
.

Learning a Robot to Score a Penalty
Minimal Reward Reinforcement Learning

Caitlin G. Lagrand

Supervisor
Dr T.E.J. Mensink

July 2nd, 2017

Learning a Robot to Score a Penalty
Minimal Reward Reinforcement Learning

Caitlin G. Lagrand
10759972

Bachelor thesis
Credits: 18 EC

Bachelor Opleiding Kunstmatige Intelligentie

University of Amsterdam
Faculty of Science
Science Park 904

1098 XH Amsterdam

Supervisor
Dr. T. E. J. Mensink

Informatics Institute
Faculty of Science

University of Amsterdam
Science Park 904

1098 XH Amsterdam

July 2nd, 2017

Abstract

Reinforcement Learning is applied to learn a robot how to score a penalty
in simulation. Minimal rewards are given to let the robot learn as much as
possible by itself. Intermediate rewards are applied to reduce the amount
of trials needed to learn a good action policy up to 75% without effecting
the accuracy. Furthermore, different methods of combining object states
(multiplying and additive) are examined to determine the method that
uses less trials to learn. The additive method results in a decrease of 58%
in the amount of trials. A robot is able to learn how to score a penalty
against a standing goalkeeper within an average of 170 trials using all
intermediate rewards, the additive state representation method and six-
teen different states for both the ball and the goalkeeper, with an average
accuracy of 69%.

1

Contents

1 Introduction 3

2 Related Work 4

3 Q-learning 5
3.1 Q-learning with a Lookup Table 5
3.2 Q-learning with a Neural Network 5
3.3 Action Selection . 6

4 Method 6
4.1 States . 7

4.1.1 Local versus Global Positions 7
4.1.2 Discretised Positions 7
4.1.3 Combining States from Different Objects 8

4.2 Actions . 8
4.3 Rewards . 9

4.3.1 Minimal Reward . 9
4.3.2 Ball Distance Reward 9
4.3.3 Time Rewards . 10

4.4 Network . 10
4.5 Training using a Simulator 10
4.6 Evaluation . 12

5 Experiments 13
5.1 Effects of Intermediate Rewards 13

5.1.1 Results . 13
5.2 Combining States by Multiplying or Addition 16

5.2.1 Results . 16
5.3 One versus One . 17

5.3.1 Results . 17

6 Conclusion and Discussion 18

2

Figure 1: A Nao robot that is used in the RoboCup Standard Platform League.

1 Introduction

Playing football with robots is more than programming how robots should
walk and shoot, the (team)tactics of the robots play a major part dur-
ing a match, which leads to the question what a robot should do in a
specific situation. For example, while standing in front of the ball and
the goal, and no keeper in between them, the robot should kick the ball
and score. Driven by the popularity of the RoboCup Standard Platform
League (SPL) competition1, where all robots are identical in hardware,
we focus on the Nao robot2 shown in Figure 1.

Currently, most behaviours of the robots are based on rules that the
teams invent themselves, such as shooting the ball if the robot is at a
certain distance to the ball (Lagrand et al., 2016) (Röfer et al., 2016).
However, these man-made rules require a large amount of precision and
many small adjustments of parameters. For example, the parameter that
defines the distance to the ball before kicking differs for various fields
and needs to be manually adjusted until the correct value is obtained.
Therefore the main hypothesis of this thesis is that tactic should be learnt
from experience and not programmed by engineers.

Reinforcement Learning uses rewards obtained from the environment
to learn actions that can be taken, resulting in an action policy that is
learnt from own experiences. For example, Reinforcement Learning has
been used for learning to play games like Pong (Mnih et al., 2015), where
only the pixels of a game state were used as input environment and the
obtained score as reward. Depending on the scenario, rewards are only
given at the end of the game (e.g. chess or checkers), or already during
the game (e.g. Pong, SuperMario). The action policy is learnt from its
own experience and used to play these games successfully.

Since Reinforcement Learning learns from experiences, we experiment
with it, using minimal reward set-ups to learn a robot to score a penalty.
Contrary to preceding research, we focus on learning the actions that lead
to a scoring behaviour and not the joint values (Hester et al., 2010) or
higher level behaviours (Smart and Kaelbling, 2002). Different scenarios
for learning behaviours will be validated to demonstrate that behaviours
can be learnt using Reinforcement Learning.

