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How is the final grade computed

The final grade of the Particle Physics 2 course is calculated as the average between the CP and the QCD parts. In order to
pass the course the total grade needs to be larger than 5.5 e.g. if the average results into 5.49 your score will be downgraded
to 5 and you will not pass, if it is 5.5 then it will be rounded up to 6 and you have succeeded.

For each individual part, you have the possibility to get maximum two extra bonus points by doing well with the homework
assignments. The way to profit from the scheme is given below. However, it needs to be pointed out that you can take
advantage of this bonus only if your grade for each individual exam (e.g. only the QCD exam for what concerns the QCD
homework) is larger than 5.5.

If your QCD exam grade is larger than 5.5 then the grade of the QCD part (similarly for the CP part) is calculated as the
maximum between the exam and the weighted average of the final exam and the weekly exercises. The relevant weight
is 85 : 15 i.e. 85% of the grade comes from the final exam and 15% from the sum of the hand-in exercises. The formula
based on which the grade of each individual part (i.e. here for QCD) is calculated is:

grade = max

([
0.85 · (exam)+0.15 · 1

N

N

∑
i=1

(homework)i

]
,
[
exam

])

where (exam) is the grade of the final exam, (homework)i is the grade of each individual hand-in exercise set, and N
is the total number of exercise sets you have to hand in. Please note that no matter if you handed in exercises one time
or as many times as the number of lectures, the average of the grade related to the exercises will be computed over the
total number of lectures (i.e. you should hand-in as many sets as the number of lectures to take advantage of the grading
scheme).

If the grade of the QCD exam is lower than 5.5 then this reflects also the final QCD grade (similarly for the CP part).

If you fail the course then there is a retake exam which is announced well in advance to all students. You can participate
in this retake exam even if you have succeeded in the initial attempt. However, this last grade of the retake exam will be
considered in the final grade evaluation regardless of the score. The final QCD grade is calculated in an identical way as
described before by replacing the grade of the exam with the grade of the retake.

After each lecture (with obviously the exception of the first one), you may hand-in the solution to the assigned homework
exercises. The points are granted based on the correctness of the solution of each exercise. The value of each exercise
is indicated clearly (i.e. the number under the square brackets). The final exercise sheet, may handed in before the final
exam.

The exam is ‘open book’ so that you may consult the lecture notes and the books of Griffiths, Halzen & Martin and
Aitchison & Hey, but not the worked-out exercises or any other material.

Some examples:

Example A: A student has a homework average of 9.5 in QCD. The same student scores 7.0 in the final exam. The final
QCD grade is then the maximum between the grade of the exam (i.e. 7.0) and the weighted average between the exam
and the homework i.e. 0.85 ·7.0+0.15 ·9.5 = 7.375 → 7.4. So in this case the final QCD grade will be 7.4.

Example B: A student has a homework average of 6.0 in QCD. The same student scores 8.7 in the final exam. The final
QCD grade is then the maximum between the grade of the exam (i.e. 8.7) and the weighted average between the exam
and the homework i.e. 0.85 ·8.7+0.15 ·6.0 = 8.295 → 8.3. So in this case the final QCD grade will be 8.7.

Example C: A student has a homework average of 9.5 in QCD. The same student scores 4.9 in the final exam. Note that
the student in this case does not have the possibility to profit from his homework score, which would have raised the QCD
grade 0.85 ·4.9+0.15 ·9.5 = 5.59 → 5.6. So in this case the final QCD grade will be the grade of the exam i.e. 4.9.
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Chapter 1

Introduction

Already from early days, humans tried to understand the world that surround us i.e. how it is formed, which are the basic
constituents and what are the fundamental laws that govern our Cosmos. Although there is evidence that the theory of the
atom was also developed in India, I can not help but mentioning the developments that took place in ancient Greece.

Greek atomism, the term originating from the Greek word ατoµo i.e. uncuttable, was a response to problems in Greek
philosophy. One aspect had to do with the problem of change – were we in a constant state of flux or was change illusory?
How could one account for the seemingly endless multiplicity of Nature? Greek atomism was a means of answering
philsophical difficulties and explaining the natural world. Around 440BC Leucippus of Miletus1, in his lost book ”The
Greater World System,” originated the atom concept. He and his pupil, Democritus2 of Abdera, refined and extended it in
future years. There are five major points to their atomic idea:

• All matter is composed of atoms, which are bits of matter too small to be seen. These atoms can not be further split
into smaller portions.

• There is a void, which is empty space between atoms. In modern words, we would call this void vacuum.

• Atoms are completely solid objects. There can be no void inside the atom, otherwise it would be subject to changes
from outside and would thus disintegrate i.e. it will no longer be an atom.

• Atoms are homogeneous, with no internal structure.

• Atoms are different in their sizes, their shapes and their weight, the latter property was added at a later stage by
Epicurus3.

Almost all of the original writings of Leucippus and Democritus are lost. About the only sources we have for their
atomistic ideas are found in quotations of other writers. The idea of the atom was strongly opposed by Aristotle and
others. Because of this, the atom receeded into the background. Although there is a fairly continuous pattern of atomistic
thought through the ages, only a relative few scholars gave it much thought. It was not until 1897 and J. J. Thomson’s
discovery of the electron that the atom was shown to have an internal structure.

1.1 The discovery of the electron

The previous century was the period during which the idea that all matter is composed of a few types of elementary
particles, that can no be further subdivided, has been established. The list of elementary particles has changed over time,
as new particles have been discovered and some old ones were proven to be composed of elementary constituents. Through
all these changes, the one particle type that has always remained on the list was the electron.

The electron was the first elementary particle to be ever identified. It is also by far the lightest of the elementary particles
that have charge and one of the few that does not decay into other particles. The discovery of the electron is credited

1 Leucippus of Miletus: Greek philosopher that lived in the early 5th century BC in Miletus
2 Democritus: Greek pre-Socratic philosopher from Abdera, Thrace (460-371 BC)
3 Epicurus: Greek philosopher from Samos (341-270BC)

1
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to J. J. Thomson4. Thomson was awarded the 1906 Nobel Prize in Physics for this discovery and for his work on the
conduction of electricity in gases.

Fig. 1.1: One of the tubes that J. J. Thomson used to conduct his cathode-ray tubes experiments.

Thomson used Newton’s second law of motion to obtain a general formula that would explain the measurements of the
cathode-ray deflection, produced in his experiment by various electric or magnetic forces in terms of the properties of
the cathode-ray particles. In the cathode-ray tube, shown in fig. 1.1, the particles pass through a region (i.e. the deflection
region) in which they are subject to electric or magnetic forces acting at right angles to their original deflection and then
through a force free region (i.e. the drift region) in which they travel freely until they hit the end of the tube. A glowing
spot appears at the place where the ray particles hit the glass at the end of the tube. This made it easy for the observer to
measure the displacement of the ray produced by the forces acting on it, by measuring the distance between the locations
of the glowing spot when the forces were on and when they were switched off. The displacement could be calculated
according to

d =
F × lde f lection × ldri f t

m×u2 , (1.1.1)

where d is the displacement of the ray-particles at the end of the tube, F is the force that acts upon the particles, lde f lection
and ldri f t are the length that particles travel in the deflection and drift regions, respectively, m is the mass of the particles
and u their velocity. The main idea behind the experiment is the way that the deflection is controlled via the external
forces that are applied. These forces give an acceleration to the ray-particles with a component perpendicular to the
original motion. In his experiment, Thomson measured the displacement produced by various electric and magnetic forces
acting on the ray. Out of the quantities used in Eq. 1.1.1, the lengths of the deflection and drift regions are known quantities
determined with high accuracy from the design of the cathode ray tube and the particle mass and velocity are the quantities
that one would like to measure. The electric force acting on the particle is proportional to the charge of the particle itself.
This makes the displacement measured with Eq. 1.1.1 a combination of different variables or parameters (i.e. mass and
charge) of the ray-particles, but can not constrain them individually. To overcome this obstacle, Thomson measured the
deflection induced by magnetic forces. A magnetic force is proportional to the the charge of a particle as well as, unlike
electric forces, to its velocity. By measuring the deflections by both electric and magnetic forces, Thomson was able to
determine at the same time the velocities and the ratio of electric charge to mass of the ray-particles.

The fact that the particles were 1000 times lighter than the known atoms suggested their elementary nature. Still, there
were hints that led Thomson to further support his conclusion. On of the hints was given by the value of the charge to
mass ratio that seemed not to depend on the circumstances under which the measurement was conducted (e.g. type of gas
in the tube, type of cathode, even though the velocities were quite different). At first Thomson did not use any specific
name for the particles that he discovered. The name was given by George Stoney5 as the fundamental unit quantity of
electricity.

4 Sir Joseph John Thomson, (18 December 1856 ? 30 August 1940) was an English physicist who became a senior professor at the University
of Cambridge.
5 George Johnstone Stoney (1826-1911) was an Anglo-Irish physicist.
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1.2 The atomic scale

The concept of atoms was introduced in the early 1800s by John Dalton. He was the first first to publish a table of relative
atomic weights, containing six elements, namely: hydrogen, oxygen, nitrogen, carbon, sulfur, and phosphorus. The atom
of hydrogen conventionally assumed to weight 1. A snapshot of one of Dalton’s report where he was discussing his studies
can be seen in 1.2. Dalton’s theory of the atoms can be summarised by the following points:

• Elements are made of extremely small particles called atoms.

• Atoms of a given element are identical in size, mass, and other properties; atoms of different elements differ in size,
mass, and other properties.

• Atoms cannot be subdivided, created, or destroyed.

• Atoms of different elements combine in simple whole-number ratios to form chemical compounds.

• In chemical reactions, atoms are combined, separated, or rearranged.

Fig. 1.2: One of the pages in a report from J. Dalton describing his studies on the atoms.

At a later stage, when Thomson discovered electrons, he also built one of the first atomic models. Thomson knew that
electrons had a negative charge and thought that matter must have a positive charge. His model looked like raisins stuck
on the surface of a lump of pudding.

In 1900 Max Planck, a professor of theoretical physics in Berlin showed that when you vibrate atoms strong enough,
such as when you heat an object until it glows, you can measure the energy only in discrete units. He called these energy
packets, quanta.Physicists at the time thought that light consisted of waves but, according to Albert Einstein, the quanta
behaved like discrete particles. Physicists call Einstein’s discrete light particle, a photon. Atoms not only emit photons,
but they can also absorb them. In 1905, Albert Einstein wrote a ground-breaking paper that explained that light absorption
can release electrons from atoms, a phenomenon called the ”photoelectric effect.” Einstein received his only Nobel Prize
for physics in 1921 for his work on the photoelectric effect.

In 1911, Ernest Rutherford via his experiments probed the internal structure of the atom by discovering, as we will see
in the next section, the nucleus, the positively charged core of the atom. In 1912 a Danish physicist, Niels Bohr came up
with a theory that said the electrons do not spiral into the nucleus and came up with some rules for what does happen.
Bohr introduced the idea that electrons can orbit only at certain allowed distances from the nucleus. He also suggested
that atoms radiate energy when an electron jumps from a higher-energy orbit to a lower-energy orbit. Furthermore, an
atom could absorb energy when an electron gets boosted from a low-energy orbit to a high-energy orbit.



4 1 Introduction

1.3 The nucleus

The atomic model introduced by Thomson was quite popular until around 1913, when Geiger and Marsden, under the
supervision of Rutherford, performed the well known by now gold foil experiments. They pointed a beam of α-particles
at a thin foil of metal and measured the scattering pattern by using a fluorescent screen. The setup used is schematically
depicted in fig. 1.3. They spotted α-particles bouncing off the metal foil in all directions, some right back at the source.
This should have been impossible according to Thomson’s model: the α-particles should have all gone straight through.
Obviously, those particles had encountered an electrostatic force far greater than Thomson’s model suggested they would,
which in turn implied that the atom’s positive charge was concentrated in a much tinier volume than Thomson imagined.

Fig. 1.3: A schematic representation of the experiment that Rutherford conducted.

Rutherford and his collaborator soon dismissed Thomson’s model of the atom, and instead proposed a model where the
atom consisted of mostly empty space, with all its positive charge concentrated in its center in a very tiny volume, the
nucleus, surrounded by a cloud of electrons.

The discovery of the neutron by Chadwick (1932) showed that atomic nuclei are made up of protons and neutrons. It was
also clear that, in addition to gravitation and the electromagnetic force, there should exist two short-range forces in nature:
a strong force which binds the nucleons together and a weak force which is responsible for radioactive β -decay. These
forces had to be short-range because they were not felt at atomic scales.

1.4 The particles and forces of the Standard Model

The traditional goal of particle physics has been to identify what appears to be structureless units of matter and to under-
stand the nature of the forces acting upon and between them. The connection between fundamental matter and forces was
made clear by Thomson’s discovery of the electron and Maxwell’s theory of the electromagnetic field, which together by
many are considered to mark the birth of modern particle physics. In the last part of the previous century and in the be-
ginning of the current one, significant progress has been made not only in the development of theories that describe three
of the fundamental forces i.e. the electromagnetic, the weak and the strong forces, but there were also compelling and
convincing experimental evidence of their applicability. This collection of theories is usually called the Standard Model.

It turns out that the units of matter are fermions i.e. particles with half-integer spin (ℏ/2). There are two types of fermions,
the leptons and the quarks, which are both considered elementary particles. The leptons are a generalisation of the electrons
and interact electromagnetically (i.e. charged and neutral leptons) and weakly (i.e. neutral leptons). On the other hand the
quarks, are considered to be the constituents of hadrons and interact via all interactions i.e. electromagnetically, weakly
and strongly. The weak and electromagnetic interactions of particles are described by the electroweak theory developed
by Glashow, Weinberg and Salam6, which is in turns a generalisation of quantum electrodynamics or QED. The strong

6 Also known as GWS theory.
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interactions however, which will be the main focus of these lectures, are described by the Quantum ChromoDynamics
(QCD). All three interactions are types of gauge theories, though realised in different ways.

1.4.1 Leptons of the Standard Model

Forty years after the discovery of the electron by J. J. Thomson, the first member of another generation of leptons, the muon
µ , was found independently by Street and Stevenson, and by Anderson and Neddermeyer. Following the convention of
the electron, µ− is the particle and µ+ is the antiparticle. In 1975 Perl et al. discovered yet another replica of the electron.
This particle was significantly heavier (m ≈ 1.78 GeV/c2) than the electron and was the tau τ− with its antiparticle τ+.
Both particles behave quite similarly as the electrons and interact electromagnetically and weakly. These particles have
half-integer spin of 1/2.

An interesting observation about the behaviour of leptons is related to the fact that their decay into lighter leptons and a
photon (e.g. τ− → µ−+ γ) is not observed. This indicated the necessity for a new conservation law which came in the
form of a new additive quantum number called lepton flavour. We thus have the electron flavour number i.e. Le(e−) = 1
and Le(e+) =−1, the muon flavour number i.e. Lµ(µ

−) = 1 and Lµ(µ
+) =−1, and the tau flavour number i.e. Lτ(τ

−) = 1
and Lτ(τ

+) =−1. Each number is postulated to be conserved in all leptonic processes.

The electromagnetic interactions of these particles are the same, no matter what the flavour is. For the weak interactions,
leptons are accompanied by their neutral partner, the neutrinos. The one emitted in the β decay of electrons was introduced
by Pauli in 1930 as a last resort to restore the conservation laws of energy, momentum and angular momentum. These
neutrinos are:

• νe with Le = 1 and the antineutrino νe with Le =−1,

• νµ with Lµ = 1 and the antineutrino νµ with Lµ =−1,

• ντ with Lτ = 1 and the antineutrino ντ with Lτ =−1,

The realisation of the nature of antineutrinos came in 1956 by Cowan et al. by observing that they produce positrons via
the inverse β decay:

νe + p → n+ e+ (1.4.1)

In addition, it was realised that the different neutrino flavours correspond indeed to different particles i.e. νe ̸= νµ by
observing the reaction νµ + p → µ++n while at the same time the reaction νµ + p → e++n was not observed (i.e. an
upper limit on the cross-section was given).

In summary there are three generations of leptons, grouped by flavour in charged and neutral: (νe,e−, νµ ,µ
− and ντ ,τ

−.
Some of the properties of these three generations are given in Table 1.1.

Particle Mass (MeV) Q/e Le Lµ Lτ

νe ≤ 2×10−6 0 1 0 0
νe ≤ 2×10−6 0 -1 0 0
e− 0.511 -1 1 0 0
e+ 0.511 1 -1 0 0
νµ ≤ 0.19 0 0 1 0
νµ ≤ 0.19 0 0 -1 0
µ− 105.66 -1 0 1 0
µ+ 105.66 1 0 -1 0
ντ ≤ 18.2 0 0 0 1
ντ ≤ 18.2 0 0 0 -1
τ− 1777 -1 0 0 1
τ+ 1777 1 0 0 -1

Table 1.1: The basic properties of the Standard Model leptons.
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1.4.2 Quarks of the Standard Model

Quarks are the constituents of hadrons, in which they are bound by the strong force. The quarks are grouped in three to
form a baryon (e.g. p containing uud) or combined with antiquarks to form mesons (e.g. π− containing ud).

Evidence for the composite nature of hadrons was provided in the 60s and 70s. Elastic scattering of electrons from protons
indicated that the latter was not point-like (we will see this later in Chapter 6), but had an approximately exponential
distribution of charge with a root mean square value of 0.8 fm. In addition, in the field of baryon and meson spectroscopy,
several excited states were revealed. The emerging picture resembled strongly the one associated to the atomic and nuclear
physics. A proposal by Gell-Man and Zweig came in 1964 suggested that baryons are formed by the combination of three
spin-1/2 constituents called quarks, while mesons contained a combination of a quark and its antiparticle.

When this proposal was put forward, three types of quarks were enough to account for the known (at that time) hadrons.
These quarks were: u-quark (up) with a charge of 2/3, d-quark (down) with a charge of -1/3 and the s-quark (strange)
with a charge of -1/3. Soon later, and mainly based on arguments related to the quark-lepton symmetry, a fourth quark
was proposed, which Glashow, Iliopoulos and Maiani in 1970 estimated to have a mass of about 3-4 GeV. At a later stage
(i.e. in 1974) Gaillard and Lee performed more detailed calculations and predicted m ≈ 1.5 GeV/c2. The prediction was
confirmed in November of the same year with the discovery of the J/Ψ which was soon identified as a compound state
of cc, with c being the fourth quark called charm. The discovery of the third lepton generation hinted for the existence
of a relevant third generation of quarks. The discovery of the b-quark (i.e. beauty) came shortly after, in 1977, from the
observation of the heavy mesonic states known as ϒ , identified as a bound bb state. Finally, the three generations of quarks
was completed with the discovery of the top quark by the CDF and D0 collaborations. A summary of the quarks and some
of their basic properties can be seen in Table 1.2.

Particle Mass (MeV) Q/e Strangeness Charm Beauty Topness
u 2 2/3 0 0 0 0
u 2 -2/3 0 0 0 0
d 5 -1/3 0 0 0 0
d 5 1/3 0 0 0 0
c 1200 2/3 0 1 0 0
c 1200 -2/3 0 -1 0 0
s 100 -1/3 -1 0 0 0
s 100 1/3 1 0 0 0
t 174000 2/3 0 0 0 1
t 174000 -2/3 0 0 0 -1
b 4200 -1/3 0 0 -1 0
b 4200 1/3 0 0 1 0

Table 1.2: The basic properties of the quarks of the Standard Model.

1.4.3 The discovery of more particles

After the discovery of the proton, many more baryons were discovered, some of them seemed to behave strangely. These
particles were produced in big numbers very fast (i.e. on a time scale of 10−23 sec) but they decayed very slowly, typically
on a time scale of about 10−10 sec. This suggested that their creation process is governed by a different procedure as
compared to their decay. The strange particles, that happened to contain also a strange quark, are produced by the strong
interaction while they decay weakly. In 1953 Gell-Man and Nishijima suggested to assign a new property, a new quantum
number to every particle that Gell-Man called strangeness. This new quantum number is conserved in strong interactions,
contrary to weak interaction where this number is not preserved.

Soon enough, in 1961, Gell-Man introduced what is know as the Eightfold Way. Based on this, the mesons and baryons
were arranged, initially, based on their charge and strangeness. An example is given in fig. 1.4, where the members of the
meson octet are presented. In both cases the diagonal lines present the members of the group with the same charge.
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Fig. 1.4: The meson (left) and the baryon (right) octets.

Soon enough this classification illustrated its predicted power. Figure 1.5 presents the members of the baryon decuplet.
At the time when this particles were positioned in the triangle, nine out of ten particles were already discovered. The
remaining unknown particle had charge -1 and strangeness number -3 and it was expected to be positioned at the lower
edge of the shape. Gell-Man went on to predict the existence of this multi-strange particle and suggested how this can be
produced. Not long after, around 1964, the Ω− was discovered.

Fig. 1.5: The baryon octet (left) and decuplet (right).

1.4.4 Interactions and mediators in the Standard Model

According to the Standard Model of particle physics, there are four fundamental forces in nature: gravitational, weak,
electromagnetic and strong. To each of these forces, a dedicated theory is developed and a relevant mediator, a particle
carrier of the force is associated. The gravitational force is described by the general theory of relativity and its mediator
which in many cases is referred to as the graviton. The weak force is described by the flavordynamic theory or better by
the Glashow-Weinberg-Salam (GWS) theory. It accounts for the nuclear β decay, the decay of the pion, the muon and
many strange particles. The mediators of the weak force are the W± and Z bosons. The electromagnetic interaction is
described in terms of Quantum ElectroDynamics or QED. Its classical representation was developed by Maxwell, while
it was refined by people like Tomonaga, Feynman and Schwinger in around 1940-1950. The mediator in QED is the
photon. Finally, the strong force is mediated by the gluons and is described by the theory that emerged last among all,
around 1970, the Quantum ChromoDynamics, the topic of these lectures. Figure 1.6 summarise the three generations of
matter in terms of leptons and quarks, the gauge bosons also known as force mediators and the Higgs boson. The latter
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is the representation of the Higgs field which is believed to explain why some fundamental particles have mass while the
symmetries controlling their interactions should require them to be massless, and why the weak force has a much shorter
range than the electromagnetic force.

Fig. 1.6: The Standard Model of elementary particles, with the three generations of matter, gauge bosons in the fourth
column, and the Higgs boson in the fifth.

1.4.4.1 Quantum ElectroDynamics - QED

Quantum ElectroDynamics or QED is the simplest of the dynamic theories of particle physics. It describes all electromag-
netic phenomena, using one basic diagram that presents an elementary process and is shown in fig. 1.7. In this Feynman
diagram time flows from left to right, horizontally. It can be read as follows: an electron (a lepton or even a quark in
general) enters, emits a photon and exits.

Fig. 1.7: The basic diagram that represents the most elementary process in QED.

Combining two of these elementary diagrams allows to describe more basic processes as the one presented in fig.1.8. This
figure presents the scattering process between two electrons, also known as Møller scattering. It is seen that the process is
mediated by a virtual photon and its cross-section is easy to be calculated using the Feynman rules that will be discussed
in Chapter 4.

Particles decaying electromagnetically have a typical lifetime of 10−16 sec. The strength of the electromagnetic interaction
is characterised by the coupling constant, known as the fine structure constant α (α = e2/ℏc). The value of α is estimated
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Fig. 1.8: The diagram describing the electron-electron scattering, known as Møller scattering.

to be 1/137 with very high accuracy. It should be noted that it is believed that the fine structure constant is not a real
constant but changes very slowly with energy, as we will see later in this chapter.

1.4.4.2 Weak interactions

Weak interactions are of fundamental significance in particle physics and are visible in processes involving leptons and
quarks. The coupling constant is significantly smaller than the one of the electromagnetic force and it is of the order of
10−6. Particles decaying weakly have a typical lifetime of > 10−13 sec. There are two kinds of such interactions: the
charged, mediated by the W-bosons, and the neutral, mediated by the Z-boson.

Fig. 1.9: The basic diagram that represents the most elementary neutral process in the GWS theory.

The diagram that is the basis of the neutral weak interactions is seen in fig. 1.9. It describes a Z-boson being emitted
by an electron that enters and then exits. As in the case of QED, the combination of two of these diagrams can describe
processes like the one that can be seen in fig. 1.10. The figure presents the scattering between an electron and a neutrino,
which is mediated by there Z-boson.

On the other hand, the charged weak decay is mediated by the charged W-bosons and its fundamental diagram can be seen
in fig. 1.11.

Charged weak decays can occur in the presence of leptons as illustrated in fig. 1.12-left. A simple inversion of the neutrino
line in the bottom part allows to describe the muon decay process (µ− → νµ + e−+νe), presented in fig. 1.12-right.
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Fig. 1.10: The diagram describing the electron-neutrino scattering.

Fig. 1.11: The basic diagram that represents the most elementary charged process in the GWS theory.

Fig. 1.12: The diagram describing the muon-neutrino charged scattering in the left plot. The right diagram results from
the inversion of the line of the electron’s neutrino and describes the muon decay.
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The charged weak decays are the only ones where the flavour of a quark can change during the process. A perfect example
is the decay of the neutron (n → p+ e−+νe) that is described by the diagram of fig. 1.13-left.

Fig. 1.13: The diagram describing the decay of the neutron (left) and of the Λ -baryon (right).

One interesting possibility though emerges by the observation of processes where strangeness changes, such as the decay
of the Λ -baryon (Λ → p+π−). This process involves the conversion of a strange-quark to an up-quark, via the exchange
of a W-boson as illustrated in fig. 1.13-right.

The solution to this was given by Cabbibo in 1963, and extended by Glashow, Iliopoulos and Maiani in 1970 and by
Kobayashi and Maskawa in 1973. They suggested that the three quark generations have internal correlations and in
particular that the d, s and b quarks are transformed to their respective prime particles that are linear combinations of
the initial ones according to:




d′

s′

b′


=




Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb






d
s
b




The 3×3 array is called the Kobayashi-Maskawa matrix and provides the coupling of u, c and t quarks to d, s and b.

1.4.4.3 Quantum ChromoDynamics - QCD

Quantum chromodynamics or else QCD is the theory that describes the strong interaction. It describes all strong phenom-
ena, using one basic diagram that presents an elementary process and is shown in fig. 1.14. The diagram can be read as
follows: a quark enters, emits a gluon and exits.

QCD is quite similar in many ways to QED however, as we will see later, it has also distinct and fundamental differences.
As in the case of QED, the combination of two similar diagrams as the one in fig. 1.14 can describe a known process i.e.
the interactions between two quarks, as illustrated in fig. 1.15.

One of the fundamental differences of QCD with respect to QED is the fact that although in QED there is only one charge,
in QCD the equivalent of the charge is the color. There are three kind of colors in QCD, that are conventionally called: red
(R), green (G) and blue (B). Gluons have two colors, carrying one unit of color and one of anticolor. There are 3×3 = 9
possibilities for the gluons but as we will see in Chapter 2, there are only 8. Since the gluons carry color, they can also
couple directly to other gluons making the existence of gluon-gluon vertices possible. Another difference comes from the
fact that particles decaying strongly have typical lifetimes of 10−23 sec.

The coupling constant is denoted by αs and as in the case of QED is not a constant. In contrast to QED though, we will see
that the strong coupling constant changes quite rapidly as a function of the distance between the interacting particles. We
will see in Chapter 9 that at large distance αs is big, making the observation of quarks and gluons move as free particles
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Fig. 1.14: The basic diagram that represents the most elementary process in QCD.

Fig. 1.15: The lower order diagram that describes the interaction between two quarks.

impossible. This phenomenon is called confinement. However, at short distances αs becomes quite small, allowing the
quarks e.g. within a proton to move freely without interacting much with their neighbouring quarks. This phenomenon is
called asymptotic freedom and its existence was postulated in 1973 by Frank Wilczek, David Gross, and independently
by David Politzer the same year. All three shared the Nobel Prize in physics in 2004.

In QED, a similar effect is observed which can be understood if one thinks that the vacuum itself behaves like a dielectric
and creates electron-positron pairs as shown in the Feynman diagrams of fig. 1.16. The resulting vacuum polarisation
screens the charge and reduces the field. This screening is reduced and eventually disappears if one approaches the charge.

Fig. 1.16: The lower order diagrams that describe the vacuumm polarisation in QED.
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An analogous picture emerges in QCD, however with the addition of the gluon-gluon vertices that we saw before. The
main difference now is that in QCD the effect is opposite i.e. there is a competition between the quark polarisation diagram
that tends to increase αs and the corresponding gluon diagram that decreases the coupling constant. What the effect will
be depends on the number if flavours and colors according to

a = 2 f −11n, (1.4.2)

where f is the number of flavours and n is the number of colors. It turns out that f = 6 and n = 3, resulting in a negative
value of a of -21. This means that the QCD coupling constant decreases at small distances.

Finally it is important to note that the particles that stream freely in nature, are colourless. Quarks are confined in colourless
configurations of three (baryons) or together with an antiquark (forming the mesons).

1.4.4.4 Conservation laws

We already discussed about the lifetime of particles that decay electromagnetically, weakly or strongly. It is now time to
look at some basic conservation laws. The first part of these laws is related to kinematics:

• Conservation of energy e.g. a particle can not decay spontaneously into particles heavier than itself

• Conservation of momentum

• Conservation of angular momentum

In addition to the previous constrains, there are also laws related to quantum numbers:

• All three interactions conserve the charge.

• Strong interactions conserve color.

• All three interactions conserve the baryon number.

• Lepton number is conserved in particle physics. Until recently there was no indication of a cross-talk or mixing between
different leptons. However, neutrino oscillations make the previous statement not precise enough.

• Quark flavour is conserved in the strong and electromagnetic interactions.

Fig. 1.17: The suppression of the decay of the φ -meson into three pions (right diagram) compared to the one into two
kaons (left diagram) based on the OZI rule.



14 1 Introduction

There is another law which is known as the OZI rule7 and was introduced to explain why the ψ-meson, consisting of a
c-quark and a c-antiquark, decays strongly with a lifetime 103 more than the typical lifetime of a strong decay. The law
states that if a diagram can be cut by snipping only gluon lines, then the relevant process is suppressed. The way this can
be done is illustrated in fig. 1.17, where it is shown how by applying the OZI rule in the case of the φ -meson, the decay
into three pions (right diagram) is suppressed as compared to the one into two kaons (left diagram).

7 OZI stands for Okubo, Zweig and Iizuka



Chapter 2

Symmetries and elements of group theory

A very important concept in physics is the symmetry or invariance of an equation describing a physical system under an
operation. Imagine that one looks at a graph which has a repetitive pattern, without having any idea of what the functional
form is. By simply observing the graph one could deduce if this is an odd or an even function i.e. f (−x) = − f (x) or
f (−x) = f (x), respectively. The most obvious examples of symmetries is seen in shapes e.g. in crystals. But this is a static
symmetry that we are not interested in studying, since we will rather focus on dynamical symmetries of motion.

2.1 Symmetries and conservation laws in physics

We can discuss about and describe a system by studying its Lagrangian. There are cases were the Lagrangian of a system
is known from first principles. On the other hand there are cases where one can build a Lagrangian of a system profiting
from the observed conservation laws. The connection between conservation laws and symmetries was illustrated by Emmy
Noether in her famous theorem:

Every symmetry in nature yields a conservation law and inversely every conservation law reveals an underlying symmetry.

As we will see later, an invariance under spacial transformation yields the conservation of momentum. If the Lagrangian
of the world would be fully known we could derive the equations of motion from it, and the symmetries of nature and the
conservation laws would automatically follow. For instance the Maxwell Lagrangian yields, via the Maxwell equations,
all the symmetries and conservation laws of electrodynamics. In subatomic physics the Lagrangians are not so obvious,
and symmetry considerations provide essential clues to construct them.

Symmetries are represented by the respective operators. The operator acts on a wave function |ψ⟩ of a system and trans-
forms it to |ψ ′⟩. Operators are categorised in two groups: discrete and continuous. As will become clear later, it turns
out that discrete symmetries lead to multiplicative conserved quantum numbers (e.g. reflection symmetry leads to parity
conservation → multiplication of parities) while continuous symmetries lead to additive conserved quantum numbers (e.g.
rotation invariance leads to the angular momentum conservation → addition of angular momentum quantum numbers).

