
(q+ pj)

2 −m2
j = q

2 + 2pj · q+ σj. The integrand has one Dj for each particle
in the loop, with pj

The more propagators, the harder it is to evaluate the integral, so methods
have been devised to reduce the hard integrals to easier ones. One way this
can be done is similar to partial fractions decomposition [1]. One writes the 1

1Larger in the sense of more propagators and vertices, not actual extent of the diagram.

2

in the numerator as 1 =
∑
j FjD(q + pj)∀q (the 1 = 1 problem), then one can

write the integral as sum of integrals with less denominators

1
D1 · · ·Dn

=

∑n
j=1 FjDj

D1 . . . Dn

=
F1

D2 . . . Dn
+

F2

D1D3 · · ·Dn
+

Fn

D1 · · ·Dn−1
. (2)

The major issue at this moment is determining when the resulting equations
have a solution. The Fj can be more than just scalars; also combinations of
powers of q, that is

Fj = aj +

4∑
k=1

tj,k ·q+

4∑
k,l=1

(sjk ·q)(s ′jl ·q) + · · ·

Of course, the sum is finite. Higher powers of q give a bigger chance of
obtaining enough equations solve the 1 = 1 problem. The 1 = 1 problem then
finally looks like

1 = A+ Bµq
µ + Cµνq

νqµ +Dq2 + Eµq
2qµ + · · · (3)

The reduction technique discussed here is already solved for the one loop
case [1], this discussion will be for arbitrary number of loops, with emphasis
on two loops.

In the case of two loops, the Feynman integral becomes∫
dl1 dl2
D1 · · ·Dn

,

where the Dj are of the form D(l1+pj), D(l2+pj) or D(l1+ l2+pj). Similarly
with L loops, the integral has the form∫

dl 1 · · · dlL
D1 · · ·Dn

with Dj of the form D((l1) + (l2) + · · · (lL) + pj), where the loop momenta
between parentheses can be either present or not. Some integrals are trivially
decomposable, for example∫

dl 1dl 2

D(l1 + p1)D(l2 + p2)
=

∫
dl 1

D(l1 + p1)

∫
dl 2

D(l2 + p2)
.

This happens when the diagram consists of two concatenated single loops
rather than a real double loop. I will therefore only discuss true loops. This
means that every possible inner product appears in some Dj. On tensor
notation: The subject of this discussion will be tensors like

l2a1 (l1 ·l2)bl2b2 l
µ1
1 · · · l

µα
1 lν1

2 · · · l
νβ
2 .

Because this is a very cluttered and therefore non-transparent notation so, if
it is advantageous, I will write such tensors in shorthand as

l2a1 (l1 ·l2)bl2b2 l
µ1
1 · · · l

µα
1 lν1

2 · · · l
νβ
2 ↔ (a, b, c)(α,β)

3

which contains the same information, but is much tidier. I will write a =
(a, b, c) and α = (α,β), such that l = aα = (a, b, c)(α,β). It turns out to
be useful to introduce two norms on the tuples: the L1-norm2: |a| =

∑
j aj

and the Hamming length: H(a) = #{k ∈ a|k 6= 0}, which counts the number
of non-zero elements of a.

For describing a general tensor created from 3 or more tensors the nota-
tion and norms are easily generalised.

3 Counting Tensor Structures

3.1 A Two Loop Example
What makes the problem of finding the number of tensor structures inter-
esting and non-trivial? An elaborate example (in two loops) to illustrate the
ideas: say the degrees of the Fj’s are ϕ = 2, so they are a linear combination
of

1, lµ1 , l
µ
2 , l

µ
1 l
ν
1 , l

µ
1 l
ν
2 , l

µ
2 l
ν
2 .

The Dj’s contain terms proportional to3

1, lµ1 , l
µ
2 , l

2
1 , l

2
2, l1 ·l2

then
∑
jDjFj is a linear combination of

1, lµi , l
µ
i l
µ
j , li ·lj, l

µ
i l
ν
j l
ρ
k, li ·ljl

µ
k and li ·ljlµkl

ν
m (4)

with i, j, k,m ranging over 1, 2. Basic linear algebra says that the coefficients
of the non-constant terms have to be zero, giving a linear system of equations
relating the coefficients Fj with the coefficients of the tensor structures. How-
ever not all the coefficients have to be zero. Take for example the subproblem
Aµνl

µ
1 l
ν
1 + Bl1 ·l1 = 0 ∀l1. This does not imply that Aµν = B = 0. In fact we

can forget about B = 0 by recognising that

Aµνl
µ
1 l
ν
1 + Bl1 ·l1 = Aµνlµ1 l

ν
1 + Bgµνl

µ
1 l
ν
1 = (Aµν + Bgµν) l

µ
1 l
ν
1 = A ′µνl

µ
1 l
ν
1 .

