7. Green SE - Research

Sustainable Software Engineering
CS4575

s | Luis Cruz [m Y Carolin Brandt twa Enrique Barba Roque
= L.Cruz@tudelft.nl & § C.E.Brandt@tudelft.nl 4 E.BarbaRoque@tudelft.nl

SustainableSE 2025

mailto:l.cruz@tudelft.nl
mailto:C.E.Brandt@tudelft.nl
mailto:E.BarbaRoque@tudelft.nl

1. Energy patterns for mobile apps

2. Carbon-aware datacenters

3. Energy Regression Testing

4. Debugging Energy with Docker images
5. Energy Efficiency vs Code Quality

 While learning about these works, try to be critical about them and find their
pitfalls.

* \We have seen that measuring energy consumption is not trivial

* |t is not practical considering that developers have other priorities above
energy efficiency

* At the same time, every now and then there are some efforts to improve
energy efficiency in some cases. This is time consuming and requires

expertise.

 How can we reuse these efforts?

Energy Patterns for Mobile
Apps

https://tgrg.qithub.io/energy-patterns/

Empirical Software Engineering (2019) 24:2209-2235
https://doi.org/10.1007/510664-019-09682-0

Catalog of energy patterns for mobile applications Check for
updates

Luis Cruz' ¥ . Rui Abreu?

Published online: 5 March 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract

Software engineers make use of design patterns for reasons that range from performance
to code comprehensibility. Several design patterns capturing the body of knowledge of best
practices have been proposed in the past, namely creational, structural and behavioral pat-
terns. However, with the advent of mobile devices, it becomes a necessity a catalog of design
patterns for energy efficiency. In this work, we inspect commits, issues and pull requests of
1027 Android and 756 10S apps to identify common practices when improving energy effi-
ciency. This analysis yielded a catalog, available online, with 22 design patterns related to
improving the energy efficiency of mobile apps. We argue that this catalog might be of rel-
evance to other domains such as Cyber-Physical Systems and Internet of Things. As a side
contribution, an analysis of the differences between Android and iOS devices shows that
the Android community is more energy-aware.

Keywords Mobile applications - Energy efficiency - Energy patterns - Catalog -
Open source software

1 Introduction

The importance of providing developers with more knowledge on how they can modify
mobile apps to improve energy efficiency has been reported in previous works (Li and Hal-
fond 2014; Robillard and Medvidovic 2016). In particular, mobile apps often have energy
requirements but developers are unaware that energy-specific design patterns do exist (Man-
otas et al. 2016). Moreover, developers have to support multiple platforms while providing
a similar user experience (An et al. 2018).

Communicated by: David Lo, Meiyappan Nagappan, Sebastiano Panichella, and Fabio Palomba

P4 Luis Cruz
luiscruz@fe.up.pt

Methodology

1. App Collection 17813
. . .
© F-droid é’)’S Curated Lists apps
2. Collect Changes With Potential Interest 0028
/ . * (energy | power |battery) . */ changes
3. Manual Refinement of Subjects of 1503
Interest changes
5 431
J"Eﬂ\ 4. Thematic Analysis reysable
— changes
27

g 5. Catalog of Energy Patterns

patterns

Thematic Analysis

1. Familiarization with data

2. Generating initial labels

3. Reviewing themes

4. Defining and naming themes

 Energy Pattern: design pattern to improve energy efficiency..
e 22 energy patterns.

 Each pattern is described by Context, Solution, Example, References from
literature, and Occurences (links to code changes from git repositories).

Display a menu

— tgrg.github.io

© Energy Patterns for Mobile Apps

A visualization with prevalence and co-occurence of patterns can be found here.
[T This catalog has been accepted to the Journal of Empirical Software Engineering. Check
out the preprint.

< show all patterns

Dark Ul Colors

Provide a dark Ul color theme to save battery
on devices with AMOLED screens.

Context

Screen is one of the major source of power nCAD\G NCADVG
consumption on mobile devices. Apps that require LOP\EM LOREM

heavy usage of screen (e.g., reading apps) can have a (PSUM {PSUM
big impact on battery life. L\ A1 nR

Solution

Provide a Ul with dark background colors. This is particularly beneficial for mobile devices with
AMOLED screens, which are more energy efficient when displaying dark colors. In some cases,
it might be reasonable to allow users to choose between a light and a dark theme. The dark
theme can also be activated using a special trigger (e.g., when battery is running low).

https://tgrg.github.io/energy-patterns

https://tqrg.github.io/energy-patterns

Dark Ul Colors

Provide a dark Ul color theme to

save Dbattery on devices with
AMOLED screens.