Some examples of symmetry operators are given below:

• Reflection (parity): P which transforms x → x
′
= −x, with the identity transformation PP = I which transforms x →

x
′
=−x

• Rotation: in two dimensions it is performed around one point, while in three dimension around one axis (e.g. a rotation
of a rectangular shape see fig. 2.1.

• Inversion: when performed around one point then this implies a combination of two operators i.e. reflection about a
plane and a rotation of π in the plane.

A symmetry operation which leaves a physical system or shape invariant must satisfy the following requirements:

• a symmetry operation followed by another must be itself a symmetry operation,

• the symmetry operation must associate, although the order with which operations are performed is important,

15
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Fig. 2.1: Symmetry under rotations

• there must be an identify transformation that does nothing,

• whatever operation transforms a shape into itself must have an inverse operation

But when is an observable conserved? The expectation value of a quantum mechanical operator F is ⟨F⟩ ≡ ⟨ψ|F |ψ⟩, with
Hermitian conjugate ⟨F⟩∗ ≡ ⟨ψ|F†|ψ⟩. The expectation value of an observable is a real number so that the operator of
an observable should be Hermitian F = F†, if ⟨F⟩ is observable. Because energy is an observable the Hamiltonian H is
Hermitian. We have for the Schrödinger equation and its Hermitian conjugate

i
∂ |ψ⟩

∂ t
= H|ψ⟩ and − i

∂ ⟨ψ|
∂ t

= ⟨ψ|H† = ⟨ψ|H

This immediately leads to ∂ ⟨F⟩
∂ t = i⟨ψ|HF −FH|ψ⟩= 0 ⇔ HF −FH = 0.

That, in turns, leads to the realisation that an observable constant of motion F is Hermitian and commutes with the
Hamiltonian (or the Lagrangian). When H is known, we can find observable constants of motion by searching for Hermi-
tian operators that commute with H. However, when H is not fully known, it is sufficient to establish (or postulate) the
invariance of H, or the Lagrangian, under a symmetry operation, as we will now show.

Let a transformation operator U , that transforms one wave function into another: |ψ ′⟩ = U |ψ⟩ Wave functions are always
normalized so that we must have: ⟨ψ ′|ψ ′⟩ = ⟨ψ|U†U |ψ⟩ = 1. This implies that the transformation operator must be unitary:
U†U =UU† = I. We call U a symmetry operator when |ψ ′⟩ obeys the same Schrödinger equation as |ψ⟩. Then, with U
time independent,

i
∂U |ψ⟩

∂ t
= HU |ψ⟩ → i

∂ |ψ⟩
∂ t

=U−1HU |ψ⟩ =
Iwant

H|ψ⟩

and thus
U−1HU = H or [H,U ] = 0

A symmetry operator U is unitary and commutes with the Hamiltonian. Thus U commutes with the Hamiltonian, as does
a constant of motion. However, we cannot identify U with an observable since it is unitary, and not necessarily Hermitian.

2.1.1 Discrete transformations

There is a class of unitary transformations with the property U2 = I. Multiplying from the right with U† and using
UU† = I we find that U = U†: the operator is both unitary and Hermitian. Thus if U is a symmetry of (commutes
with) the Hamiltonian we can directly conclude that it is an observable constant of motion. Examples of this the are the
charge conjugation operator C (exchange of particles and antiparticles) and the parity operator P (reflection of the spatial
coordinates).1

The C and P operators are not the only ones that are both unitary and Hermitian. This is, for instance, also true for the
Pauli spin matrices, as is straight-forward to check.

1 The time reversal operator T also has T 2 = I but it is antiunitary, and not unitary.
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σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)

If |ψ⟩ is an eigenvector of both U1 and U2 then

U1,2|ψ⟩= λ1,2|ψ⟩ and U1U2|ψ⟩=U2U1|ψ⟩= λ1λ2|ψ⟩

The quantum numbers of a discrete symmetry are multiplicative.

In these lectures we are not so much interested in discrete transformations (like C, P, T ) but, instead, in continuous
transformations. These transformations are unitary (by definition), but not necessarily Hermitian. But the generator of a
unitary continuous transformation is Hermitian, as we will see.

2.1.2 Continuous transformations

There is a large class of continuous transformations that depend on one or more continuous parameters, say α such that
|ψ ′⟩ = U(α) |ψ⟩. An example is the transformation induced by a rotation over an angle α of the coordinate system (passive
rotation), or of the wave function (active rotation). Such transformations have the property that they can be written as a
succession of infinitesimal deviations from the identity

U(α) = lim
n→∞

(
I +

iα
n

F
)n

= exp(iαF)

The factor ‘i’ is a matter of definition but important (see below). In the above, F is called the generator of U .2 Now if U
is unitary we have, to first order in α ,

U†U = (I − iαF†)(I + iαF) = I + iα(F −F†) = I

so that F = F†. In other words, the generator of a unitary operator is Hermitian. We now also understand the factor
‘i’ in the definition of a generator: without it the generator G ≡ iF of a unitary operator would not be Hermitian but
anti-Hermitian: G =−G†.

We have seen that a symmetry operator U commutes with the Hamiltonian so it remains to show that its generator
will then also commute with H. The proof is very simple and starts with U(α), a symmetry operator. The infinitesimal
transformation U(ε) will also be a symmetry operator. Expanding to the first order in ε obtains:

[H,U ]
.
= [H, I + iεF ] = [H, I]︸ ︷︷ ︸

0

+iε [H,F ] = 0 → [H,F ] = 0

It is seen that if U is a unitary operator that commutes with the Hamiltonian, then its generator F is a Hermitian operator
that also commutes with the Hamiltonian. A multiplication of continuous symmetry operators corresponds to the addition
of their generators in the exponent. The conserved quantum numbers, which are related to F and not to U , are therefore
additive.

2 Exponentiation of an operator F should be interpreted as exp(iαF) = I + iαF + 1
2! (iαF)2 + · · · . However, the familiar relation eAeB = eA+B

is only true when A and B commute.
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2.2 Introduction to groups

Group theory is a branch of mathematics that underlies the treatment of symmetry. A group G is a collection of elements
(or operators), say (a1, a2,...,an), with well defined laws that describe how one can combine any two of the elements with
an operator (let’s indicate it with ×) so as to form the product such that the following four conditions are fulfilled:

• Closure: For every element ai and a j of the group G, their product (or in general an operator ×) ai × a j is also a
member of the group G, such that ai ×a j = ak.

• Associativity: The law of combination os associative i.e. (ai ×a j)×ak = ai × (a j ×ak).

• Identity element: Every group G contains an identity element e such that for all ai in G ai × e = e×ai = ai.

• Inverse element: For all ai of a group G there is a unique inverse element a−1
i such that ai × (ai)

−1 = (ai)
−1 ×ai = e.

The associativity requirement does not imply that the elements of the group commute. A group for which any of the two
elements commute is called Abelian, otherwise the group is call non-Abelian. When a group contains a finite number
of elements, let’s say n, then the group is called finite group of order n.

Example A

The elements (...,-2,-1,0,1,2,...) form an infinite group of integer numbers. The addition operation (i.e. in this case ×≡+)
allows to go from one element to the other and thus satisfy the four relations presented above:

• 1+2 = 3, also a member of the same group (closure),

• (1+2)+3 = 1+(2+3) (associativity),

• 1+0 = 0+1 = 1 (identity element with e ≡ 0),

• 1+(−1) = (−1)+1 = 0 (inverse element (ai)
−1 ≡−1 and in general all negative integers).

Example B

The elements (1,i,-1,-i) form a finite group of order 4. The multiplication operation (i.e. in this case × ≡ ·) allows to go
from one element to the other and thus satisfy the four relations presented above:

• i · (−1) =−i, also a member of the same group (closure),

• (1 · i) · (−i) = 1 · (i · (−i)) (associativity),

• 1 · i = i ·1 = i (identity element with e ≡ 1),

• i · (−i) = (−i) · i = 1 (inverse element (ai)
−1 ≡ (−i) and in general the algebraic reciprocal).

Example C

The matrices

d1 =

(
1 0
0 1

)
, d2 =

(
0 1
−1 0

)
, d3 =

(
−1 0
0 −1

)
, d4 =

(
0 −1
1 0

)

form a finite group of order 4. The matrix multiplication operation takes the place of × in the general description, the
identity element is the unit matrix (i.e. d1) and the inverse being the usual inverse matrices.

These last two examples are indicative of another property of groups. The matrices multiply together in exactly the same
way (and order) the four elements of the second example did. In addition, the correspondence between the elements of the
group is one-to-one i.e. if we label the four elements of these two groups as (e,a1,a2,a3) and (e

′
,a

′
1,a

′
2,a

′
3), then e ⇔ e

′
,

a1 ⇔ a
′
1, a2 ⇔ a

′
2, a3 ⇔ a

′
3. Two groups with the same multiplication scheme and with an one-to-one correspondence

between their elements are called isomorphic. If they have the same multiplication scheme but the correspondence
between the elements is not one-to-one, the groups are called homomorphic.
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2.3 Lie groups

As stated before, in these lectures we are not interested so much in discrete but rather in continuous transformations.
These are described in terms of continuous groups, whose elements are labelled by a number of continuously variable
real parameters, say a1,a2, ...,an, and by the relevant operators g(a1,a2, ...,an) ≡ g(a). In particular we are interested in
coordinate transformations that, as we will see later, are not only of space-time origin but can also be internal e.g. colour in
SU(3). The following examples are indicative of these type of transformations which are usually represented by matrices:

• Rotations in three dimensions form the SO(3) group (i.e. special orthogonal group in three dimensions), whose ele-
ments are specified by three real numbers (i.e. two defining the axis of rotation and one the angle for the angle of
rotation about the axis).

• Lorenz transformations form the group with six real variables i.e. three for the rotations and the other three for the
velocity transformations.

By convention, parameterisations are arranged in such a way so that g(0) is the identity element of the group. For a con-
tinuous group, the first group condition takes the form g(α)×g(β ) = g[γ(α,β )], where the parameters γ are continuous
functions of the parameters α and β . If the parameters γ are analytic functions of α and β the group is called a Lie group.

Let us consider a group of transformations defined by x
′
i = fi(x1,x2, ...,xn;α1,α2, ...,αn), where xi with i = 1,2, , ...,n are

the coordinates on which the transformation acts and αi are the real parameters of the transformation. By convention,
α = 0 is the identity transformation, such that xi = fi(x,0).

A transformation in the neighbourhood of the identity is then given by

dxi =
r

∑
ν=1

∂ fi

∂αν

dαν ,

where the dαν are infinitesimal parameters and the partial derivative is evaluated at the point x,0.

Let’s now consider the change in a function F(x) under the previous infinitesimal transformation. This reads:

F → F +dF = F +
N

∑
i=1

∂F
∂xi

dxi = F +
N

∑
i=1

[
r

∑
ν=1

∂ fi

∂αν

dαν ]
∂F
∂xi

≡ [1−
r

∑
ν=1

dαν iX̂ν ]F (2.3.1)

where in Eq. 2.3.1,

X̂ν ≡ i
N

∑
i=1

∂ fi

∂αν

∂

∂xi
(2.3.2)

is a generator of infinitesimal transformations. Finite transformations are obtained by:

U(α) = lim
n→∞

[1+ i(α/n) ·X ]n = exp(iα ·X) (2.3.3)

where we have written ∑
r
ν=1 αν X̂ν = αX̂ .

There is a theorem which states that the commutator of two generators is always a linear combination of the generators

[X̂i, X̂ j] = f k
i j X̂k (summation over k implied)

These commutation relations are called the algebra, and the complex numbers f k
i j are called the structure constants of the

group. It can be shown that these structure constants fully characterise the multiplication structure of a Lie group.
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2.3.1 The SO(3) group

Rotations in three dimensions are usually represented by a matrix R which is 3×3:

x⃗
′
= R⃗x

It follows that the length is invariant under such transformations, such that x⃗
′† · x⃗′

= x⃗† · x⃗. This in turns implies that R†R= I
so that the matrix R is orthogonal. Based on the previous:

1 = det(R†R) = det(R†) ·det(R) = [det(R)]2,

which needs det(R) =±1. The matrices with a negative determinant include a parity transformation which is not continu-
ous and thus not connected with the identity of the transformation. This leaves only the matrices with det(R) = 1 to form
the elements of the SO(3) group i.e. the Special Orthogonal group in three dimensions.

An expansion of R close to the identity matrix I can be written as R = I +δR, where

(I +δR)†(I +δR) = I

hslash Expanding this expression and keeping terms out to first order one gets:

δR† =−δR

so that δR is an anti-symmetric 3×3 matrix that can be parameterised as

δR =




0 ε3 −ε2
−ε3 0 ε1
ε2 −ε1 0




An infinitesimal rotation, that transforms x to x
′

can be written as

x
′
= x+δR× x

from where one gets dx1 =−ε2x3 + ε3x2, dx2 =−ε3x1 + ε1x3 and dx3 =−epsilon1x2 + ε2x1.

Since the transformation in the neighbourhood of the identity is then given by

dxi =
r

∑
ν=1

∂ fi

∂αν

dαν ,

it is easy to see that dα1 ≡ ε1, dα2 ≡ ε2 and dα3 ≡ ε3. It follows that

∂ f1

∂α1
= 0

∂ f1

∂α2
=−x3

∂ f1

∂α3
= x2

∂ f2

∂α1
= x3
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∂ f2

∂α2
= 0

∂ f2

∂α3
=−x1

∂ f3

∂α1
=−x2

∂ f3

∂α2
= x1

∂ f3

∂α3
= 0

The generators, as we have seen before, are generally given by X̂ν ≡ i∑
N
i=1

∂ fi
∂αν

∂

∂xi
(see Eq. 2.3.2). This gives the generators

of the SO(3) group:

X̂1 = ix3
∂

∂x2
− ix2

∂

∂x3

X̂2 = ix1
∂

∂x3
− ix3

∂

∂x1

X̂3 = ix2
∂

∂x1
− ix1

∂

∂x2

These generators are easily recognised as the quantum mechanical angular momentum operators:

X̂ = x× (−i)∇

which satisfies the SO(3) algebra [X̂i, X̂ j] = iεi jkX̂k.

2.3.2 The SU(2) group

For the SU(2) group, the infinitesimal transformation acting on a general complex two-component column vector as

(
q
′
1

q
′
2

)
= (1+ iετ/2)

(
q1
q2

)

so that from

dxi =
r

∑
ν=1

∂ fi

∂αν

dαν ,

we get

dq1 =
iε3

2
q1 +

( iε1

2
+

ε2

2
)
q2
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dq2 =
−iε3

2
q2 +

( iε1

2
− ε2

2
)
q1

and that dα1 ≡ ε1, dα2 ≡ ε2 and dα3 ≡ ε3. It follows that

∂ f1

∂α1
=

iq2

2

∂ f1

∂α2
=

q2

2

∂ f1

∂α3
=

iq1

2

∂ f2

∂α1
=

iq1

2

∂ f2

∂α2
=

−q1

2

∂ f2

∂α3
=

−iq2

2

The generators that are given by Eq. 2.3.2, are in this case:

X̂1 =−1
2

[
q2

∂

∂q1
+q1

∂

∂q2

]

X̂2 =
i
2

[
q2

∂

∂q1
−q1

∂

∂q2

]

X̂3 =
1
2

[
−q1

∂

∂q1
+q2

∂

∂q2

]

It is interesting to see that the commutation relation of these generators is the same as the one we saw for the generators
of the SO(3) group.

2.3.3 The SU(3) group

For the SU(3) group, the infinitesimal transformation acting on a general three-component column vector as




q
′
1

q
′
2

q
′
3


= (1+ iηλ/2)




q1
q2
q3




where the η-matrices are 8 (i.e. η1, ...,η8) and λ are the Gell-Mann matrices:
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0 1 0
1 0 0
0 0 0




︸ ︷︷ ︸
λ1




0 −i 0
i 0 0
0 0 0




︸ ︷︷ ︸
λ2




1 0 0
0 −1 0
0 0 0




︸ ︷︷ ︸
λ3




0 0 1
0 0 0
1 0 0




︸ ︷︷ ︸
λ4




0 0 −i
0 0 0
i 0 0




︸ ︷︷ ︸
λ5




0 0 0
0 0 1
0 1 0




︸ ︷︷ ︸
λ6




0 0 0
0 0 −i
0 i 0




︸ ︷︷ ︸
λ7

1√
3




1 0 0
0 1 0
0 0 −2




︸ ︷︷ ︸
λ8

The first three generators of the SU(3) group are the same as the ones of the SU(2):

Ĝ1 =−1
2

[
q2

∂

∂q1
+q1

∂

∂q2

]

Ĝ2 =
i
2

[
q2

∂

∂q1
−q1

∂

∂q2

]

Ĝ3 =
1
2

[
−q1

∂

∂q1
+q2

∂

∂q2

]

The remaining of the generators can be constructed by Eq. 2.3.2 and they respect the algebra:

[Ĝi, Ĝ j] = i fi jkĜk

where i, j,k run from 1 to 8 and the constants fi jk are known as the structure constants.

2.4 Spin and angular momentum

In quantum mechanics we can not measure all three components of the angular momentum. What is normally done is to
measure the magnitude L2 and the third component Lz which is allowed to have only certain values due to the quantisation.
In particular the magnitude L2 takes always values of the form:

L2 → l(l +1)ℏ,

where l is a non-negative integer l : 0,1,2, .... For a given value of l a measurement of the third component yields a value
of the form mlℏ, where ml is an integer in the range [−l, l] i.e. ml : −l,−l + 1, ...,0, ..., l − 1, l. Figure 2.2 presents the
possible orientations of the angular momentum vector for l = 2.

Similarly for the spin of a particle, one can measure its magnitude S2 and the third component Sz. The value of S2 can be
of the form:

S2 → s(s+1)ℏ

In the case of the spin though, the quantum number s can take half-integer values as well as integer ones i.e. s :
0,1/2,1,3/2,2,5/2,3,7/2, .... For a given value of s, its third component Sz can have values of the form msℏ, where
ms is an integer or half integer in the range of [−s,s] i.e. ms : −s,−s+1, ...,0, ...,s−1,s. Both Lz and Sz can take 2k+1
values, where k is either l or s, respectively.

Every particle can have any value of angular momentum but their spin is fixed. We call particles with half integer spin
fermions (e.g. leptons, quarks, baryons) and the ones with integer spin bosons (e.g. mesons and force mediators).



24 2 Symmetries and elements of group theory

Fig. 2.2: Possible orientations of the angular momentum vector for l = 2.

Angular momentum and spin states are usually represented with a ‘ket’ i.e. |l,ml⟩ and |s,ms⟩. It can be that we are
not interested in the value of the angular momentum or the spin separately but rather in the value of the total angular
momentum J⃗ = L⃗+ S⃗. It can also be that we are interested in the relevant values of the total momentum of a particle,
composed by e.g. a quark and an anti-quark that, as we will see later, is called a meson. Combining angular momenta of
two particles implies combining two states | j1,m1⟩ and | j2,m2⟩. Adding the third component is done naturally by

m = m1 +m2

But for the magnitude, it turns out that the quantum number j can take any value from | j1 − j2| up to | j1 + j2| in integer
steps:

j = | j1 − j2|, | j1 − j2|+1, ...,( j1 + j2)−1,( j1 + j2)

Example A: What are the possible spin states of a meson, composed from a quark and an anti-quark in a state of
0 angular momentum?

Every quark carries spin of 1/2, which means that the meson will carry a value of |s1 − s2| or s1 + s2 i.e. 0 or 1. Mesons
with spin-0 are called pseudo-scalar mesons, while the ones with spin-1 are called vector mesons.

Example B: What are the possible spin states of a baryon, composed from three quarks in a state of 0 angular
momentum?

Combining two quarks, one gets a state with values s12 : |s1 − s2|,s1 + s2, which means that s12 = 0 or s12 = 1. Adding the
third quark, one gets:

• For s12 = 0: s123 : |s12 − s3|,s12 + s3 = |s3| which means that s = 1/2.

• For s12 = 1: s123 : |s12 − s3|, ...,s12 + s3 which means that s = 1/2 or s = 3/2.
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2.4.1 Clebsch-Gordan coefficients

There are cases where instead of the total angular momentum, one requires the knowledge of the decomposition into the
two different states | j1,m1⟩| j2,m2⟩ into states of total angular momentum | j,m⟩:

| j1,m1⟩| j2,m2⟩=
( j1+ j2)

∑
j=| j1− j2|

C j j1 j2
mm1m2

| j,m⟩, (2.4.1)

where m = m1+m2. The numbers C j j1 j2
mm1m2 are called the Clebsch-Gordan coefficients. These numbers give the probability

of getting a value of j · ( j+ 1)ℏ for any allowed j if we measure J2 on a system consisting of two angular momentum
states | j1,m1⟩ and | j2,m2⟩. Figure 2.3 presents part of the Clebsch-Gordan coefficients extracted from the Particle Data
Group (PDG). The square of the coefficients is given, which means that the reader should take the square root.

Example C: The electron in the hydrogen atom occupies the orbital status |2,−1⟩ and the spin state |1/2,1/2⟩.
What are the values of J2 and what is the probability of each one of them?

The z-component of the angular momentum is m = m1 +m2 =−1/2. The possible states of the total angular momentum
j are j = l− s = 3/2 and j = l+ s = 5/2. Thus the two different states can be |3/2,−1/2⟩ and |5/2,−1/2⟩. We now need
to extract the Clebsch-Gordan coefficients for the following final decomposition:

|2,−1⟩|1/2,1/2⟩= a · |3/2,−1/2⟩+b · |5/2,−1/2⟩

The coefficients can be found in fig. 2.3 by looking at the table labeled 2×1/2 (i.e. combining a j1 = 2 with a j2 = 1/2
states) and finding the the horizontal row labeled −1,1/2 (i.e. combining a m1 =−1 with a m2 = 1/2 states). The relevant
values are 2/5 and -3/5, which means that a =−

√
3/5 and b =

√
2/5. The final decomposition can thus be written as

|2,−1⟩|1/2,1/2⟩=−
√

3/5 · |3/2,−1/2⟩+
√

2/5 · |5/2,−1/2⟩

The probability of getting j = 3/2 is 3/5 and the relevant value for j = 5/2 is 2/5.

Example D: The combination of a quark and an antiquark (see example-A) gives spin-0 and spin-1 states. What is
the Clebsch-Gordan decomposition of these states?

The angular momentum states of the two quarks are:

• |1/2,1/2⟩|1/2,1/2⟩
• |1/2,−1/2⟩|1/2,1/2⟩
• |1/2,1/2⟩|1/2,−1/2⟩
• |1/2,−1/2⟩|1/2,−1/2⟩

Consulting the 1/2×1/2 table one gets the following decomposition:

|1/2,1/2⟩|1/2,1/2⟩= |1,1⟩

|1/2,−1/2⟩|1/2,1/2⟩= 1√
2
|1,0⟩− 1√

2
|0,0⟩

|1/2,1/2⟩|1/2,−1/2⟩= 1√
2
|1,0⟩+ 1√

2
|0,0⟩
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Fig. 2.3: The Clebsch-Gordan coefficients extracted from the Particle Data Group (PDG). The square of the coefficients
is given, which means that the reader should take the square root.
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|1/2,−1/2⟩|1/2,−1/2⟩= |1,−1⟩

Inversely, the spin-0 final state can be written as:

|0,0⟩= 1√
2
[|1/2,1/2⟩|1/2,−1/2⟩− |1/2,−1/2⟩|1/2,1/2⟩]

The spin-1 states are written as:

|1,1⟩= |1/2,1/2⟩|1/2,1/2⟩

|1,0⟩= 1√
2
[|1/2,1/2⟩|1/2,−1/2⟩+ |1/2,−1/2⟩|1/2,1/2⟩]

|1,−1⟩= |1/2,−1/2⟩|1/2,−1/2⟩

2.4.2 Isospin symmetry

After the discovery of the neutron by Chadwick in 1932, the near equality of its mass (939.5 MeV) to that of the proton
(938.3 MeV) suggested to Heisenberg that, as far as the strong interactions are concerned, these are two nearly degenerate
states of one particle: the nucleon.

This ‘isospin symmetry’ of the strong force is further supported by, for instance, the observation of very similar energy
levels in mirror nuclei (the number of protons in one, is equal to number of neutrons in the other, and vice versa, like in
13
7 N and 13

6 C).

In addition, apart from the p-n doublet, there are other particles that are nearly degenerate in mass, like the pion triplet
(∼140 MeV) and the quadruplet of ∆ resonances (∼1.23 GeV). This looks like the doublet, triplet and quadruplet structure
of spin- 1

2 , spin-1 and spin- 3
2 systems built from spin- 1

2 states, and is thus strongly suggestive of hadronic substructure.

We know today that hadrons are built up from quarks and we can explain isospin symmetry from the fact that the strong
interaction is insensitive to the quark flavour. The mass differences within the nucleon, π and ∆ multiplets are, after
electromagnetic correction, believed to be due to the difference in the u and d quark masses.

The invariance for p to n transitions obeys the mathematics of ordinary spin, hence the term ‘isospin’. The reason is that
transitions in any 2-state quantum mechanical system are described by the special unitary group SU(2), as will become
clear next.

We work in a 2-dim Hilbert space spanned by the basis vectors3

|p⟩=
(

1
0

)
and |n⟩=

(
0
1

)

The Hermitian conjugates are ⟨p|= (1,0) and ⟨n|= (0,1). An arbitrary state is written as the linear combination

|ψ⟩= α |p⟩+β |n⟩

Because |α|2 is the probability to find the system in a |p⟩ state and |β |2 the same for the |n⟩ state we must have, for any
state |ψ⟩,

⟨ψ|ψ⟩= |α|2 + |β |2 = 1

3 When we talk about quarks we will use the notation |u⟩ and |d⟩ instead.
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We have seen already that a transformation |ψ ′⟩=U |ψ⟩ must preserve the norm so that U must be unitary: U†U = 1.

Taking determinants we find

det(U†U) = det(U†) det(U) = det(U)∗ det(U) = 1

Therefore det(U) = eiφ with φ some arbitrary phase factor.

So we may set U = eiφV with det(V ) = 1. Invariance for phase shifts is called a U(1) invariance and leads to charge
conservation, as we will see later. The charge conserved in the p-n case here is not electrical charge, but baryon number

A = (Np −Np̄)+(Nn −Nn̄)

Putting U(1) invariance aside, we have to deal with unitary 2×2 matrices V with unit determinant, that is, with the group
SU(2).

2.5 The quark model

During the decade of 1960, a number of new states i.e. baryon and meson resonances were discovered. The pattern of the
multiplets that these particles form was accounted for in terms of quark constituents. This was the basis of the so-called
quark model that we are going to discuss in this paragraph.

According to the quark model all hadrons are formed from a combination of quarks bound together by the strong force. The
fundamental representation of SU(3) is a triplet which is the multiplet from which every other multiplet can be deduced.
Figure 2.4 presents the quark (left) and antiquark (right) multiplets in SU(3). The two axis of the figure present the isospin
I3 (i.e. x-axis) and hyper charge Y ≡ B+ S, where B and S are the baryon and strangeness numbers, respectively. Each
quark is assigned spin-1/2 and baryon number B = 1/3. Baryons consist of three quarks and mesons of a combination of
one quark and one anti-quark. The charge of each quark is given by

Q = I3 +
Y
2

Fig. 2.4: The SU(3) quark (left) and antiquark (right) multiplets.

Mesons consist of a combination of one quark with one anti-quark. In terms of group theory, and for three quark flavours,
the quarks are represented by the triplet, fundamental representation of SU(3) denoted as 3, whereas the anti-quarks form
the conjugate representation 3. For these three quark flavours, we have nine combinations of qq̄. These nine states divide
into an SU(3) octet and singlet as can be seen in fig. 2.5:

3⊗3 = 8⊕1

The combinations of quarks and anti-quarks that have Y = 0 and I3 = 0 consist of combinations of uu, dd and ss states.
One of them is taken to be the member of the isospin triplet π−,X1,π

+ and thus is identified as the neutral pion (π0). The
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other is the singlet and contains all combinations on equal footing and is identified as the η
′
: (uu+dd + ss)/

√
3. Finally

the remaining particle is the η-meson which contains η : (uu+dd −2ss)/
√

6.

Fig. 2.5: The SU(3) octet (left) and singlet (right) that form the lightest pseudo-scalar meson multiplet.

For the same three quark flavours, we have 27 possible qqq combinations that form the lightest baryon multiplets. In
order to discover these multiplets we first need to combine two quarks that form nine different states i.e. six symmetric
(interchange of two quarks leaves the state untouched) and 3 antisymmetric (interchange of two quarks changes the sign
of the wave function):

3⊗3 = 6⊕3

The resulting multiplets of the two-quark states are illustrated in fig.2.6

Fig. 2.6: The SU(3) lightest baryon multiplets.

What remains to be done is to combine another quark which leads to
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3⊗3⊗3 = (3⊗3)⊗3 = (6⊕3)⊗3 = (6⊗3)⊕ (3⊗3) = 10⊕8⊕8⊕1

Fig. 2.7: The SU(3) lightest baryon multiplets.

The singlet state is completely anti-symmetric and consists of the linear combination:

(uds−usd +dsu−dus+ sud − sdu)/
√

6

The second multiplet (i.e. octet) is partially anti-symmetric i.e. it is anti-symmetric under the interchange of the first and
the second quark and can be seen in fig. 2.8.

Fig. 2.8: The first anti-symmetric baryon octet.

The third multiplet (i.e. octet) is also partially anti-symmetric i.e. it is anti-symmetric under the interchange of the second
and the third quark and can be seen in fig. 2.9. We can also construct one octet which is anti-symmetric under the inter-
change of the first and the third quarks but this will not be independent.

Finally the first multiplet (i.e. 10) is completely symmetric under any interchange of quarks and can be seen in fig. 2.10.
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Fig. 2.9: The second anti-symmetric baryon octet.

Fig. 2.10: The fully symmetric baryon multiplet.

2.6 A new quantum number: colour

One of the major achievements of quantum field theory was the proof of the connection between spin and statistics:

• bosons, described by the Bose-Einstein statistics, have integer spin and have symmetric wave functions i.e. ψ(1,2) =
ψ(2,1),

• fermions, (described by the Fermi-Dirac statistics, have half-integer spin and have anti-symmetric wave functions i.e.
ψ(1,2) =−ψ(2,1).
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Suppose that we have two particles and one is in state ψα and the other in ψβ . If these two particles are different (e.g. an
electron and a muon), then one can discuss about which of the two is in which state. Depending on the answer, we can
have ψ(1,2) = ψα(1)ψβ (2) or ψ(1,2) = ψα(2)ψβ (1). However, if the particles are identical, then if they are bosons then
the wave function is a symmetric combination of ψα and ψβ :

ψ(1,2) =
1√
2
[ψα(1)ψβ (2)+ψα(2)ψβ (1)]

On the other hand, if the two particles are identical fermions then the wave function is anti-symmetric:

ψ(1,2) =
1√
2
[ψα(1)ψβ (2)−ψα(2)ψβ (1)]

That implies that if one tries to put two identical fermions in the same state then the final wave function collapses to 0 i.e.
0 probability for this state to exist. This is another manifestation of the Pauli exclusion principle.