This freedom shows that not every tensor appearing contributes to total num-
ber of tensor structures. Only the number of independent tensor structures
matters. Still Aµνlµlν = 0 does not imply that Aµν = 0. For example in
Euclidean space and d = 2, if we take

Aµν =

(
0 −1
1 0

)
then

Aµνxµx
ν =

(
x y

)(0 −1
1 0

)(
x
y

)
=
(
x y

)(−y
x

)
= 0.

However, there is a one-to-one correspondence between d × d symmetric
matrices and quadratic forms, so we can add the requirement of symmetry

2Usually in the L1-norm there is an absolute value sign, but the entries of the vectors here
are always non-negative (and integers).

3As previously indicated, I will not discuss the case when there are no denominators with
overlap (no l1 · l2), since in that case the integral already factors.

4

(1, 1, 1)(0,0)

(0, 1, 1)(2,0)

(1,0, 1)(1, 1)

(1, 1,0)(0, 2)

(0,0, 1)(3, 1)

(0, 1,0)(2, 2)

(0,0, 1)(3, 1)

(1,0,0)(1, 3)

(0, 1,0)(2, 2)

(1,0,0)(1, 3)

0th order 1st order 2nd order

Figure 2: The tensor (1, 1, 1)(0,0) can be obtained after two contractions from
three different tensors.

to Aµν. Then the number of independent equations is not d2 but d(d+ 1)/2,
which is the number of different elements in a 2-rank symmetric tensor as
proven in the appendix. This is the same as the number independent tensor
structures in lµ1 l

ν
1 . That makes counting the tensor structures a valuable

activity.
Note that that the reason that the terms with li ·lj and li ·ljlµk don’t give

independent equations is that they are contractions of lµi lνj and lµi lνj l
ρ
k, which

appear also by themselves. Also notice that li ·ljlµklνm cannot be forgotten in
favor of lµi lνj l

ρ
kl
σ
m, since the only quadratic terms in Dj are already contracted,

so lµi lνj l
ρ
kl
σ
m does not appear in the 1 = 1 problem.

As proven in the appendix, if we write [ξ]j = ξ(ξ + 1) . . . (ξ + j − 1) =
Γ(ξ + j)/Γ(ξ), the total number of tensor structures of rank j is [2d]j/j! so∑3
j=0[2d]j/j! = [2d+ 1]3/3! is the number of tensor structures combined. We

have to add to that number the tensor structures coming from tensors of the
form li · ljlµklνm, which is 3 · [2d]2/2! where the three comes from the three
different inner products that can be in front of the lµklνm.

By the same reasoning that says that the tensor structures from tensors
like l21 should not be counted, it also follows that the equality gµνl21 l

µ
2 l
ν
2 =

gµνl
2
2l
µ
1 l
ν
1 shows that I have counted 1 tensor structure too many. Therefore

for each li·ljlk·lm with i, j 6= k,m one has to subtract 1 from the total, giving
a total of [2d+ 1]3/3! + 3[2d]2/2! − 3 tensor structures.

Although this example only has ϕ = 2, if ϕ ≥ 4 there are tensors with
more than this sort of dependencies. For example in ϕ = 4, we have the
scheme of Figure 2. There are dependencies between the dependencies, low-
ering the actual number of dependencies, and therefore increasing the number
of independent tensor structures. This dependency would count as two since
there are two equalities: one between (0, 1, 1)(2,0) and (1,0, 1)(1, 1) and the
other one between (1,0, 1)(1, 1) and (1, 1,0)(0, 2). However since for each first
order tensor one dependency has been thrown away, only one extra depen-

5

dency remains that has to be added to the total number of tensor structures.