 Context: [...] Apps that require heavy usage of screen can
have a substantial negative impact on battery life.

e Solution: Provide a Ul theme with dark background colors. [...]

« Example: In a reading app, provide a theme with a dark
background using light colors to display text. [...]

Dark Ul Colors

Provide a dark Ul color theme to

save Dbattery on devices with
AMOLED screens.

 Context: [...] Apps that require heavy usage of screen can

have a substantial negative impact on battery

ife.

e Solution: Provide a Ul theme with dark background colors. [...]

« Example: In a reading app, provide a tr

background using light colors to display text. |..

11

eme with a dark

|

Dynamic Retry Delay

Whenever an attempt to access a

resource fails, Increase the time ~
interval before retrying. % /\

Context: [...] In a mobile app, when a given resource Is
unavailable, the app will unnecessarily try to connect the resource
for a number of times, leading to unnecessary power consumption.

e Solution: Increase retry interval after each tailed connection. |...]

« Example: Consider a mobile app that provides a news feed and
the app is not able to reach the server to collect updates. [...] use
the Fibonacci series to increase the time between attempits.

12

Batch Operations

 Context: Executing operations separately leads to extraneous
tall energy consumptions

* Solution: Bundle multiple operations in a single one. |[...]

« Example: Use system provided APIs to schedule backgrounad
tasks. These APls, guarantee that device will exit sleep mode
only when there is a reasonable amount of work to do or when a
given task is urgent. [...]

13

Avoid Extraneous Graphics and
Animations

Despite being iImportant to iImprove user experience, graphics
and animations are battery intensive and should be used with
moderation.

 Context: Mobile apps that feature impressive graphics
and animations. |...]

 Solution: Study the importance of graphics and
animations to the user experience and reduce them when
applicable. [...]

 Example: Resort to low frame rates for animations when
possible.

14

QO
G o O
—
w S 2
c 0o
- 3 <
283
®© - O
. n L =
.m > Q dﬂu purwa(] U ‘OUAG [enuey
g0 2 O i wiuy N ydeio) "e1xyg pPloAy
nnv = c UOT}ORIDUI USSIOS ON
- - LLl SHSE], [eULIOU]Y [

uoIsn,J J0SU9S
uornjosal ybnouyg
SI9S() ULIOJU]

1S9g SMoUY J19SN
91y 9SROINI(]
ayoe)

suorjeiad() yoleg

SPboT ssaaddng

Ie[n[[a) I8A0 TJIM
9Z1g 90NPaY

Energy Pattern

SSouaIeMy JoMOJ

OPOJN 9ARS JoMOJ

[10d I2A0 Ysnd

AIeSS900N UBUM ATuQ uad(
o[PI-0]-90®€Y

MIOA SNOSURIIXH PIOAY
Ae19(1 A119Y OTWRUA(]

SI0TO0D 1IN JJIed

Example case: Nextcloud

GETITON

L’ Google Play

| GET IT ON] |
F-Droid

’ Available on the

' App Store

-~

Server address https://...

https://cloud.nextcloud.com

a Secure connection established
Username

john

Password

NEW TO NEXTCLOUD?

©

CONNECT

-~

0 3BE P 8 2 1l 241l 76% W 15:43

\

Nextcloud O}

Documents

2.5 MB, 51 minutes

Photos

3.0 MB, 51 minutes ago

hirschmilch_d...rog_hous.pls
128 B, 5 Mar

Nextcloud.mp4

452 KB, 51 minutes ago

Nextcloud.png

36 KB, 51 minutes ago

Nextcloud Manual.pdf

4.4 MB, 51 minutes

4 files, 2 folders

Example case: Nextcloud

* Users complain that sometimes they go on a trip and Nextcloud drains their
battery. Users consider uninstalling the app when battery life is essential.

* File sync can be energy-greedy. Send large files to the server, long 3G/4G data connections.
* |t is mostly used for backup. No real-time collaboration is needed.