1http://spl.robocup.org/
2https://www.ald.softbankrobotics.com/en/cool-robots/nao

3

http://spl.robocup.org/
https://www.ald.softbankrobotics.com/en/cool-robots/nao

The next section discusses preceding research about reinforcement learn-
ing. In section 3, Q-learning is explained. Section 4 describes the method
used to learn a robot its own behaviour and section 5 presents the exper-
iments that were performed together with their results. Finally, section 6
presents the conclusion and discussion, and future work is proposed.

2 Related Work

Presently, Reinforcement Learning is used for many different purposes.
For example, a Reinforcement Learning algorithm to automatically learn
a controller for helicopters is applied by Ng et al. (2006). In Mnih et al.
(2015), Reinforcement Learning was applied to learn a computer to play
classic Atari 2600 games. Using a deep neural network, a winning strategy
for different games was learnt based on the most raw data available namely
the pixels of the image rendered by the game and the game scores.

In robotics, Reinforcement Learning is used less often, primarily since
the considerable amount of trials. By using a simulator for this research,
we circumvent this problem and can run a large number of trials. Contrary
to the behaviours learnt in this thesis, most Reinforcement Learning that
is applied in robotics concerns control policies. For example, in Smart
and Kaelbling (2002) Reinforcement Learning was applied to learn con-
trol policies for mobile robots. Q-learning (Watkins, 1989) was used in
order to learn a robot two tasks, which are Corridor Following and Ob-
stacle Avoidance. During both tasks, the rotation speed of the robot was
successfully learnt in approximately two hours and the robot was able to
complete the tasks. Q-learning requires discrete states and actions, which
is often not the case with mobile robots. To overcome this problem, Q-
learning was implemented with HEDGER (Smart and Kaelbling, 2000),
an algorithm that safely approximates the value function for continuous
state control tasks.

Furthermore, the use of Reinforcement Learning in order that a robot
learns to kick a penalty is described in (Hester et al., 2010). A robot
learnt how many degrees it had to shift its leg outwards, before kicking
the ball. Reinforcement Learning with decision trees (Pyeatt, 2003) was
applied in order to limit the number of trials needed for learning. This
algorithm uses decision trees instead of a lookup table or a neural network
to acquire the best policy for enormous problems. A control policy for
shifting the leg outwards was learnt and the robot was able to score on
85% of its attempts. While Hester et al. are learning the joint positions
for scoring a penalty, we focus on higher level actions that together form
a scoring tactic.

When using robots in simulation, not only control policies, but also
behaviour policies are learnt. Stone et al. (2005) addresses a three versus
two keepaway football problem in simulation. In this situation, a team of
three robots, the keepers, should maintain possession of the ball, while two
takers try to capture the ball. A semi-Markov decision process (SMDP)
(Baykal-Gürsoy and Gürsoy, 2007) is used to let the robots learn their
actions, such as Receive, Pass or Hold. Stone et al. show that the policy
learnt could hold the ball an average of 9.6 seconds while a hand-coded
policy was able to hold the ball for an average of 8.2 seconds. In contrary
to the high level behaviours learnt by them, this thesis focusses on learning
the actions that together form a tactic, in order that no tactics, such as
hold the ball, have to be predefined as they do.

4


Q(s1, a1) Q(s1, a2) · · · Q(s1, anactions

)
Q(s2, a1) Q(s2, a2) · · · Q(s2, anactions

)
...

...
. . .

...
Q(snstates

, a1) Q(snstates
, a2) · · · Q(snstates

, anactions
)


Figure 2: Q-learning with a lookup table. The Q-values of all state-action

pairs are saved in a table that consists of nstates rows and nactions columns.

3 Q-learning

Q-learning (Watkins, 1989) is a Reinforcement Learning algorithm that
learns an action-value function (Q) which represents the expected utility
(Q-value) of taking a given action and state. The optimal policy that
follows is constructed by selecting the action with the highest Q-value.
An agent starts with randomly initialised Q-values and obtains the state
(s) from the environment. Using action selection (section 3.3), an action
(a) is selected that will be performed in this state. After performing the
action, the reward (r) for taking the action in this state, and the next
state (s′) are obtained. Next, the Q-value is updated as follows:

Q(s, a)← Q(s, a) + α[r(s, a) + γmaxa′Q(s′, a′)−Q(s, a)] (1)

where α is the learning rate and γ is the discount factor which weights
the importance of the Q-value of the next state.