3.2 Two Dimensions
In [2] a program is described that can calculate the number of tensor struc-
tures for ϕ up to 4 and arbitrary d. Briefly stated it generates many random
values for lµ1 and lµ2 and substitutes them in

∑
j FjDj = 1. This gives a big

linear system which it solves. The number of tensor structures then is the
rank of that matrix. This gives a method for testing these results. Sadly the
result from the previous section does not hold in d = 2. Where the formula
predicts 62, numeric calculations give 60. The reason lies in an implicit as-
sumption which is false. It is the assumption that contractions are the only
dependencies between tensors. In 2 dimensions strange things happen, take
the case ϕ = 2:4

If l1 = (a, b) and l2 = (c, d) and Aµν = l21 l
µ
2 l
ν
2 , Bµν = l22l

µ
1 l
ν
1 and Cµν =

l1 · l2lµ1 lν2 , then (in this case the superscripts áre Lorentz indices)

C12 + C21 = (ac− bd)(bc+ ad) = (a2 − b2)cd+ (c2 − d2)ab = A12 + B12 (5)

and

2(C11 + C22) = 2 [(ac− bd)(ac+ bd)]
= (a2 − b2)(c2 + d2) + (c2 − d2)(a2 + b2) = A11 +A22 + B11 + B22. (6)

These two equalities reduce the number of independent tensorstructures by 2
giving the 60 that was determined. Because the interest of course goes out
to the 4 dimensions, I have avoided the 2D case and restricted the analysis
to d ≥ 3.

3.3 In General
The construction in general goes along the same lines. Take the trivial tensors

l = aα = (a1, . . . , aL)(α1, . . . , αL)

with a = 0 and L ≡ L(L + 1)/2 the number of different inner products
that can be formed with L tensors.5 Those ive just a term

∑ϕ+1
j=0 [Ld]

j/j! =

[Ld + 1]ϕ+1/(ϕ + 1)! since [Ld]j/j! is the number of tensorstructures in a
tensor with |α| = j. Without counting the overlap, one gets L[Ld]ϕ/ϕ! from
the li·lj(α,β). The k-th order overlaps Qk come from tensors with |a| = k+ 1
and |α| = ϕ− 2k. The number of distinct loop momenta that can contract to
n is only dependent on a, indeed it is H(a), and the amount of overlap is
only dependent on α, call it P(α). Such that

Qk =
∑

|a|=k+1
|α|=ϕ−2k

max (H(a) − k,0)P(α)

=
∑

|a|=k+1

max (H(a) − k,0)
∑

|α|=ϕ−2k

P(α)

4The metric is +−.
5Every li has L − 1 lj ’s, j 6= i to contract with. That gives L(L − 1) double counted pairs, so

L(L − 1)/2 pairs. The squares l2i add L more inner products, giving a total of L(L + 1)/2 pairs.

6

The −k in max(H(a) − k,0) comes from the fact that if k = 1 if there are
two tensors that contract to aα then there is only 1 extra dependency and if
there is only one tensor that contracts to aα then there are no dependencies.
For higher values of k one should count every joint dependency between T
tensors with weight max(T − k,0) because at every previous order one tensor
was already eliminated. The max ensures that dependencies won’t get counted
negatively. The sum over α is easy to calculate:

∑
|α|=T

P(α) =
∑

α1+···+αL=T

[d]

α1!

α1

· · · [d]
αL!

αL

=
[d]

T !

T

∗ · · · ∗ [d]
T !

T

=
[Ld]

T !

T

.

The end result for the number of tensor structures in d dimensions with
L loops and the powers of the terms in the Fj up to ϕ is

[2d+ 1]
(ϕ+ 1)!

ϕ+1
+

∞∑
k=0

(−1)kQk

=
[2d+ 1]
(ϕ+ 1)!

ϕ+1
+

∞∑
k=0

(−1)k [Ld]
ϕ−2k

(ϕ− 2k)!
∑

|a|=k+1

max (H(a) − k,0) . (7)

4 Results
In the range L = 2, 1 ≤ ϕ ≤ 4, 3 ≤ d ≤ 6 the formula agrees with numerical
results. Since the computation time and memory requirements grow fast with
ϕ, higher values have not been checked. On the available hardware solving
for ϕ = 4, d = 6 took 200 minutes and had to be fine tuned such that it
was accurate enough, but would not require more memory than available.

Higher values of ϕ or d were therefore impossible to check. For d = 2
none of the numerical values agree with the formula, which is to be expected
since it is easy to imagine that more dependencies of the strange type will
appear.

That the type of dependencies that appear in the case of d = 2 may appear
for higher ϕ and/or d is very much possible, although the numerical evidence
does not show it. In that case the given expression will give a too high number
of tensor structures than in reality. Since the calculations take a long time
it is improbable that this technique will be feasible in short term. On the
long term when it will become possible to efficiently do these decompositions
it will also be feasible to calculate the number of tensorstructures in more
extreme cases.

Appendix

A Notation
There is no universal notation, therefore I place a reference for convenience.

7

notation/term meaning
d Number of physical dimensions considered.

‘‘1 = 1’’ 1 =
∑
j FjDj

qµ, lµj loopmomenta; integration variables.
Dj (q+ pj)

2 −m2
j , where q could also be a sum of loop momenta.