The wave functions of particles up to this moment consist of the part that describe space and time (ψ (⃗r, t)), the part that
describe the spin (ψ(s)) and the part that describe the flavour (ψ( f lavour)), such that (ψ = ψ (⃗r, t) ·ψ(s) ·ψ( f lavour)).
This representation seems to be problematic if one considers e.g. the uuu baryon state (the so-called ∆++). This baryon
that consists of three identical fermions, should have an anti-symmetric wave function, however the function at this stage
seems to be symmetric. To cure this, a new quantum number is introduced, the one of colour, with three possible values:
red (R), green (G) and blue (B). The combination of quarks with different colours is done in such a way so that all hadrons
are colourless particles. Thus, the wave function now reads

ψ = ψ (⃗r, t) ·ψ(s) ·ψ( f lavour) ·ψ(colour)

The colour quantum number can be represented by a single column matrix:




1
0
0


 for R




0
1
0


 for B




0
0
1


 for G

The quarks interact with each other, with the possibility to change the relevant colour. This is usually done at the quark-
gluon vertex as we will see in the next chapters. This interaction is mediated by the gluons that carry the supplementary
colour (and anti-colour). There are nine gluon species which are described by the SU(3) color symmetry:

3⊗3 = 8⊕1

The octet consists of the following states:

|1⟩= 1√
2
(RB+BR)

|2⟩= 1√
2
[−i(RB−BR)]
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|3⟩= 1√
2
(RR−BB)

|4⟩= 1√
2
(RG+GR)

|5⟩= 1√
2
[−i(RG−GR)]

|6⟩= 1√
2
(BG+GB)

|7⟩= 1√
2
[−i(BG−GB)

|8⟩= 1√
6
(RR+BB−2GG)

The colour singlet is formed by |9⟩ = 1√
3
(RR+BB+GG). This last configuration is not physical. As we will see in

Chapter 9, confinement requires that all naturally occurring particles are colour singlet states. This explains why the
colour octet states can not be seen in nature. But |9⟩ is also a colour singlet, and thus would have been easy to detect it
in nature, as a free particle. In addition, being a state of a mediator it could be exchanged by e.g. a proton and a neutron
(i.e. colour singlet states) which would imply that the strong force is long range, while we know that it is short range. All
these indicates that the colour singlet |9⟩ does not occur in our world.

Finally, like in the (iso)spin case we can write a unitary transformation as

|ψ ′⟩=U |ψ⟩= exp(ia ·λ/2) |ψ⟩ ≡ exp(ia ·T ) |ψ⟩

The generators λ are now Hermitian 3×3 matrices. A complex 3×3 matrix is characterised by 18 numbers but only 8 are
independent because the matrices are Hermitian, and traceless since detU = 1. Thus there are 8 independent generators.
The 8 Gell-Mann matrices (with Pauli matrices inside!) are




0 1 0
1 0 0
0 0 0




︸ ︷︷ ︸
λ1




0 −i 0
i 0 0
0 0 0




︸ ︷︷ ︸
λ2




1 0 0
0 −1 0
0 0 0




︸ ︷︷ ︸
λ3




0 0 1
0 0 0
1 0 0




︸ ︷︷ ︸
λ4




0 0 −i
0 0 0
i 0 0




︸ ︷︷ ︸
λ5




0 0 0
0 0 1
0 1 0




︸ ︷︷ ︸
λ6




0 0 0
0 0 −i
0 i 0




︸ ︷︷ ︸
λ7

1√
3




1 0 0
0 1 0
0 0 −2




︸ ︷︷ ︸
λ8

The algebra of the SU(3) group is given by the commutation relation of the matrices Ta = λa/2: [Ta,Tb] = i f c
abTc. The

parameters f c
ab are called structure constants. These structure constants f c

ab are antisymmetric in the exchange of two
indices. The non-zero ones are:

f 3
12 = 1

f 7
14 = f 5

16 = f 6
24 = f 7

25 = f 5
34 = f 6

37 =
1
2

f 8
45 = f 8

67 =
1
2

√
3





Chapter 3

The Lagrangian formalism of Quantum Chromo Dynamics (QCD)

The next pillar of the Standard Model that will be briefly presented is the one that describes the strong interactions. The
gauge theory is called Quantum Chromo Dynamics or QCD and explains how the world of the smallest building blocks of
ordinary matter, the quarks and the gluons, works. QCD shares a number of similarities with QED and thus we will profit
from the experience that we gained from previous courses (e.g. PP1) to explore the fundamental properties of our theory.
However, it is essential to point out that QCD, being by far more complicated than QED, has a number of fundamental
differences compared to the theory that is based on U(1) transformations. Thus a large part of the current chapter will be
devoted to highlighting these differences.

Once again, we will start by the Dirac Lagrangian that describes the dynamics of a free particle, this time a quark. We
will then impose a more complicated transformation described by the SU(3) group, the underlying group of QCD. The
requirement of local gauge invariance will automatically lead us to the term of the QCD Lagrangian that reflects the
interactions between the free particle and the field. The kinetic term of this field will be derived again from the Proca
Lagrangian. Requiring local gauge invariance also for this term, will reveal the nature of the QCD field: eight massless
fields, the gluons.

We will then proceed by looking at a number of QCD processes with the help of the, known to us by now, Feynman
diagrams. After a small recap of the similarities and the differences between QED and QCD we will focus on one of the
main, fundamental differences between the two gauge theories: we will see how the strong coupling constant behaves
depending on how “soft“ or “hard“ a process is (reflected by the momentum transfer). This discussion will naturally lead
to the introduction of two of the main characteristics of QCD: confinement and asymptotic freedom.

We will conclude the chapter by briefly discussing about QCD processes known as deep inelastic scattering. Through this
discussion we are going to see how one can probe the distribution functions of valence and sea quarks inside nucleons.
Finally, we will talk about the remaining part inside nucleons: the gluon distribution functions.

3.1 A small recap from QED

Let us briefly summarise the steps we followed in QED to derive the overall Lagrangian density of the gauge theory:

• We started off with the Dirac Lagrangian that describes a free particle (e.g. a lepton) of the form:

L = iΨγµ ∂
µ
Ψ −mΨΨ

• We then made a transformation of the form U = eigΛ , that transforms the eigenfunction as Ψ
′
= eigΛΨ , where g is a

constant and Λ is a scalar. This is, as we saw, a U(1) transformation, a rotation with a phase gΛ .

• We then promoted the transformation from global to local by adding a dependence of Λ on space and/or time such that
Λ = Λ (⃗x, t) = Λ(xµ).

• Applying this local transformation to the Lagrangian density, we saw that

35



36 3 The Lagrangian formalism of Quantum Chromo Dynamics (QCD)

L
′
= iΨγµ ∂

µ
Ψ + iΨγµ

(
ig∂

µ
Λ

)
Ψ −mΨΨ ̸= L

• The second term of the previous equation is responsible for breaking the invariance. Why is the invariance broken?
Because of the dependence of the scalar Λ on space and time (note that now Λ = Λ (⃗x, t) = Λ(xµ)), which leads to

∂
µ
Ψ

′
= ∂

µ

(
eigΛ

Ψ

)
= eigΛ

∂
µ
Ψ + igeigΛ

(
∂

µ
Λ

)
Ψ = eigΛ

[
∂

µ + ig
(

∂
µ

Λ

)]
Ψ ̸= eigΛ

∂
µ
Ψ

• How do we cure this? We tried to absorb the term that breaks the invariance, ∂ µ + ig
(

∂ µΛ

)
, by introducing a covariant

derivative Dµ = ∂ µ + ig
(

∂ µΛ

)
in the place of the partial derivative ∂ µ .

• This automatically leads to the introduction of a new vector field Aµ , such that Dµ = ∂ µ + igAµ .

• We then request local gauge invariance. Since this can’t be achieved with the partial derivative, we use the newly
introduced covariant derivative, such that after the U(1) transformation we demand that

D
′
µΨ

′
= eigΛ DµΨ

• It turned out that in order to have local gauge invariance the external vector field Aµ should transform with a given rule,
namely

A
′
µ = Aµ −∂µΛ

• Adding then the covariant derivative Dµ in the place of the partial derivative ∂ µ in the free Dirac Lagrangian gives:

L = iΨγµ Dµ
Ψ −mΨΨ =Ψ

(
iγµ ∂

µ
Ψ −m

)
Ψ −gΨγµ Aµ

Ψ

• The first term in the previous equation (i.e. Ψ

(
iγµ ∂ µΨ −m

)
Ψ ) describes the free Dirac Lagrangian density for a

lepton or a quark. The second term (i.e. gΨγµ AµΨ ) is the interaction term.

• To get the full Lagrangian density of the gauge theory we then added the Proca Lagrangian that describes the field
itself:

L =−1
4

Fµν Fµν +
1
2

m2Aµ Aµ

• Applying the same U(1) transformation as before also for this term and requesting local gauge invariance leads to
L

′
= L ⇒ m = 0. This implies that the gauge field is massless i.e. the photon.

• Finally, we also saw that the electromagnetic tensor Fµν = ∂µ Aν − ∂ν Aµ can be derived by its gauge invariant form:
[Dµ ,Dν ] = igFµν .

3.2 The free Dirac equation

For the case of QCD, we will start again with the Dirac Lagrangian that describes, this time, a free quark:

L = iΨγµ ∂
µ
Ψ −mΨΨ (3.2.1)

As in the case of QED, also here, we are going to act on it with a transformation. The underlying group that describes the
relevant transformations in QCD is not as simple as U(1). These transformations are now described by 3× 3 matrices,
described by the generators of the SU(3) group. The SU(3) transformation is not of the form
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U = eig λ
2 Λ , (3.2.2)

where Λ are eight parameters associated with the eight gauge bosons of the theory i.e. the gluons.The matrices λ are all
3×3 matrices also known as Gell-Mann matrices with the form:

λ1 =




0 1 0
1 0 0
0 0 0


 , λ2 =




0 −i 0
i 0 0
0 0 0


 , λ3 =




1 0 0
0 −1 0
0 0 0


 , λ4 =




0 0 1
0 0 0
1 0 0


 ,

λ5 =




0 0 −i
0 0 0
i 0 0


 , λ6 =




0 0 0
0 0 1
0 1 0


 , λ7 =




0 0 0
0 0 −i
0 i 0


 , λ8 =

1√
3




1 0 0
0 1 0
0 0 −2




3.2.1 Global gauge invariance

Let us again first discuss the case where the transformation is global i.e. the parameters Λ are not a function of space and
time but rather a constant. Is the Lagrangian density of Eq. 3.2.1 invariant under these types of transformations?

L
′
= iΨ

′
γµ ∂

µ
Ψ

′ −mΨ
′
Ψ

′

= ie−ig λ
2 Λ

Ψγµ ∂
µ

(
eig λ

2 Λ
Ψ

)
−me−ig λ

2 Λ
Ψeig λ

2 Λ
Ψ

Since Λ does not depend on space and time, it can be taken out from the partial derivative in the first term, such that:

L
′
= ie−ig λ

2 Λ eig λ
2 Λ

Ψγµ ∂
µ
Ψ −me−ig λ

2 Λ eig λ
2 Λ

ΨΨ

= iΨγµ ∂
µ
Ψ −mΨΨ ⇒

L
′
= L

We thus reach again the conclusion that our system, described by the Lagrangian density of Eq. 3.2.1, is invariant under
global SU(3) transformations.

3.2.2 Local gauge invariance

We will now promote the transformation of Eq. 3.2.2 into a local one, by adding a dependence of Λ on space and/or time
i.e. Λ = Λ (⃗x, t) = Λ(xµ):

U = eig λ
2 Λ(xµ ), (3.2.3)

where g is still a constant and Λ this time is a scalar field. Let’s look at how this transformation alters the Lagrangian
density of Eq. 3.2.1 (note that I suppress in the lines below the dependence of Λ on xµ , however the reader should not
misinterpret it as if the dependence is not there!!!):
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L
′
= iΨ

′
γµ ∂

µ
Ψ

′ −mΨ
′
Ψ

′

= ie−igΛ
Ψγµ ∂

µ

(
eigΛ

Ψ

)
−me−igΛ

ΨeigΛ
Ψ

Note that Λ is not a constant but a scalar field i.e. a field whose value depends on space and time. That means that we can
not just take it out from the partial derivative of the first term, but instead the derivative has to act on Λ(xµ):

L
′
= ie−ig λ

2 Λ
Ψγµ

(
∂

µ eig λ
2 Λ

)
Ψ + ie−ig λ

2 Λ
Ψγµ eig λ

2 Λ

(
∂

µ
Ψ

)
−me−ig λ

2 Λ eig λ
2 Λ

ΨΨ

= ie−ig λ
2 Λ

Ψγµ

(
ig

λ

2

)
eig λ

2 Λ

(
∂

µ
Λ

)
Ψ + iΨγµ ∂

µ
Ψ −mΨΨ

=−g
λ

2
Ψγµ

(
∂

µ
Λ

)
Ψ + iΨγµ ∂

µ
Ψ −mΨΨ

=−g
λ

2
Ψγµ

(
∂

µ
Λ

)
Ψ +L ̸= L

It is thus clear that the Lagrangian does not remain invariant under this local gauge transformation. The first term in the
equation above is responsible for this, with the underlying reason being that the exponent that describes the transformation
can not be taken out from the partial derivative: ∂ µ has to act on eigΛ(xµ ) since now Λ is not a constant but a scalar field
that depends on xµ .

Let’s look again a bit closer at the responsible term:

∂
µ
Ψ

′
= ∂

µ

(
eig λ

2 Λ
Ψ

)
= eig λ

2 Λ
∂

µ
Ψ + ig

λ

2

(
∂

µ
Λ

)
Ψ = eig λ

2 Λ

[
∂

µ + ig
λ

2

(
∂

µ
Λ

)]
Ψ ̸= eig λ

2 Λ
∂

µ
Ψ

The idea is the same as in the case of QED, it is just the term that needs to be absorbed is a bit more complicated since it
involves the λ -matrices. So how about trying to absorb the term

[
∂ µ + ig λ

2

(
∂ µΛ

)]
which is responsible for breaking the

invariance into a new quantity that will be built for the exact purpose of restoring the desired invariance of the Lagrangian
density?

For this reason we introduce the covariant derivative Dmu constructed in a way to have the desired property:

Dµ ′
Ψ

′
= eig λ

2 Λ Dµ
Ψ

The term responsible for breaking the invariance of the Lagrangian density,
[
∂ µ + ig λ

2

(
∂ µΛ

)]
, once again motivates the

form of the covariant derivative:

Dµ = ∂
µ + ig

λ

2
Aµ , (3.2.4)

where Aµ are eight external vector fields. So from now on, we need to replace in the Lagrangian density the term ∂ µΨ

with DµΨ . The latter provides us with the feature of Dµ ′
Ψ

′
= eig λ

2 Λ DµΨ we need. Here comes another complication: due
to the fact that Aµ are eight gauge fields, we need to introduce another index to keep track of this:

Dµ ≡ ∂
µ + ig

λ α

2
Aµα , (3.2.5)

We now investigate how the external fields should transform to ensure that local gauge invariance is preserved. For this
we need Dµ ′

Ψ
′
= eig λα

2 Λ α

DµΨ . Let us look at the different terms one by one:
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• Let us first look at the term Dµ ′
Ψ

′
:

Dµ ′
Ψ

′
=
(

∂
µ + ig

λ α

2
Aµα ′)(

eig λα

2 Aµα

Ψ

)
=

∂
µ

(
eig λα

2 Λ α

Ψ

)
+ ig

λ α

2
Aµα ′

eig λα

2 Λ α

Ψ =

eig λα

2 Λ α
(

∂
µ
Ψ

)
+ ig

λ α

2
eig λα

2 Λ α
(

∂
µ

Λ
α

)
Ψ + ig

λ α

2
Aµα ′

eig λα

2 Λ α

Ψ

• Next, we look at the term eig λα

2 Λ α

DµΨ :

eig λα

2 Λ α

Dµ
Ψ = eig λα

2 Λ α
(

∂
µ + ig

λ α

2
Aµα

)
Ψ =

eig λα

2 Λ α
(

∂
µ
Ψ

)
+ igeig λα

2 Λ α λ α

2
Aµα

Ψ

Comparing those two terms, it turns out that the external fields should transform in a rather complicated manner, given
by:

eig λα

2 Λ α

λ
α Aµα = λ

α Aµα ′
eig λα

2 Λ α

+λ
α eig λα

2 Λ α
(

∂
µ

Λ
α

)
(3.2.6)

This complicated transformation that the external fields need to obey stems from the fact that, contrary to the U(1) case,
in SU(3) the matrices λ α and the gauge fields Aµα do not commute. In the vocabulary of group theory, this means that
SU(3) is not Abelian.

3.2.3 The interaction term

With the previous requirement we have ensured that local gauge invariance is preserved and we can safely write down the
QCD Lagrangian density of the free quark field:

LQCD = iΨγµ Dµ
Ψ −mΨΨ =

iΨγµ

(
∂

µ + ig
λ α

2
Aµα

)
Ψ −mΨΨ =

iΨγµ ∂
µ
Ψ −mΨΨ −gΨγµ

λ α

2
Aµα

Ψ →

L partial
QCD =Ψ(iγµ ∂

µ −m)Ψ −gΨγµ

λ α

2
Aµ

Ψ (3.2.7)

The first term of Eq. 3.2.7 is the standard Lagrangian density of the free particle i.e. the quark. The second term that was
introduced, involves both the spinors Ψ and Ψ but also the external vector fields Aµα

. This is the interaction term! This
term introduced by the requirement of local gauge invariance, reflects the interactions between the particles (i.e. quarks in
this case) with the external field.
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3.3 The field kinetic term

So far our theory consists of the term that describes the free particle with mass m (i.e. the free quark) and the term that
describes the interaction of the particle with the vector fields (i.e. the interaction term). To complete our theory we need
to include also the term that describes the field itself. This term comes once again from the Proca Lagrangian:

L =−1
4

Fµν Fµν +
1
2

M2Aµ Aµ , (3.3.1)

where Fµν is the field tensor of the theory. Let us note again that in this equation, M is the mass of the vector fields,
whereas in Eq. 3.2.1 m corresponds to the mass of the particle that feels the field i.e. the quark in this case.

We now apply the transformation of Eq. 3.2.3 in Eq. 3.3.1:

L
′
=−1

4
F

′
µν Fµν ′

+
1
2

m2A
′
µ Aµ ′

At this point, I will not repeat the same tedious mathematical steps that we did in the relevant part of the QED Lagrangian
density. In addition to the fact that the procedure is practically the same, the vector fields in QCD have a highly not trivial
transformation they need to obey (see Eq. 3.2.6). This fact adds some additional number of lines of algebraic actions that
one needs to follow. Nevertheless, if one completes all the steps we will once again reach the conclusion that in order for
local gauge invariance to be preserved also for the field term, then the fields need to be massless (i.e. M = 0). So we have
eight (since our theory is described by SU(3) that has eight generators) massless fields: the eight physical gluons!!!

After setting the mass of the vector fields to zero, the term that remains is the one that has the tensor “squared“: i.e.
− 1

4 Fµν Fµν . In the case of QED, where the underlying group was the one of U(1), the tensor was simply given by
Fµν = ∂µ Aν −∂ν Aµ . But this term in QCD, described by SU(3), is not anymore gauge invariant! However we know very
well how to construct such a term in a way that local gauge invariant is not at question: we will use the equation

[Dµ ,Dν ] = igFµν → Fµν =
−i
g
[Dµ ,Dν ]

The advantage is obvious: the field tensor is constructed from the commutator of the covariant derivatives. Remember
that the covariant derivatives were introduced in a way to absorb the terms that were breaking local gauge invariance.
Therefore, preserving local gauge invariance is in that way guaranteed. In what follows, we will derive the form of the
field tensor. For that, it is easier (i.e. it will make the place where different partial derivatives act more clear) if we let the
previous equation act on a spinor field, such that FµνΨ = −i

g [Dµ ,Dν ]Ψ .

−i
g
[Dµ ,Dν ]Ψ =− i

g

(
∂µ + ig

λ α

2
Aα

µ

)(
∂ν + ig

λ β

2
Aβ

ν

)
Ψ +

i
g

(
∂ν + ig

λ β

2
Aβ

ν

)(
∂µ + ig

λ α

2
Aα

µ

)
Ψ =

− i
g

∂µ

(
∂νΨ

)
+

λ α

2
Aα

µ

(
∂νΨ

)
+

λ β

2
Aβ

ν

(
∂µΨ

)
+ ig

λ α

2
Aα

µ

λ β

2
Aβ

νΨ − i
g

∂µ

(
ig

λ β

2
Aβ

ν

)
Ψ

+
i
g

∂ν

(
∂µΨ

)
−λ β

2
Aβ

ν

(
∂µΨ

)
−λ α

2
Aα

µ

(
∂νΨ

)
− ig

λ β

2
Aβ

ν

λ α

2
Aα

µΨ +
i
g

∂ν

(
ig

λ α

2
Aα

µ

)
Ψ =

ig
4

(
λ

α Aα
µ λ

β Aβ

ν −λ
β Aβ

ν λ
α Aα

µ

)
+

1
2

∂µ

(
λ

β Aβ

ν

)
Ψ − 1

2
∂ν

(
λ

α Aα
µ

)
Ψ =

ig
4
[λ α Aα

µ ,λ
β Aβ

ν ]+
1
2

[
λ

β

(
∂µ Aβ

ν

)
−λ

α

(
∂ν Aα

µ

)]
=

ig
4
[λ α Aα

µ ,λ
β Aβ

ν ]+
1
2

λ
α

(
∂µ Aα

ν −∂ν Aα
µ

)
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In the last two lines, the last terms imply using the summation rule for indices with indices α and β . But the λ -matrices
can be considered the same i.e. both their indices run from 1 to 8 at the same time, and thus can factorise. As for the
commutator, the first term of the previous equation, we have to use again the summation rule for indices. We can then pull
out of the commutator the vector fields Aµ and Aν such that:

[λ α Aα
µ ,λ

β Aβ

ν ] = [λ α ,λ β ]Aα
µ Aβ

ν

The commutator is not zero due to the Gell-Mann matrices! The generators of SU(3) respect the following Algebra:

[λ α ,λ β ] = i f αβγ
λ

γ , (3.3.2)

where the variables f αβγ are real numbers, called the structure constants of SU(3).

Let’s now identify the final form of the field tensor (note that we will interchange the indices α , β and γ compared to what
we followed before to make the final expression more convenient in writing; there is no essential change with this action):

Fµν =
ig
4
[λ β ,λ γ ]Aβ

µ Aγ

ν +
1
2

λ
α

(
∂µ Aα

ν −∂ν Aα
µ

)
=

ig
4

i f αβγ
λ

α Aβ

µ Aγ

ν +
1
2

λ
α

(
∂µ Aα

ν −∂ν Aα
µ

)
⇒

Fµν =
1
2

λ
α

(
∂µ Aα

ν −∂ν Aα
µ

)
− g

4
f αβγ

λ
α Aβ

µ Aγ

ν (3.3.3)

Once again, we can pull out the λ α matrices so that the field tensor can take the following form:

Fµν = λ
α Fα

µν , (3.3.4)

where Fα
µν = 1

2

(
∂µ Aα

ν −∂ν Aα
µ

)
− g

4 f αβγ Aβ

µ Aγ

ν .

We are not done since the final QCD Lagrangian density had the field tensor “squared“. It is enough to see what kind of
complications this brings by simply looking at the “square“ of the Fα

µν part:

Fα
µν Fµνα =

[1
2

(
∂µ Aα

ν −∂ν Aα
µ

)
− g

4
f αβγ Aβ

µ Aγ

ν

][1
2

(
∂

µ Aνα −∂
ν Aµα

)
− g

4
f αδε Aµδ Aνε

]
=

1
4

(
∂µ Aα

ν −∂ν Aα
µ

)(
∂

µ Aνα −∂
ν Aµα

)

−g
8

f αβγ Aβ

µ Aγ

ν

(
∂µ Aα

ν −∂ν Aα
µ

)

−g
8

f αδε

(
∂µ Aα

ν −∂ν Aα
µ

)
Aµδ Aνε

g2

16
f αβγ f αδε Aβ

µ Aγ

ν Aµδ Aνε

Let us try to understand what each term brings:

• 1
4

(
∂µ Aα

ν − ∂ν Aα
µ

)(
∂ µ Aνα − ∂ ν Aµα

)
: This first term of the previous equation is the standard term for the field we

encountered also in QED (modulo the factor 1/4 which is not relevant).

• g
8 f αβγ Aβ

µ Aγ

ν

(
∂µ Aα

ν − ∂ν Aα
µ

)
: This term contains “interactions“ between three vector fields e.g. Aβ

µ Aγ

ν ∂µ Aα
ν . These

terms reveal one of the main differences between QED and QCD which have to do with vertices involving three
gluons.
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• g
8 f αδε

(
∂µ Aα

ν −∂ν Aα
µ

)
Aµδ Aνε : Similarly to the term before, also this term contains “interactions“ between three vector

fields e.g. ∂µ Aα
ν Aµδ Aνε . These terms describe again vertices that involve three gluons.

• g2

16 f αβγ f αδε Aβ

µ Aγ

ν Aµδ Aνε : This term clearly involves “interactions“ between four vector fields and describe vertices
that involve four gluons.

These last elements, which are characteristic of QCD are shown in fig. 3.1.

(a) (b)

Fig. 3.1: One of the main characteristic QCD feature: the self coupling of the gauge bosons of the theory originating
from its non-Abelian nature i.e. the three and four gluon vertices.

3.4 Some comments

At this stage it is once again essential to take a break and reflect on a few things. Let me guide you through with the
following comments:

• As in the case of QED, also in QCD, we acted on the Dirac Lagrangian of the free particle with a transformation. The
underlying group that describes the relevant transformations in QCD is not as simple as U(1). These transformations
are now described by 3×3 matrices, described by the generators of the SU(3) group.

But how do we act on the eigenfunction Ψ with such a complicated transformation that obeys the properties and rules
of the SU(3) group? The answer is that we have to make Ψ a bit more complicated as well: the eigenfunction needs to
have this time three additional elements:

Ψ =
(

ΨR,ΨB,ΨG

)
(3.4.1)

where each component of the new array corresponds to the new quantum number associated with the strong interaction
i.e. the colour: ΨR for red, ΨB for blue and ΨG for green.

Remember though that that Ψ in the Dirac equations was a 4–component vector representing two particles with spin
±1/2 and two antiparticles with similar as before spin orientation of ±1/2. That means that this new 3–component
spinor comes on top of the existing four components! These three components are different colour charges of each
element of the 4–component Dirac spinor!!! An extra dimension on the existing spinor, but this time explicitly for
quarks.

• A few words about the “charge“ and its nature in QED and in QCD. In QED the word “charge“ was associated to the
electric charge. It had two possible values ±1: a positive and a negative charge always an integer multiple of the charge
of the electron.
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In QCD on the other had, the word “charge“ is associated to the colour charge. We have seen that we have three charges:
red, blue and green. Note that as in the case of QED, also in QCD, each of these charges have two possible values: R
and R, B and B, G and G.

Overall, it looks as if QCD containes three times the QED fundamental structure. In the language of group theory,
people say that the maximum commuting subgroup of SU(3) is U(1)×U(1)×U(1).

• Each quark has a colour chosen between the three available i.e. R, B and G. Each antiquark has an anticolour chosen
between the three available i.e. R, B and G. Gluons have one colour and one anticolour.

The basis vectors in colour space are

C1 = |R⟩=




1
0
0




C2 = |B⟩=




0
1
0




C3 = |G⟩=




0
0
1




Their Hermitian conjugates are:

C†
1 = ⟨R|=

(
1 0 0

)

C†
2 = ⟨B|=

(
0 1 0

)

C†
3 = ⟨G|=

(
0 0 1

)

• There are eight physical gauge bosons in QCD, as expected by the fact that the underlying group that describes the
strong interactions is SU(3) that has eight generators. Each gluon contains one colour and one anticolour. The physical
states are written as follows:

|1⟩= 1√
2

(
RB+BR

)
|2⟩= −i√

2

(
RB−BR

)

|3⟩= 1√
2

(
RR+BB

)
|4⟩= 1√

2

(
RG+GR

)

|5⟩= −i√
2

(
RG−GR

)
|6⟩= 1√

2

(
BG+GB

)

|7⟩= −i√
2

(
BG−GB

)
|8⟩= 1√

6

(
RR+BB−2GG

)

• The SU(3) transformation that is applied is, as we have seen, of the form U = eig λ
2 Λ . The matrices λ are all 3× 3

matrices also known as Gell-Mann matrices with the form:
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0 1 0
1 0 0
0 0 0




︸ ︷︷ ︸
λ1




0 −i 0
i 0 0
0 0 0




︸ ︷︷ ︸
λ2




1 0 0
0 −1 0
0 0 0




︸ ︷︷ ︸
λ3




0 0 1
0 0 0
1 0 0




︸ ︷︷ ︸
λ4




0 0 −i
0 0 0
i 0 0




︸ ︷︷ ︸
λ5




0 0 0
0 0 1
0 1 0




︸ ︷︷ ︸
λ6




0 0 0
0 0 −i
0 i 0




︸ ︷︷ ︸
λ7

1√
3




1 0 0
0 1 0
0 0 −2




︸ ︷︷ ︸
λ8

• There are, as we have seen, eight physical gluon states. These states are in fact reflected in the Gell-Mann matrices if
one writes the general form of the matrix as




RR RB RG
BR BB BG
GR GB GG




The Gell-Mann matrices have the colours of each gluon state embedded in them!

• Why is the underline group of QCD the one of SU(3) and not the one of U(3)? After all, the generators of U(3) are
also 3×3 matrices. The reason is that in that case there would be a ninth gluon whose form would be

|9⟩= 1√
3

(
RR+BB+GG

)

Note that this is a colour singlet state. Remember that all naturally observed particles are in a colour singlet state and
thus the ninth gluon would qualify as one i.e. we would be able to see gluons flying free in nature!!! Since this is not
observed, then this means that this gluon state does not exist, it is not physical!

• We have seen in Section 3.3 how the fact that SU(3) is a non-Abelian group leads to additional terms in the QCD
Lagrangian density revealed by the introduction of the field kinetic term. These three and four gluon vertices highlight
the self-coupling nature of the gauge bosons of QCD.



Chapter 4

The Feynman calculus

In this chapter we are going to describe the Feynman rules for the electromagnetic, electroweak and strong interactions.
Before doing so, let’s review a couple of important ingredients that we are going to encounter when dealing with particle
interactions.

Let’s imagine that we have N0 particles that decay and after dt the relevant number becomes N. We define as decay rate
Γ the probability that a particle will decay per unit time:

dN
dt

=−Γ N

1
N

dN =−Γ dt

∫ N(t)

N0

1
N ′ dN

′
=−Γ

∫ t

t0
dt

′

[lnN]
N(t)
N0

=−Γ (t − t0)

lnN(t)− lnN0 =−Γ ∆ t

ln
N(t)
N0

=−Γ ∆ t

N(t) = N0e−Γ ∆ t

We define as mean (or average) lifetime τ , the time it takes for a sample of particles to reach the value of N(τ) = N0/e. It
turns out that:

τ =
1
Γ

If a particle has more than one decay mode, then

Γtot =
n

∑
i=1

Γi

τ =
1

Γtot

45
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In the case of a decay, an important property is the so-called branching ratio that defines the fraction of particles of a given
type that decay by each mode. This is defined by

B.R.=
Γi

Γtot

A different category of particle interactions is related to scattering. The relevant quantity that reflects the probability
of such an interaction is the so-called cross-section. The cross-section depends on the nature of the interaction e.g. we
can speak about elastic, inelastic, total or inclusive cross-section. This latter is calculated as the sum of every individual
contribution, such that

σtot =
n

∑
i=1

σi

In the following, we are going to study some basic examples, while at the end of this chapter we are going to calculate
the cross-section for an indicative process (i.e. e−+µ− → e−+µ−) which although being of electromagnetic nature, will
assist us in calculating cross-sections in QCD.

Example A: Extract the differential cross-section for a particle that bounces elastically off a hard sphere of radius
R

Fig. 4.1: Scattering of a particle on a hard sphere.

b
R
= sin(α)⇔ b = Rsin(α)

But 2α +θ = π , which means that

b = Rsin(
π

2
− θ

2
)⇔ b = Rcos(

θ

2
) (4.0.1)

If one considers the azimuthal (ϕ) and polar (θ ) angles, the differential cross-section is defined as dσ/dΩ :

dσ = |b ·db ·dϕ|



4.1 Golden rule for decays and scattering 47

dΩ = |sin(θ) ·dθ ·dϕ|

dσ

dΩ
= | b ·db

sin(θ) ·dθ
| (4.0.2)

Equation 4.0.2 with the help of Eq. 4.0.1 can be written as:

dσ

dΩ
= | b

sin(θ)
· R

2
· sin(

θ

2
)|

⇔ dσ

dΩ
= |R

2

2
· cos( θ

2 ) · sin( θ

2 )

sin(θ)
|

⇔ dσ

dΩ
= |R

2

2
· sin(θ)/2

sin(θ)
|

⇔ dσ

dΩ
=

R2

4

The total integrated cross-section is then given by

σ =
∫ R2

4
dΩ =

R2

4

∫
π

0
sin(θ)dθ

∫ 2π

0
dϕ = πR2

Finally, let’s define as luminosity the number of particles per unit time and per unit area, such that:

dN = L ·dσ

4.1 Golden rule for decays and scattering

To calculate the previous quantities one uses the golden rule for decays and scattering that states that a transition rate is
given by the product of the amplitude or matrix element Mi f squared and the phase space factor, the latter being purely
kinematic:

(transition rate) =
2π

ℏ
|Mi f |2 × (phase space factor)

Decays: Assume that we have the following decay mode |1⟩ → |2⟩+ |3⟩+ ...+ |n⟩. The decay rate is then given by

Γ =
S

2 ·ℏ ·m1

∫
|Mi f |2(2π)4

δ
4(P⃗1 − P⃗2 − P⃗3 − ...− P⃗n)×

n

∏
j=2

2πδ (p2
j −m2

jc
2)θ(p j)

d4P⃗j

(2π)4 , (4.1.1)

where S is a statistical factor that reflects the number of states accessible to distinguishable particles. The (1/k!) ( for each
group go k identical particles in the final state) factor divides out the number of equivalent states for identical particles.