* Energy requirements vary depending on context and user. Some days you really
need all the battery you can get.

o https://github.com/nextcloud/android/commit/
8bc43202/7e0d33e8043ct40192203203a40ca29c

Solutions?

17

https://github.com/nextcloud/android/commit/8bc432027e0d33e8043cf40192203203a40ca29c
https://github.com/nextcloud/android/commit/8bc432027e0d33e8043cf40192203203a40ca29c

xample case: K-9 mail

s Accounts
5

A Turing Award
* Syncing disabled

* Syncing disabled

Elements of Interaction 3/20/2013

Robin Milner | am greatly honored to receive this
4 3ward, bearing the name of Alan Turing. Perhaps

Unified Inbox

All messages in unified folders

The Paradigms of Programming 3/20/2013

Robert Floyd Today | want to talk about the
4 aradigms of programming, how they affect our

All messages
All messages in searchable folders

One Man's View of Computer Science 3/20/2013

Richard Hamming Let me begin with a few
4 ersonal words. When one is notified that he has

Personal * 1 @1

3.3MB

Computers Then and Now S20/2013

Maurice V. Wilkes | do not imagine that many of
the Turing lecturers who will follow me will be

Work o2 G

1.5MB

Notation as a Tool of Thought 3/20/2013

Kenneth E. Iverson The importance of
nomenclature, notation, and language as tools of

Club h

225.9KB

Can Programming Be Liberated from.. 3/20/2013

| }\ GETITON

Google Play John W. Backus Conventional programming
. languages are growing ever more enormous, but
‘- GET IT ON o - .
F Dl.Old Generality in Artificial Intelligence 3/20/2013
) John McCarthy Postscript My 1971 Turing Award
Lecture was entitled "Generality in Artificial
GETITON

amaz Jl

E

™ — ~1

x/ +

18

Example case: K-9 mail

« Some users noticed that K-9 mail was spending more energy than usual. &

* A user that was having issues with a personal mail server noticed that K-9

mail was the one of the most energy-greedy apps. IMAP IDLE protocol for real-time
notifications.

 When a connection is not possible, the app automatically retries later.

o https://github.com/k9mail/k-9/commit/
86f3b28f79509d1a4d613eb39f60603e0857/9¢ea3

Solutions?

19

https://github.com/k9mail/k-9/commit/86f3b28f79509d1a4d613eb39f60603e08579ea3
https://github.com/k9mail/k-9/commit/86f3b28f79509d1a4d613eb39f60603e08579ea3

EcoAndroid

* Plugin for Intellid (Android Studio

Dynamic Retry Delay
* Push Over Poll

* Reduce Size
 Cache

* Avoid Graphics and Animations

20

@ plugins.jetbrains.com

ET
BRAINS Marketplace Edu Courses Themes Pluginldeas Build Plugins m Signin Q

Refactoring Android

EcoAndroid Get

Y % % % 9 Compatible with IntelliJ IDEA (Ultimate, Community,

Ecolndroid i i i
Software Reliability Lab Educational), Android Studio

Overview Versions Reviews

EcoAndroid suggests To have full functionality you have to accept Plugin Marketplace Agreement. X ;5 pbased on the idea of

energy pattern and it nas alreaay peen used T0 ImMprove the energy erTiciency oT dozens oT ANAroid applications.

Display a menu

Carbon-Aware Computing for
Datacenters

Ana Radovanovic’, Ross Koningstein, lan Schneider, Bokan
Chen, Alexandre Duarte, Binz Roy, Diyue Xiao, Maya
Haridasan, Patrick Hung, Nick Care, Saurav Talukdar, Eric
Mullen, Kendal Smith, MariEllen Cottman, and Walfredo Cirne

https://sites.google.com/view/energy-efficiency-languages

21

—
N
S
N
=
=
)
—
—
O
A
7
2
—
>
S
e
~
—
—
\O
-
—
N

arXiv

Carbon-Aware Computing for Datacenters

Ana Radovanovié, Ross Koningstein, Ian Schneider, Bokan Chen, Alexandre Duarte, Binz Roy, Diyue Xiao,
Maya Haridasan, Patrick Hung, Nick Care, Saurav Talukdar, Eric Mullen, Kendal Smith, MariEllen Cottman, and
Walfredo Cirne

