Al for Physics or Physics for Al?

Christoph Weniger

Gravitational and Astropartical Physics Amsterdam (GRAPPA) Institute of Physics, University of Amsterdam

John J. Hopfield Geoffrey E. Hinton

"for foundational discoveries and inventions that enable machine learning with artificial neural networks"

THE ROYAL SWEDISH ACADEMY OF SCIENCES

THE NOBEL PRIZE IN CHEMISTRY 2024

David Baker

NE

"for computational protein design"

Demis Hassabis John M. Jumper

"for protein structure prediction"

THE ROYAL SWEDISH ACADEMY OF SCIENCES

Al and Physics: Different approaches to predictions

Spherical Cow

Physics

- Differential equations describe constituent dynamics
- Often based on **idealisations**
- Typically interpretable

ReLU Cow

AI/ML

- Deep neural networks learn useful representations
- Often task dependent
- Can generalise from large amounts of data

Deep learning

Training

Hierarchical Feature Learning in Neural Networks From Low-Level Edge Detection to High-Level Object Representations

Edges

Patterns

Object parts

Objects

https://www.isikdogan.com/blog/transfer-learning.html

1) Emergent generative Al Text and image generation via autoregressive models

Q = "Explain emergent AI in 10 words."

 $w_{1} = "AI"$ $w_{2} = "developing"$ $w_{3} = "new"$ $w_{4} = "behaviors"$ $w_{5} = "or"$ $w_{6} = "properties"$ $w_{7} = "not"$ $w_{8} = "explicitly"$ $w_{9} = "programmed"$ $w_{10} = "in."$ $w_{11} = STOP$

What are probable next words given the thousand previous words?

 $p_{\phi}(\mathbf{w}_k \mid \mathbf{w}_{k-1}, \mathbf{w}_{k-2}, ..., \mathbf{w}_{k-1000}; \mathbf{Q})$

Given a noisy image, generate a slightly less noisy version and iterate.

 $p_{\phi}(\mathbf{m}_k \mid \mathbf{m}_{k-1}; \mathbf{Q})$

2) Al technology stack

(1) Automatic differentiation frameworks

(2) Hardware (GPUs, TPUs, FPGAs, ...)

(3) Algorithms & Architectures

Al for Physics and Physics for Al

Optimisation, Variational Principles Information Theory, Entropy Energy-based models Bayesian & Monte Carlo methods Equivariance & Symmetries

GPU-acceleration of simulations Automatic differentiation Pattern recognition Automatisation Prediction

Al technology

Emergent Al

My Research

Probes of the dark Universe Inflation, dark energy, dark matter, strong-field gravity

10⁻³² seconds

1 second

100 seconds

380 000 years

Inflation Accelerated expansion

Formation of light and matter

Light and matter are coupled Light and matter separate

21cm cosmology

Space-based GW

Image credit: ESA

300-500 million years

Billions of years

13.8 billion years

Dark ages Atoms start feeling First stars The first stars and

Galaxy evolution

The present Universe

Galaxy surveys

Ground-based GW

Example: Strong gravitational lensing

Dark matter halo

What is the dark matter content of the foreground galaxy?

foreground galaxy

lensed image seen of background galaxy

background galaxy

Looking further into the past

Credit: ALMA (ESO/NRAO/NAOJ), L. Calçada (ESO), Y. Hezaveh et al.

The inverse problem (aka statistical inference)

Traditional statistical inference

$$P(B \mid D = 6) = \frac{15}{15 + 6} \simeq 71\%$$

Traditional statistical inference

Al-assisted statistical inference

SBI with Neural Ratio Estimation*

Neural ratio estimation (NRE)

Train a neural network to discriminate

- Real sims: $z, \mathbf{x} \sim p(\mathbf{x} | z)p(z)$
- Scrambled sims: $z, \mathbf{x} \sim p(\mathbf{x})p(z)$

Miller+ 2011.13951, 2107.01214 - swyft & TMNRE

Papamakarios & Murray 1605.06376, Hermans+ 2020, Durkan+ Sequential implicit inference 2020, Delaunoy+ 2022, Miller+ 2022 Sequential inference proceeds in multiple focus rounds

Initialise $q_{\phi}^{(0)}(\mathbf{z} \mid \mathbf{x}) = p(\mathbf{z})$ For r = 1, ..., RSimulate training data via $\mathbf{X}, \mathbf{Z} \sim p$ Train $q_{\phi}^{(r)}(\mathbf{z} \mid \mathbf{x})$ # Include some prior correction Return $q_{\phi}^{(R)}(\mathbf{z} \mid \mathbf{x})$ as posterior

Target

Round 1

data ning

Image credit: Noemi Anau Montel

$$\mathbf{v}(\mathbf{x} \mid \mathbf{z})q_{\phi}^{(r-1)}(\mathbf{z} \mid \mathbf{x}_{o})$$

Round 2

Round 6

Potential benefits of implicit inference Simulation-efficiency & scalability

Energy costs of analysing data

- One open air concert (per 10.000 participants): ~1 MWh
- One intercontinental flight (per person): ~3 MWh
- Amsterdam Karlsruhe train round-trip (per person):~100kWh
- Analysis of a non-standard cosmological model: ~100kWh
- Global analysis of multiple datasets (assuming 1 Mio CPU hours): ~7MWh

AI-based implicit inference

Non-standard cosmological model analysis ~1kWh

ำ า):~100kWh

~100kWh Mio CPU hours): ~7MWh

Source: Back-of-the-envelope estimates using ChatGPT 10

Summary

- This is a very dynamic field!
- The adoption of AI for physics research is still at an early stage. Examples include
 - Pattern recognition and detection.
 - Acceleration of computations and predictions.
 - Optimisation and discovery.
- data.

• There are numerous connection points between AI technology, emergent AI and physics.

• All is particularly effective for solving "inverse problems", and is becoming quickly an indispensable tool for analysing current and upcoming astrophysical and cosmological

Thank you!

Backup

Numerical and Computational Approaches Sampling based approaches - Markov Chain Monte Carlo (MCMC)

- **Challenges:** Non-trivial target distributions
- **Convergence**: Assessment through auto-correlation plots Gelman-Rubin statistics
- **Practical limitations**: MCMC might have problems with highdimensional or multi-modal distributions. However, they are widely used in physics/astronomy

https://chi-feng.github.io/mcmc-demo/app.html?algorithm=RandomWalkMH