3.1 Q-learning with a Lookup Table

The classic Q-learning algorithm makes use of a lookup table to save the
Q-values of all state-action pairs. The table consists of nstates rows and
nactions columns (Figure 2). Each time a Q-value is updated (1), the Q-
values for this state and the next states are obtained from the table and
used to update the Q-value. One of the advantages of a lookup table is
that the exact Q-values are available for each state-action pair. Therefore,
the action policy found will be highly accurate. Saving all Q-values is also
a disadvantage, as it needs a large amount of memory, when the amount
of states and actions increases.

3.2 Q-learning with a Neural Network

Another method, which is useful for handling a large amount of states
and actions, is Q-learning combined with a neural network. Since neural
networks can use multiple hidden layers that are smaller than the amount
of states and actions, the memory required is lower than that for a lookup
table in cases with a large amount of states and actions. However, when
using a small amount of states and actions, a lookup table uses less mem-
ory. Instead of saving the Q-value of each state-action pair, a neural
network, having a vector representing the state as input and the Q-values
of each action as output, is used (Figure 3). Each time a Q-value is up-
dated (1), the network is trained having the state vector as input and the
updated Q-value as output. The disadvantage of a neural network is that
it only estimates the Q-values, which results in noisy updates and thus an
even more noisy neural network.

5

...
...

...
...

...

x1

x2

xn

H11

H21

Hn1

H12

H22

Hn2

H13

H23

Hn3

Q(s, a1)

Q(s, nactions)

Hidden layer Hidden layer Hidden layerInput layer Output layer

State vector

Figure 3: Q-learning using a Neural Network. The state vector is used as
input vector and the Q-values for this state are the output.

3.3 Action Selection

Action selecting is used to determine which action to take based on the
acquired Q-values. Several methods are introduced (Sutton and Barto,
1998, p. 30-31), such as the greedy method, ε-greedy and softmax action
selection. The simplest action selection is to always select the action
with the highest Q-value. This greedy method always exploits current
knowledge, but never explores other (possibly better) actions.

To be able to explore other actions, ε-greedy is a good alternative. ε-
greedy is mostly greedy, but with a probability of ε, an action is randomly
selected amongst all actions. An advantage of ε-greedy is the certainty
that every action will be sampled when the amount of trials increases.
However, the disadvantage is that it selects equally among all actions
when exploring, which results in choosing the worse action with the same
likelihood as the second best action.

Softmax action selection avoids this equally distributed selection by
computing a weighted distribution based on the Q-values. Boltzmann
action selection is one of the most common softmax methods. This method
uses a Boltzmann distribution and chooses action a with the following
probability:

eQ(a)/τ

Σni=1e
Q(i)/τ

(2)

where τ is the temperature parameter. Low temperatures cause a greater
difference in the probabilities, while high temperatures cause the proba-
bilities of the actions to be all (nearly) the same.

4 Method

This section describes the method used to apply Q-learning to learn a
robot to score a penalty. Firstly, the states and their representations that
are used are explained in section 4.1, followed by the actions in section
4.2. Section 4.3 describes the different rewards that can be obtained from
the environment and in section 4.4, the network which is used to learn

6

20

50

100

250

234
5
6 7 8

1

10
11

12

13

14
15

16

9

18

19

20

21

22

23

24

17

26

27

28

29

30

31

32

25

34

35

36

37

38

39

40

33

(a) (b)

Figure 4: State bins relative to the robot. Left shows the different bins, with
the robot as the centre point. Depending on the distance (red) and angle

(blue), a position on the field is placed in a bin. On the right, the state bins
are projected on the field. The ball is situated in the blue state and the

goalkeeper and goal are both in the red state.

and predict the Q-values is explained. Furthermore, an overview is given
in section 4.5 of how these components are combined to create a learning
process. Lastly, the evaluation method is described in section 4.6.

4.1 States

The states describe the environment in which the robot is situated. The
environment consists of various objects on different positions on the field,
such as the ball, the goals, and other robots (both opponents and team-
mates).