Abstract—The amount of CO, emitted per kilowatt-hour on
an electricity grid varies by time of day and substantially
varies by location due to the types of generation. Networked
collections of warehouse scale computers, sometimes called Hy-
perscale Computing, emit more carbon than needed if operated
without regard to these variations in carbon intensity. This pa-
per introduces Google’s system for Carbon-Intelligent Compute
Management, which actively minimizes electricity-based carbon
footprint and power infrastructure costs by delaying temporally
flexible workloads. The core component of the system is a suite of
analytical pipelines used to gather the next day’s carbon intensity
forecasts, train day-ahead demand prediction models, and use
risk-aware optimization to generate the next day’s carbon-aware
Virtual Capacity Curves (VCCs) for all datacenter clusters across
Google’s fleet. VCCs impose hourly limits on resources available
to temporally flexible workloads while preserving overall daily
capacity, enabling all such workloads to complete within a day.
Data from operation shows that VCCs effectively limit hourly
capacity when the grid’s energy supply mix is carbon intensive
and delay the execution of temporally flexible workloads to
“greener” times.

Index Terms—Datacenter computing, carbon- and efficiency-
aware compute management, power management.

I. INTRODUCTION

Demand for computing resources and datacenter power
worldwide has been continuously growing, now accounting
for approximately 1% of total electricity usage [1]. Between
2010 and 2018, global datacenter workloads and compute
instances increased more than sixfold [1]. In response, new
methodologies for increasing datacenter power and energy
efficiency are required to limit their growing environmental,
economic and performance impacts [2], |3].

The datacenter industry has the potential to facilitate carbon
emissions reductions in electricity grids. A considerable fraction
of compute workloads have flexibility in both when and where
they run. Given that emissions from electricity production
vary substantially by time and location [4]-|7], we can exploit
load flexibility to consume power where and when the grid
is less carbon intensive. By effectively managing its load,
the datacenter industry can contribute to a more robust,
resilient, and cost-efficient energy system, facilitating grid
decarbonization. Electric grid operators, in turn, can possibly
benefit by as much as EUR 1B/year [8].

Furthermore, shifting execution of flexible workloads in
time and space can decrease peak demand for resources and

The authors are with Google, Inc. Mountain View, CA, 94043 (Email:
anaradovanovic @google.com, ross@google.com, ischneid@google.com,
bokanchen @google.com, alexandredu@ google.com, binzroy @google.com,
diyuexiao@google.com, haridasan@google.com, phfhung@google.com,
ncare@google.com, stalukdar@google.com, ericmullen@google.com,
kendalsmith@ google.com, meacottman@google.com, walfredo@google.com)

power. Since datacenters are planned based on peak power and
resource usage, smaller peaks reduce the need for more capacity.
Not only does this save money, it also reduces environmental
impacts.

This paper describes the methodology and principles behind
Google’s system for Carbon-Intelligent Compute management,
which reduces grid carbon emissions from Google’s datacenter
electricity use and reduces operating costs by increasing
resource and power efficiency. To accomplish this goal, the
system harnesses the temporal flexibility of a significant fraction
of Google’s internal workloads that tolerate delays as long as
their work gets completed within 24 hours. Typical examples
of such workloads are data compaction, machine learning, sim-
ulation, and data processing (e.g., video processing) pipelines —
many of the tasks that make information found through Google
products more accessible and useful. Note that other loads
include user-facing services (Search, Maps and YouTube) that
people rely on around the clock, and our cloud customers’
workloads running in allocated Virtual Machines (VMs), which
are not temporally flexible and therefore not affected by the
new system.

Workloads are comprised of compute jobs. The system needs
to consider compute jobs’ arrival patterns, resource usage,
dependencies and placement consequences, which generally
have high uncertainty and are hard to predict (i.e., we do
not know in advance what jobs will run over the course
of the next day). Fortunately, in spite of high uncertainties
at the job level, Google’s flexible resource usage and daily
consumption at a cluster-level and beyond have demonstrated
to be quite predictable within a day-ahead forecasting horizon.
The aggregate outcome of job scheduling ultimately affects
global costs, carbon footprint, and future resource utilization.
The workload scheduler implementation must be simple (i.e.,
with as little as possible computational complexity in making
placement decisions) to cope with the high volume of job
requests.