Scattering: Assume that we have the following scattering process mode |1⟩+ |2⟩ → |3⟩+ ...+ |n⟩. The interaction rate is
then given by

Γ =
S

2 ·ℏ ·m1

∫
|Mi f |2(2π)4

δ
4(P⃗1 + P⃗2 − P⃗3 − ...− P⃗n)×

n

∏
j=3

2πδ (p2
j −m2

jc
2)θ(p j)

d4P⃗j

(2π)4 , (4.1.2)
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4.2 General Feynman rules

We will first start by giving the general Feynman rules, no matter what the underlying theory is. In the subsequent sections
we will review how these rules are modified for the case of the electromagnetic and weak interactions in Sections 4.2.1
and for the case of strong interactions in Section 4.2.2. In what follows we will be working in natural units i.e. ℏ= c = 1.

A characteristic diagram describing any kind of interaction of the type A+B →C+D is given in fig. 4.2.

Fig. 4.2: A diagram describing the process A+B →C+D.

The general rules that one needs to follow in order to calculate the matrix element Mi f are given below:

• Labeling: We first label the incoming and outgoing four-momenta P⃗A, P⃗B, P⃗C and P⃗D. For each external line we add an
arrow which indicates the positive (i.e. along the time axis) direction for particles. We then label all internal lines e.g.
in fig. 4.2 we label the four-momentum of the propagator as q⃗ and give an arbitrary direction to the relevant arrow.

• Vertices: For each vertex we note down in the diagram the coupling constant factor −igγµ .

• Propagators: For each internal line, we give a factor of

i
q⃗2 −m2

where q⃗2 = qν qν the invariant mass of the propagator.

• δ -functions: For each vertex we should add a δ -function of the form

(2π)4
δ

4(P⃗A + P⃗B − q⃗)

where depending on the direction of the arrow of the relevant line in the diagram, we give a positive or negative sign
to the 4-momentum symbol. This function guarantees the conservation of energy and momentum at the vertex.

• Integrate: For each internal line we should be writing down a factor

1
(2π)4 d4q⃗

and we should integrate over all internal momenta.

• Cancelation of δ -functions: The result will contain a factor of

(2π)4
δ

4(P⃗A + P⃗B − P⃗C − P⃗D)

If this factor is cancelled, what remains is −iMif.
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4.2.1 Feynman rules for QED and GWS

Let’s now review how these general rules described before change in the case of an electromagnetic or weak interaction.

• Labeling: We label every external line with the ingoing and outgoing momenta P⃗1,..., P⃗n, adding also an arrow indi-
cating whether a particle is approaching or moving away from the vertex. If the diagram includes antiparticles, we still
label them as particles but with the reverse direction of the arrow. We then label the 4-momenta for all internal lines
q⃗1,..., q⃗ j and we give an arbitrary direction to the relevant arrow.

• External lines: Each external line contributes the following factors:

Incoming electron → u

Outgoing electron → u

Incoming positron → v

Outgoing positron → v

Incoming photon → εµ

Outgoing photon → ε
∗
µ

where u and v are the relevant Dirac spinors and εµ are the photon polarisation vectors which are orthogonal to the
4-momentum P⃗ν εν = 0.

• Vertices: For each vertex we note down in the diagram the coupling constant factor −igε γµ or −igwγµ , if the interaction
is electromagnetic or weak, respectively. These factors are connected to the coupling constants via the equations

gε =
√

4πα

and

gw =
√

4παw

• Propagators: For each internal line, we give a factor of

e± :
i(γµ q⃗µ +m)

q⃗2 −m2

γ :
−igµν

q⃗2

• δ -functions and integration: The remaining steps are identical as in the general rules described before.

Figure 4.3 presents the lines for the basic particles and anti-particles but also the propagators for both the electromagnetic
and weak interactions.

4.2.2 Feynman rules for QCD

Let’s now review how these general rules described before change in the case of a strong interaction.
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Fig. 4.3: The most characteristic lines for the Feynman diagrams in electromagnetic and weak interactions.

• Labeling: We label every external line with the ingoing and outgoing momenta P⃗1,..., P⃗n, adding also an arrow indi-
cating whether a particle is approaching or moving away from the vertex. If the diagram includes antiparticles, we still
label them as particles but with the reverse direction of the arrow. We then label the 4-momenta for all internalhslash
lines q⃗1,..., q⃗ j and we give an arbitrary direction to the relevant arrow.

• External lines: Each external line contribute the following factors:

Incoming quark → us · c
Outgoing quark → us · c†

Incoming anti-quark → vs · c†

Outgoing anti-quark → v · c

Incoming gluon → εµ ·aα

Outgoing gluon → ε
∗
µ ·aα∗

where u and v are the relevant Dirac spinors. In the previous c are the matrices that represent the colour:




1
0
0


 for R,




0
1
0


 for B,




0
0
1


 for G

and a are the 8-element column matrices, one for each gluon state (i.e. α goes from 1 to 8):

|1⟩ ≡




1
0
0
0
0
0
0
0




, |2⟩ ≡




0
1
0
0
0
0
0
0




, |3⟩ ≡




0
0
1
0
0
0
0
0




, |4⟩ ≡




0
0
0
1
0
0
0
0




, |5⟩ ≡




0
0
0
0
1
0
0
0




, |6⟩ ≡




0
0
0
0
0
1
0
0




, |7⟩ ≡




0
0
0
0
0
0
1
0




, |8⟩ ≡




0
0
0
0
0
0
0
1




• Vertices: For each vertex we note down in the diagram the coupling constant factor ≈ gs. This factor is connected to
the coupling constant via the equation

gs =
√

4παs

For a quark-gluon vertex (see fig. 4.4) the factor is of the form:

−igs

2
λ

α
γ

µ

,
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where the parameters λ α are the Gell-Man λ -matrices of SU(3).

For a 3-gluon vertex (see fig. 4.4) the factor is of the form:

−gs f αβγ

[
gµν(k⃗1 − k⃗2)ρ +gνρ(k⃗2 − k⃗3)µ +gρµ(k⃗3 − k⃗1)ν

]

,

where the factors f αβγ are the structure constants of SU(3) and k⃗i are the 4-momenta of each internal line (with
i = 1,2,3).

Finally, for a 4-gluon vertex (see fig. 4.4) the factor is of the form:

−ig2
s

[
f αβη f γδη(gµσ gνρ −gµρ gνσ )+ f αδη f βγη(gµν gσρ −gµσ gνρ)+ f αγη f δβη(gµρ gνσ −gµν gσρ)

]

• Propagators: For each internal line, we give a factor of

q−q :
i(/q+m)

q⃗2 −m2

gluon : −igµν δ
αβ

where /q ≡ γν qν .

• δ -functions and integration: The remaining steps are identical as in the general rules described before.

Figure 4.4 presents the lines for the basic particles and anti-particles but also the propagators for the strong interactions.

Fig. 4.4: The most characteristic lines for the Feynman diagrams in strong interactions.
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4.2.3 A characteristic example: e−+µ− → e−+µ−

In this section we are going to calculate the matrix element of a characteristic electromagnetic process i.e. the electron-
muon scattering (also known as Møtt scattering). We will find this calculation convenient for QCD processes that we are
going to encounter in the following chapters.

Figure 4.5 presents the basic Feynman diagram of the Møtt scattering. It is seen that an electron and a muon enter from
the left, they interact by exchanging a photon and scatter.

Fig. 4.5: The Feynman diagram for the process e−+µ− → e−+µ−.

Following the Feynman rules for QED we have:

∫ [
u(P⃗3)(igeγ

µ)u(P⃗1)
](−igµν

q2

)[
u(P⃗4)(igeγ

ν)u(P⃗2)
]
·
[
(2π)4

δ
4(P⃗1 − P⃗3 − q⃗)

]
·
[
(2π)4

δ
4(P⃗2 − P⃗4 + q⃗)

]
· d4q
(2π)4

= ig2
e(2π)4

∫
u(P⃗3)γ

µ u(P⃗1) ·
gµν

q2 ·u(P⃗4)γ
ν u(P⃗2) ·δ 4(P⃗1 − P⃗3 − q⃗) ·δ 4(P⃗2 − P⃗4 + q⃗)d4q

But P⃗1 − P⃗3 = q⃗ and the previous can be written:

ig2
e(2π)4u(P⃗3)γ

µ u(P⃗1) ·
gµν

(P⃗1 − P⃗3)2
·u(P⃗4)γ

ν u(P⃗2) ·δ 4(P⃗1 + P⃗2 − P⃗3 − P⃗4)d4q

To get the matrix element, one simply cancels the δ -function and gets rid of the imaginary factor:

Mi f =
−g2

e

(P⃗1 − P⃗3)2

[
u(P⃗3)γ

µ u(P⃗1)gµν u(P⃗4)γ
ν u(P⃗2)

]
⇔

Mi f =
−g2

e

(P⃗1 − P⃗3)2

[
u(P⃗3)γ

µ u(P⃗1)u(P⃗4)γµ u(P⃗2)
]

(4.2.1)
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We now need to compute ⟨|Mi f |2⟩, where the brackets denote an average over all initial and final spin configurations. This
can be done by taking the average of Eq. 4.2.1 and using the so-called Casimir identity which makes usage of traces of
matrices.

|Mi f |2 =
g4

e

(P⃗1 − P⃗3)4

[
u(P⃗3)γ

µ u(P⃗1)
]
·
[
u(P⃗4)γµ u(P⃗2)

]
·
[
u(P⃗3)γ

ν u(P⃗1)
]∗

·
[
u(P⃗4)γν u(P⃗2)

]∗

where the brackets with the ’star’ are the complex conjugates.

The average of the previous equation over all spin configurations leads to the identity:

⟨|Mi f |2⟩=
1
4 ∑

allspins
|Mi f |2 =

g4
e

4(P⃗1 − P⃗3)4 ∑
allspins

[
u(P⃗3)γ

µ u(P⃗1)
]
·
[
u(P⃗4)γµ u(P⃗2)

]
·
[
u(P⃗3)γ

ν u(P⃗1)
]∗

·
[
u(P⃗4)γν u(P⃗2)

]∗
⇔

⟨|Mi f |2⟩=
g4

e

4(P⃗1 − P⃗3)4
·Tr
[
γ

µ

(
/⃗P1 +m

)
· γν

(
/⃗P3 +m

)]
·Tr
[
γµ

(
/⃗P2 +M

)
· γν

(
/⃗P4 +M

)]

where m and M are the electron and muon masses, respectively. Let us now calculate the first of the two traces:

Tr
[
γ

µ

(
/⃗P1 +m

)
· γν

(
/⃗P3 +m

)]
=

Tr(γµ /⃗P1γ
ν /⃗P3)+m

[
Tr(γµ /⃗P1γ

ν

]
+m

[
Tr(γµ

γ
ν /⃗P3

]
+m2Tr(γµ

γ
ν)

Consulting the theorems for traces, the trace of odd number of matrices is 0, which reduces the workload in the previous
equation to calculating the trace of the first and the fourth term:

First trace:

Tr(γµ /⃗P1γ
ν /⃗P3)= (P⃗1)ρ ·(P⃗3)σ ·Tr(γµ

γ
ρ

γ
ν
γ

σ )= (P⃗1)ρ ·(P⃗3)σ ·4
(

gµρ gνσ −gµν gρσ +gµσ gρν

)
= 4
(

P⃗1
µ

P⃗3
ν −gµν P⃗1µ P⃗3

µ
+P⃗3

µ
P⃗1

ν
)

Fourth trace:
m2Tr(γµ

γ
ν) = m2gµν

The initial first trace is then:

Tr
[
γ

µ

(
/⃗P1 +m

)
· γν

(
/⃗P3 +m

)]
= 4
[
P⃗1

µ
P⃗3

ν
+ P⃗3

µ
P⃗1

ν
+gµν

(
m2 − P⃗1µ P⃗3

µ
)]

The second trace is nothing else than the above calculation after replacing M for m and exchanging 1 → 2 and 3 → 4. This
results in

⟨|Mi f |2⟩=
4g4

e

(P⃗1 − P⃗3)4
·
[
P⃗1

µ
P⃗3

ν
+ P⃗3

µ
P⃗1

ν
+gµν

(
m2 − P⃗1µ P⃗3

µ
)]

·
[
P⃗2µ P⃗4ν + P⃗4µ P⃗2ν +gµν

(
M2 − P⃗2µ P⃗4

µ
)]

⇔

⟨|Mi f |2⟩=
4g4

e

(P⃗1 − P⃗3)4
·
[(

P⃗1µ P⃗2
µ
)(

P⃗3µ P⃗4
µ
)
+
(

P⃗1µ P⃗4
µ
)(

P⃗2µ P⃗3
µ
)
−M2

(
P⃗1µ P⃗3

µ
)
−m2

(
P⃗2µ P⃗4

µ
)
+2
(

mM
)2]

(4.2.2)

Let’s now assume that the initial muon is at rest and that m << M. The 4-momenta of the particles participating in the
process can be written:
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P⃗1µ =
(

E1, P⃗1

)

P⃗2µ =
(

M,⃗0
)

P⃗3µ =
(

E3, P⃗3

)

P⃗4µ =
(

E4, P⃗4

)

Let’s now calculate each term of Eq. 4.2.2:

• (P⃗1 − P⃗3)
2:

(P⃗1 − P⃗3)
2 = (E1 −E3)

2 − (P⃗1 − P⃗3)
2 = E2

1 +E2
3 −2E1E3 −P2

1 −P2
3 −2P1P3 cos(θ)

Assuming that P1 ≈ P3 = P the previous equation is written:

(P⃗1 − P⃗3)
2 = 2m2 −2(P2 +m2)+2P2 cos(θ) =−2P2

(
1− cos(θ)

)

•
(

P⃗1µ P⃗2
µ
)(

P⃗3µ P⃗4
µ
)
≈ ME1ME3 = M2E2

•
(

P⃗1µ P⃗4
µ
)(

P⃗2µ P⃗3
µ
)
≈ ME1ME3 = M2E2

•
(

P⃗1µ P⃗3
µ
)
= E1E3 −P2 cos(θ)

•
(

P⃗2µ P⃗4
µ
)
≈ M2

The square of the matrix element can thus be written as1:

⟨|Mi f |2⟩=
4g4

e[
2P2
(

1− cos(θ)
)]2 ·

[
M2E2 +M2E2 −

(
m2 +P2(1− cos(θ)

))
M2 −m2M2 +2m2M2

]
⇔

⟨|Mi f |2⟩=
g4

e

P4 sin4(θ/2)
·
(
2M2E2 −M2P2 sin2(θ/2)+m2M2 −m2M2)⇔

⟨|Mi f |2⟩=
g4

eM2

P4 sin4(θ/2)
·
(
m2 +P2 cos2(θ/2

)

The differential cross-section, considering also that ge =
√

4πα can be written:

dσ

dΩ
=

α2

4P4 sin4(θ/2)

(
m2 +P2 cos2(θ/2)

)
(4.2.3)

1 Remember that 1− cos(θ) = sin2(θ/2)



Chapter 5

Colour factors

hslash In this chapter we are going to review the interactions between quarks and anti-quarks. This is something that
obviously we can not observe in nature since quarks are confined within hadrons. However it will be instructive to look
at the effective potentials. We will start from the effective potential between two charges e.g. electrons and positrons, that
are attracted or repulsed by the potential

V (r) =−e2

r
=−αℏc

r
(5.0.1)

where α is the fine structure constant and at this stage we decided not to drop ℏ and c by working with natural units.

5.1 Quark-Antiquark interactions

Let’s try to calculate the matrix element for the interaction between a quark (e.g. u) and an anti-quark (e.g. d) as illustrated
in fig. 5.1. We consider the interaction of quarks of different flavour in order to avoid calculating extra diagrams that
involve crossing of the outgoing external lines.

Fig. 5.1: The diagram describing the interaction between a quark and an anti-quark. In this particular case the quark and
the anti-quark do not have the same flavour thus avoiding the extra diagram that involves crossing output lines.

55
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∫ [
u(3)c†

3

]
·
[−igs

2
λ

α
γ

µ
]
·
[
u(1)c1

]
·
[−igµν δ αβ

q⃗2

]
·
[
v(2)c†

2

]
·
[−igs

2
λ

β
γ

ν
]
·
[
v(4)c4

]
·

[
(2π)4

δ
4(P⃗1 − P⃗3 − q⃗)

]
·
[
(2π)4

δ
4(P⃗2 − P⃗4 + q⃗)

]
· d4q
(2π)4 =

ig2
s (2π)4

4
·
[
u(3)c†

3

]
·
[
λ

α
γ

µ
]
·
[
u(1)c1

]
·
[gµν δ αβ

q⃗2

]
·
[
v(2)c†

2

]
·
[
λ

β
γ

ν
]
·
[
v(4)c4

]
·δ 4(P⃗1 + P⃗2 − P⃗3 − P⃗4)⇔

Mi f =
g2

s

4⃗q2 ·
[
u(3)c†

3

]
·
[
λ

α
γ

µ
]
·
[
u(1)c1

]
·
[
gµν δ

αβ
]
·
[
v(2)c†

2

]
·
[
λ

β
γ

ν
]
·
[
v(4)c4

]
⇔

Mi f =
g2

s

4⃗q2 ·
[
u(3)γµ u(1)

]
·
[
v(2)γµ v(4)

]
·
[[

c†
3λ

α c1
]
· (δ αβ ) ·

[
c†

2λ
β c4
]]

⇔

Mi f =
g2

s

q⃗2 ·
(
u(3)γµ u(1)v(2)γµ v(4)

)
·
[1

4
·
(
c†

3λ
α c1
)
·
(
c†

2λ
α c4
)]

(5.1.1)

The first part of Eq. 5.1.1 i.e. g2
s

q⃗2 ·
(
u(3)γµ u(1)v(2)γµ v(4)

)
, is the same as in QED (e.g. scattering of an electron off a

positive muon) with the strong coupling constant gs taking the place of ge. The second part i.e.
[

1
4 ·
(
c†

3λ α c1
)
·
(
c†

2λ α c4
)]

is better known as colour factors.

The colour factor depends on the colour state of the interacting quarks. For a quark and an anti-quark, as we have seen
in Chapter 2 and in particular in Section 2.5, we can form an octet and a singlet state. We will now calculate the colour
factors separately for each state.

5.1.1 Colour factors for the octet configuration

Let’s take one typical octet colour state e.g. RB with the relevant diagram of fig. 5.1 being transformed into fig.5.2. The
diagram reads: an incoming red u quark interacts with another incoming antigreen d antiquark and produce a red u quark
and an antigreen d antiquark. In order for the interaction to take place they have to exchange a gluon (colour-anticolour
combination) that preserves the colour on every vertex. That would then be any of the RR, GG or BBß combinations.

For this choice of colours the matrices c1, c2, c3 and c4 are written as:

c1 = c3 =




1
0
0




c2 = c4 =




0
1
0




It follows that

f =
1
4

[(
1 0 0

)
λ

α




1
0
0



][



1
0
0


λ

α




0
1
0



]

The index α runs over all the Gell-Man matrices i.e. α = 1, ...,8:
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Fig. 5.2: The colour representation of one colour octet state of fig. 5.1.

•
[(

1 0 0
)

λ 1




1
0
0



][(

0 1 0
)

λ 1




0
1
0



]
=
[(

1 0 0
)



0 1 0
1 0 0
0 0 0






1
0
0



][(

0 1 0
)



0 1 0
1 0 0
0 0 0






0
1
0



]
= 0

•
[(

1 0 0
)

λ 2




1
0
0



][(

0 1 0
)

λ 2




0
1
0



]
=
[(

1 0 0
)



0 −i 0
i 0 0
0 0 0






1
0
0



][(

0 1 0
)



0 −i 0
i 0 0
0 0 0






0
1
0



]
= 0

•
[(

1 0 0
)

λ 3




1
0
0



][(

0 1 0
)

λ 3




0
1
0



]
=
[(

1 0 0
)



1 0 0
0 −1 0
0 0 0






1
0
0



][(

0 1 0
)



1 0 0
0 −1 0
0 0 0






0
1
0



]
= 1 · (−1) =−1

•
[(

1 0 0
)

λ 4




1
0
0



][(

0 1 0
)

λ 4




0
1
0



]
=
[(

1 0 0
)



0 0 1
0 0 0
1 0 0






1
0
0



][(

0 1 0
)



0 0 1
0 0 0
1 0 0






0
1
0



]
= 0

•
[(

1 0 0
)

λ 5




1
0
0



][(

0 1 0
)

λ 5




0
1
0



]
=
[(

1 0 0
)



0 0 −i
0 0 0
i 0 0






1
0
0



][(

0 1 0
)



0 0 −i
0 0 0
i 0 0






0
1
0



]
= 0

•
[(

1 0 0
)

λ 6




1
0
0



][(

0 1 0
)

λ 6




0
1
0



]
=
[(

1 0 0
)



0 0 0
0 0 1
0 1 0






1
0
0



][(

0 1 0
)



0 0 0
0 0 1
0 1 0






0
1
0



]
= 0

•
[(

1 0 0
)

λ 7




1
0
0



][(

0 1 0
)

λ 7




0
1
0



]
=
[(

1 0 0
)



0 0 0
0 0 −i
0 i 0






1
0
0



][(

0 1 0
)



0 0 0
0 0 −i
0 i 0






0
1
0



]
= 0

•
[(

1 0 0
)

λ 8




1
0
0



][(

0 1 0
)

λ 8




0
1
0



]
=
[(

1 0 0
) 1√

3




1 0 0
0 1 0
0 0 −2






1
0
0



][(

0 1 0
) 1√

3




1 0 0
0 1 0
0 0 −2






0
1
0



]
= 1√

3
· 1√

3
=

1
3

The colour factor is then:

f =
1
4
(
−1+

1
3
)
=−1

6

Hint: Only the matrices with non-zero points at ii contribute!



58 5 Colour factors

5.1.2 Colour factors for the singlet configuration

If the incoming quarks are in the colour singlet state 1√
3

(
RR+GG+BB

)
then there are three terms in the colour factor:

f =
1
4

1√
3

[
·
[
c†

3λ
α




1
0
0



]
·
[(

1 0 0
)

λ
α c4

]
+
[
c†

3λ
α




0
1
0



]
·
[(

0 1 0
)

λ
α c4

]
+
[
c†

3λ
α




0
0
1



]
·
[(

0 0 1
)

λ
α c4

]]

Similarly the outgoing quarks, represented by the matrices c3 and c4, are in the colour singlet state, resulting into calcu-
lating nine terms:

f =
1
4

1√
3
·
[[(

1 0 0
)

λ
α




1
0
0



]
·
[(

1 0 0
)

λ
α




1
0
0



]
+

[(
0 1 0

)
λ

α




1
0
0



]
·
[(

1 0 0
)

λ
α




0
1
0



]
+

[(
0 0 1

)
λ

α




1
0
0



]
·
[(

1 0 0
)

λ
α




0
0
1



]
+

[(
1 0 0

)
λ

α




0
1
0



]
·
[(

0 1 0
)

λ
α




1
0
0



]
+

[(
0 1 0

)
λ

α




0
1
0



]
·
[(

0 1 0
)

λ
α




0
1
0



]
+

[(
0 0 1

)
λ

α




0
1
0



]
·
[(

0 1 0
)

λ
α




0
0
1



]
+

[(
1 0 0

)
λ

α




0
0
1



]
·
[(

0 0 1
)

λ
α




1
0
0



]
+

[(
0 1 0

)
λ

α




0
0
1



]
·
[(

0 0 1
)

λ
α




0
1
0



]
+

[(
0 0 1

)
λ

α




0
0
1



]
·
[(

0 0 1
)

λ
α




0
0
1



]]

The first term is non-zero for the non-zero elements of λ α at 11 i.e. it gives rise to λ α
11 ·λ α

11, the second term gives rise to
λ α

21 ·λ α
12, the third λ α

31 ·λ α
13,... The end product is:

f =
1

12

8

∑
α=1

3

∑
i=1

3

∑
j=1

λ
α
i j ·λ α

ji =
1
12

Tr(λ α ·λ α)
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It can be shown that Tr(λ α ·λ β ) = 2δ αβ , which means that with the summation over α: Tr(λ α ·λ α) = 16, which in turns
lead to:

f =
4
3

5.2 Quark-Quark interactions

Let’s try to calculate the matrix element for the interaction between two quarks (e.g. u and a d) as illustrated in fig. 5.3.
Once again, we consider the interaction of quarks of different flavour in order to avoid calculating extra diagrams that
involve crossing of the outgoing external lines.

Fig. 5.3: The diagram describing the interaction between two quarks.

∫ [
u(3)c†

3

]
·
[−igs

2
λ

α
γ

µ
]
·
[
u(1)c1

]
·
[−igµν δ αβ

q⃗2

]
·
[
u(4)c†

4

]
·
[−igs

2
λ

β
γ

ν
]
·
[
u(2)c2

]
·

[
(2π)4

δ
4(P⃗1 − P⃗3 − q⃗)

]
·
[
(2π)4

δ
4(P⃗2 − P⃗4 + q⃗)

]
· d4q
(2π)4 =

ig2
s (2π)4

4
·
[
u(3)c†

3

]
·
[
λ

α
γ

µ
]
·
[
u(1)c1

]
·
[gµν δ αβ

q⃗2

]
·
[
u(4)c†

4

]
·
[
λ

β
γ

ν
]
·
[
u(2)c2

]
·δ 4(P⃗1 + P⃗2 − P⃗3 − P⃗4)⇔

Mi f =
g2

s

4⃗q2 ·
[
u(3)c†

3

]
·
[
λ

α
γ

µ
]
·
[
u(1)c1

]
·
[
gµν δ

αβ
]
·
[
u(4)c†

4

]
·
[
λ

β
γ

ν
]
·
[
u(2)c2

]
⇔

Mi f =
g2

s

4⃗q2 ·
[
u(3)γµ u(1)

]
·
[
u(4)γµ u(2)

]
·
[[

c†
3λ

α c1
]
· (δ αβ ) ·

[
c†

4λ
β c2
]]

⇔

Mi f =
g2

s

q⃗2 ·
(
u(3)γµ u(1)u(4)γµ u(2)

)
·
[1

4
·
(
c†

3λ
α c1
)
·
(
c†

4λ
α c2
)]

(5.2.1)
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The first part of Eq. 5.2.1 i.e. g2
s

q⃗2 ·
(
u(3)γµ u(1)u(4)γµ u(2)

)
, is the same as in QED (e.g. scattering of an electron off a

muon) with the strong coupling constant gs taking the place of ge. The second part i.e.
[

1
4 ·
(
c†

3λ α c1
)
·
(
c†

4λ α c2
)]

gives
the relevant colour factors for the q−q interactions.

The colour factor depends on the colour state of the interacting quarks. For two quarks, as we have seen in Chapter 2 and
in particular in Section 2.5, we can form a symmetric sextet and an anti-symmetric triplet state. We will now calculate the
colour factors separately for each state.

5.2.1 Colour factors for the sextet configuration

The sextet consists of the following combinations: RR, GG, BB, (RB+BR)/
√

2, (GB+BG)/
√

2, and (RG+GR)/
√

2.
Let’s take one typical octet colour state e.g. RR with the relevant diagram of fig. 5.3 being transformed into fig.5.4. The
diagram reads: an incoming red u quark interacts with another incoming red d quark and produce a red u quark and another
red d quark. In order for the interaction to take place they have to exchange a gluon (colour-anticolour combination) that
preserves the colour on every vertex. That would then be any of the RR, GG or BBß combinations.

Fig. 5.4: The colour representation of one colour sextet state of fig. 5.1.

For this choice of colours the matrices c1, c2, c3 and c4 are written as:

c1 = c2 = c3 = c4 =




1
0
0




It follows that

f =
1
4

[(
1 0 0

)
λ

α




1
0
0



][(

1 0 0
)

λ
α




1
0
0



]

The index α runs over all the Gell-Man matrices i.e. α = 1, ...,8:

•
[(

1 0 0
)

λ 1




1
0
0



][(

1 0 0
)

λ 1




1
0
0



]
=
[(

1 0 0
)



0 1 0
1 0 0
0 0 0






1
0
0



][(

1 0 0
)



0 1 0
1 0 0
0 0 0






1
0
0



]
= 0



5.2 Quark-Quark interactions 61

•
[(

1 0 0
)

λ 2




1
0
0



][(

1 0 0
)

λ 2




1
0
0



]
=
[(

1 0 0
)



0 −i 0
i 0 0
0 0 0






1
0
0



][(

1 0 0
)



0 −i 0
i 0 0
0 0 0






1
0
0



]
= 0

•
[(

1 0 0
)

λ 3




1
0
0



][(

1 0 0
)

λ 3




1
0
0



]
=
[(

1 0 0
)



1 0 0
0 −1 0
0 0 0






1
0
0



][(

1 0 0
)



1 0 0
0 −1 0
0 0 0






1
0
0



]
= 1 ·1 = 1

•
[(

1 0 0
)

λ 4




1
0
0



][(

1 0 0
)

λ 4




1
0
0



]
=
[(

1 0 0
)



0 0 1
0 0 0
1 0 0






1
0
0



][(

1 0 0
)



0 0 1
0 0 0
1 0 0






1
0
0



]
= 0

•
[(

1 0 0
)

λ 5




1
0
0



][(

1 0 0
)

λ 5




1
0
0



]
=
[(

1 0 0
)



0 0 −i
0 0 0
i 0 0






1
0
0



][(

1 0 0
)



0 0 −i
0 0 0
i 0 0






1
0
0



]
= 0

•
[(

1 0 0
)

λ 6




1
0
0



][(

1 0 0
)

λ 6




1
0
0



]
=
[(

1 0 0
)



0 0 0
0 0 1
0 1 0






1
0
0



][(

1 0 0
)



0 0 0
0 0 1
0 1 0






1
0
0



]
= 0

•
[(

1 0 0
)

λ 7




1
0
0



][(

1 0 0
)

λ 7




1
0
0



]
=
[(

1 0 0
)



0 0 0
0 0 −i
0 i 0






1
0
0



][(

1 0 0
)



0 0 0
0 0 −i
0 i 0






1
0
0



]
= 0

•
[(

1 0 0
)

λ 8




1
0
0



][(

1 0 0
)

λ 8




1
0
0



]
=
[(

1 0 0
) 1√

3




1 0 0
0 1 0
0 0 −2






1
0
0



][(

1 0 0
) 1√

3




1 0 0
0 1 0
0 0 −2






1
0
0



]
= 1√

3
· 1√

3
=

1
3

The colour factor is then:

f =
1
4
(
1+

1
3
)
=

1
3

Although we followed all the steps, it is important to realise that only the matrices with non-zero points at ii contribute!

