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AI for Physics or Physics for AI?
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AI and Physics: Different approaches to predictions
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Physics 
• Differential equations describe constituent dynamics 
• Often based on idealisations 
• Typically interpretable

AI/ML 
• Deep neural networks learn useful representations 
• Often task dependent 
• Can generalise from large amounts of data
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Deep learning
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Training 
(evaluating examples & adjusting connections)

Input Output



Hierarchical Feature Learning in Neural Networks
From Low-Level Edge Detection to High-Level Object Representations
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Edges Textures Patterns Object parts Objects

Input Output

https://www.isikdogan.com/blog/transfer-learning.html



1) Emergent generative AI
Text and image generation via autoregressive models
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pϕ(wk ∣ wk−1, wk−2, …, wk−1000; Q)

What are probable next words given the 
thousand previous words?

pϕ(mk ∣ mk−1; Q)

Given a noisy image, generate a slightly 
less noisy version and iterate.

 = “Explain emergent AI in 10 words.”Q

=“AI” 
=“developing” 
=“new” 
=“behaviors” 
=“or” 
=“properties” 
=“not” 
=“explicitly" 
=“programmed” 
=“in.” 
=STOP

w1
w2
w3
w4
w5
w6
w7
w8
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w10
w11



2) AI technology stack
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(1) Automatic differentiation frameworks (2) Hardware (GPUs, TPUs, FPGAs, …)

(3) Algorithms & Architectures



AI for Physics and Physics for AI
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Physics

AI technology Emergent AI

Optimisation, Variational Principles

Information Theory, Entropy

Energy-based models

Bayesian & Monte Carlo methods

Equivariance & Symmetries

Automatic differentiation

GPU-acceleration of simulations

Pattern recognition 

Automatisation

Prediction

Critical Phenomena

Dynamical systems

Education

Data interpretation

Idea generation

Coding
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My Research
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Probes of the dark Universe
Inflation, dark energy, dark matter, strong-field gravity

Galaxy surveys Ground-based GWSpace-based GW

R

21cm cosmology



Example: Strong gravitational lensing
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Dark matter halo

Credit: ALMA (ESO/NRAO/NAOJ), L. Calçada (ESO), Y. Hezaveh et al.

What is the dark matter content of the foreground galaxy?



The inverse problem (aka statistical inference)
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Model parameters

Model predictions

Observations

Forward simulation

Statistical inference



Traditional statistical inference
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15

A B

P(B ∣ D = 6) =
15

15 + 6
≃ 71 %

A ➡ D=6 B ➡ D=6

Bayesian statistics 
(T. Bayes, 1763)


“Galton Board”

x

z = A, B



Traditional statistical inference
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1 2 3 4 5 6 7 8

(▶▶◀▶▶▶, ▶▶◀▶▶▶, ▶▶◀▶▶▶, 

▶▶◀▶▶▶, ▶▶◀▶▶▶, ▶▶◀▶▶▶)

67500 1.296.000

A B

P(B ∣ D = (3,4,5,5,7,7)) =
1.296.000

1.296.000 + 67500
≃ 93 %

A ➡ D = (3,4,5,5,7,7)

D = (3,4,5,5,7,7)

…
…
…
…

B ➡ D = (3,4,5,5,7,7)
(▶▶◀▶▶▶, ▶▶◀▶▶▶, ▶▶◀▶▶▶, 

▶▶◀▶▶▶, ▶▶◀▶▶▶, ▶▶◀▶▶▶)

…
…
…
…

6 balls!



AI-assisted statistical inference
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Neural ratio estimation (NRE) 
Train a neural network to discriminate 
• Real sims: 
• Scrambled sims:

SBI with Neural Ratio Estimation*

z, x ∼ p(x)p(z)
z, x ∼ p(x |z)p(z)

Miller+ 2011.13951, 2107.01214 - swyft & TMNRE

f1 = ln
p(z1 |x)

p(z1)
f2 = ln

p(z2 |x)
p(z2)

f3 = ln
p(z3, z4 |x)

p(z3, z4)
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Note: After training, results are amortised, meaning that 
we can immediately access posteriors for any new 

observation .x

Embedding: Learns 
informative data 

summaries

MLP: Learns correlation 
between data summary 

and parameters



Round 1 Round 2 Round 6
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Image credit: Noemi Anau Montel

Papamakarios & Murray 1605.06376, Hermans+ 2020, Durkan+ 
2020, Delaunoy+ 2022, Miller+ 2022

Target

Sequential implicit inference
Sequential inference proceeds in multiple focus rounds

Initialise  

For  
Simulate training data via  

Train   # Include some prior correction 

Return  as posterior 

q(0)
ϕ (z ∣ x) = p(z)

r = 1,…, R
x, z ∼ p(x ∣ z)q(r−1)

ϕ (z ∣ xo)
q(r)

ϕ (z ∣ x)
q(R)

ϕ (z ∣ x)
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Round 1 Round 6
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Potential benefits of implicit inference
Simulation-efficiency & scalability

Miller+ 2020

Increases simulation-efficiency 
(More information extracted per simulator run)

Decouples costs from model complexity 
(More parameters do not always cause extra costs)



Energy costs of analysing data

19

• One open air concert (per 10.000 participants): ~1 MWh 
• One intercontinental flight (per person): ~3 MWh 
• Amsterdam Karlsruhe train round-trip (per person):~100kWh 

• Analysis of a non-standard cosmological model: ~100kWh 
• Global analysis of multiple datasets (assuming 1 Mio CPU hours): ~7MWh

AI-based implicit inference 
Non-standard cosmological model 

analysis 
~1kWh

Source: Back-of-the-envelope estimates 
using ChatGPT 1o



Summary
• There are numerous connection points between AI technology, emergent AI and physics. 

This is a very dynamic field!


• The adoption of AI for physics research is still at an early stage. Examples include


• Pattern recognition and detection.


• Acceleration of computations and predictions.


• Optimisation and discovery.


• AI is particularly effective for solving “inverse problems”, and is becoming quickly an 
indispensable tool for analysing current and upcoming astrophysical and cosmological 
data.

20

Thank you!



Backup
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Numerical and Computational Approaches
Sampling based approaches - Markov Chain Monte Carlo (MCMC)

https://chi-feng.github.io/mcmc-demo/app.html?algorithm=RandomWalkMH
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• Challenges: Non-trivial target distributions 
• Convergence: Assessment through auto-correlation plots 

Gelman-Rubin statistics 
• Practical limitations: MCMC might have problems with high-

dimensional or multi-modal distributions. However, they are 
widely used in physics/astronomy

Speagle 1909.12313 (MCMC review)

x = z2
1 + z2

2 + ϵ