ϕ maxj(∂Fj) = maximum degree of the li’s in the Fj’s.
L Number of different loop momenta
L L(L+ 1)/2, the number of different inner products with L li

(a, b, c)(α,β) Shorthand for l2a1 (l1 ·l2)bl2b2 l
µ1
1 · · · l

µα
1 lν1

2 · · · l
νβ
2 .

a The (a, b, c) above, but for general L ≥ 2.
α The (α,β) above, but for general L ≥ 2

H(v) Number of non-zero elements of v
|v| =

∑
j vj

[d]ϕ = d(d+ 1) · · · (d+ϕ− 1) = Γ(d+ϕ)/Γ(d)

B Number Of Elements In A Symmetric Tensor
Here I discuss finding the number of independent elements of a tensor of
the form lµ1lµ2 · · · lµk , where l is a d-dimensional tensor. Recognise that
this problem is the same as determining how many possibilities there are
to put n indistinguishable dots in d containers: The containers correspond
to the values the µj can have and the amount of dots in container k is
how many µj have the value k. Because the tensor is symmetric the dots
are indistinguishable, so only the number of µ’s that are 1 or 2, etc. are
important. So for example

1 2 3 · · · d

· ∴ · · · ·

By only looking at the bottom row, we see that this problem is equivalent to
taking n+d− 1 objects (dots ánd vertical lines) and then choosing n of those
elements to be vertical lines which can be done in

(
n+d−1
n

)
ways. �

Note that
(
n+d−1
n

)
= d(d + 1) · · · (d + n − 1)/n! so if I define [d]k ≡ Γ(d +

k)/Γ(d) = d(d+ 1) · · · (d+ k− 1) then this type of binomial coefficient can be
written as [d]k/k!, a much cleaner notation.

Given two tensors lµ1 , l
µ
2 , the number of independent tensor structures

in the expression lµ1
1 · · · l

µm
1 lν1

2 · · · l
νn
2 in d dimensions is ([d]m/m!) ([d]n/n!).

Therefore the number of tensors of a given rank k is this product, summed
over all integers n,m ≥ 0 such that their sum is k

Cdk ≡
∑

n+m=k

[d]

n!

n
[d]

m!

m

=

(
[d]

n!

n)
∗
(
[d]

n!

n)
(k),

8

with ∗ denoting convolution. Taking the generating function6 of the sequence
Cdk for fixed d gives

∞∑
k=0

Cdkz
k =

(∞∑
k=0

[d]

k!

k

zk

)2

= (fd(z))
2. (8)

The function fd(z) can be seen to equal (1 − z)−d, the easiest by using the
identity

[d]

k!

k

=

(
d+ k− 1

k

)
= (−1)k

(
−d

k

)
such that by the binomial theorem

∞∑
k=0

[d]

k!

k

zk =

∞∑
k=0

(
−d

k

)
(−z)k = (1 − z)−d

∞∑
k=0

Cdkz
k = (1 − z)−2d = f2d(z) =

∞∑
k=0

[2d]
k!

k

zk

so [d]

m!

m

∗ [d]
m!

m

=
[2d]
m!

m

. (9)

Multiple convolutions give powers of f, therefore with L convolutions with
itself

[d]

n!

n

∗ [d]
n!

n

∗ · · · ∗ [d]
n!

n

︸ ︷︷ ︸
L

=
[Ld]n

n!
.

There is also a closed form expression for the sum sequence Sdk =
∑k
j=0 C

d
j ,

by again using generating functions. If ak =
∑k
j=0 bj = bk∗1, where 1 denotes

the (one-sided) sequence of ones then
∞∑
k=0

akz
k =

∞∑
k=0

(bk ∗ 1) zk =

(∞∑
k=0

bkz
k

)(∞∑
k=0

zk

)
=

1
1 − z

∞∑
k=0

bkz
k

So with ak = Sdk and bk = Cdk , it follows that
∞∑
k=0

Sdkz
k = (1 − z)−1fd(z) = (1 − z)−(d+1) =

∞∑
k=0

[d+ 1]
k!

k

zk.

References
[1] Ioannis Malamos: Reduction of one and two loop Amplitudes at the

Integrand level

[2] Ronald H. P. Kleiss, Ioannis Malamos, Costas G. Papadopoulos, Rob
Verheyen: Counting to one: reducibility of one- and two-loop amplitudes
at the integrand level

6By the nature of generating functions one does not care about convergence, but all identities
here hold for |z| < 1.

9