5.2.2 Colour factors for the triplet configuration

The triplet configuration is an anti-symmetric one with elements (RB−BR)/
√

2, (BG−GB)/
√

2, and (GR−RG)/
√

2.
Let’s now take the last colour state i.e. (RG−GR)/

√
2, and calculate the colour factors:

f =
1
4

1√
2

1√
2
·
[(

1 0 0
)

λ
α




1
0
0



]
·
[(

0 1 0
)

λ
α




0
1
0



]

+
[(

0 1 0
)

λ
α




0
1
0



]
·
[(

1 0 0
)

λ
α




1
0
0



]

−
[(

1 0 0
)

λ
α




0
1
0



]
·
[(

0 1 0
)

λ
α




1
0
0



]

−
[(

0 1 0
)

λ
α




1
0
0



]
·
[(

1 0 0
)

λ
α




0
1
0



]
=
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1
8

[(
λ

α
11 ·λ α

22

)
+
(

λ
α
22 ·λ α

11

)
−
(

λ
α
12 ·λ α

21

)
−
(

λ
α
21 ·λ α

12

)]
=

1
4

[(
λ

α
11 ·λ α

22

)
−
(

λ
α
12 ·λ α

21

)]
=

1
4

[(
λ

3
11 ·λ 3

22

)
+
(

λ
8
11 ·λ 8

22

)
−
(

λ
1
12 ·λ 1

21

)
−
(

λ
2
12 ·λ 2

21

)]
⇔

f =
−2
3

5.3 Colour interactions

Let us now calculate the effective potentials for the two cases i.e. the q− q and q− q interactions. Equation 5.0.1 is
modified in such a way so that it takes into account both the strong coupling constant and the colour factors. For what
concerns the q−q case, we have:

V (r) =− f
αsℏc

r
(5.3.1)

The relevant potentials for the different multiplets are:

• Colour octet: V (r) = 1
6

αsℏc
r

• Colour singlet: V (r) =− 4
3

αsℏc
r

This clearly indicates that the force is attractive for the colour singlet state and repulsive for the colour octet. This gives
another explanation on how the q−q binding occurs in the colour singlet state, resulting into coloured neutral mesons.

For what concerns the q−q case, we have:

V (r) = f
αsℏc

r
(5.3.2)

Note that the negative sign is removed due to the same charges of the two quarks. The relevant potentials for the different
multiplets are:

• Colour sextet: V (r) = 1
3

αsℏc
r

• Colour triplet: V (r) =− 2
3

αsℏc
r

This clearly indicates that the force is attractive for the colour triplet state and repulsive for the colour sextet. However
one needs to add another quark in the mix to form a baryon. As we have seen in Section 2.5 one can form a completely
anti-symmetric singlet state, a symmetric decuplet, and two semi-anti-symmetric octets.

As pointed out before, these potentials are valid in case of short scales. QCD is formally very reminiscent of QED but
there are important differences because, unlike photons, the gluons interact among themselves. In QED, the electric field
of two oppositely charged particles permeates all space and diminishes quickly when the charges are separated. On the
other hand, when one tries to separate a colour charge the gluon self-interaction causes the colour field between these
charges to organise itself into a so-called flux tube or colour string. When stretched, the behaviour of such a string is very
much like that of a rubber band.This behaviour of the gluon field leads to a force which is constant between the colour
charges, regardless of their distance. The strength of this force is huge, about 16× 104 N, or 16 tons. It follows that the
colour charges cannot be fully separated since that would cost an infinite amount of energy. Instead, it will be energetically
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more favourable to pull a quark-antiquark pair out of the vacuum and this causes the string to break. QED-like behaviour
at small distance, and string behaviour at large distance leads to a QCD potential that behaves roughly as:

V (r)∼ α

r
+ kr





Chapter 6

Form factors

In this chapter, we will discuss about the experimental evidence of the colour quantum number and we will get a first
glimpse about the internal structure of protons.

6.1 Evidence of colour

So far we have discussed about colour as a new quantum number that characterises quarks and gluons. We have not
discussed how the existence of colour was established. To do this, we need to go back to a QED process we should be
by now familiar with i.e. the electron-positron scattering described by the interaction e− + e+ → µ− + µ+ and by the
diagram 6.1.

Fig. 6.1: The diagram describing the electron-positron scattering into a pair of muons e−+ e+ → µ−+µ+.

Similarly to this figure, one can as well create a pair of quarks i.e. more precise a q− q pair that for a brief moment fly
apart until the are separated by a distance of the size of the hadron (≈ 10−15 m). The relevant diagram for this process
is given in fig. 6.2. As we have seen in Chapter 5 and in particular in Section 5.3, beyond this distance it is energetically
favourable to form new q−q pairs that eventually lead to the creation of hadrons. It turns out though that the initial q−q
pair leaves a footprint in the final state hadron production since these hadrons usually emerge as two back-to-back sprays,
known as jets. In some cases it happens that a gluon emerges with a substantial fraction of the initial energy. This gluon
then fragments, creating a third jet, a topology known as a three-jet event. Examples of a two- and three-jet events are
shown in the left and right plot of fig. 6.3, respectively.

At the Large Hadron Collider (LHC), where the energy compared to the previous colliders has increased significantly i.e.
by orders of magnitude, we are able to detect event topologies that involve more than three jets. That implies that more
than one gluon carries enough energy, fragment and produce additional jets. An example of a five jet event topology from
the ATLAS experiment is given in fig. 6.4

Let us now try to calculate the cross-section for the process e−+ e+ → hadrons and compare it to the one of e−+ e+ →
µ−+µ+. For this we will rely on the QED Feynman rules and we will first calculate the matrix element as follows:

65
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Fig. 6.2: The diagram describing the electron-positron scattering into a pair of quarks e−+ e+ → q+q.

jet

jet

jete+

e−

Fig. 6.3: A typical two- and three-jet topology in the left and right plot, respectively.

Fig. 6.4: A typical five-jet topology as recorded by the ATLAS experiment at the LHC.
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∫ [
u(P⃗3)(igeγ

µ)v(P⃗4)
](−igµν

q2

)[
v(P⃗2)(igeγ

ν)u(P⃗1)
]
·
[
(2π)4

δ
4(P⃗1 + P⃗2 − q⃗)

]
·
[
(2π)4

δ
4(−P⃗3 − P⃗4 + q⃗)

]
· d4q
(2π)4 =

∫
−i3g2

e(2π)4
[
u(P⃗3)γ

µ v(P⃗4)
](gµν

q2

)[
v(P⃗2)γ

ν u(P⃗1)
]
·
[
δ

4(P⃗1 + P⃗2 − q⃗)
]
·
[
δ

4(−P⃗3 − P⃗4 + q⃗)
]
·d4q =

ig2
e(2π)4

(P⃗1 + P⃗2)2

[
u(P⃗3)γ

µ v(P⃗4)
][

v(P⃗2)γµ u(P⃗1)
]
·
[
δ

4(P⃗1 + P⃗2 − P⃗3 − P⃗4)
]
·d4q =

Mi f =
g2

e

(P⃗1 + P⃗2)2

[
u(P⃗3)γ

µ v(P⃗4)
][

v(P⃗2)γµ u(P⃗1)
]

(6.1.1)

For the case of quarks instead of muons, we only have to add the relevant charge of the quark Q:

Mi f =
Qg2

e

(P⃗1 + P⃗2)2

[
u(P⃗3)γ

µ v(P⃗4)
][

v(P⃗2)γµ u(P⃗1)
]

(6.1.2)

The square of the matrix element of Eq. 6.1.2 is then:

|Mi f |2 =
Q2g4

e

(P⃗1 + P⃗2)4

[
u(P⃗3)γ

µ v(P⃗4)
][

v(P⃗2)γµ u(P⃗1)
][

u(P⃗3)γ
µ v(P⃗4)

]∗[
v(P⃗2)γµ u(P⃗1)

]∗
(6.1.3)

One has to take the sum over all initial and final spin states:

∑
spin

[
v(P⃗2)γµ u(P⃗1)

]
·
[
v(P⃗2)γµ u(P⃗1)

]∗
= Tr

(
γµ(/⃗P1 +m)γν(/⃗P2 −m)

)

∑
spin

[
u(P⃗3)γ

µ v(P⃗4)
]
·
[
u(P⃗3)γ

µ v(P⃗4)
]∗

= Tr
(

γµ(/⃗P4 −M)γν(/⃗P3 +M)
)

The average over all spin states of Eq. 6.1.3 is then:

⟨|Mi f |2⟩=
1
4

Q2g4
e

(P⃗1 + P⃗2)4
·Tr
(

γµ(/⃗P1 +m)γν(/⃗P2 −m)
)
·Tr
(

γµ(/⃗P4 −M)γν(/⃗P3 +M)
)

(6.1.4)

We will now calculate each trace separately:

• Tr
(

γµ(/⃗P1 +m)γν(/⃗P2 −m)
)
= Tr(γµ /⃗P1γν /⃗P2)+mTr(γµ γν /⃗P2)−mTr(γµ /⃗P1γν)−m2Tr(γµ γν)

The first trace is: Tr(γµ /⃗P1γν /⃗P2) = 4
[
P⃗1µ P⃗2ν −gµν(P⃗1λ P⃗λ

2 )+ P⃗2µ P⃗1ν

]

The second and third traces give 0:

mTr(γµ γν /⃗P2) = 0 i.e. odd number of γ-matrices,

mTr(γµ /⃗P1γν) = 0 i.e. odd number of γ-matrices.

Finally, the last trace is m2Tr(γµ γν) = 4m2gµν .

The trace is then:

Tr
(

γµ(/⃗P1 +m)γν(/⃗P2 −m)
)
= 4
[
P⃗1µ P⃗2ν + P⃗2µ P⃗1ν −gµν

(
(P⃗1λ P⃗λ

2 )+m2
)]

• Similarly for the other trace of Eq. 6.1.4 we have:
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Tr
(

γ
µ(/⃗P4 −M)γν(/⃗P3 +M)

)
= 4
[
P⃗µ

4 P⃗ν
3 + P⃗µ

3 P⃗ν
4 −gµν

(
(P⃗4λ P⃗λ

3 )+M2
)]

It then follows that Eq. 6.1.4 is written as:

⟨|Mi f |2⟩=
1
4

Q2g4
e

(P⃗1 + P⃗2)4
·4
[
P⃗1µ P⃗2ν + P⃗2µ P⃗1ν −gµν

(
(P⃗1λ P⃗λ

2 )+m2
)]

·4
[
P⃗µ

4 P⃗ν
3 + P⃗µ

3 P⃗ν
4 −gµν

(
(P⃗4λ P⃗λ

3 )+M2
)]

⇔

⟨|Mi f |2⟩= 8
[ Qg2

e

(P⃗1 + P⃗2)2

]2
·
[(

P⃗1µ P⃗µ

4

)
·
(

P⃗2ν P⃗ν
3

)
+
(

P⃗1µ P⃗µ

3

)
·
(

P⃗2ν P⃗ν
4

)
+M2

(
P⃗1λ P⃗λ

2

)
+m2

(
P⃗4λ P⃗λ

3

)
+2(mM)2

]

Fig. 6.5: The energy evolution of R as measured in experiments.

In terms of the incident energy E of the electron (positron) and the scattering angle θ between the electron and the quark,
the previous formula is written as:

⟨|Mi f |2⟩= Q2g4
e

[
1+
(m

E

)2
+
(M

E

)2
+
(

1−
(m

E

)2
)
·
(

1−
(M

E

)2
)

cos2(θ)
]

It is obvious that there is a threshold for this interaction to occur: E ≥ M, below which the process is kinematically
forbidden. The final integrated cross-section for the case where E > M >> m is
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σ =
π

3

[Qα

E

]2
(6.1.5)

As the energy increases, new quarks are allowed to be created e.g. at about 1.5 GeV the charm quark.

Through the comparison between the cross-sections for the processes e−+ e+ → q+q and e−+ e+ → µ−+µ+, one can
probe the number of colours via the ratio

R =
σ(e−+ e+ → hadrons)

σ(e−+ e+ → µ−+µ+)
(6.1.6)

Since the numerator includes all possible q−q pairs, Eq. 6.1.5 gives:

R(E) = 3∑Q2
i ,

where the sum is over all quark flavours with threshold below E and the factor 3 in front of the summation reflects the fact
that there are three colours for each flavour. For u, d, and s quarks one expects to have:

R = 3
[(2

3

)2
+
(−1

3

)2
+
(−1

3

)2]
= 2

Above the threshold for the c-quark: R= 2+3(2/3)2 = 10/3, above the threshold for the b-qaurk R= 10/3+3(−1/3)2 =
11/3. One expects a staircase evolution, depending on the threshold and certainly something that reflects the existence of
three colours. Figure 6.5 present the energy evolution of R as measured in experiments.

6.2 Elastic e− p scattering

Scattering of electrons off a proton is one of the cleanest probes of the internal structure of the latter. In order to study
the relevant interaction, one simply has to go back to Section 4.2.3 since the diagrams are quite similar. This is indicated
in the left diagram of fig. 6.6. However, we need to point out that we do not really know how the virtual photon interacts
with the proton which is not seen as an elementary particle anymore. As a result we have the right diagram of fig. 6.6,
where this unknown interaction is covered by the red blob. Let us now compute the matrix element for such a process.
While doing so, we will describe the proton part with the unknown factor A.

∫ [
u(P⃗3)(igeγ

µ)u(P⃗1)
]
·
[−igµν

q2

]
·
[
A(P⃗4)(igeγ

ν)A(P⃗2)
]
·
[
(2π)4

δ
4(P⃗1 − P⃗3 − q⃗)

]
·
[
(2π)4

δ
4(P⃗2 − P⃗4 + q⃗)

]
· d4q
(2π)4 =

ig2
e(2π)4

(P⃗1 − P⃗3)2

[
u(P⃗3)γ

µ u(P⃗1)
]
·
[
A(P⃗4)γµ A(P⃗2)

]
·δ 4(P⃗1 + P⃗2 − P⃗3 − P⃗4)⇔

Mi f =
g2

e

q⃗2 ·
[
u(P⃗3)γ

µ u(P⃗1)
]
·
[
A(P⃗4)γµ A(P⃗2)

]

The spin averaged matrix element is then:

⟨|Mi f |2⟩=
g4

e

4⃗q4 ·
[
u(P⃗3)γ

µ u(P⃗1)
]
·
[
A(P⃗4)γµ A(P⃗2)

]
·
[
u(P⃗3)γ

ν u(P⃗1)
]∗

·
[
A(P⃗4)γν A(P⃗2)

]∗

The previous can thus be written as a product of two tensors, one for the electron and one for the proton:
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Fig. 6.6: The scattering of an electron off a proton. The blob on the right hand side diagram indicates that we do not
really know how the virtual photon interacts with a complex, non-elementary object as the proton.

⟨|Mi f |2⟩=
g4

e

4⃗q4 ·Kµν(p) ·Lµν(e) (6.2.1)

The tensor describing the proton states is unknown, however there are a couple of elements that we can use in order to
constrain its form: Kµν(p) is obviously a second rank tensor that depends on P⃗2, P⃗4 and possibly on q⃗. However, these
three 4-vectors are not independent since P⃗2 + q⃗ = P⃗4. For the relevant representation we will choose two of them e.g.
P⃗2 ≡ P⃗ and q⃗:

Kµν =−K1gµν +
K2

M2 P⃗µ P⃗ν +
K4

M2 q⃗µ q⃗ν +
K5

M2

(
P⃗µ q⃗ν + P⃗ν q⃗µ

)
,

where Ki are unknown functions of q⃗2 and the division by the square of the proton mass is done to allow all Ki to have the
same dimensions. It is important to note that we could have added the anti-symmetric combination P⃗µ q⃗ν − P⃗ν q⃗µ , however
this would not contribute since the other tensor i.e. Lµν(e) is symmetric.

The form of Lµν(e) is known already from the electron-muon scattering discussed in Section 4.2.3:

Lµν(e) = 2
[
P⃗1

µ
P⃗3

ν
+ P⃗3

µ
P⃗1

ν
+gµν

(
m2 − (P⃗1µ P⃗3

µ
)
)]

q⃗µ Lµν = 2
[
(⃗qµ P⃗1

µ
)P⃗3

ν
+(⃗qµ P⃗3

µ
)P⃗1

ν
+ q⃗µ gµν

(
m2 − (P⃗1µ P⃗3

µ
)
)]

=

q⃗µ Lµν = 2
[
(⃗qµ P⃗1

µ
)P⃗3

ν
+(⃗qµ P⃗3

µ
)P⃗1

ν
+m2q⃗µ − q⃗µ(P⃗1µ P⃗3

µ
)
]

(6.2.2)

We will now calculate each individual term of Eq. 6.2.2:

• P⃗1µ P⃗1
µ
= P⃗3µ P⃗3

µ
= m2

• q⃗µ P⃗1
µ

:

P⃗1µ − q⃗µ = P⃗3µ ⇔ P⃗3µ P⃗3
µ
= (P⃗1 − q⃗)µ(P⃗1 − q⃗)µ ⇔
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m2 = q⃗µ q⃗µ + P⃗1µ P⃗1
µ − 2⃗qµ P⃗1

µ ⇔ q⃗2 = 2⃗qµ P⃗1
µ

• q⃗µ P⃗3
µ

:

P⃗1µ = q⃗µ + P⃗3µ ⇔ P⃗1µ P⃗1
µ
= (⃗q+ P⃗3)µ (⃗q+ P⃗3)

µ ⇔

m2 = q⃗µ q⃗µ + P⃗3µ P⃗3
µ
+ 2⃗qµ P⃗3

µ ⇔ q⃗2 =−2⃗qµ P⃗3
µ

• P⃗1µ P⃗3
µ

:

P⃗1µ − P⃗3µ = q⃗µ ⇔ q⃗µ q⃗µ = (P⃗1 − P⃗3)µ(P⃗1 − P⃗3)
µ ⇔

q⃗2 = P⃗1µ P⃗1
µ
+ P⃗3µ P⃗3

µ −2P⃗1µ P⃗3
µ ⇔ P⃗1µ P⃗3

µ
=

2m2 − q⃗2

2

Equation 6.2.2 can thus be written as:

q⃗µ Lµν = 2
[ q⃗2

2
P⃗3

ν − q⃗2

2
P⃗1

ν
+m2q⃗ν − 2m2 − q⃗2

2
q⃗ν

]
=

2
[ q⃗2

2

(
P⃗3

ν − P⃗1
ν
)
+m2q⃗ν −m2q⃗ν − q⃗2

2
q⃗ν

]
=

2⃗qν

[ q⃗2

2
− q⃗2

2

]
= 0

It can also be shown that q⃗ν P⃗ν =−q⃗2/2:

P⃗2µ + q⃗µ = P⃗4µ ⇔ (P⃗+ q⃗)µ(P⃗+ q⃗)µ = P⃗4µ P⃗4
µ
=⇔

q⃗µ q⃗µ + P⃗µ P⃗µ + 2⃗qµ P⃗µ = M2 ⇔ q⃗µ P⃗µ =− q⃗2

2

The same equation applies for the other tensor i.e. q⃗µ Kµν = 0

q⃗µ Kµν =−K1q⃗µ gµν +
K2

M2 q⃗µ P⃗µ P⃗ν +
K4

M2 q⃗µ q⃗µ q⃗ν +
K5

M2 q⃗µ

(
P⃗µ q⃗ν + P⃗ν q⃗µ

)
⇔

0 =−K1q⃗ν +
K2

M2

(
q⃗µ P⃗µ

)
P⃗ν +

K4

M2 q⃗2q⃗ν +
K5

M2

[(
q⃗µ P⃗µ

)
q⃗ν + q⃗2P⃗ν

]
⇔

0 =
[
−K1 +

K4

M2 q⃗2 +
K5

M2

(
q⃗µ P⃗µ

)]
q⃗ν +

[ K2

M2

(
q⃗µ P⃗µ

)
+

K5

M2 q⃗2
]
P⃗ν

Contracting with
P⃗ν

from the left leads to the realisation that the coefficients of q⃗ν and P⃗ν must be 0 at the same time:
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K2

M2

(
q⃗µ P⃗µ

)
+

K5

M2 q⃗2 = 0 ⇔ K5 =−K2

(
q⃗µ P⃗µ

)

q⃗2

−K1 +
K4

M2 q⃗2 +
K5

M2

(
q⃗µ P⃗µ

)
= 0 ⇔

K4 =
M2

q⃗2 K1 +

(
q⃗µ P⃗µ

)

q⃗4 K2

The proton tensor can thus be written as:

Kµν =−K1gµν +
K2

M2 P⃗µ P⃗ν +
K1M2

q⃗2M2 q⃗µ q⃗ν +
K2

4M2 q⃗µ q⃗ν +
K2

2M2

(
P⃗µ q⃗ν + P⃗ν q⃗µ

)
=

K1

[
−gµν +

1
q⃗2 q⃗µ q⃗ν

]
+

K2

M2

[
P⃗µ P⃗ν +

1
4

q⃗µ q⃗ν +
1
2

(
P⃗µ q⃗ν + P⃗ν q⃗µ

)]
⇔

Kµν =
[
−gµν +

1
q⃗2 q⃗µ q⃗ν

]
K1 +

(
P⃗µ +

1
2

q⃗µ

)(
P⃗ν +

1
2

q⃗ν

)
K2 (6.2.3)

The two remaining factors in Eq. 6.2.3 i.e. K1 and K2 are called form factors. These factors describe the proton structure
in terms of its constituents i.e. the quarks and gluons. They are easily measured experimentally, since they are directly
connected to the elastic e− p cross-section. To compute this cross-section, one has to compute the average over all spin
states of the squared matrix element of Eq. 6.2.1:

⟨|Mi f |2⟩=
4g4

e

q⃗4

[
K1

(
(P⃗1µ P⃗3

µ
)−2m2

)
+K2

( (P⃗1µ P⃗µ)(P⃗3ν P⃗ν)

M2 +
q⃗2

4

)]

In the lab frame, the target proton has a 4-momentum of P⃗µ = (M,⃗0). The electron scatters off the proton, having an initial
energy E and is emitted with a final one of E

′
at an angle θ . If E,E

′
>> m, we can safely put m = 0 with the 4-momenta of

the incoming and outgoing electrons being P⃗1µ = (E, P⃗1) and P⃗3µ = (E
′
, P⃗3), respectively (note that P⃗1 · P⃗3 = P1P3 cos(θ)).

The matrix element can then be written as:

⟨|Mi f |2⟩=
g4

e

4EE ′ sin4(θ/2)

(
2K1 sin2(θ/2)+K2 cos2(θ/2)

)

It can be shown that:

E
′
=

ME

M+E
(

1− cos(θ)
) ⇔ E

′
=

E
1+ 2E

M sin2(θ/2)

The differential cross-section can then be written as:

dσ

dΩ
=
[

α

4ME sin2(θ/2)

]2 E
′

E

(
2K1 sin2(θ/2)+K2 cos2(θ/2)

)
(6.2.4)

The form factors are connected to the electric GE and magnetic GM moment distributions of the proton via the equations:

K1 =−q⃗2G2
M
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K2 = (2M)2 G2
E −

[
q⃗2/(2M)2

]
G2

M

1− q⃗2/(2M)2

Fig. 6.7: The proton electric and magnetic moments as a function of q⃗2.

Figure 6.7 presents the experimentally measured q⃗2 dependence of GE and GM . It turns out that they both follow a specific
q⃗2 dependence:

GE(q2) =
(

1− q2

0.71

)−2

in GeV2

The behavior at small values of q2 can be used to determine the mean square proton charge radius:

⟨r2⟩= 6
(dGE(q2)

dq2

)
q2=0

= (0.81 ·10−13cm)2

This radius of about 0.8 fm is obtained for both the charge and magnetic proton distributions.





Chapter 7

Deep inelastic scattering

One way to probe the internal structure of matter is to bombard it with high energy particles, and then see what happens.
For instance, in the Rutherford experiment (1911), alpha particles (helium nuclei) were deflected on a thin gold foil.
Rutherford found that the deflections followed his famous inverse sin4(θ/2) law, and concluded that the alpha particles
were scattered from electrically charged point-like nuclei inside the gold atoms. Experiments using probes of higher
energy later revealed that the point-like scattering distributions were damped by form factors which are essentially the
Fourier transform of a charge distribution. This clearly showed that nuclei are not point-like and indeed, after the discovery
of the neutron by Chadwick (1932), it became clear that nuclei are bound states of protons and neutrons. Also the protons
and neutrons were found not to be point-like and a real breakthrough came with a series of deep inelastic scattering
experiments in the 1960’s at SLAC, where electron beams were scattered on proton targets at energies of about 20 GeV,
large enough to reveal the proton’s internal structure. The SLAC experiments showed that the electrons were scattering
off quasi-free point-like constituents inside the proton which were soon identified with quarks. This was the first time
that quarks were shown to be dynamical entities, instead of bookkeeping devices to classify the hadrons (Gell-Mann’s
eightfold way). The Nobel prize was awarded in 1990 for this spectacular discovery.

The pioneering SLAC experiments were followed by a series of other fixed-target experiments1 with larger energies at
CERN (Geneva) and at Fermilab (Chicago), using electrons, muons, neutrino’s and anti-neutrinos as probes. The largest
centre-of-mass energies were reached at the HERA collider in Hamburg (1992–2007) with counter rotating beams of
27 GeV electrons and 800 GeV protons. Deep inelastic scattering (DIS) data are very important since they provide detailed
information on the momentum distributions of the partons (quarks and gluons) inside the proton. Parton distributions are
crucial ingredients in theoretical predictions of scattering cross-sections at hadron colliders like the Tevatron (Fermilab,
proton-antiproton at 2 TeV) or the LHC (CERN, proton-proton at 5–14 TeV). The reason for this is simple: the colliding
(anti)protons have a fixed centre-of-mass energy but not the colliding partons, since their momenta are distributed inside
the (anti)proton. Clearly one has to fold-in this momentum spread to compare theoretical predictions with the data. Apart
from providing parton distributions, DIS is also an important testing ground for perturbative QCD, as we will see.

7.1 Inelastic e− p scattering

Elastic scattering e− p scattering dominates at relevant low energies. During this process, the proton still interacts but
emerges as a proton. Once we crank up the energy, the interaction becomes inelastic and many more particles emerge
from the γ − p blob as indicated in fig. 7.1.

The lepton vertex is still unaffected which allows us to write the matrix element in a similar way as in the previous chapter
in Eq. 6.2.1:

⟨|Mi f |2⟩=
g4

e

q⃗4 ·Kµν(pX) ·Lµν(e) (7.1.1)

1 In a fixed-target experiment, beam particles interact with a stationary target in the laboratory, and the debris is recorded in a downstream
detector. In a collider experiment, on the other hand, counter-rotating beams collide in the centre of a detector, which is built around the
interaction region.

75
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Fig. 7.1: The inelastic scattering of an electron off a proton.

In a similar way as before, the proton tensor is unknown (but not completely) and depends on q⃗, P⃗2 ≡ P⃗ and the 4-momenta
of the outgoing particles P⃗4, P⃗5, ..., P⃗n. The scattering cross-section is given by the golden rule described in Section 4.1:

dσ =
⟨|Mi f |2⟩

4
√(

P1P2
)2 −

(
mM

)2
·
[ d3P⃗3

(2π)32E3

]
·
[ d3P⃗4

(2π)32E4

]
· ... ·

[ d3P⃗n

(2π)32En

]
· (2π)4

δ
4(P⃗1 + P⃗2 − P⃗3 − P⃗4 − ...− P⃗n)

In experiments, we normally record the momentum of the scattered electron and what is measured is the so-called inclu-
sive cross-section, in which all available final states are included. This is done by summing over all final X-states and
integrating the previous equation over the outgoing momenta of the proton blob:

dσ =
g4

eWµν Lµν

4⃗q2
√(

P1P2
)2 −

(
mM

)2
·
[ d3P⃗3

(2π)32E3

]
·4πM,

where

Wµν ≡ 1
4πM ∑

X

∫
· · ·
∫

Kµν(X)
[ d3P⃗4

(2π)32E4

]
· ... ·

[ d3P⃗n

(2π)32En

]
· (2π)4

δ
4(⃗q+ P⃗− P⃗4 − ...− P⃗n)

If the energy is large enough so that E >>me, and considering E and E
′
the energies of the incoming and outgoing leptons

that hit a stationary proton of mass M, then the differential cross-section can be written as:

dσ

dE ′dΩ
=
[

α

q⃗2

]2 E
′

E
Wµν Lµν

It is interesting to note that the energy of the outgoing lepton is no longer constrained by the initial energy and the
scattering angle in the inelastic case.

To build up the second rank tensor Wµν we follow the same procedure as the one described in detail in Section 6.2:

Wµν =−W1gµν +
W2

M2 P⃗µ P⃗ν +
W4

M2 q⃗µ q⃗ν +
W5

M2

(
P⃗µ q⃗ν + P⃗ν q⃗µ

)
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It follows that this time the functions Wi depend not on one variable as in the case of the elastic interaction but on two i.e.
on q⃗2 and on q⃗P⃗ ≡ qP. It can be shown again that q⃗νW µν = 0, from where it follows that:

W4 =
M2

q⃗2 W1 +
(qP

q⃗2

)2
W2,

W5 =−qP
q⃗2 W2,

which means that Wµν can be written as a function of two structure functions W1 and W2:

Wµν =
[
−gµν +

q⃗µ q⃗ν

q⃗2

]
W1 +

[
P⃗µ −

(qP
q⃗2

)
q⃗µ

]
·
[
P⃗ν −

(qP
q⃗2

)
q⃗ν

]
W2

The differential cross-section can thus be written as:

dσ

dE ′dΩ
=
[

α

2E sin2(θ/2)

]2
·
[
2W1 sin2(θ/2)+W2 cos2(θ/2)

]
(7.1.2)

7.1.1 Kinematics of DIS

The diagram of fig. 7.2 shows the kinematics of deep inelastic scattering as commonly used.

k

k�

q = k − k�

p
X

Fig. 7.2: Another form of the DIS diagram.

In this figure, k = and k′ = are the incoming and outgoing lepton momenta, respectively, p = is the incoming proton,
X = is the hadronic final state, while q = k− k′ is what is usually referred to as the momentum transfer. The interaction
between the exchanged photon (or W in case of νp → ℓX neutrino scattering) and the proton depends on p and q, from
which we can build the two Lorentz scalars:

Q2 =−q2 and x =
Q2

2p ·q

Other scalars that are often used to characterise the event are:

• M2 = p2 is the proton mass squared,
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• s = (p+ k)2 is the centre of mass energy squared,

• W 2 = (p+q)2 is what is usually referred to as the invariant mass of X squared,

• y = (p ·q)/(p · k) is the fractional energy transfer in the lab,

• ν = (p ·q)/M is the energy transfer in the lab system.

Since all kinematic variables are Lorentz invariants, it is often useful to calculate them in frames which are convenient:

• q2 < 0 (hence the minus sign in the definition of Q2): In the rest frame of the incoming electron with the outgoing
electron along the z axis we have k = (m,0,0,0) and k′ = (E ′,0,0,k′) so that:

q2 = (m−E ′,0,0,−k′)2 = m2 −2mE ′+E ′2 − k′2 = m2 −2mE ′+m2 = 2m(m−E ′)< 0.

• 0 ≤ x ≤ 1: Obviously x = 0 when Q2 = 0. For the other limit we can set W 2 = M2. This gives:

W 2 = (p+q)2 = p2 +2p ·q+q2 = M2 +2p ·q−Q2 = M2 → Q2 = 2p ·q → x = 1.

• 0 ≤ y < 1: For the limits on y it is easiest to work in the lab frame where the proton is at rest and the electron
comes in at the z direction. We then have k = (E,0,0,k), p = (M,0,0,0) and q = (E −E ′,qx,qy,qz) so that p ·k = ME
and p ·q = M(E −E ′). Therefore:

y =
p ·q
p · k =

E −E ′

E
with me ≤ E ′ ≤ E.

From this it immediately follows that 0 ≤ y < 1.

• W 2 = M2 +Q2(1− x)/x ≥ M2: With x = Q2/(2p ·q) we find

W 2 = (p+q)2 = p2 +2p ·q+q2 = M2 +Q2/x−Q2 = M2 +Q2(1− x)/x.

It is convenient to plot the allowed kinematical region in the y-Q2 plane as indicated in fig. 7.3.

7.1.2 Bjorken scaling

As indicated before the two structure functions depend on two quantities i.e. q⃗2 and qP. However, one can define another
variable that we will find quite convenient when we will be discussing the Bjorken scaling:

x ≡ q⃗2

2qP
,

so that W1 =W1(q2,x) and W2 =W2(q2,x).