4.1.1 Local versus Global Positions

The states can be based on either local or global positions of objects in the
field. We chose to use local positions (robot frame), since the positions
of the objects are chiefly based on the observations of the robot made
with its cameras and thus already relative to the robot. Moreover, the
global positions are computed from the relative positions, so if a small
error would occur in the relative position, a bigger error would occur in
the global position.

4.1.2 Discretised Positions

The position of the objects is discretised to reduce the state space. Each
position is put into a bin based on its angle and its distance to the robot,
see Figure 4. Eight bins for angles and five different distances can be used,
which results in 40 bins per object. Depending on the experiment, all five
distances or less are used. Bins that are closer to the robot are smaller
than the bins farther away from the robot, as a higher precision is desired
closer to the robot.

7



0
...
0

object1 bin 1
0
...
0

no1states 0
0
...
0

no1states + object2 bin 1
0
...
0

no1states + no2states 0


Figure 5: Example of a n-hot-vector with n = 2. The one-hot-vectors of both

objects are appended to each other, resulting in a two-hot-vector with
no1
states + no2

states elements.

4.1.3 Combining States from Different Objects

The states of different objects can be combined in several ways. Firstly, all
possible permutations can be computed by (3), resulting in

∏nobjects

o=0 n
(o)
states

states. This method can be used when Q-learning with a lookup table is
applied, because it contains all possible states separately. However, it re-
sults in a large state space, and thus we expect that more trials are needed
to explore it.

state bin =

nobjects∑
o=0

(bin(o) − 1)

o∏
i=1

(nibins) (3)

Another method to combine different objects is to create a n-hot-vector,
based on the amount of different objects in the field (n). Firstly, a one-
hot-vector is created for each object separately, containing a one at the
object binth position and zeros elsewhere. These one-hot-vectors are then
appended to each other, resulting in a vector of

∑nobjects

o=0 n
(o)
states elements,

see Figure 5. This method uses a smaller state space to represent all
possible states and is very useful when using Q-learning with a neural
network, since a neural network can handle a n-hot-vector.

4.2 Actions

In contrary to the actions in (Hester et al., 2010), that involve moving one
joint, and (Smart and Kaelbling, 2002) which uses higher level behaviours,
the actions that the robot can perform in this thesis are all single actions,
such as walking in a specific direction or kicking. Figure 6 shows the
thirteen actions the robot can perform.

8

Figure 6: Possible actions that the robot can perform.

4.3 Rewards

The robot learns from the rewards obtained from the environment. To
let the robot learn as much as possible by itself, minimal amount of re-
wards are desirable. However, as the state space increases, many trials
are needed to explore the states and reducing this amount of trials would
be preferred. Since some actions lead to a higher probability of scoring,
minimal guidance that encourages the robot to take these actions, can de-
crease the search space rapidly. Therefore, we experiment with different
rewards.

4.3.1 Minimal Reward

Initially, a reward is only given at the end of a trial. This minimal reward
is comparable with a real match, as only the final score is taken into
account. Scoring a goal results in a positive reward (2) and, when no goal
is scored within a minute, a negative reward (-2) is given. However, a
disadvantage of obtaining a reward only at the end of a match is that it
results in sparse rewards, which can lead to many trails needed to learn a
good policy, since many actions are needed to be taken before obtaining
any reward.

4.3.2 Ball Distance Reward

Minimal guidance by giving intermediate rewards is expected to decrease
the search space significantly. Since the ball is the most important object
during a match, because it needs to end up in the goal of the opponent,
minimal guidance uses the distance between the ball and the robot, and
between the ball and the goal as intermediate rewards.

9

4.3.2.1 Distance between the Ball and the Robot

Firstly, the distance between the robot and the ball is used as intermediate
reward, as movement to the ball is expected to be a good action, since the
robot has to move the ball towards the goal. If an action causes the robot
to be closer to the ball compared to the state before, a positive reward
(0.5) is given, otherwise a negative reward (-0.5) is given.

4.3.2.2 Distance between the Ball and the Goal

Another intermediate reward is the distance between the ball and the goal,
because an action that causes the ball to be closer to the goal is expected
to be a good action. If an action causes the ball to be closer to the goal,
a positive reward (1) is given, otherwise a negative reward (-1) is given.