The core of the carbon-aware load shaping mechanism is a
set of cluster-level [9] Virtual Capacity Curves (VCCs), which
are hourly resource usage limits that serve to shape each cluster
resource and power usage profile over the following day. These
limits are computed using an optimization process that takes
account of aggregate flexible and inflexible demand predictions
and their uncertainty, hourly carbon intensity forecasts [10],
explicit characterization of business and environmental targets,
infrastructure and workload performance expectations, and
usage limits set by energy providers for different datacenters
across Google’s fleet.

The cluster-level VCCs are pushed to all of Google’s
datacenter clusters prior to the start of the next day, where they

https://sites.google.com/view/energy-efficiency-languages

LOW CARBON HIGH CARBON LOW CARBON
INTENSITY INTENSITY INTENSITY

default cluster capacity

virtual capacity curve (VCC)

delayed to next day

previous day’s
flexible load, - °

midnight

* Google’s Carbon-Intelligent Computing System (CICS)
 Main idea: use carbon-intensity data to shift datacenter jobs in time

* Typically, job schedulers use a metric of cluster capacity to schedule a job in
a particular cluster.

* CICS overrides this metric with the virtual capacity curve (VCC) that
factors in Carbon intensity

 When a new job comes in, the scheduler estimates its CPU load and power
usage and assigns it to a cluster if the VCC is not exceeded.

23

e Jobs are divided between flexible and inflexible.

* Flexible load is considered shapeable/shiftable as long as its total daily
compute (CPU) demand is preserved

* The system needs to consider that, while running a job, the virtual capacity
curve (VCC) might drop. Hence, this job should not start in the first place.

* They forecast VCC for the next day

24

LOW CARBON HIGH CARBON LOW CARBON
INTENSITY INTENSITY INTENSITY

default cluster capacity

virtual capacity curve (VCC)

delayed to next day

previous day’s
flexible load, - °

midnight

Virtual Cluster Capacity (VCC)

 Aims at reducing the peak load at carbon intensive hours but in total it should allow for the
some amount of daily computation!

 Considers Carbon intensity

* Using data from electricityMap.org

* |t does not use carbon intensity directly.
Carbon intensity is converted to a cost (kgCO2 -> $9%)

* This way, they can factor in other metrics that can also be converted to money. E.g., the
cost saved by preventing peak load

* Peak workload entails extra cost at the infrastructure level (e.g., control faclities’
temperature).

* By using money cost instead of carbon cost, they have more data available.

26

http://electricityMap.org

Virtual Cluster Capacity (VCC)

* |f the forecast of VCC fails it shift flexible workload more than expected.

* This happens because the amount of workload forecasted was below the
workload needed, and VCC was “aggressively” low.

* The systems fall back to the real cluster capacity for 1 week until results
start being realistic again.

27

Next steps

* They will consider spatial flexibility.
 |.e., tasks that can be shifted over time and over space.

* |t needs to factor in relocation overheads, though.

28

Critical questions

e Who defines what is flexible and inflexible?

* How do you estimate the CPU load of a given task?

29

Energy Regression Testing

Greener?

Greener?

_
Greener?
w Greener? Greener?

Greener? Greener?

steps:
uses: actions/checkout@v4
name: Set up Python
uses: actions/setup-python®vé4
with:
python-version: '3.x'
run: python -m pip install —--upgrade pip

run: pip install -r requirements.txt
run: pip install pytest pytest-cov
- uses: koenhagen/measure-energy-action@v@.16
with:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
run: pytest tests.py ——-doctest-modules ——cov=com

https://koenhagen.github.io/E-Compare/

S
4

™ o
<f <f
([) uondwnsuo)d Abiau3

6LErET®
PTLEQEE
ELTSEDY
Jpeotee
L0
LR
LeLowg
S8LI0%
(424 0 %" 3
Q53PPLE
EGRIT®
JEQ6LE
rrI806e
vivis=
oLOPI TP
QETRPLS
QsseR
19904
TLToeESs
pIo1EEP

More recent ——

pzraosn L

1699681

JTI1EEm
0LEIR0
yies0Ro
LORLT=e
yZesas
seeIsw
8986
PITISE
*SZnisey
POIESS
LT O
PooRas
LETLRDE