At very large values of q2, the two structure functions do not depend anymore on both q2 and x but rather the first
dependence fades out. This was predicted by Bjorken and confirmed experimentally by DIS experiments at SLAC. The
prediction can be followed by the simple argumentation that the wavelength of the virtual photon, which is inversely
proportional to the momentum transfer λ ≈ 1/Q is connected to the resolution (or better the resolving power of an
internal structure)2. The higher the energy of the interaction between the electron and the proton, the higher the momentum
transfer and thus the smaller the resolution. Hence, by cranking up the energy we are slowly able to distinguish the internal
structure of the proton, which is the reason why at modest energies there is a dependence of the structure functions on
both q2 and x. Above a given energy though, the virtual photon interacts with a point-like constituent, the parton (or better

2 To better understand this, one can make the parallelism to a typical microscope.
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y

Q2

x = con
st θ =

const

W
2 =

co
ns

tx
=

1,
W

2 =
M
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Fig. 7.3: The triangle is the allowed kinematic region for e+ p → e+X .

the quark), which has no internal structure (at least to visible at these energies). This means that no matter how much
Q2 increases, the photon still ’sees’ the quark and interacts with it, hence the independence of W1 and W2 from Q2. The
structure functions are now written as

MW1(q2,x)→ F1(x)
−q2

2Mx
W2(q2,x)→ F2(x) (7.1.3)

Equation 7.1.3 is better known as Bjorken scaling and can be illustrated in fig. 7.4.

At a later stage, Callan and Gross suggested that the two structure functions are connected via Eq. 7.1.4. This was also
confirmed experimentally to hold above a given value of x (i.e. for x > 0.2) as can be clearly seen in fig. 7.5.
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Fig. 7.4: The scaling behaviour of the structure function W2 as a function of q2 at x = 0.25.

2xF1(x) = F2(x) (7.1.4)

Fig. 7.5: The x-dependence of the ration 2xF1/F2, as a test of the Callan-Gross equation.
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7.2 The parton model

When a highly energetic virtual photon interacts with the proton, it probes its constituents i.e. the quarks and the gluons.
However since the gluons do not interact with the photon, we can safely say that we mainly probe the quarks. Now, there
are more than one type of such particles inside the proton. Each such quark, can carry a different fraction of the proton’s
momentum and energy. This is schematically depicted in fig. 7.6.

P

xP

Q2

E

E�



W 2

θ

Fig. 7.6: The interaction of a highly energetic virtual photon with the quark of the initial proton that carries a fraction x of
its momentum.

We now introduce the parton distribution function fi(x) which gives the probability that the struck parton carries a fraction
x of the proton’s momentum P. All the fractions have to add up to unity such that:

∑
i

∫
x fi(x)dx = 1,

where the index i includes also the patrons that do not interact with the virtual photon. Note that in a dynamical picture,
inside the proton there are also gluons from the QCD splitting q → qg and quark-antiquark pairs from the splitting g → qq̄.
What is true is that there is a net excess of three quarks that carry the quantum numbers of the proton.A schematic picture
of the QCD proton structure is given in fig. 7.7. The uud that carry the quantum numbers of the proton enter the diagram
on the left, and they are called the valence quarks. This corresponds to a low-resolution 3-quark picture of the proton
that only accounts for its quantum numbers. At the right of the diagram we see a high-resolution picture (at large Q2)
of the proton where the valence quarks are dressed with gluons and a sea of qq̄ pairs. Note that the valence quarks can
zig-zag through the diagram but will never disappear so that the proton quantum numbers are the same in both the low-
and high-resolution pictures.

We will now try to calculate the relevant DIS cross-section. To do this, we usually first move to a frame where the masses
(i.e. electrons, quarks and proton) can be neglected and we then use the so-called Mandelstam variables. Because the
virtual photon is space-like (q2 < 0) it follows that we can boost the photon along its direction of propagation (which
points to the proton) such that q0 vanishes. This is called the Breit frame or infinite momentum frame, since the proton
then moves with very large momentum towards the virtual photon. In this frame the incoming quark moves with a 3-
momentum ξ pz along the z axis, where ξ is the fraction of the proton 3-momentum pz. The virtual photon moves with a
3-momentum Q along −z. The new frame is given in fig. 7.8.
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Fig. 7.7: The dynamical picture of the proton, with the valence and sea quarks and the gluons.
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Fig. 7.8: The interaction between the photon and the quark in the Breit frame.
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We take the incoming quark to be point-like, so that the scattering is necessarily elastic:3

p̂2 = (p̂+q)2 → p̂2 = p̂2 +2p̂ ·q−Q2 → Q2 = 2p̂ ·q

If we denote the proton 4-momentum by p then, in the Breit frame,

p̂ ·q = (E,0,0,ξ pz) · (0,0,0,−Q) = ξ pzQ

ξ p ·q = ξ (Ep,0,0, pz) · (0,0,0,−Q) = ξ pzQ

Thus p̂ ·q = ξ p ·q but remember that this is only true in the Breit frame where the virtual photon does not transfer energy.

The elastic scattering condition now becomes

Q2 = 2 p̂ ·q = 2ξ p ·q → ξ =
Q2

2 p ·q = x

which means that we can identify the Bjorken-x variable as the 3-momentum fraction of the struck quark in the Breit
frame. Note that in the Breit frame the proton moves very fast towards the photon, and is therefore Lorentz contracted to
a kind of pancake. The interaction then takes place on the very short time scale when the photon passes that pancake. On
the other hand, in the rest frame of the proton, the inter-quark interactions take place on time scales of the order of rp/c
but because of time dilatation these interactions are like ‘frozen’ the Breit frame. During the short interaction time, the
struck quark thus does not interact with the spectator quarks and can be regarded as a free parton.

Let’s now move to the usage of the Mandelstam variables:

s = (p1 + p2)
2 ≈ 2p1 · p2

t = (p1 − p3)
2 = (p4 − p2)

2 ≈−2 p1 · p3 ≈−2 p2 · p4

u = (p1 − p4)
2 = (p3 − p2)

2 ≈−2 p1 · p4 ≈−2 p3 · p2

According to the parton model of Feynman, Bjorken and others, the cross-section is the incoherent sum of partonic cross-
sections, as calculated with free partons.4 Hence it can be written as:

dσ = ∑
i

dσ̂(ŝ, t̂, û) fi(x)dx

Here we have introduced the parton kinematic variables

ŝ ≈ 2xp · k = xs, t̂ = (k− k′)2 = t, û ≈−2xp · k′ = xu

For the partonic cross section we just take σ(eµ → eµ) with the muon charge replaced by the quark charge. The e-µ cross
section is calculated as

(
dσ

dΩ

)

cm
=

α2

2s

(
s2 +u2

t2

)

with momentum k1 along x and scattering angle θ

k1 = (k, k,0,0) k3 = (k, k cosθ , k sinθ ,0)
k2 = (k,−k,0,0) k4 = (k,−k cosθ ,−k sinθ ,0)

s = 4k2, t =−2k2(1− cosθ), u =−2k2(1+ cosθ)

3 We indicate the unobservable partonic kinematic variables by a hat, like p̂ for a partonic 4-momentum.
4 By ‘incoherent sum’ we mean that cross-sections are added, instead of amplitudes.
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The cross-section can thus be written as:

dσ

dΩ
=

dσ

sinθdθdφ
=

dσ

sinθdφdt

∣∣∣∣
dt
dθ

∣∣∣∣= 2k2 dσ

dφdt
=

s
2

dσ

dφdt

Integrating over φ then gives

dσ

dt
=

4π

s
dσ

dΩ
=

2πα2

s2

(
s2 +u2

t2

)

Using the partonic variables, and multiplying the charge at the muon vertex by the fractional quark charge ei, we get the
partonic cross section:

dσ̂i

dt̂
=

2πα2e2
i

ŝ2

(
ŝ2 + û2

t̂2

)

It is a simple matter to re-write this in terms of the DIS kinematic variables. We can now combine the partonic cross-
sections with the parton distribution function to obtain DIS cross-section:

dσ

dQ2 = ∑
i

2πα2e2
i

Q4 [1+(1− y)2] fi(x)dx

or
d2σ

dxdQ2 =
2πα2

Q4 [1+(1− y)2] ∑
i

e2
i fi(x)

The F2 structure function is defined as the charge weighted sum of the parton momentum densities x fi(x):

F2(x) = ∑
i

e2
i x fi(x) (7.2.1)

so that the DIS cross section can be written as5

d2σ

dxdQ2 =
4πα2

Q4
[1+(1− y)2]

2x
F2(x) (7.2.2)

7.3 Probing the quark and gluon distributions in protons

As indicated before, the proton has a more dynamical picture than the static one where only the valence quarks, that carry
the quantum numbers, are prominent. There are not only gluons but also what is usually referred to as sea quarks. We
will focus on the three lightest quark flavours i.e. u,d,s since the remaining heavy flavour quarks (i.e. c,b, t) are subject
to threshold effects for their production in the sea. Under these considerations, Eq. 7.2.1 can be written as:

1
x

F p
2 (x) =

(2
3

)2[
up(x)+up(x)

]
+
(1

3

)2[
dp(x)+d

p
(x)
]
+
(1

3

)2[
sp(x)+ sp(x)

]
,

where e.g. u(x) and u(x) are the probability distributions of u and u quarks within the proton. This structure function has
obviously six unknown quantities. To overcome this one relies on the fact that the proton and the neutron are members of
an isospin doublet and thus their quark content is related. The inelastic neutron structure functions can be constrained by
scattering of electrons off a deuterium target:

5 One can think of the y dependence as being an angular dependence through the relation 1− y = 1
2 (1+ cosθ ∗).
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1
x

Fn
2 (x) =

(2
3

)2[
un(x)+un(x)

]
+
(1

3

)2[
dn(x)+d

n
(x)
]
+
(1

3

)2[
sn(x)+ sn(x)

]
,

The quark contents between the proton and the neutron are the same if one reverses u for d (and vice-versa). This means
that:

up(x) = dn(x)≡ u(x)

dp(x) = un(x)≡ d(x)

sp(x) = sn(x)≡ s(x)

Another constrain for the currently unknown quantities comes from the fact that the quantum numbers of the proton are
carried by the valence quarks. In addition, if we consider the dynamical picture of the proton, schematically introduced in
fig. 7.7, one can assume that the sea quarks which are radiated by the valence quarks occur to first order at the same rate
and have similar momentum distributions (please note that we still consider the three lightest flavours). It is convenient to
define the valence and the sea quark distributions as:

uv = u− ū, dv = d − d̄, sv = s− s̄ = 0, · · ·
us = 2 ū, ds = 2 d̄, ss = 2 s̄, · · ·

so that u+ ū = uv +us, etc.

Summing over all contributing partons, we should recover the quantum number of the proton and thus we have the
following counting rules:

∫ 1

0
uv(x)dx = 2 and

∫ 1

0
dv(x)dx = 1

As a result the proton and neutron structure functions can be written as:

1
x

F p
2 =

1
9
[
4uv +dv

]
+

4
3

S

1
x

Fn
2 =

1
9
[
uv +4dv

]
+

4
3

S,

where S(x) is the sea quark distribution (us(x)≈ us(x)≈ ds(x)≈ ds(x)≈ ss(x)≈ ss(x)≡ S(x). When studying the small
momentum part of the proton (i.e. at x ≈ 0) one probes the low momentum sea quarks. On the other side of the spectrum,
at high momenta (i.e. at x ≈ 1), the high momentum valence quarks leave little unoccupied room for the sea quarks and
thus one probes the valence quarks mainly. This is experimentally illustrated in fig. 7.9, where obviously depending on
the value of x one can probe either the valence and sea quarks (i.e. at high values of x) or the sea quarks (i.e. at low values
of x).

Finally integrating the quark distributions obtained from deep inelastic charged lepton and neutrino scattering gives

∑
i

∫ 1

0
x fi(x)dx ≈ 0.5

The missing momentum turns out that is carried by gluons. Introducing a gluon momentum distribution xg(x), the correct
momentum sum rule is

∑
i

∫ 1

0
x fi(x)dx+

∫ 1

0
xg(x)dx = 1
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Fig. 7.9: The proton structure function as measured experimentally as a function of Bjorken-x. At different values of x
one probes either the sea or the valence and sea quarks.



Chapter 8

Soft and Collinear Singularities

8.1 Can perturbative QCD predict anything?

• We have seen that asymptotic freedom allows us to use perturbation theory to calculate quark and gluon interactions at
short distances. But is this enough to arrive at predictions for experimental observables?

• The answer is ‘no’, because the detectors in an experiment can only observe hadrons and not the constituent quarks
and gluons.

• We will see that we need two more things, if we want to make the connection between theory and experiment:

1. either infrared safety,

2. or factorisation.

• These concepts are intimately related to the separation of the short and long distance aspects of the strong interaction.

– Infrared Safety: There is a class of observables that do not depend on long distance physics and are therefore
calculable in perturbative QCD.

– Factorisation: There is a wide class of processes that can be factorised in a universal long distance, nonperturbative
but process independent piece, and a short distance piece that is calculable in perturbative QCD.

• To understand these ideas we will, in this section, study the lowest order QCD correction to the process e+e− → qq̄.

87
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8.1.1 The process e+e− → qq̄g

p1

p2

q

k1, x1

k2, x2

k3, x3

• Consider the process e+e− → qq̄g. We have the following kinematic variables:

1. The four-momentum q = p1 + p2 of the virtual photon. The square of the centre-of-mass energy is s = q2 = qµ qµ .

2. The outgoing four-momenta k1, k2 and k3. The energies of the outgoing partons1 in the centre-of-mass frame are
Ei = k0

i .

• We define the energy fractions by

xi =
Ei√
s/2

=
2q · ki

s

To show that ∑i xi = 2, we make use of the fact that ki ·q is Lorentz invariant so that we can calculate it in any convenient
frame. We use the centre of mass frame where, by definition, q = (

√
s,0,0,0). Then

q · ki = Ei
√

s and
2q · ki

s
=

2Ei√
s
≡ xi.

Energy conservation gives
√

s = E1 +E2 +E3 so that x1 + x2 + x3 = 2.

From ∑i xi = 2 it follows that only two of the xi are independent.

1 We use the name ‘parton’ for both quark and gluon.
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8.1.2 Singularities in the cross section

+

• To calculate the cross section σ(e+e− → qq̄g) two Feynman graphs have to be taken into account, one where the gluon
is radiated from the quark and another where it is radiated from the antiquark. The calculation of the cross section is
rather lengthy so we will not give it here; you can find it in H&M Section 11.5.

• The result is
d2σ

dx1dx2
= σ0

2αs

3π

x2
1 + x2

2
(1− x1)(1− x2)

Here σ0 = σ(e+e− → hadrons) = (4πα2/s)∑e2
i .

• There are three singularities in this cross section

1. (1− x1) = 0

2. (1− x2) = 0

3. (1− x1) = (1− x2) = 0

We will now have a look where these singularities come from.

8.1.3 More kinematics

p1

p2

q

k1, x1

k2, x2

k3, x3

• In the following we will neglect the quark masses (k2
i = 0) so that
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(ki + k j)
2 = k2

i + k2
j +2ki · k j = 2ki · k j

• Denote by θi j the angle between the momenta of partons i and j. Then we can relate these angles to the energy fractions
as follows

2k1 · k2 = (k1 + k2)
2 = (q− k3)

2 = s−2q · k3 →
2E1E2(1− cosθ12) = s(1− x3)

To show that ki · k j = EiE j(1− cosθi j), on has to consider that Ei = |ki| for massless particles, so that

ki · k j = (Ei,ki) · (E j,k j) = EiE j −|ki|
∣∣k j
∣∣cosθi j = EiE j (1− cosθi j),

• Dividing by s/2 and repeating the above for the angles between other pairs of particles gives

x1x2(1− cosθ12) = 2(1− x3)

x2x3(1− cosθ23) = 2(1− x1)

x3x1(1− cosθ31) = 2(1− x2)

8.1.4 Phase space

• From the above it follows that 0 ≤ x ≤ 1. Together with the constraint x3 = 2− x1 − x2 this implies that the allowed
region for (x1,x2) is the triangle shown below.

x1

x2

1

1

x
3 =

0

x
3 =

1

2

2

0
• From

x1x2(1− cosθ12) = 2(1− x3)

x2x3(1− cosθ23) = 2(1− x1)

x3x1(1− cosθ31) = 2(1− x2)

we find that the collinear configurations are related to the xi by

θ12 → 0 ⇔ x3 → 1
θ23 → 0 ⇔ x1 → 1
θ31 → 0 ⇔ x2 → 1
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Thus when xi → 1 then θ jk → 0, that is, j and k are collinear.

We can show that when xi → 1 then i is back-to-back with both j and k. In addition, we can also show that xi → 0
implies Ei → 0: particle i becomes soft.

For definiteness take the case x3 = 1 so that θ12 = 0 and, because x1 + x2 + x3 = 2, we also have x1 + x2 = 1. Then

x2x3(1− cosθ23) = 2(1− x1) → x2(1− cosθ23) = 2x2 → cosθ23 =−1 → θ23 = π

From the definition xi = 2Ei/
√

s it follows immediately that Ei → 0 when xi → 0. Also from the kinematic diagram it
is seen that x j = xk = 1 when xi = 0 so that j and k must be back-to-back.

8.1.5 Three-parton configurations

• This plot shows the three-parton configurations at the boundaries of phase space.

• Edges: two partons collinear: θi j → 0 ⇔ xk → 1.

• Corners: one parton soft xi → 0 ⇔ Ei → 0 (other two partons are back-to-back).

• Note that at the boundaries of phase space 2 → 3 kinematics goes over to 2 → 2 kinematics.
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8.1.6 Origin of the singularities

q

k1

k2

k3

k1 + k3

• Where do the singularities actually come from? This is easy to see by noting that internal quark momentum is (k1+k3),
giving a propagator term ∼ 1/(k1 + k3)

2 in the cross section. Now

(k1 + k3)
2 = 2k1 · k3 = 2E1E3 (1− cosθ31)

so that the propagator term evidently is singular when θ31 → 0 and when E3 → 0.

• The collinear singularity at θ31 → 0 and E3 → 0 can be made explicit by rewriting the cross section as

dσ

dE3 dcosθ31
= σ0

2αs

3π

f (E3,θ31)

E3 (1− cosθ31)
.

Here f (E3,θ31) is a rather complicated function that turns out to be finite when E3 → 0 or θ31 → 0.

• Clearly we get a logarithmic divergence when we attempt to integrate over θ31 with E3 kept fixed or over E3 with θ31
kept fixed.

8.1.7 Infrared singularities

• Are we seeing here a breakdown of perturbative QCD? The answer is no: the problem is that we are trying to work
with cross sections on the parton level that are not infrared safe.

• These infrared problems always show up when 2 → 3 kinematics becomes 2 → 2 kinematics. We have seen that this
happens at the edges of phase space when two partons become collinear or one parton becomes soft. Another way of
stating this is that the internal propagator goes on shell: (k1 + k3)

2 → 0.

• Please note that infrared divergences are omnipresent in QCD (and also in QED) and are by no means limited to
e+e− → qq̄g.

• It is useful to get a space-time picture with the help of light cone coordinates. We will then see that the divergences
are caused by long distance interactions.
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8.1.8 Light cone coordinates

• The light cone components of a four-vector a are defined by

a± = (a0 ±a3)/
√

2

The vector is then be written as a = (a+,a−,a1,a2) = (a+,a−,aT).2

• Exercise 1.1: [1.0] Show that

a ·b = a+b−+a−b+−aT ·bT, and a2 = 2a+a−−a2
T

Show that the vector transforms under boosts along the z axis like

a′+ = a+eψ , a′− = a−e−ψ , a′T = aT

with ψ = 1
2 ln[(1−β )/(1+β )]. How does a transform under two successive boosts β1 and β2?

• One often chooses the z axis such that, perhaps after a boost, a particle or a group of particles have large momenta
along that axis. For these particles p+ is large and (since they are on the mass shell)

p− =
m2 + p2

T
2p+

is small.

2 Note that a+ and a− are not 4-vector components.
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8.1.9 Space-time picture of the singularities

p1

p2

q

k1

k2

k3

k = k1 + k3

k

p1 p2

k2

x+ x�

• To see what happens when k2 = (k1 + k3)
2 becomes small (goes on-shell), we choose the z axis along k with k+ large

and kT = 0. Thus k2 = 2k+k− → 0 when k− becomes small.

• In QFT, the Green functions (propagators) in momentum space are related to those in coordinate space by a Fourier
transform:

SF(x) =
∫

d4k exp(−ikx)SF(k)

=
∫

d4xexp[−i(k+x−+ k−x+− kT · xT)]SF(k)

Because k+ is large and k− is small, the contributing values of x have small x− and large x+. This means that the quark
propagates a long distance in the x+ direction before decaying in a quark-gluon pair, as is indicated in the space-time
diagram above.

• It follows that the singularities that can lead to divergent perturbative cross-sections arise from interactions that happen
a long time after the creation of a quark-antiquark pair.

8.1.10 Infrared safe observables

• We have seen that soft/collinear singularities arise from interactions that happen a long time after the creation of the
quark-antiquark pair and that perturbation theory cannot handle this long-time physics. But a detector is a long distance
away from the interaction so we must somehow take long-time physics into account in our theory.

• Fortunately there are measurements that are insensitive to long-time physics. These are called infrared safe observ-
ables. We have seen that soft/collinear singularities appear when 2→3 kinematics reduces to 2→2 kinematics at the
boundaries of phase space. Therefore a meaningful infrared safe observable must be insensitive to the indistinguishable
2→2, 2→3 origin of the long-distance interactions.

• The most well known example of an infrared safe observable is the total cross section σ(e+e− → hadrons). This cross
section is infrared safe because it is a totally inclusive quantity (we sum over all particles in the final state and don’t
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care how many there are) and the transition from partons to the hadronic final state in a given event always occurs with
unit probability, whatever the details of the long-time hadronisation process.

• As an example of another infrared safe variable used in the analysis of e+e− collisions, we mention the thrust event
shape variable.

8.1.10.1 Thrust

• Thrust is an event shape variable, used to discriminate between pencil-like and spherical events.

• Thrust is defined by

T = max
û

∑i |pi · û|
∑i |pi|

Here the sum runs over all particles i in the event, and the unit vector û is varied to maximise the sum of the projections
of the 3-momenta pi on û.

• So why is thrust infrared safe?

1. Zero-momentum particles do not contribute to T .

2. A collinear splitting does not change the trust:

|(1−λ )pi · û|+ |λ pi · û|= |pi · û|

|(1−λ )pi|+ |λ pi|= |pi|
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IR safe observables used in e+e− physics

Here is a list of more infrared safe observables.
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8.2 The QCD improved Parton Model

8.2.1 The QCD factorisation theorem

• In Section 7 we have seen that QCD suffers from infrared singularities when two
daughter partons cannot be resolved because they become collinear, or because one
of them becomes soft. We have also seen that these singularities are associated with
‘long-distance’ physics which takes place a long time after the initial hard scattering.
So-called infrared-safe observables are still calculable in perturbative QCD, but since
this is quite restrictive we have to look for ways to extend the predictive power of the
theory. This way-out is provided by the QCD factorisation theorem.

• For hadron-hadron scattering the factorisation theorem states that the singular long-
distance pieces can be removed from the partonic cross section and factored into the
parton distributions of the incoming hadrons, and that this can be done consistently
at all orders in the perturbative expansion.

• The partonic cross section is then calculable in perturbation theory, and does not
depend on the type of incoming hadron.

• The parton distributions, on the other hand, are a property of the incoming hadrons
but are universal in the sense that they do not depend on the hard scattering process.
Parton distributions are nonperturbative and have to be obtained from experiment.

• Factorisation is a fundamental property of QCD. It turns perturbative QCD into a
reliable calculation tool, unlike the naive parton model that does not take the parton
dynamics into account.

8.2.2 Hadron-hadron cross sections I

• Schematically, a hadron-hadron cross section can be written as

σ
h-h = ∑

i, j

∫
dx1dx2 fi(x1,µ

2) f j(x2,µ
2) σ̂i j(x1,x2,Q2/µ

2, · · ·)

and can be depicted by (left diagram):
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• Here the (arbitrary) factorisation scale µ can be thought of as the scale which sep-
arates the long and short-distance physics. Roughly speaking, a parton with a trans-
verse momentum less than µ is then considered to be part of the hadron structure and
is absorbed in the parton distribution. Partons with larger transverse momenta partic-
ipate in the hard scattering process with a short-distance partonic cross-section σ̂ .

8.2.3 Hadron-hadron cross sections II

• What is taken for the hard scale Q2 depends on the scattering process we are inter-
ested in. In jet production, for instance, one usually takes the transverse momentum
of the jet as the hard scale, in deep inelastic scattering one takes the square of the four
momentum transfer from the electron to the proton, and in e+e− scattering one takes
the centre-of-mass energy, and so on. Often the simplifying assumption is made that
the factorisation scale is equal to the hard scale: µ2 = Q2.

• The factorisation theorem also applies to deep inelastic scattering, with one of the
parton distributions replaced by an ee′γ∗ vertex as is shown in the right-hand side
diagram on the previous diagram:

σ
DIS = ∑

j

∫
dx f j(x,µ2) σ̂γ∗ j(x,Q2/µ

2, · · ·)

• We will use DIS to show how the infrared singularities are absorbed in the parton
distributions. The QCD evolution equations of the parton densities are then derived
from the renormalisation group equation.



8.2 The QCD improved Parton Model 99

8.2.4 Recap of the F2 structure function

• We have seen that the F2 structure function measured in deep inelastic electron-proton
scattering is, to first order, independent of Q2, the negative square of the momentum
transfer from the electron to the proton. This implies that DIS does not depend on the
resolution 1/Q with which the proton is probed. This is explained in the naive parton
model by assuming that the electron scatters incoherently off pointlike quarks in the
proton. The F2 structure function can then be written as the charge weighted sum of
quark momentum distributions

Fep
2 (x) = ∑

i
e2

i x fi(x).

Here ei is the charge of the quark, and fi(x)dx is the number of quarks that carry
a fraction between x and x+ dx of the proton momentum. The probability that the
parton carries a momentum fraction x is then given by x fi(x). The index i denotes the
quark flavour d,u,s, . . . , d̄, ū, s̄, . . .

• Although gluons show up in the naive parton model as missing momentum, they
are not treated as dynamical entities. We will now incorporate the effect of gluon
radiation by quarks, which leads to the so-called QCD improved parton model.

8.2.5 Scaling violation I

- &%
'$

-
-
- tQPPPPPPR

�
�

�
�

�
���

:::: t -

P

proton

yP zyP ≡ xP

Pqq(z)
(1− z)yP

γ∗

Q2

• Consider a quark that carries a fraction y of the proton momentum and radiates a
gluon with a fraction 1− z of its momentum. After radiating the gluon, the quark
with momentum fraction zy scatters off the virtual photon. The momentum fraction
seen by the photon is thus x = zy which implies that z = x/y.

• Taking gluon radiation into account, the F2 structure function is found to be (see
H&M Section 10.1–5 for a lengthy derivation):

F2(x,Q2)

x
= ∑

i
e2

i

∫ 1

x

dy
y

fi(y)
[

δ

(
1− x

y

)
+

αs

2π
Pqq

(
x
y

)
ln

Q2

m2

]
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Here m2 is a lower transverse momentum cut-off to regularise the divergence when
the gluon becomes collinear with the quark.

• In the above, the splitting function Pqq is given by

Pqq(z) =
4
3

(
1+ z2

1− z

)
.

It represents the probability that a parent quark emits a gluon with the daughter quark
retaining a fraction z of the parent momentum. Note that an infrared divergence shows
up when (1−z)→ 0 where the gluon becomes soft so that daughter and parent cannot
be resolved anymore.

8.2.6 Scaling violation II

F2(x,Q2)

x
= e2

∫ 1

x

dy
y

f (y)
[

δ

(
1− x

y

)
+

αs

2π
Pqq

(
x
y

)
ln

Q2

m2

]

• Exercise 2.1: [1.0] Carry out the integral on the first term and check that it corre-
sponds to the parton model expression for F2, as is given by the DIS cross-section
(note that for clarity we have suppressed the flavour index i and the summation over
flavours).

• The expression above depends on the cutoff parameter m and diverges when m → 0.
To simplify the notation we set

Iqq(x) =
αs

2π

∫ 1

x

dy
y

f (y)Pqq

(
x
y

)

and write

F2(x,Q2)

x
= e2


 f (x)+ Iqq(x) ln

µ2

m2︸ ︷︷ ︸
f (x,µ2)

+Iqq(x) ln
Q2

µ2




︸ ︷︷ ︸
f (x,Q2)

• Here we have defined the renormalised quark distribution f (x,µ2) at the so-called
factorisation scale µ where we separate the singular factor, which depends on m but
not on Q2, from the calculable factor which depends on Q2 but not on m.

• If we substitute the renormalised distribution for the bare distribution in Iqq we obtain,
neglecting terms beyond O(αs),
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f (x,Q2) = f (x,µ2)+
αs

2π

∫ 1

x

dy
y

f (y,µ2)Pqq

(
x
y

)
ln

Q2

µ2 +O(α2
s )

8.2.7 DGLAP evolution

• The expression for F2 now becomes, up to O(α2
s ),

F2(x,Q2)

x
= e2

[
f (x,µ2)+

αs

2π

∫ 1

x

dy
y

f (y,µ2)Pqq

(
x
y

)
ln

Q2

µ2

]

• Clearly F2 should not depend on the choice of factorisation scale which leads to the
following renormalisation group equation:

1
e2x

∂F2(x,Q2)

∂ ln µ2 =
∂ f (x,µ2)

∂ ln µ2 +

αs

2π

∫ 1

x

dy
y

[
∂ f (y,µ2)

∂ ln µ2 ln
(

Q2

µ2

)
− f (y,µ2)

]
Pqq

(
x
y

)
= 0

• From this equation it is seen that (∂ f/∂ ln µ2) is of order αs so that the first term
in the integral above is of order α2

s . Neglecting this term we obtain an evolution
equation for the quark distribution3

∂ f (x,µ2)

∂ ln µ2 =
αs

2π

∫ 1

x

dy
y

f (y,µ2)Pqq

(
x
y

)
+O(α2

s )

This is, together with the evolution equation for αs, the most famous equation in
QCD. It describes the evolution of a quark distribution due to gluon radiation and is
called the DGLAP evolution equation after several authors who claim eternal fame:
Dokshitzer, Gribov, Lipatov, Altarelli and Parisi.

• This equation can be solved (numerically) once f (x,µ2
0 ) is given as an input at some

starting scale µ2
0 . This is similar to the running coupling constant αs where also an

input has to be given at some scale (usually taken to be m2
Z, as we have seen).

8.2.8 Quark and gluon evolution

3 In our derivation we have assumed that αs is a constant. Taking the running of αs into account is somewhat subtle, but leads to the same
evolution equation; see the comment in H&M exercise 10.7 on page 218.
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∂ f (x,µ2)

∂ ln µ2 =
αs

2π

∫ 1

x

dy
y

f (y,µ2)Pqq

(
x
y

)
+O(α2

s )

• We have seen the DGLAP evolution of quark distributions with splitting function
Pqq but when we introduce the gluon distribution, more splitting graphs have to be
included.

z

Pqq Pqg Pgq Pgg

(a) (b) (c) (d)

z z z

(a) A daughter quark from the splitting of a parent quark into a quark and a gluon.
When the gluon becomes soft (1− z) → 0, the distinction between daughter and
parent vanishes, and a singularity develops.

(b) A daughter quark from a parent gluon which splits into a quark-antiquark pair.
Here no singularity develops since daughter and parent can always be distin-
guished.

(c) A daughter gluon from a quark parent. Also here no singularity.

(d) A daughter gluon from a parent gluon. Like in q → qg a singularity develops in
the soft limit (1− z)→ 0.

8.2.9 The leading order splitting functions

• Here are the leading order splitting functions

Pqq
- t -QPPPPPPR

Pqg
QPPPPPPR t -

@
@@@I

Pgq
- t

@
@

@@R
QPPPPPPR

Pgg
QPPPPPPR tQPPPPPPRQPPPPPPR
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P(0)
qq (z) =

4
3

[
1+ z2

(1− z)+
+

3
2

δ (1− z)
]

P(0)
qg (z) =

1
2
[
z2 +(1− z)2]

P(0)
gq (z) =

4
3

[
1+(1− z)2

z

]

P(0)
gg (z) = 6

[
z

(1− z)+
+

1− z
z

+ z(1− z)+
(

11
12

− n f

18

)
δ (1− z)

]

• The singularities showing up in Pqq and Pgg at (1− z) → 0 are regulated by a so-
called ‘plus’ prescription which guarantees that the integral

∫ 1
x exists of the splitting

function multiplied by a parton density function (provided that the pdf → 0 when
x → 1).