To stimulate scoring using a kick, the reward for the distance between
the ball and the goal is higher than the reward for the distance between
the robot and the ball. If the robot scores by kicking, the distance to
the ball increases, which results in a negative reward. Due to the bigger
positive reward for the distance between the ball and the goal, the robot
still receives a positive reward when scoring using a kick.

4.3.3 Time Rewards

Furthermore, the time left for the trial is given as additional reward when
a goal is scored, to encourage the robot to score as fast as possible. The
robot is expected to score more by kicking using this reward, since the
time to score by kicking is lower than by walking the ball into the goal.
The time is scaled to a number between 0 and 1 and added to the reward
the robot received for scoring.

4.4 Network

Despite only the small amount of states used in this thesis, we use a neural
network to learn and predict the Q-values instead of a lookup table, which
would have used less memory as explained in 3.2. We chose to use a neural
network to be able to easily expand this thesis to research that uses many
states and actions.

A five-layer fully-connected network is used to learn and predict the Q-
values (Figure 3). The size of the input layer and the three hidden layers
equals the size of the state vector. The amount of nodes in the output
layer equals the amount of possible actions, which is thirteen. A rectified
linear unit (ReLU) is used as activation function for the input layer and
the three hidden layers. The output layer uses the identity function, since
Q-values can be both positive and negative.

4.5 Training using a Simulator

Q-learning is implemented within the framework of the Dutch Nao Team
2016 (Lagrand et al., 2016), which is based on B-Human 20153. The
only major differences are the ball detector and the behaviour engine4.
This framework uses SimRobot (Laue and Röfer, 2008) as simulation tool.

3https://github.com/bhuman/BHumanCodeRelease/tree/coderelease2015
4https://github.com/pkok/behavior-engine

10

https://github.com/bhuman/BHumanCodeRelease/tree/coderelease2015
https://github.com/pkok/behavior-engine

SimRobot uses external XML files that are loaded at runtime to model
the environment. These files can be easily edited to create the desired
scenario, such as the one versus one penalty scene shown in Figure 7. The
simulation is adjusted in order to have trials of 1 minute and a goal for
the opponent team if no goal is scored within this minute. A simulation
is used to circumvent the limitation a real robot has with the amount of
trials. Moreover, a fully observable field is used in simulation, to ensure
that the focus can be on learning behaviours, without having errors in the
position of the objects due to poor observations of the robot.

Figure 7: Penalty situation in SimRobot simulation.

A session is one training session in which a robot learns to score by re-
peatedly starting an attempt to score, a trial. Figure 8 shows an overview
of the training process, the outer (red) circle represents a trial while the
inner (blue) circle is executed every time the robot enters a different state.
When an action would be chosen every simulation cycle, different actions
would be executed while the robot is still in the same state, due to explo-
ration. The previously chosen action would only have had one simulation
step to execute itself, while they require more than one simulation cycle
to have some effect on the environment and to get a relevant reward.

By starting a session the network is initialised (1) with random weights
and the first trial is started. At the start of each trial the robots and the
ball are placed on their starting positions, the time is set to one minute
and a new attempt begins (2). The attacking team now tries to score
within a minute by repeatedly obtaining the state it is in (3), selecting
and performing an action (4), obtaining the reward (5) and updating the
network (6). The state information is obtained from the environment by
computing the state bin (section 4.1) of which a state vector is created.
Subsequently, the state vector is used as input for the network to pre-
dict the Q-values of the actions. Boltzmann action selection (3.3) is now
applied on the predicted Q-values to select the next action and by per-
forming this action, the next state and the reward are obtained from the
environment. Next, the Q-value is updated and the network is trained
with the state vector as input and the updated Q-values as output. These
steps are repeated until a trial ends, which is after one minute or after a
goal is scored. If the robot has scored x times in a row, the session ends,
otherwise, a new trial is started.

11

(1) Initialise

Network
(2) Reset Game (3) Get State

(4) Perform

Action

(5) Get Reward

(6) Train

Network

Finished

End of a Trial

Figure 8: Learning process of the robot (session). The outer (red) circle
represents a trial while the inner (blue) circle is executed every time the robot
enters a different state. A trials ends after 1 minute or after a goal is scored.
The session is finished when the robot has scored x times in a row, with x

being different for different experiments.