4. Debugging Energy with
Docker Images

Unveilin? the Energy Vampires
A methodology for debugging Software
Energy Consumption

Unveiling the Energy Vampires: A Methodology for
Debugging Software Energy Consumption

Abstract—Energy consumption in software systems is becoming
increasingly important, especially in large-scale deployments.
However, debugging energy-related issues remains challenging
due to the lack of specialized tools. This paper presents an
energy debugging methodology for identifying and isolating energy
consumption hotspots in software systems. We demonstrate the
methodology’s effectiveness through a case study of Redis, a
popular in-memory database. Our analysis reveals significant
energy consumption differences between Alpine and Ubuntu
distributions, with Alpine consuming up to 20.2% more power in
certain operations. We trace this difference to the implementation
of the ‘memcpy‘ function in different C standard libraries
(musl vs. glibc). By isolating and benchmarking ‘memcpy*, we
confirm it as the primary cause of the energy discrepancy. Our
findings highlight the importance of considering energy efficiency
in software dependencies and demonstrate the capability to
assist developers in identifying and addressing energy-related
issues. This work contributes to the growing field of sustainable
software engineering by providing a systematic approach to energy

debugging.
I. INTRODUCTION

In recent years, the demand for computing power has grown
exponentially, leading to a rapid increase in the number and size
of data centers. This growth is accompanied by a significant
increase in energy consumption. It is estimated that by 2025,
data centers will consume 20 % of global electricity and account
for 5.5% of global emissions [3].

While Sustainable Software Engineering and energy effi-
ciency studies have gained traction in mobile development [8]
due to battery life concerns, energy optimization for server
deployment remains relatively unexplored. This gap stems
from several factors: server systems’ lack of reliance on
batteries makes energy reduction less immediately impactful,
clients don’t directly pay for server energy costs, and there’s a
scarcity of tools for debugging energy consumption in server
environments. These circumstances have led to a situation
where server-side energy optimization lags behind mobile
computing, despite the significant environmental and economic
impact of data center energy consumption. Addressing this
disparity requires both technological advancements and a shift
in perspective regarding the importance of energy efficiency
in server-side software engineering.

One of the main components of server software is the
Linux distribution over which software runs. In modern server
deployments, they are typically bundled with the software into
a Docker container, and provide shared libraries over which
other technologies run, like the C Standard Library.

One important criteria for ¢hrneine ~ dicteihntion fo fmnce
size, which makes images like
over a billion downloads on

like energy efficiency are often ignored or unknown by the
community.

In this paper, we present a methodology to help developers
trace and identify energy consumption hotspots in server
systems. Our work is motivated by the findings of Tjiong [29],
who demonstrated that the base image of a Dockerfile impacts
the energy consumption of the running application. However,
the root cause of this energy consumption difference remained

an open question.

We introduce a methodology designed to locate the causes
of energy consumption discrepancies. This formal approach
provides a systematic way for researchers and developers to
investigate energy inefficiencies and regressions in workloads
that use different libraries or technologies.

To demonstrate the effectiveness of the approach, we present
a case study investigating why the Redis database consumes
more energy on Alpine than Ubuntu. This study addresses the
following research questions:

RQ1 Does Redis exhibit different energy consumption patterns
on different operating systems?

RQ2 Is our approach capable of identifying the cause of energy
consumption differences?

RQ3 Can the cause for the energy differences be isolated?

Our evaluation reveals a significant difference of 8.6 %
in total energy consumption and up to 20.2% in instant
power usage during Redis execution on two different operating
systems. We attribute this difference to the use of different
libc implementations: musl versus glibc. Specifically, it
successfully identifies the cause of this discrepancy in the
memcpy function, which is less performant and more energy-
intensive in musl.

In summary, the contributions of this paper are:

« A methodology for investigating energy regressions in

software

« An empirical study highlighting significant energy regres-

sions in the Alpine distribution

« A set of scripts and benchmarks for investigating energy

regressions in software

II. BACKGROUND

This section provides essential background information to
understand the execution and analysis of our energy experi-
ments. We cover three key areas: containerization technology,
C standard library implementations, and energy profiling tools.