• For reference, we give here the definition of the plus prescription

[ f (x)]+ = f (x)−δ (1− x)
∫ 1

0
f (z)dz

or, equivalently,
∫ 1

x
f (z)[g(z)]+dz =

∫ 1

x
[ f (z)− f (1)]g(z)dz− f (1)

∫ x

0
g(z)dz.

8.2.10 The coupled DGLAP equations

• The qq, qg, gq and gg transitions lead to a set of 2n f +1 coupled evolution equations
that can be written as4

∂ fi(x,µ2)

∂ ln µ2 =

n f

∑
j=−n f

αs

2π

∫ 1

x

dy
y

Pi j

(
x
y

)
f j(y,µ2),

where the splitting function Pi j(z) represents the probability that a daughter parton
i with momentum fraction z splits from a parent parton j.5 Here the indexing is as
follows

i, j =




−1 , . . . ,−n f antiquarks

0 gluon
1 , . . . , n f quarks

4 Here n f is the number of ‘active’ quark flavours. Usually a quark species is considered to be active (i.e. it participates in the QCD dynamics)
when its mass m < µ .
5 The conventional index notation for splitting functions is thus Pdaughter-parent.
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• To simplify the expressions for the evolution equations we write the Mellin convolu-
tion in short-hand notation as

P⊗ f ≡
∫ 1

x

dy
y

P
(

x
y

)
f (y,µ2)

With this notation the set of coupled equations reads

∂ fi

∂ ln µ2 =

n f

∑
j=−n f

αs

2π
Pi j ⊗ f j

• In leading order QCD we can write for the splitting functions:6

Pq̄iq̄ j = Pqiq j ≡ Pqq δi j, Pq̄ig = Pqig ≡ Pqg, Pgq̄i = Pgqi ≡ Pgq

8.2.11 Singlet/gluon and non-singlet evolution

• Exploiting the symmetries in the splitting functions (previous page), the set of 2n f +1
coupled equations can to a large extent be decoupled by defining the singlet distri-
bution qs, which is the sum over all flavours of the quark and antiquark distributions,

qs ≡
n f

∑
i=1

(qi + q̄i)

• It is easy to show that the evolution of this distribution is coupled to that of the gluon

∂qs

∂ ln µ2 =
αs

2π

[
Pqq ⊗qs +2n f Pqg ⊗g

]

∂g
∂ ln µ2 =

αs

2π

[
Pgq ⊗qs +Pgg ⊗g

]

In compact matrix notation, this is often written as

∂

∂ ln µ2

(
qs
g

)
=

αs

2π

(
Pqq 2n f Pqg
Pgq Pgg

)
⊗
(

qs
g

)

• Likewise it is easy to show that non-singlet distributions

qns ≡
n f

∑
i=1

(Ci qi +Di q̄i) with
n f

∑
i=1

(Ci +Di) = 0

6 The splitting functions are flavour independent since the strong interaction is flavour independent. Furthermore, leading order splitting cannot
change the flavour of a quark, as is expressed by the delta function.
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evolve independent from the gluon and from each other:

∂qns

∂ ln µ2 =
αs

2π
Pqq ⊗qns

An example of a non-singlet is the valence distribution qi − q̄i.

• Thus, in practice we do not evolve the quark distributions u, ū, d, d̄, . . . but, instead,
the singlet distribution (coupled to the gluon) and a well chosen set of 2n f −1 non-
singlet distributions.
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8.2.12 Higher orders ...

	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  

• The LO splitting functions presented when discussing the splitting functions can be
seen as the first term of a power series in αs

Pi j = P(0)
i j +(αs/2π)P(1)

i j +(αs/2π)2P(2)
i j + · · ·

Presently the splitting functions are known up to next-to-next-to-leading order (NNLO),
that is, up to P(2)

i j . Such a calculation (done at Nikhef) in no sinecure as the expression
above shows. It goes on for many more pages...7

7 A. Vogt, S. Moch and J.A.M. Vermaseren, Nucl. Phys. B691, 129 (2004), hep-ph/0404111.
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8.2.13 Intuitive picture

• The gross features of the evolution can be easily understood as follows. In the left
plot above we indicate by the blob the resolution 1/Q of a photon with virtuality
Q2. Increasing Q2 will resolve a quark into a quark-gluon pair of lower momentum
(right plot). Thus when Q2 increases, more and more quarks are seen that have split
into low momentum quarks. As a consequence, the quark distribution will shift to
lower values of x with increasing Q2. This results in the characteristic scale breaking
pattern of F2, when plotted versus Q2 for several values of x.

- lnQ2
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8.2.14 Scale breaking pattern of the F2 structure function

As expected!
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8.2.15 Comparison of the F2 data with the QCD prediction
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• This plot shows a recent QCD analysis (up to third order) of HERA F2 structure func-
tion data. In such an analysis the quark and the gluon distributions are parameterised
at an input scale of about 2 GeV2 and evolved over the whole Q2 range. The param-
eters of the input distributions are then obtained from a least squares fit. There is an
impressive agreement between data and theory.
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8.2.16 The pdf set from the HERA QCD analysis
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• Parton distributions obtained from the HERA QCD analysis. The sea (xS = 2xq̄(x)
and the gluon are divided by a factor of 20. The parton distributions are parameterised
at an input scale of µ2

0 = 1.9 GeV2 and evolved to 10 GeV2 for this plot. The bands
indicate various sources of uncertainty.

• In DIS the electrons only scatter off the charged quarks in the proton and not off
the gluons. However, we still have indirect access to the gluon distribution via the
coupled singlet/gluon evolution.

8.2.17 Scale dependence

• At this point we have introduced three different scales:
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1. The factorization scale µ2
F where we have separated the short and long distance

physics, and on which the pdfs evolve.

2. The renormalisation scale µ2
R (called Q2 in Section 6) on which the strong coupling

constant αs evolves.

3. The hard scattering scale Q2 which, in DIS, is the square of the 4-momentum trans-
fer from the electron to the proton.

• Exposing the different scales, we write the (non-singlet) evolution equation, and the
leading order expression for F2 as

∂qns(x,µ2
F)

∂ ln µ2
F

=
αs(µ

2
R)

2π

∫ 1

x

dy
y

Pqq

(
x
y

)
qns(y,µ2

F)

F2(x,Q2) =

n f

∑
i=1

e2
i x
[
qi(x,µ2

F)+ q̄i(x,µ2
F)
]
+O(αs)

• Usually one sets µ2
R = µ2

F = Q2. The sensitivity to this choice is then quantified by
varying the scales in the range, typically,

1
4 µ

2
F ≤ µ

2
R ≤ 4µ

2
F and 1

4Q2 ≤ µ
2
F ≤ 4Q2

• But note, however, that F2(x,Q2) above depends only on µ2
F which, for a given Q2, is

arbitrary. It follows that the leading order perturbative stability is poor, and that LO
perturbative QCD has little predictive power. This defect is remedied when higher
order terms are included that are functions of both Q2 and µ2

F .

• Fortunately, the scale dependence rapidly decreases when higher order corrections
are included, and this is of course the motivation behind that huge effort, at Nikhef,
to calculate the splitting functions and the F2 correction terms up to NNLO.





Chapter 9

Asymptotic freedom

In QED, a charged particle like the electron is surrounded by a cloud of virtual photons
and e+e− pairs continuously popping in and out of existence. Because of the attraction
of opposite charges, the virtual positrons tend to be closer to the electron and screen
the electron charge, as is indicated in fig. 9.1. This is analogous to the polarisation of a
dielectric medium in the presence of a charge and is called vacuum polarisation.

Fig. 9.1: The photon vacuum polarisation (left) generates a charge screening effect, making α smaller at larger distances.

This gives rise to the notion of an effective charge e(r) that becomes smaller with larger
distance. One says that the β -function is positive in QED:

β (r)≡−de(r)
dlnr

Likewise, the QCD vacuum consists of virtual qq̄ pairs, and if this would be all, the
charge screening mechanism would be the same as in QED, with a positive β -function.
However, due to the gluon self coupling, the vacuum will also be filled with virtual
gluon pairs as is indicated in fig. 9.2. Because the gluon cloud carries colour charge,
it turns out that the effective charge becomes larger with larger distance. Hence, the
beta-function is negative. This effect is called antiscreening.1 It turns out that the neg-
ative contribution wins over the positive contribution, so that the QCD beta function is
negative, and the effective strong coupling becomes small at short distances.

1 Antiscreening follows from the calculation of vacuum polarisation in QCD, which is non-trivial and beyond the scope of these lectures;
unfortunately it is not so easy to intuitively understand the antiscreening effect.

113
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Fig. 9.2: The photon vacuum polarisation (left) generates a charge screening effect, making α smaller at larger distances.

Charge screening in QED (screening) and QCD (antiscreening) leads to the concept of
a running coupling. In QED the coupling becomes large at (very) short distance but
its effect is small. In QCD, the antiscreening effect causes the strong coupling to be-
come small at short distance (large momentum transfer). This causes the quarks inside
hadrons to behave more or less as free particles, when probed at large enough energies.
This property of the strong interaction is called asymptotic freedom. Asymptotic free-
dom allows us to use perturbation theory, and by this arrive at quantitative predictions
for hard scattering cross sections in hadronic interactions. On the other hand, at in-
creasing distance the coupling becomes so strong that it is impossible to isolate a quark
from a hadron (it becomes cheaper to create a quark-antiquark pair). This mechanism
is called confinement. Confinement is verified in Lattice QCD calculations but, since it
is non-perturbative, not mathematically proven from first principles.2

The discovery of asymptotic freedom (1973) was a major breakthrough for QCD as the
theory of the strong interaction, and was awarded the Nobel prize in 2004 to Gross,
Politzer and Wilczek.3 To get a more quantitative insight into asymptotic freedom, we
will now first discuss the higher order corrections and the running coupling in QED.

9.1 Higher order corrections on e−µ scattering

Let us first consider the process e−+ µ− → e−+ µ−. The Feynman diagram for this
process can be seen in the left plot of fig. 9.3, which actually constitutes the lower
order diagram. The matrix element was calculated in Section 4.2.3 and in particular in
Eq. 4.2.1 (repeated below for our convenience).

Mi f =
−g2

e

q2

[
u(P⃗3)γ

µu(P⃗1)u(P⃗4)γµu(P⃗2)
]

2 A mathematical proof will gain you a $1M millennium prize from the Clay Mathematics Institute.
3 The Nobel lecture of Frank Wilczek can be downloaded from http://www.nobelprize.org and makes highly recommended reading,
both as an exposé of the basic ideas, and as a record of the hard struggle.
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Fig. 9.3: The one loop correction to the Feynman diagram describing the scattering of an electron off a charge.

This leads to the relevant cross-section whose accuracy is good up to O(α2) and is
therefore an approximate perturbative result. To improve further the accuracy though,
one needs to include higher order diagrams, an example of which is given in the right
plot of fig. 9.3. In this diagram, it is seen that the virtual photon spends some time as a
virtual e+e− pair. Let us now try to evaluate the matrix element for this process, which
is quite similar to the one for the lower order diagram indicated above, with the only
part that changes being the one that is related to the loop.

Mi f =−(−1)1g2
e
[
u(P⃗3)γ

µu(P⃗1)
](

− i
g

µµ
′

q2

)
×

∫ d4 p
(2π)4

[(
igeγ

µ
′)

κλ

i
(
/p+m

)
λρ

p2 −m2

(
igeγ

ν
′)

ρτ

i
(
/p−/q+m

)
τκ(

p−q
)2 −m2

×

(
− i

g
νν

′

q2

)[
u(P⃗4)γ

νu(P⃗2)
]

These higher order Feynman diagrams involve, among other things, a factor of (−1)n,
where n is the number of fermion loops. In addition, it contains the integral over d4 p
which is attributed to the existence of this higher order correction. At the loop, the
four-momentum p is unrestricted and can take any value (i.e. its magnitude can take
any value from 0 to infinity), although at the vertices the four-momenta are conserved.
Since p is not observed, we need to integrate it out.

This addition can be considered as a modification of the initial, lowest order, propaga-
tor:

−i
gµν

q2 →−i
gµν

q2 +
(
− i

g
µµ

′

q2

)
Iµ

′
ν
′(

− i
g

νν
′

q2

)
=
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−i
gµν

q2 +
(−i)
q2 Iµν

(−i)
q2 =−i

gµν

q2 +(−i)2 Iµν

q4

where

Iµν = (−1)1
∫ d4 p

(2π)4 Tr
[(

igeγµ

) i
(
/p+m

)

p2 −m2

(
igeγν

) i
(
/p−/q+m

)
(

p−q
)2 −m2

]

The previous formula indicates that Iµν is a function of q2. In fact the integral contains
terms of the form

∫ |p|3d|p|/|p|2. These terms go to infinity for p → ∞ and thus the
correction diverges.

Because, after integration, the tensor Iµν only depends on qµ it must be some linear
combination of gµν and qµqν , since these are the only tensors at our disposal. We can
thus parameterise Iµν as,

Iµν =−igµν q2I(q2)+qµqνJ(q2),

where I(q2) and J(q2) are some functions of q2. I can be shown that the term qµqνJ(q2)
does not contribute to the matrix element Mi f . Thus only the first term needs to be
considered, and the function I(q2) is found to be, after a lengthy calculation,

I(q2) =
g2

e

12π2

{∫
∞

m2
e

dz
z
−6

∫ 1

0
dzz(1− z) ln

[
1− q2

m2
e

z(1− z)
]}

.

Indeed, the first integral is logarithmically divergent, while all non-divergent contribu-
tions are collected in the second integral.

9.1.1 Renormalisation

Because q2 < 0 we define Q2 ≡−q2 and write:

I(q2) =
g2

e

12π2

[∫
∞

m2
e

dz
z
− f

(
Q2

m2
e

)]

f
(

Q2

m2
e

)
≡ 6

∫ 1

0
dzz(1− z) ln

[
1+

Q2

m2
e

z(1− z)
]

We now impose a cutoff M so that first integral becomes finite
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∫
∞

m2
e

dz
z

→
∫ M2

m2
e

dz
z
= ln

(
M2

m2
e

)

so that we obtain

I(q2) =
g2

e

12π2

{
ln
(

M2

m2
e

)
− f

(
Q2

m2
e

)}
.

The modification of the propagator can now be written as:

gµν

q2 → gµν

q2 − iIµν

q4 =
gµν

q2

[
1− I(q2)

]

Because the propagator is always accompanied by the factor g2
e , its modification can be

interpreted as a loop correction to the ‘bare’ electron charge ge:

g2
e → g2

e
[
1− I(q2)

]
= g2

e

{
1− g2

e

12π2

[
ln
(

M2

m2
e

)
− f

(
Q2

m2
e

)]}

9.1.2 The running coupling constant of QED

The Q2 evolution of the bare coupling constant is thus given by

g2
e → g2

e

{
1− g2

e

12π2

[
ln
(

M2

m2
e

)
− f

(
Q2

m2
e

)]}

The first term is called the renormalised coupling constant

g2
0 = g2

e

[
1− g2

e

12π2 ln
(

M2

m2
e

)]

so that we may write

g2
e → g2

0 +
g4

e

12π2 f
(

Q2

m2
e

)
= g2

0

{
1+

1
12π2

g4
e

g2
0

f
(

Q2

m2
e

)}

Up to terms O(g4
e) we may set g4

e = g4
0 inside the braces, so that
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g2
e → g2

0

{
1+

g2
0

12π2 f
(

Q2

m2
e

)
+O(g4

0)

}
≡ g2

R(Q
2)

Here g2
R(Q

2) is called the running coupling constant. Because f (0) = 0 we can set
g2

0 = g2
R(0) and thus:

g2
R(Q

2) = g2
R(0)

{
1+

g2
R(0)

12π2 f
(

Q2

m2
e

)
+O(g4

R)

}

The cutoff M has now disappeared from view since it is absorbed in g2
R(0) which be-

comes infinitely large when we let M → ∞. The mathematical technique to isolate the
singularities in a perturbative calculation is called regularisation, cut-off regularisation
in our case.

In terms of α = g2
e/4π , the running coupling becomes

α(Q2) = α(0)
{

1+
α(0)
3π

f
(

Q2

m2
e

)
+O(α2)

}

The next step is to admit that our theory cannot describe physics at asymptotically small
distances so that we must replace the singular part of the calculation by measurement.
This is called renormalisation. In fact ’t Hooft and Veltman showed that this can be done
consistently to all orders, without spoiling gauge invariance: they proved in general that
gauge theories are renormalisable. They received for this work the Nobel prize in 1999.
In QED it means that α(0) is replaced by the fine structure constant α = 1/137, as
measured at large distances of the order of the nuclear scale. There remains a finite
correction term f (Q2) which causes the coupling to run with Q2. This is a consequence
of vacuum polarisation, as we have already discussed before. It turns out that the effect
of the running QED coupling constant is really small and can safely be neglected at
atomic or nuclear scales. Even at large momentum transfers of Q2 ∼ 1000 GeV2 at the
HERA collider, the correction to α is only about 1–2%.

Figure 9.4-a presents the vacuum polarisation graph discussed before. Apart from this
graph there are three more divergent graphs to consider also shown in the same figure.
The vertex correction (b) modifies the electron magnetic moment while the graphs
(c) renormalise the electron mass. The three graphs (b) and (c) also contribute to the
renormalisation of the electron charge. However, it turns out that these contributions
cancel each other so that our previous calculation, based on diagram (a) alone, remains
valid. This cancellation is called a Ward identity and is quite fortunate: without it, the
graphs (c) would cause the coupling constant to be dependent on the lepton mass, and
we would have different renormalisation for the electron and the muon electric charge.

For Q2 ≫ m2
e the one-loop corrected coupling constant is given by
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( a ) ( b )

( c )

Fig. 9.4: A complete set of O(α2) Feynman graphs.

α(Q2) = α(0)
{

1+
α(0)
3π

ln
(

Q2

m2
e

)
+O(α2)

}
.

Because of the Ward identities, only propagator loops will contribute at higher orders.
A set of them is presented in fig. 9.5:

Fig. 9.5: A set of higher order correction diagrams.

This induces a series

1+X +X2 +X3 + · · ·= 1
1−X

and indeed, from a full calculation one gets4

α(Q2) =
α(0)

1− [α(0)/3π] ln(Q2/m2
e)

for m2
e ≪ Q2 < Q2

max

4 This is an example of resummation where terms in a perturbative calculation are arranged in a geometric series which is then summed up to
all orders.
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The expression blows up when ln(Q2/m2
e) = 3π/α(0), which occurs at an astronomical

scale of Q2
max = 10280 MeV2. Although the loops are summed to all orders, there are still

more complicated propagator diagrams (like multi-photon exchange between loops),
which are ignored. The result given above is thus not exact, and is known as the leading
log approximation.

We have seen that the running QED coupling constant decreases with decreasing Q2

(increasing distance) to the asymptotic value α(0) = 1/137 at Q2 = 0. However, we
could also have specified an input value α(µ2) at some arbitrary reference scale µ2. We
will now derive the formula for the coupling constant running from Q2 = µ2, instead of
from Q2 = 0. This is useful because, as we will see, the reference scale Q2 = 0 cannot
be used in QCD.

From

α(Q2) =
α(0)

1− [α(0)/3π] ln(Q2/m2
e)

we have

1
α(Q2)

=
1

α0
− 1

3π
ln
(

Q2

m2
e

)

and

1
α(µ2)

=
1

α0
− 1

3π
ln
(

µ2

m2
e

)
.

A simple subtraction gives

1
α(Q2)

− 1
α(µ2)

=− 1
3π

[
ln
(

Q2

m2
e

)
− ln

(
µ2

m2
e

)]
=− 1

3π
ln
(

Q2

µ2

)

and thus

α(Q2) =
α(µ2)

1− [α(µ2)/3π] ln(Q2/µ2)
for m2

e ≪ Q2 < Q2
max

The reference scale µ2 where we wish to specify our input value of α is called the
renormalisation scale. Obviously, the value of α(Q2) does not depend on what renor-
malisation scale µ2 we chose.

The running coupling can now be written as:
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1
α(Q2)

=
1

α(µ2)
− 1

3π
ln
(

Q2

µ2

)

Differentiation to t = lnQ2 gives

d
dt

(
1
α

)
=− 1

α2
dα

dt
=− 1

3π
or

dα

dt
≡ β (α) =

1
3π

α
2

In the above, we have introduced the so-called β -function:

dα(Q2)

dln(Q2)
≡ β (α) =−(β0α

2 +β1α
3 +β2α

4 + · · ·)

Here we have written this function as a series expansion in powers of the coupling
constant,5 where the first term corresponds to the leading log approximation. It is an
important task of perturbative QED and QCD to calculate the coefficients in this ex-
pansion.6 The QED one-loop beta function is β = α2/3π > 0. This means that the
coupling constant increases with increasing Q2 (decreasing distance). For QCD it turns
out that β < 0, as we will see. The one-loop QED coupling constant can now be written
as:

α(Q2) =
α(µ2)

1+β0 α(µ2) ln(Q2/µ2)
with β0 =− 1

3π

9.2 The running coupling constant of QCD

Let’s now turn to the strong coupling constant αs. Note that αs is large, compared
to the electromagnetic coupling constant α = 1/137: strong interactions are indeed
strong. The running is also strong, compared to a few percent effect at large Q2 in
QED. The running of αs is beautifully confirmed by experiment. For Q2 ∼ 1, αs ∼
1 and perturbative QCD breaks down. Usually Q2 ∼ 5–10 GeV2 is considered to be
reasonable lower bound for perturbation theory to apply.

αs(Q2) =
αs(µ

2)

1+β0 αs(µ2) ln(Q2/µ2)
with β0 =

11Nc −2n f

12π

Because β0 > 0 we find that αs → 0 for Q2 → ∞. This vanishing coupling is called
asymptotic freedom and is responsible for the fact that quarks behave like free particles

5 The minus sign in front of the series expansion is a matter of convention.
6 This is an explosive business: for QCD the 4-loop coefficient β3 has been calculated (at Nikhef!) by evaluating 50.000 Feynman diagrams,
using sophisticated symbolic algebra programs (also developed at Nikhef).
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at short distances (large momentum transfers) as is observed in deep inelastic scattering
experiments. The expression for the running coupling constant can be simplified when
we define the QCD scale parameter Λ as follows:

1
αs(Q2)

=
1

αs(µ2)
+β0 ln

(
Q2

µ2

)
≡ β0 ln

(
Q2

Λ 2

)

The parameter Λ is thus equal to the scale where the first term on the right-hand side
vanishes, that is, the scale where αs(µ

2) becomes infinite. Now we may write

αs(Q2) =
1

β0 ln(Q2/Λ 2)

Experimentally, the value of Λ is found to be about 300 MeV, but the scale parameter
is nowadays out of fashion because it cannot be defined unambiguously beyond 1-loop
order. Instead, it is now common practise to not quote a value for Λ , but a value for αs
at the mass of the Z. This is unambiguous at all orders. At Q2 values close to Λ , the
coupling constant becomes large and perturbative QCD breaks down.

9.2.1 Numerical results of αs

Beside the quark masses, the only free parameter in the QCD Lagrangian is the strong
coupling constant αs. The coupling constant in itself is not a physical observable, but
rather a quantity defined in the context of perturbation theory, which enters predictions
for experimentally measurable observables, such as R in Eq. 6.1.6.

Many experimental observables are used to determine αs. The simplest observables
in QCD are those that do not involve initial-state hadrons and that are fully inclusive
with respect to details of the final state. One example is the total cross section for
e+e→hadrons at center-of-mass energy Q, for which one can write:

R =
σ(e−+ e+ → hadrons)
σ(e−+ e+ → µ−+µ+)

= REW (Q)
[
1+δQCD(Q)

]
(9.2.1)

where REW (Q) is the purely electroweak prediction for the ratio and δQCD(Q) is the
correction due to QCD effects. To keep the discussion simple, we can restrict our at-
tention to energies Q << MZ, where the process is dominated by photon exchange
(REW = 3∑q e2

q, neglecting finite-quark-mass corrections, where the eq are the electric
charges of the quarks):
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δQCD(Q) =
∞

∑
n=1

cn

[
αs(Q2)

π

]n
+O

(
Λ 4

Q4

)

Considerations in such determinations include:

• The observable?s sensitivity to ?s as compared to the experimental precision. For
example, for the e+e? cross section to hadrons, QCD effects are only a small cor-
rection, since the perturbative series starts at order α0

s ; 3-jet production or event
shapes in e+e? annihilations are directly sensitive to αs since they start at order αs;
the hadronic decay width of heavy quarkonia, Γ (ϒ → hadrons), is very sensitive to
αs since its leading order term is ≈ α3

s .

• The accuracy of the perturbative prediction, or equivalently of the relation between
αs and the value of the observable. The minimal requirement is generally considered
to be an NLO prediction. Some observables are predicted to NNLO (many inclusive
observables, 3-jet rates and event shapes in e+e? collisions) or even N3LO (e+e?

hadronic cross section and ? branching fraction to hadrons). In certain cases, fixed-
order predictions are supplemented with resummation.

• The size of uncontrolled non-perturbative effects. Sufficiently inclusive quantities,
like the e+e? cross section to hadrons, have small non-perturbative uncertainties ≈
Λ/Q4.

9.2.1.1 Results from DIS

New measurements of αs from inclusive jet cross sections in γp interactions at HERA
are available from the ZEUS collaboration. Jet cross sections and values of αs are pre-
sented as a function of the jet transverse energy, E jet

T , for jets with E jet
T > 17 GeV. The

resulting values of αs(E
jet
T ), based on NLO QCD calculations, are in good agreement

with the running of αs, as expected by QCD, and average to:

αs(MZ0) = 0.1224 ±0.0001 (stat.)
+0.0022
−0.0019 (exp.)
+0.0054
−0.0042 (theo.), (9.2.2)

if evolved to the energy scale of MZ0 using the QCD β function in two-loop approxi-
mation. Averaging all measurements of αs from jet production at HERA results in:

αs(MZ0) = 0.120 ±0.002 (exp.)
±0.004 (theo.), (9.2.3)
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A new global analysis using all available precision data of deep inelastic and related
hard scattering processes includes recent measurements of structure functions from
HERA and of the inclusive jet cross sections at the Tevatron. After analysis of experi-
mental and theoretical uncertainties the authors obtain

αs(MZ0) = 0.1165 ±0.002 (exp.)
±0.003 (theo.) , (9.2.4)

in NLO QCD. Using NNLO QCD calculations wherever available, the same fit gives:

αs(MZ0) = 0.1153 ±0.002 (exp.)
±0.003 (theo.). (9.2.5)

The latter result, however, does not relate to complete NNLO since predictions of jet
production cross sections and parts of the DIS structure functions are only available in
NLO so far.

QCD   (   ) = 0.1184 ± 0.0007s Z

0.1
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s (Q)

1 10 100Q [GeV]

Heavy Quarkonia
e+e–  Annihilation
Deep Inelastic Scattering

July 2009

Fig. 9.6: The Q dependence of the strong coupling constant αs.

The wealth of available results provides a rather precise and stable world average value
of αs(MZ), as well as a clear signature and proof of the energy dependence of ?s, in full
agreement with the QCD prediction of asymptotic freedom. This is demonstrated in
fig. 9.6, where results of αs(Q) obtained at discrete energy scales Q, now also including
those based just on NLO QCD, are summarized. Thanks to the results from the Tevatron
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and from the LHC, the energy scales at which αs is determined now extend to several
hundred GeV up to 1 TeV.





Chapter 10

Heavy-ion physics

One of the most remarkable predictions of the Standard Model of particle physics is
that, at sufficiently high densities and temperatures, the protons and neutrons of ordi-
nary matter should melt into a plasma where the quark and gluon degrees of freedom
are not anymore confined, but can extend over large distances. This hot and dense pri-
mordial state of matter is called a Quark-Gluon plasma (QGP) and should have existed
in the expanding universe up to a few microseconds after the Big-Bang, when the phase
transition to hadronic matter of confined quarks and gluons took place. Temperatures
and energy densities similar to the ones in the very early universe can be created in col-
lisions of heavy ions at ultra-relativistic energies in particle accelerators. An integral
part of the Standard Model is Quantum Chromo Dynamics (QCD), which is the theory
that describes the physics of the strong interaction. According to QCD, the phase tran-
sition from deconfined QGP to hadronic matter should occur at a critical temperature
of about 170 MeV, corresponding to a critical energy density ε of about 1 GeV/fm3.
In ultra-relativistic heavy-ion collisions at the energies of the Large Hadron Collider
(LHC) we attain values of ε = 14 GeV/fm3 that exceed by far the critical energy den-
sity. This makes the QCD phase transition the only one within reach of laboratory
experiments, contrary to the electro-weak phase transition which is also predicted by
the Standard Model, but at much higher temperatures and densities.

10.1 The Bag model

At very high-temperature such that the particles have energy much larger than their
rest mass, we may describe them using relativistic kinematics and ignore their masses.
Thus these energetic weakly interacting particles form a system that is, to an excel-
lent approximation, a hot relativistic free gas. Since particles and antiparticles can be
created and annihilated easily in such an environment, their densities are much higher
than their differences. Therefore the chemical potential µ can be neglected. The num-
ber densities of the partons (species i) are then described by the quantum distribution
functions

127
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ni =
∫ d3 pi

(2π)3
1

eβEi ±1
,

where β = 1/kBT and the ? sign is for bosons and the + is for fermions. For relativistic
particles, pi = Ei. For Eiβ < 1, the exponential factor is small and there is a large
difference between fermions and bosons. For Eiβ ≥ 1 the ±1 becomes increasingly
unimportant, and the distributions become similar. Integrating over the phase space,
one finds:

ni = ζ (3)/π
2T 3(boson)

ni =
3
4

ζ (3)/π
2T 3(fermion),

where ζ (3)= 1.20206... is a Riemann zeta function. The T 3 dependence follows simply
from dimensional analysis.

The energy density for a free gas can be computed from the same quantum distribution
functions:

εi =
∫ d3 pi

(2π)3
1

eβEi ±1
⇔

ni =
π2

30
T 4(boson),

It is seen that the fermion energy density is 7/8 of that of boson. These expressions are
valid for each spin/flavor/charge/color state of each particle. For a system of fermions
and bosons, we need to include separate degeneracy factors for the various particles:

ε = ∑
i

giεi = g
π2

30
(kBT )4,

where g = (gb+7g f/8) with gb and g f the degeneracy factors for bosons and fermions,
respectively. Each of these degeneracy factors counts the total number of degrees of
freedom, summed over the spins, flavours, charge (particle-antiparticle) and colours of
particles. When some species are thermally decoupled from others due to the absence
of interactions (such as neutrinos at present epoch), they no longer contribute to the
degeneracy factor. For example, at temperature above 100 GeV, all particles of the
standard model are present. At lower temperatures, the W and Z bosons, top, bottom,
and charm quarks freeze out and g decreases. Therefore g is generally a decreasing
function of temperature. We can now calculate the contribution to the energy density
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from the quark-gluon plasma as a relativistic free parton gas. For a gluon, there are 2
helicity states and 8 choices of colour so we have a total degeneracy of gb = 16. For
each quark flavour, there are 3 colours, 2 spin states, and 2 charge states (corresponding
to quarks and antiquarks). At temperatures below kBT ≈ 1 GeV, there are 3 active
flavours (up, down and strange) so we expect the fermion degeneracy to be a large
number like g f ≈ 36 in this case. Thus we expect for the QGP:

εQGP ≈ 47.5
π2

30
(kBT )4

With two quark flavours, the pre-factor is g = 37. The pressure of the free gas can be
calculated just like the case of black-body radiation. For relativistic species:

p =
1
3

ε

which is the equation of state.

To calculate the entropy of the relativistic gas, we consider the thermodynamics rela-
tion, dE = T dS?pdV . At constant volume we would have just dE = T dS, or dε = T ds
where ε and s are the energy and entropy per unit volume. Since ε ≈ αT 4, we can
easily find that:

s =
4
3

ε

T

For an isolated system of relativistic particles, we expect the total entropy to be con-
served.