4.6 Evaluation

The robot has learnt a good action policy and stops training when it
has scored x times in a row. x differs for the different experiments, since
scoring by kicking is less reliable than walking the ball into the goal. In the
experiments in which a goal can be easily scored by walking, x is higher,
to ensure the robot has explored enough other actions and states before
it stops training. Lower values of x are used in situations where the robot
has to score by kicking, because one missed attempt quickly leads to going
to explore many other actions before trying the action that previously led
to a goal again. Since the network is always randomly initialised and high
variation in the amount of trials can occur between different sessions, each
experiment is performed multiple times. To evaluate the speed at which a
network learns to score, the average amount of trials needed to train the
network is computed. The performance of the learnt network is evaluated
by computing the accuracy over fifty attempts to score, by averaging over
the different sessions, formally defined as follows:

1

nsessions

nsessions∑
s=0

n
(s)
goals

nattempts
(4)

12

5 Experiments

This section will present the experiments that were performed together
with their results. Firstly, section 5.1 will explain the experiment to test
the effects of intermediate rewards. Secondly, the two methods to combine
states are compared in section 5.2. Finally, a one versus one situation is
tested in section 5.3. All experiments are performed with α = 1, γ = 0.2
and τ = 0.5 (as defined in Equation 1 and 2).

5.1 Effects of Intermediate Rewards

The first experiment involves only one robot and the ball. The robot has to
score in an empty goal. The robot always starts one metre behind the ball
and only uses the relative position from the ball to the robot as input from
the environment. This experiment is used to test the effects of different
intermediate rewards on the amount of trials needed to train and the
accuracy of the trained network. The intermediate rewards are expected
to decrease the search space of the robot and thus lower the amount of
trials. Since the focus of this experiment is to demonstrate the effect of
intermediate rewards and each experiment is performed twenty times, only
sixteen states are used for the ball to speed up the learning process. After
having scored ten times in a row (x = 10), the learning process is finished
and the network is saved. Firstly, no intermediate rewards are used as
baseline. Next, the distance between the robot and the ball or the distance
between the ball and the goal are added separately as intermediate reward.
Lastly, both intermediate rewards are added concurrently.

Figure 9: Average amount of trials of the sessions using different intermediate
rewards.

5.1.1 Results

Figure 11 shows the positions the robot has visited during the sessions
for the different rewards. The plots on the left hand side show the first
70% of the positions of the robot, which are spread out in all directions,

13

(a) (b)

Figure 10: The actions performed that led to a goal. (a) shows that last action
performed in a session to score. (b) presents all actions during a session that

led to a goal.

because the robot has to explore first. The plots on the right hand side
show the last 30% that are more focused toward the goal (red line). As
predicted, the last 30% of the sessions with no intermediate reward is
still exploring much in all directions. Contrarily, the sessions that did
receive intermediates rewards explore more in the direction of the goal.
Using both the distance between the robot and the ball, and the distance
between the ball and the goal as reward results in even more exploring in
the direction of the goal.

Furthermore, the amount of trials decreases when using additional in-
termediate rewards as shown in Figure 9. Receiving the distance between
the ball and the robot as intermediate reward results in a decrease of 34%,
while the intermediate reward given for the distance between the ball and
the goal causes a decrease of 54%. Using both intermediate rewards de-
creases the amount of trials by 75%.

When analysing the actions that led to the last goal in a session (Fig-
ure 10a, no significant difference can be found between the different in-
termediate rewards. Scoring by walking the ball into the goal is definitely
preferred to kicking, but when looking at all actions that led to a goal
10b, there are goals scored by kicking. However, when analysing the ac-
curacies shown in Figure 12, the accuracy for scoring by kicking is signif-
icantly lower than the accuracy for scoring by walking, which can explain
the lower interest in scoring by kicking, since it results in more missed
attempts and ten times scoring in a row is thus harder to achieve by kick-
ing. The lower accuracy for scoring by kicking can be explained by some
small offset in the positioning of the robot and the ball in the simulation,
which leads to different ways of hitting the ball and thus more variation
in the result of kicking the ball.

14

Figure 11: Positions the robot has visited during training. The red line
represents the goal.

15

Figure 12: Accuracy of the different actions that led to a goal using different
intermediate rewards.