A Containerization and Docker

ICSE 2025

Data Centers and Docker

 Containers are the most popular way to deploy apps into the cloud

 Base image Is an important choice when building an image

e Criteria |
Container
e Linux distribution and binaries Redis
® |mage Size Image Binaries

¢ Energy? Docker Engine

Host OS/Kernel

Hardware

35

Redis energy consumption

 Ubuntu/Alpine base images have different energy consumption for Redis

Energy consumption
Label Base image i Redis version Allocator

ubuntupack Ubuntu ' 6.0.16 jemalloc
ubuntu Ubuntu ' 7.2.4 iemalloc
alpineglibc Alpine ' jemalloc
alpinejem Alpi jemalloc
alpinemusl musl allocator

alpinepack musl allocator

Image Energy (J)

ubuntupack 1441.42
ubuntu 1401.54
alpineglibc 1435.28
alpinejem 1521.59
alpinemusl 1541.85

alpinepack 1651.11 ubuntupack ubuntu | alpineglibc alpinejem Jalpinemusl alpinepack
R Image

36

Redis Energy Consumption

‘RQ1: What is the difference
In energy consumption
between glibc and musil?

‘RQ2: Can we use tracing
to compare energy
consumption in shared
libraries?

=
-
Q 4
Z
Q.
-
(s
O

‘RQ3: Can we verify the
origin of energy
consumption differences by
recreating the workload
behavior closely?

1500
Time (ms)

37

Tracing

* Find /ibc function running at the end of the benchmark
* Tracing: Capture calls made to libc

e |ntroduces non-linear overhead

Base image Total time Self time Calls Function
40.000 40.00606 4 pthread cond timedwait
: 13.857 13.857 3 pthread cond wait
Redis 13.515 13.515 99494 epoll walt
6.599 6.599 1152760590 memcpy
06.150 0.150 500006 write
Function 2.218 2.218 501557 read
call 239.204 239.204 2340922 strchr
Tracer 221.763 221.763 1/7/76/11 strcasecmp
152.807 152.807 1201218 gettimeofday
151.164 151.164 1307754 memcmp
117.885 117.885 B98262 clock gettime
45.398 45.398 99495 localtime r
26.472 26.472 1552 close
25.426 25.426 132144 memmove
16.300 16.300 5033 setsockopt

38

=
-
Q)‘
-
o
o
=2
Q.
U?

Synchronization

* [racing slows down execution and increase energy consumption

 Run separately and synchronize with logs

500
Time (ms)

39

99494
115276590
500006
501557
2340922
1/7/6/11
1201218
1307754
BOBZ2072
99495
1552
132144
5033

Function

pthread cond timedwait
pthread cond wait
epoll walt

memcpy

write

read

strchr

strcasecmp
gettimeofday
memcmp

clock gettime
localtime r

close

memmove
setsockopt

Tracing Analysis

(M) J2m0od

40

Analysis

Tracing

(SU) swiauNJ Uuo1dUN4

~ L

redis-server

Q
a £
e

E 5
4,0
=
U O
s O
wn O

—

L
O

—

-
(V)]

[

memcmp

my

— ubuntu
— alpinejem

< mM ™N

(M) 1®mod NdD

41

Benchmarking memcpy

 Copy bytes from one part of memory to
another

source

 Depending on function parameters, different
assembly-level optimizations

e Some not included in mus/

42

CPU Power (W)

Benchmarking memcpy

memcpy-benc -cac

43

* Copy 4 bytes from fixed
pointer to moving pointer

e (100,300,500,600) x 1M
requests
» 15% more power and 3X time

Image Time (s) Energy (J)
alpine 406.10 2977.45

ubuntu 155.37 972.76
alpineglibc 142.53 869.53

Conclusions

» Significant difference in energy consumption for memcpy

e 8.6% difference for Redis workload and 13% in our benchmark
 musl trades performance for a smaller codebase

e No official documentation

* No awareness about energy performance

44

5. Energy Efficiency vs Code
Quality

Measuring Maintainabllity

e According to ISO/IEC 25010, Maintainability is “the degree of
effectiveness and efficiency with which a software product or
system can be modified to improve it, correct it or adapt it to
changes in environment, and in requirements”

¢ \Ve use the code analysis tool Better Code Hub to assess
Mmaintainabllity

e Better Code Hub maps the ISO/IEC 25010 standard on
Maintainabllity into a set of guidelines derived from static analysis

46

Maintainability of Energy Changes

e \Vhat Is the iImpact of making energy-oriented code changes on
the maintainability of mobile apps?

M(v,) M(v,)

AM
Maintainability

Ditterence

Parent Energy
Commiut Commiut

47

f ™
[NN) [(I)][ﬁ:}] [& bettercodehub.com C] [I'_T'I][DF]] i
luiscruz/
Compliance Ne‘tGuard
?O Last analysis: 3 months ago Branch: energy_test_fd614bc
o (default)
iz

(L1 . .
e Write Short Units of Code X
2 A
o Refactoring candidates L " Show snoozed
=
< . .
m v Unit Lines of Code
m
'>_1§ [AdapterRule.onBindViewHolder(ViewHolder,in 280
;z: [] ActivityMain.onCreate(Bundle) res o a r S
5' [J ActivitySettings.onPostCreate(Bundle) 202
Z

[] StatsHandler.updateStats()

[ActivitySettings.onSharedPreferenceChanged(SharedPreferences,.. 164

[AdapterLog.bindView(View,Context,Cursor) 151

[Rule.getRules(boolean,Context) 151

[ActivitylLog.onCreate(Bundle) 149

' atmost 15 lines of code more than 15 lines of code more than 60 lines of code

& Write Simple Units of Code X :

@ Write Code Once v

Eg Keep Unit Interfaces Small X

(@A) Se :

oo parate Concerns in Modules X

7% Couple Architecture Components Loosely V4

== Keep Architecture Components Balanced v

_ fr Wann Vair Nadabans Craall 2 . J

48

Energy Code Changes
"ot Dataset

539 commits
from 306 mobile apps

Moura et al. (E;elfi{s /
(2016)
j ombine |
atasets =

"5

| I I I —— Better Code Hub
' Maintainability

"5

Cruz et al.

(2018)

i

Cruz et al.

(2019)
=5 | 539 baseline commits
from 306 mobile apps

49

Impact of energy changes on
Mmaintainapility

r= —243
Regular Change Md=0.0
p=0.139

e Negative
Same

e Positive 0% 10% 20% 30% 40% 50% 60%

N=95
7=3
Md= —1.0

Bug Fix & Code Refinem.
p=0.100

Miscellaneous

Power Awareness

Which energy
patterns are more
Ikely to affect

maintainability?

Power Save Mode

Wakelock Addition

N=259

€Tr =

Wakelock Optimization Md= —04
p=0.157
I Negative : : : : : :
Same i i i i i i i '
W= Positive 0% 10% 20% 30% 40% 50% 60% 70% 80%

51

+ + + + + + + +

Typical maintainability issue |

https://qithub.com/einmalfel/PodListen/commit/2ed5a65

4 changed files with 28 additions and 0 deletions.

private synchronized void readPreference(Key key) {
switch (key) {
case AUTO _DOWNLOAD AC:
autoDownloadACOnly = sPrefs.getBoolean(Key.AUTO_DOWNLOAD_AC.toString(), false);
if ('autoDownloadACOnly) {
context.sendBroadcast(new Intent(DownloadReceiver.UPDATE_QUEUE_ACTION));
} else if ('DownloadReceiver.isDeviceCharging()) {
DownloadReceiver.stopDownloads(null);
}
break;
case PLAYER FOREGROUND:
playerForeground = sPrefs.getBoolean(Key.PLAYER_FOREGROUND.toString(), false);
break;

52

https://github.com/einmalfel/PodListen/commit/2ed5a65

+ + + + + + + + + + + + + + + + +

Typical maintainabllity issue |

https://github.com/mozilla/MozStumbler/commit/6ea0268 A

5 changed files with 66 additions and 14 deletions. ”~N\ g

// each time we reconnect, check to see if we're suppose to be
// 1n power saving mode. 1if not, start the scanning. TODO: we
// shouldn't just stopScanning if we find that we are in PSM.
// Instead, we should see if we were scanning do to an activity
// recognition. If we were, don't stop.
if (mConnectionRemote != null) {
try {
if (mPrefs.getPowerSavingMode()) {
mConnectionRemote. stopScanning();
} else {
mConnectionRemote.startScanning();
s
} catch (RemoteException e) {
Log.e(LOGTAG, "", e);

}
updateUI();

53

https://github.com/mozilla/MozStumbler/commit/6ea0268

54