5.2 Combining States by Multiplying or Addition

The next experiment compares the multiplying and additive methods of
combining states (section 4.1.3). A one versus one situation, with the
ball having sixteen states and eight states for the goalkeeper, is used to
compare the different methods. Since the additive method results in a
smaller state space, a decrease in the amount of trials is expected using
this method. Each experiment is performed five times to average the
results and the robot has to score five times in a row (x = 5), before the
learning process is finished and the network is saved.

5.2.1 Results

Figure 13 shows that the amount of trials needed to train the network is
indeed decreased by 58% when using the additive method. This can be
explained by the smaller search space used by the additive method. Figure
14 shows that the additive method does not have a negative effect on the
accuracy. In contrary, the accuracy of the additive method is higher than
the accuracy of the multiplying method. However, this can be the result
of the same offset in the simulation as mentioned in section 5.1.1, which
leads to more variation in the result of kicking the ball.

Figure 13: Average amount of trials of the sessions using the additive and
multiplying method for combining states.

16

Figure 14: Accuracy of the trained network using the additive and multiplying
method for combining states.

5.3 One versus One

In the last experiment, the goal is defended by a goalkeeper that does
not move. Simply walking forward and scoring is no longer possible and
a different tactic than the one used in 5.1 needs to be learnt. Different
amount of states are tested for both the attacker and the goalkeeper, which
are combined using the additive method. Furthermore, all intermediate
rewards (distance between robot and ball, distance between ball and goal,
and time reward) are used, to decrease the amount of trials needed to
score. The training process is finished after three goals are scored in a
row (x = 3), or after 7500 trials, which is about thirty hours on a Intel
6700K processor.

5.3.1 Results

Figure 15 shows the number of goals scored during the training process.
Using sixteen states for the ball and either eight or sixteen for the goal-
keeper results in a good action policy in less than 300 trials (Figure 15a.
However, when using more states, the robot did not satisfy the condition
of scoring five times in a row within 7500 trials as shown in Figure 15b.
Nevertheless, the figure shows that the amount of trials needed to score
increases when using more states, this is due to having more state-action
pairs that are explored before scoring.

Figure 16: Accuracy of the trained network for a one-versus-one scenario.

17

(a) (b)

Figure 15: Number of goals scored by the robot using different amount of
states for training a one-versus-one scenario. Scoring five times in a row stops

the training process.

The accuracy of the trained networks using sixteen states for the ball and
either eight or sixteen for the goalkeeper is shown in Figure 16. Using
more states results in a slightly higher accuracy, since a more precise
action policy can be learnt. For example, the robot can walk forward to
the ball, turn a little bit, and then kick the ball into the goal.

6 Conclusion and Discussion

The experiments show that a robot is able to learn how to score a penalty
using Reinforcement Learning. With no goalkeeper defending the goal,
walking the ball into the goal is the most successful behaviour for scoring.
This can be explained by the fact that kicking is less reliable, because
the ball can be hit at different positions, resulting in the ball moving in
a slightly different direction and missing the goal. Having a goalkeeper
that defends the goal results in a behaviour that scores by kicking, since
the path taken by walking straight ahead with the ball is now obstructed
by the goalkeeper, while needing on average 84% more trials to optimize.

The search space and thus the amount of trials can be reduced in differ-
ent manners, without effecting the accuracy of the learnt policy. Firstly,
intermediate rewards used to guide the learning by taking the distance
between the ball and the robot, and between the ball and the goal into
account, can reduce the amount of trials up to 75%. Furthermore, com-
bining states additively instead of by multiplying to decrease the size of
the state vector reduces the amount of trials with 58%.

Currently, the reward for scoring a goal and missing a goal have the same
value with the difference being that when scoring the reward is applied
positively (2) and when missed negatively (-2). However, most attempts
do not lead to a goal, thus a negative reward is given more often, causing
the positive reward to have relatively small impact on the Q-values. Fu-
ture research can experiment with different rewards to increase the impact
of positive rewards on the Q-values.

18

Figure 17: Non equally divided bins, more bins used in front of the robot and
less bins behind the robot.

Furthermore, objects in states far away from the robot are often in the
same bin. For example, the robot and the goal are in the same bin at the
start of a trial (Figure 4b). However, having the goal and the goalkeeper
in different bins seems to be more useful, since the goalkeeper is defending
the goal. If the robot knows the difference between the positions of the
goal and the goalkeeper, the robot can learn to kick past the goalkeeper
into the goal. Future research can experiment with different state bins, for
example, by using non equally divided bins, such as more (and smaller)
bins in front of the robot and less (and bigger) bins behind the robot as
shown in Figure 17.

Besides, the state space of the robot can be reduced to only that part
the robot can observe (Figure 18), to ensure that it is more realistic to a
real robot, and simpler to extend to a real robot. When extending to a
real robot, a network that is trained with simulation can be used as initial
network for training on a robot to optimise it further for use on the real
robot, also known as transfer learning (Taylor and Stone, 2009).

This thesis presents a foundation of learning the actions that form a
tactic. The next step is to extend this research to more complex scenarios,
such as a moving goalkeeper, or a goalkeeper that learns its behaviour
concurrently. Another complex scenario is a two-versus-one situation, in
which a teammate is added to be able to learn team tactics.

Figure 18: Non fully observable states, such as a real robot observes the world.

19

References

Baykal-Gürsoy, M. and Gürsoy, K. (2007). Semi-markov decision pro-
cesses: Nonstandard criteria. Probability in the Engineering and Infor-
mational Sciences, 21(4):635–657.

Hester, T., Quinlan, M., and Stone, P. (2010). Generalized model learn-
ing for reinforcement learning on a humanoid robot. In Robotics and
Automation (ICRA), 2010 IEEE International Conference on, pages
2369–2374. IEEE.

Lagrand, C., Negrijn, S., de Kok, P., van der Meer, M., van der Wal, D.,
Kronemeijer, P., and Visser, A. (2016). Team qualification document
for RoboCup 2017, Nagoya, Japan. Technical report, University of
Amsterdam, Science Park 904, Amsterdam, The Netherlands.

Laue, T. and Röfer, T. (2008). Simrobot-development and applications.
In International Conference on Simulation, Modeling and Programming
for Autonomous Robots (SIMPAR).

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare,
M. G., Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G.,
et al. (2015). Human-level control through deep reinforcement learning.
Nature, 518(7540):529–533.

Ng, A., Coates, A., Diel, M., Ganapathi, V., Schulte, J., Tse, B., Berger,
E., and Liang, E. (2006). Autonomous inverted helicopter flight via re-
inforcement learning. Experimental Robotics IX: The 9th International
Symposium on Experimental Robotics, pages 363–372.

Pyeatt, L. D. (2003). Reinforcement learning with decision trees. In
Applied Informatics, pages 26–31.

Röfer, T., Laue, T., Kuball, J., Lübken, A., Maaß, F., Müller, J., Post, L.,
Richter-Klug, J., Schulz, P., Stolpmann, A., Stöwing, A., and Thielke,
F. (2016). B-Human team report and code release 2016.

Smart, W. D. and Kaelbling, L. P. (2000). Practical reinforcement learning
in continuous spaces. In ICML, pages 903–910.

Smart, W. D. and Kaelbling, L. P. (2002). Effective reinforcement learning
for mobile robots. In Robotics and Automation, 2002. Proceedings.
ICRA’02. IEEE International Conference on, volume 4, pages 3404–
3410. IEEE.

Stone, P., Sutton, R. S., and Kuhlmann, G. (2005). Reinforcement learn-
ing for robocup soccer keepaway. Adaptive Behavior, 13(3):165–188.

Sutton, R. S. and Barto, A. G. (1998). Reinforcement learning: An intro-
duction, volume 1. MIT press Cambridge.

Taylor, M. E. and Stone, P. (2009). Transfer learning for reinforcement
learning domains: A survey. Journal of Machine Learning Research,
10(Jul):1633–1685.

Watkins, C. J. C. H. (1989). Learning from delayed rewards. PhD thesis,
King’s College, Cambridge.

20

	Introduction
	Related Work
	Q-learning
	Q-learning with a Lookup Table
	Q-learning with a Neural Network
	Action Selection

	Method
	States
	Local versus Global Positions
	Discretised Positions
	Combining States from Different Objects

	Actions
	Rewards
	Minimal Reward
	Ball Distance Reward
	Time Rewards

	Network
	Training using a Simulator
	Evaluation

	Experiments
	Effects of Intermediate Rewards
	Results

	Combining States by Multiplying or Addition
	Results

	One versus One
	Results

	Conclusion and Discussion