Until this point we have been treating the quarks and gluons in the QGP as free particles
without interactions. Of course, in a high-temperature QGP we expect QCD perturba-
tive theory to be applicable due to asymptotic freedom. One important additional con-
sequence is that chiral symmetry is now a good symmetry, and the chiral condensate
must vanish in the plasma:

⟨QGP|ψψ|QGP⟩= 0

where strictly-speaking the QGP ?state? is actually the thermal average over the ex-
cited states of the QCD vacuum when the baryon number density is ignored. Another
important feature of the QGP is colour deconfinement. In QCD perturbation theory, the
quarks and gluons are free particles that can be described by plane waves. Asymptotic
freedom will guarantee that high momentum transfer interactions are weak. Small mo-
mentum transfer scattering involves long distance interactions which are screened by
the plasma (although this is only strictly true in the colour electric sector). As such, the
charged quarks and gluons can move freely inside the plasma without being confined
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to a local region. This remarkable property is radically different from the low energy
limit of QCD where all charges are permanently confined to the interior of hadrons a
scale about 1 fm. Consider a colour charge in midst of a colour-neutral plasma. The
other particles in the plasma will act to screen it, and as a consequence the interaction
between colour charges is damped exponentially. To calculate the screening length,
one can start from a colour charge and calculate its induced colour fields. The result is
a correlation function of gluon fields. This function can be calculated in perturbation
theory at high-temperature, and the result for the screening mass is

m2
D = g2T 2

to leading order in the strong coupling expansion. The so-called Debye screening length
is simply 1/mD or 1/gT , which is very short at high-temperature. When the colour
charges are screened in a plasma, it has a finite energy and therefore in this sense,
the colour charges are now liberated. Unfortunately, the magnetic interaction is only
weakly screened; it has a screening mass of order g2T . Absence of the magnetic screen-
ing means that the magnetic sector of the QCD remains non-perturbative even at high-
temperature. Fortunately, at high-temperature this non-perturbative part contributes to
physical observables only at higher-order in QCD coupling, so the free gas behaviour is
dominant. Another important feature of the plasma is the plasma frequency. In a QED
plasma, light cannot propagate below the plasma frequency, ωpl = (ne2/m)1/2, but will
be reflected from the surface, like in a silver-plated mirror. The physics of the QGP is
similar: gluons cannot propagate as a free field in the plasma if its energy is too low.
In fact, the gluons acquire an effective mass which is effectively the plasma frequency.
Perturbative calculations confirms this behaviour, and to leading order in perturbation
theory the plasma frequency is:

ωpl =
1
3

√
Nc +N f

2
gT

where Nc = 3 is the number of colour and N f is the number of fermion flavour.

The low (i.e. close to zero) temperature ground state of QCD is strikingly different
from the high-temperature QGP: colour charges are confined to the interior of indi-
vidual hadrons and chiral symmetry is broken spontaneously. Therefore, as the plasma
cools in the universe, some rapid changes in thermodynamic observables must occur
from the high-temperature QGP phase to the low-temperature confining and chiral-
symmetry breaking phase, where the quarks and gluons combine to form colourless
states of hadronic matter. It is possible to estimate the transition temperature by com-
paring the QGP gas pressure with that of hadronic gas. The lightest hadrons are pions,
and for T < 1 GeV, we might expect a gas of relativistic pions. This is a system with
only 3 degrees of freedom, g = 3, so the energy density and pressure of the system can
be written as:
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ρπ =
3π2

30
T 4

Pπ =
3π2

90
T 4

This, however, is not the full story. Pions are collective excitations of the non-perturbative
QCD vacuum. This true ground state of the QCD vacuum has a lower-energy ?B than
the perturbative QCD vacuum. Lorentz invariance requires that the energy-momentum
density is of form T µν = Bgµν . Thus the non-perturbative QCD vacuum has a positive
pressure as well. Therefore, the total pressure of the hadronic phase is:

Plow = B+
3π2

90
T 4

On the other hand, we have seen before that the pressure of the QGP phase with 2
quark flavours is, PQGP = 37π2T 4/90. Equating the two pressures, we find the transition
temperature:

Tc =
( 45B

17π2

)1/4
≈ 180 MeV

where we have used the MIT bag constant B = 200 MeV as determined by fits to the
masses of physical hadrons.

10.2 Lattice QCD calculations

Quantum Chromodynamics (QCD) is the underlying theory of the strong force. Al-
though its fundamental degrees of freedom (quarks and gluons) cannot be observed as
free particles the QCD Lagrangian is well established.One of the key features of QCD
is the self coupling of the gauge bosons (gluons) which cause the coupling constant
to increase with decreasing momentum transfer. This running of the coupling constant
gives rise to asymptotic freedom and confinement at large and small momentum trans-
fers, respectively. At small momentum transfer non-perturbative corrections, which are
notoriously hard to calculate, become important. For this reason two important non-
perturbative properties of QCD, confinement and chiral symmetry breaking, are still
poorly understood from first principles.

One of the fundamental questions in QCD phenomenology is what the properties of
matter are at the extreme densities and temperatures where the quarks and gluons are
in a deconfined state, the so-called Quark Gluon Plasma (QGP). Basic arguments allow
us to estimate the energy density ε ∼ 1 GeV/fm3 and temperature T ∼ 170 MeV at
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which the strong phase transition takes place. These values imply that the transition
occurs in a regime where the coupling constant is large so that we can not rely anymore
on perturbative QCD. Better understanding of the non-perturbative domain comes from
lattice QCD, where the field equations are solved numerically on a discrete space-time
grid. Lattice QCD provides quantitative information on the QCD phase transition and
the Equation of State (EOS) of the deconfined state. At extreme temperatures (large
momenta) we expect that the quarks and gluons are weakly interacting and that the
QGP would behave as an ideal gas. For an ideal massless gas the Equation of State
(EoS) is given by:

P =
1
3

ε, ε = g
π2

30
T 4, (10.2.1)

where P is the pressure, ε the energy density, T the temperature and g is the effective
number of degrees of freedom. Each bosonic degree of freedom contributes 1 unit to
g, whereas each fermionic degree of freedom contributes 7

8 . The value of g = 47.5 for
a three flavor QGP which is an order of magnitude larger than that of a pion gas where
g ∼ 3.
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Fig. 10.1: Energy density ε/T 4 (full curve) and pressure 3P/T 4 (dashed curve) as a function of temperature T from
lattice calculations [?]. The arrow indicates the Stefan Boltzmann limit of the energy density.

Figure 10.1 shows the temperature dependence of the energy density as calculated from
lattice QCD. It is seen that the energy density changes rapidly around T ∼ 190 MeV,
which is due to the rapid increase in the effective degrees of freedom (lattice calcula-
tions show that the transition is a crossover). Also shown in Fig. 10.1 is the pressure
which changes slowly compared to the rapid increase of the energy density around
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T = 190 MeV. It follows that the speed of sound, cs =
√

∂P/∂ε , is reduced during the
strong phase transition. At large temperature the energy density reaches a significant
fraction (∼ 0.9) of the ideal massless gas limit (Stefan-Boltzmann limit).

Relativistic heavy-ion collisions are a unique tool to create and study hot QCD matter
and its phase transition under controlled conditions. As in the early universe, the hot and
dense system created in a heavy-ion collision will expand and cool down. During this
evolution the system probes a range of energy densities and temperatures, and possibly
different phases. Provided that the quarks and gluons undergo multiple interactions the
system will thermalize and form the QGP which subsequently undergoes a collective
expansion and eventually becomes so dilute that it hadronizes.

10.3 Probing the Quark-Gluon Plasma (QGP)

For composite hadrons, with finite spatial extension, concept of hadronic matter ap-
pears to lose its meaning at sufficiently high density. Once we have a system of mutually
interpenetrating hadrons, each quark will find in its vicinity, at a distance less than the
hadron radius, a number of quarks. The situation is shown schematically in fig. 10.2. At
low density, a particular quark in a hadron knows in partner quarks. However, at high
density, when the hadrons starts to interpenetrate each other, a particular quark will not
able to identify the quark which was its partner at lower density. Similar phenomena
can happen at high temperature. As the temperature of a nuclear matter is increased,
more and more low mass hadrons (mostly pions) will be created. The system again will
be dense enough and hadrons will starts to interpenetrate. The system where, hadrons
interpenetrate is best considered as a Quark matter, rather than made of hadrons. It is
customary to call the quark matter as Quark-Gluon-Plasma (QGP). We define QGP as a
thermalised, or near to thermalised state of quarks and gluons, where quarks and gluons
are free to move over a nuclear volume rather than a nucleonic volume.

Fig. 10.2: Left panel shows a nucleus at normal density. The right panel shows the same at high density.
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QGP is the deconfined state of strongly interacting mater. Since at low density or low
temperature quarks are confined within the hadrons and at high density or at high tem-
perature, quarks are deconfined, one can talk about a confinement-deconfinement phase
transition. We will discuss it later, but it turns out that the confinement-deconfinement
transition is not a phase transition in thermodynamic sense (in thermodynamic phase
transition, free energy or its derivative have singularity at the transition point), rather it
is a smooth cross-over, from confinement to deconfinement or vice-versa. The mecha-
nism of deconfinement is provided by the screening of the colour charge. It is analogous
to the Mott transition in atomic physics. In dense matter, the long range coulomb poten-
tial, which binds ions and electrons into electrically neutral atom, is partially screened
due to presence of other charges, the potential become much more short range,

We believe that the QGP existed in the very early universe i.e. few µs after the Big
Bang. Figure 10.3-left presents the different stages of the evolution of the universe, in
the Big bang model. At the earliest time, temperatures are of the order of T 1019 GeV
, it is the Planck scale temperature. At this stage, we believe that quantum gravity is
important. Despite an enormous effort by e.g. string theorists, little is understood about
this era. On the other hand, we have better understanding of the later stage of evolution,
say, around temperature T = 1016 GeV. This is what is usually referred to as the Grand
unification scale. Strong and electroweak interactions are unified at this scale. The uni-
verse at this scale may also be supersymmetric. As the universe further expands and
cools, strong and electroweak interactions are separated. At much lower temperature
T ≈ 100 GeV, electroweak symmetry breaking takes place. Baryon asymmetry may be
produced here. Universe exists further on and for some time as QGP, the deconfined
state of quarks and gluons.

Similar conditions can be achieved with ultra-relativistic heavy-ion collisions at the
Relativistic Heavy Ion Collider (RHIC) and the LHC produce fireballs made of ex-
traordinarily hot matter, at initial energy densities (at the time when the matter reaches
approximate local thermal equilibrium) that exceed the energy density of atomic nuclei
in their ground states by two to three orders of magnitude. Due to enormous pressure
gradients between the fireball centre and the surrounding vacuum, these fireballs un-
dergo explosive collective expansion, cooling down rapidly through several different
states of matter, finally fragmenting into thousands of free-streaming hadrons whose
energy and momentum distributions can be detected in the detectors set up around the
collider rings. The evolution history of these “Little Bangs” has much similarity with
the Big Bang that created our Universe as indicated in fig. 10.3-right. Both undergo
a Hubble-like expansion, since the relative velocity between two matter elements in-
creases roughly linearly with their relative distance, features a hierarchy of decoupling
processes that are driven by the expansion dynamics. These processes start with the
chemical decoupling of the finally observed particle abundances. In the Big Bang the
chemical composition is frozen during the process of primordial nucleosynthesis at an
age of about 3 minutes, while in the Little Bang this happens during hadro-synthesis
at the quark-hadron transition at an age of about 20-30 yocto-seconds. This stage is
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followed by the kinetic decoupling. In the Big Bang, the formation of neutral atoms
by charge recombination at an age of about 380,000 yr makes the universe transparent
to light and freezes the thermal Bose-Einstein energy distribution of the Cosmic Mi-
crowave Background radiation. When the Little Bang reaches an age of about 40-50
yocto-seconds, the final-stage hadron gas becomes so dilute that strong interactions be-
tween the hadrons cease and their energies and momenta are “frozen out”. Of course,
the Big and Little Bangs are quite different in other aspects: Their expansion rates dif-
fer by about 18 orders of magnitude; the Little Bang’s expansion is 3-dimensional and
driven by pressure gradients, not 4-dimensional and controlled by gravity; Little Bangs
evolve on time scales of yocto-seconds, not billions of years; distances are measured in
femto-meters rather than light years.

Fig. 10.3: A schematic view of the evolution of the early universe (right) and its similarity to the evolution of a heavy-ion
collision (right plot).

10.4 Kinematics

For a particle emitted at an angle θ with respect to the beam axis, the pseudo-rapidity
variable is,

η =−ln
(

tan(θ/2)
)
= 0.5ln

(P+Pz

P−Pz

)

Pseudo-rapidity is determined only angle by the emission angle θ . It is a convenient
parameter for experimentalists when details of the particle,e.g. mass, momentum etc.
are not known, but only the angle of emission is known (for example in emulsion ex-
periments).

When the mass of the particle is known, then one can define the rapidity, given by

y = 0.5ln
(E +Pz

E −Pz

)
= tanh−1

(Pz

E

)
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Rapidity has the advantage that it is additive under a longitudinal boost. A particle with
rapidity y in a given inertial frame has rapidity y +dy in a frame which moves relative
to the first frame with rapidity dy in the ?z direction. One can see this from the addition
formula of relativistic velocity β1 and β2. The resultant velocity is:

β =
β1 +β2

1+β1β2

is also the addition formula for hyperbolic tangents,

tanh(y1 + y2) =
tanh(y1)+ tanh(y2)

1+ tanh(y1)tanh(y2)

10.5 Centrality

The nucleus, unlike the proton, is an extended object. Accordingly, depending upon the
impact parameter of the collision, several types of collision can be defined, e.g. cen-
tral collision when two nuclei collide head on, peripheral collision when only glancing
interaction occur between the two nuclei. System created in a central collision can be
qualitatively as well as quantitatively different from the system created in a peripheral
collision. Different aspects of reaction dynamics can be understood if heavy ion colli-
sions are studied as a function of impact parameter. Impact parameter of a collision can
not be measured experimentally. However, one can have one to one correspondence be-
tween impact parameter of the collision and some experimental observable. e.g. particle
multiplicity. For example, one can safely assume that multiplicity or transverse energy
is a monotonic function of the impact parameter. High multiplicity or transverse en-
ergy events are from central collisions and low multiplicity or low transverse energy
events are from peripheral collisions. One can then group the collisions according to
multiplicity or transverse energy. It can be done quantitatively. Define a minimum bias
collision where all possible collisions are allowed. In Fig.6 charged particles multiplic-
ity (Nch) in a minimum bias collision is shown schematically. Minimum bias yield can
be cut into successive intervals starting from maximum value of multiplicity. First 5%
of the high Nch events corresponds to top 5% or 0-5% collision centrality. Similarly,
first 10% of the high Nch corresponds to 0-10% centrality. The overlap region between
0-5% and 0-10% corresponds to 5-10% centrality and so on. Similarly, centrality class
can be defined by measuring the transverse energy. Instead of impact parameter, one
often defines centrality in terms of number of participating nucleons (the nucleons that
undergo at least one inelastic collision) or in terms of binary nucleon collision num-
ber. These measures have one to one relationship with impact parameter and can be
calculated in a Glauber model.
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Glauber model views AA collisions in terms of the individual interactions of con-
stituent nucleons. It is assumed that at sufficient high energy, nucleons carry enough
momentum and are undeflected as the nuclei pass through each other. It is also as-
sumed that the nucleons move independently in the nucleus and size is large compared
to NN interaction range. The hypothesis of independent linear trajectories of nucleons
made it possible to obtain simple analytical expression for nuclear cross section, num-
ber of binary collisions, participant nucleons etc. Details of Glauber modelling of heavy
ion collisions can be found in [10]. Below, salient features of the model are described.
In Fig.7 collisions of two heavy nuclei at impact parameter b is shown. Consider the
two flux tubes, (i) located at a displacement s from the centre of target nucleus and
(ii) located at a displacement s-b from the centre of the projectile nucleus. During the
collision, these two flux tube overlap. Now, for most of the nuclei, density distribution
can be conveniently parameterised by a three parameter Fermi function,

ρ(r) = ρ0
1+w(r/R)2

1+ e(r?R)/a

where ρ0 is the nucleon density, R the radius, a the skin thickness. The parameter w
measures the deviation from a spherical shape. In the previous equation, ρ(r) nor-
malised to unity, can be interpreted as the probability to find a given nucleon at a posi-
tion r(= x, y, z). It follows that

TA(s) =
∫

dzρA(s,z)

is the probability that a given nucleon in the nucleus A (say projectile) is at a transverse
distance s. Similarly,

TB(s?b) =
∫

dzρ(s−b,z)

is the probability that a given nucleon in the target nucleus B is at a transverse distance
(s ? b). Then TA(s)TB(s?b) is the joint probability that in an impact parameter b colli-
sion, two nucleons in target and projectile are in the overlap region. One then defines
an overlap function, at impact parameter b as

TAB(b) =
∫

d2sTA(s)TB(s?b)

The overlap function is in unit of inverse area and can interpreted as the effective area
with which a specific nucleon in A interact with a given nucleon at B. If σNN is the
inelastic cross section, then probability of an inelastic interaction is σNNTAB(b). Now
there can be AB interactions between nucleus A and B. The probability that at an impact
parameter b there is an interaction can then be written as:
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P(n,b) =
(
AB n

)(
σNNTAB(b)

)n(1−σNNTAB(b)
)AB−n

The first term is the number of combinations for finding n collisions out of AB colli-
sions, the second term is the probability for having n collisions and the third term is
the probability that AB?n collisions do not occur. The total probability of an interaction
between A and B is then:

dσ

db2 =
AB

∑
i

P(n,AB) = 1−
[
1−σNNTAB(b)

]AB

The total inelastic cross-section is,

σinel =
∫ inf

0
2πbdb

[
1−
(
1−σNNTAB(b)

)AB]≈
∫ inf

0
2πbdb

[
1− e−σNNTAB(b)

]

One can then Total number of binary collisions is:

Ncoll(b) = ∑nP(n,b) = (AB)TAB(b)σNN

The number of nucleons in projectile and target that interacts is called participant nu-
cleons or the wounded nucleons. One obtains:

Npart(b)=A
∫

d2sTA(s)
[
1−
(
1−σNNTB(b−s)

)B]
+B

∫
d2sTB(b−s)

[
1−
(
1−σNNTA(s)

)A]

Glauber model calculation of binary collision number or participant number is energy
dependent through the inelastic NN cross section σNN .

In Monte-Carlo Glauber model, individual nucleons are stochastically distributed event-
by-event and collision properties are calculated averaging over many events. Optical
Glauber model and Monte-Carlo Glauber model give very close results for average
quantities like binary collision number or participant numbers. However, in the quan-
tities where fluctuations are important, e.g. participant eccentricity, the results are dif-
ferent. Monte-Carlo Glauber model calculations proceed as follows: (i) nucleons in
the colliding nuclei are distributed randomly following the probability distribution ?(r),
(ii) an impact parameter is selected randomly from a distribution dN/db ≈ b, (iii) as-
suming the nuclei are moving in the straight line, two nuclei are collided, (iv) if the
transverse separation between two colliding nucleons are less than the ball diameter
D =

√
σNN/π , they are tagged as interacted, and a register, keeping the coordinates of

the colliding nucleons is updated.
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Fig. 10.4: a) Charged particle distribution from Pb-Pb collisions at
√

sNN = 2.76 TeV measured with ALICE, showing a
classification in centrality percentiles (from [?]). b) Number of participating nucleons Npart and binary collisions Nbin

versus impact parameter for Pb-Pb and Au-Au collisions at
√

sNN = 2.76 and 0.2 TeV, respectively.

Experimentally, the collision centrality can be inferred from the measured particle mul-
tiplicities, given the assumption that themultiplicity is a monotonic function of b. The
centrality is then characterised by the fraction, πb2/π(2RA)

2, of the geometrical cross-
section with RA the nuclear radius (see Fig. 10.4-a). Instead of by impact parameter, the
centrality is also often characterised by the number of participating nucleons (nucleons
that undergo at least one inelastic collision) or by the number of equivalent binary col-
lisions. Phenomenologically it is found that the total particle production scales with
the number of participating nucleons whereas hard processes scale with the number
of binary collisions. These measures can be related to the impact parameter b using
a realistic description of the nuclear geometry in a Glauber calculation, as is shown
in fig. 10.4-b. This Figure also shows that Pb–Pb collisions at

√
sNN = 2.76 TeV and

Au–Au at
√

sNN = 0.2 TeV have a similar distribution of participating nucleons. The
number of binary collisions increases from Au–Au to Pb–Pb by about 50% because the
nucleon-nucleon inelastic cross section increases by about that amount at the respective
centre of mass energies of 0.2 and 2.76 TeV. Finally, fig. 10.5 gives schematically the
correlation between impact parameter and number of particles produced in a peripheral
(left) or central (right) collision.

10.6 Key observables

10.6.1 Collective flow

Flow signals the presence of multiple interactions between the constituents of the
medium created in the collision. More interactions usually leads to a larger magni-
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Fig. 10.5: The correlation between impact parameter and number of particles produced in a peripheral (left) or central
(right) collision.

tude of the flow and brings the system closer to thermalization. The magnitude of the
flow is therefore a detailed probe of the level of thermalization.
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Fig. 10.6: Almond shaped interaction volume after a non-central collision of two nuclei. The spatial anisotropy with
respect to the x-z plane (reaction plane) translates into a momentum anisotropy of the produced particles (anisotropic

flow).
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The theoretical tools to describe flow are hydrodynamics or microscopic transport (cas-
cade) models. In the transport models flow depends on the opacity of the medium, be it
partonic or hadronic. Hydrodynamics becomes applicable when the mean free path of
the particles is much smaller than the system size, and allows for a description of the
system in terms of macroscopic quantities. This gives a handle on the equation of state
of the flowing matter and, in particular, on the value of the sound velocity cs.

Experimentally, the most direct evidence of flow comes from the observation of
anisotropic flow which is the anisotropy in particle momentum distributions correlated
with the reaction plane. The reaction plane is defined by the impact parameter and the
beam direction z (see Fig. 10.6). A convenient way of characterising the various pat-
terns of anisotropic flow is to use a Fourier expansion of the invariant triple differential
distributions:

E
d3N
d3p

=
1

2π

d2N
ptdptdy

(
1+2

∞

∑
n=1

vn cos[n(ϕ −ΨRP)]

)
, (10.6.1)

where E is the energy of the particle, p the momentum, pt the transverse momentum,
ϕ the azimuthal angle, y the rapidity, and ΨRP the reaction plane angle. The sine terms
in such an expansion vanish because of the reflection symmetry with respect to the
reaction plane. The Fourier coefficients are pT and y dependent and are given by

vn(pT,y) = ⟨cos[n(ϕ −ΨRP)]⟩, (10.6.2)

where the angular brackets denote an average over the particles, summed over all
events, in the (pT,y) bin under study. In this Fourier decomposition, the coefficients
v1 and v2 are known as directed and elliptic flow, respectively.

Recently the ALICE Collaboration presented the pT differential v2 (i.e. v2(pT)) of
mesons (π±, K±, K0

S, φ ) and baryons (p, Λ , Ξ−, Ω−, and their antiparticles) mea-
sured in Pb–Pb collisions at

√
sNN = 2.76 TeV. The results were reported in |y| < 0.5,

with y the rapidity of each particle, and 0.2 < pT < 6.0 GeV/c. The values of v2 were
obtained with the Scalar Product method, using a pseudo-rapidity gap of |∆η |> 0.9 to
suppress correlations not related to the common symmetry plane. The latter are known
as non-flow effects and consist of correlations arising from jets or resonance decays
and quantum statistics correlations.

Figure 10.7 presents the dependence of v2 for different particle species on transverse
momentum in the 10-20% centrality interval of Pb–Pb collisions at

√
sNN = 2.76 TeV.

For pT < 2 GeV/c particles are ordered according to their mass i.e. for a fixed value
of pT heavier particles exhibit lower v2 compared to lighter particles. This ordering is
induced by an interplay between radial and elliptic flow that results in a mass dependent
lower v2. This can be understood considering that radial flow acts over the particle
spectra that consist of two components i.e. the thermal part and the part that is affected
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Fig. 10.7: The pT-differential v2 for different particle species in the 10-20% centrality interval of Pb–Pb collisions at√
sNN = 2.76 TeV.

by the expanding medium and is mass dependent. This mass dependent component
introduces a depletion in the particle spectrum at low values of pT, which is more
pronounced for heavier particles. In an azimuthally asymmetric system, the pressure
gradient and thus the expansion velocity is larger in-plane compared to the out-of-
plane direction. This naturally leads to a larger depletion at low values of pT in the
direction of the symmetry plane. Since v2 quantifies the relative difference of particle
yield in-plane versus out-of-plane, this mechanism leads naturally to a reduction of the
value of v2. When the two effects (i.e. radial flow acting on particle spectra and an
azimuthally asymmetric system) are coupled then v2 becomes lower with increasing
mass for a given value of pT.

10.6.2 Jet quenching

Among all available observables in high-energy nuclear collisions, particles with large
transverse momentum and/or mass, pT ,m ≳ Q0 ≫ ΛQCD, where Q0 = O(1 GeV) and
ΛQCD ≈ 0.2 GeV is the QCD scale, constitute valuable tools to study tomographically
the hottest and densest phases of the reaction (Fig. 10.8). Indeed, such hard probes (i)
originate from partonic scatterings with large momentum transfer Q2 and thus are di-
rectly coupled to the fundamental QCD degrees of freedom, (ii) are produced in very
short time-scales, τ ∼ 1/pT ≪ 1/Q0 ∼ 0.1 fm/c, allowing them to propagate through
(and be potentially affected by) the medium, and (iii) their cross sections can be theo-
retically predicted using the perturbative QCD (pQCD) framework.
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Fig. 10.8: Examples of hard probes whose modifications in high-energy A–A collisions provide direct information on
properties of QCD matter such as the transport coefficient q̂t, the initial gluon rapidity density dNg/dy, and the critical

temperature Tcrit and energy density εcrit .

Jet production in hadronic collisions is a paradigmatic hard QCD process. An elas-
tic (2 → 2) or inelastic (2 → 2+X) scattering of two partons from each one of the
colliding hadrons (or nuclei) results in the production of two or more partons in the
final-state. At high pT, the outgoing partons have a large virtuality Q which they re-
duce by subsequently radiating gluons and/or splitting into quark-antiquark pairs. Such
a parton branching evolution is governed by the QCD “radiation probabilities” given
by the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) equations down to virtual-
ities O(1 GeV2). At this point, the produced partons fragment non-perturbatively into a
set of final-state hadrons. The characteristic collimated spray of hadrons resulting from
the fragmentation of an outgoing parton is called a “jet”.

One of the first proposed “smoking guns” of QGP formation was “jet quenching” i.e.
the attenuation or disappearance of the spray of hadrons resulting from the fragmenta-
tion of a parton having suffered energy loss in the dense plasma produced in the reac-
tion (Fig. 10.9). The energy lost by a particle in a medium, ∆E, provides fundamental
information on its properties. In a general way, ∆E depends both on the character-
istics of the particle traversing it (energy E, mass m, and charge) and on the plasma
properties (temperature T , particle-medium interaction coupling α , and thickness L),
i.e. ∆E(E,m,T,α,L). The following (closely related) variables are extremely useful to
characterise the interactions of a particle inside a medium:

• the mean free path λ = 1/(ρσ), where ρ is the medium density (ρ ∝ T 3 for an ideal
gas) and σ the integrated cross section of the particle-medium interaction1,

1 One has λ ∼ (αT )−1 since the QED,QCD screened Coulomb scatterings are σel ∝ α/T 2.
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Fig. 10.9: “Jet quenching” in a head-on nucleus-nucleus collision. Two quarks suffer a hard scattering: one goes out
directly to the vacuum, radiates a few gluons and hadronises, the other goes through the dense plasma created
(characterised by transport coefficient q̂, gluon density dNg/dy and temperature T ), suffers energy loss due to

medium-induced gluonstrahlung and finally fragments outside into a (quenched) jet.

• the opacity N = L/λ or number of scatterings experienced by the particle in a
medium of thickness L,

• the Debye mass mD(T ) ∼ gT (where g is the coupling parameter) is the inverse of
the screening length of the (chromo)electric fields in the plasma. mD characterises
the typical momentum exchanges with the medium and also gives the order of the
“thermal masses” of the plasma constituents,

• the transport coefficient q̂ ≡ m2
D/λ encodes the “scattering power” of the medium

through the average transverse momentum squared transferred to the traversing par-
ticle per unit path-length. q̂ combines both thermodynamical (mD,ρ) and dynamical
(σ ) properties of the medium:

q̂ ≡ m2
D/λ = m2

D ρ σ . (10.6.3)

As a numerical QCD example let us consider an equilibrated gluon plasma at T =
0.4 GeV and a strong coupling αs ≈ 0.5. At this temperature, the particle (energy)
density is ρg = 16/π2 ζ (3) ·T 3 ≈ 15 fm−3 (εg = 8π2/15 ·T 4 ≈ 17 GeV/fm3), i.e.
100 times denser than normal nuclear matter (ρ = 0.15 fm−3). At leading order (LO),
the Debye mass is mD = (4παs)

1/2T ≈ 1 GeV. The LO gluon-gluon cross section
is σgg ≃ 9πα2

s /(2m2
D) ≈ 1.5 mb. The gluon mean free path in such a medium is

λg = 1/(ρgσgg)≃ 0.45 fm (the quark mean-free-path is λq =CA/CF λg ≈ 1 fm, where
CA/CF = 9/4 is the ratio of gluon-to-quark colour factors). The transport coefficient
is therefore q̂ ≃ m2

D/λg ≃ 2.2 GeV2/fm. Note that such a numerical value has been
obtained with a LO expression in αs for the parton-medium cross section. Higher-
order scatterings (often encoded in a “K-factor” ≈ 2 – 4) could well result in much
larger values of q̂.
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• the diffusion constant D, characterising the dynamics of heavy non-relativistic par-
ticles (mass M and speed v) traversing the plasma, is connected, via the Einstein
relations

D = 2T 2/κ = T/(M ηD) (10.6.4)

to the momentum diffusion coefficient κ – the average momentum squared gained by
the particle per unit-time (related to the transport coefficient as κ ≈ q̂ v) – and the
momentum drag coefficient ηD.

In a general way, the total energy loss of a particle traversing a medium is the sum
of collisional and radiative terms: ∆E = ∆Ecoll +∆Erad. Depending on the kinematic
region, a (colour) charge can lose energy in a plasma with temperature T mainly by
two mechanisms:

• Collisional energy loss through elastic scatterings with the medium constituents
dominates at low particle momentum. The average energy loss in one scattering (with
cross section dσ/dt, where t = Q2 is the momentum transfer squared) in a medium
of temperature T , is:

⟨∆E1scat
coll ⟩ ≈ 1

σ T

∫ tmax

m2
D

t
dσ

dt
dt . (10.6.5)

• Radiative energy loss through inelastic scatterings within the medium dominates
at higher momenta. This loss can be determined from the corresponding single-
or double-differential photon or gluon Bremsstrahlung spectrum (ω dIrad/dω or
ω d2Irad/dω dk2

⊥, where ω , k⊥ are respectively the energy and transverse momentum
of the radiated photon or gluon):

∆E1scat
rad =

∫ E
ω

dIrad

dω
dω , or ∆E1scat

rad =
∫ E ∫ kT,max

ω
d2Irad

dω dk2
⊥

dω dk2
⊥ .(10.6.6)

For incoherent scatterings one has simply: ∆Etot = N ·∆E1scat , where N = L/λ is the
medium opacity. The energy loss per unit length or stopping power is:

−dE
dl

=
⟨∆Etot⟩

L
, (10.6.7)

which for incoherent scatterings reduces to: −dE/dl = ⟨∆E1scat⟩/λ .

Experimentally, direct information on the thermodynamical properties (like tempera-
ture, energy or particle densities) and transport properties (such as viscosity, diffusivity
and conductivity coefficients) of the QGP can be obtained by comparing the results for
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a given observable measured in nucleus-nucleus (AA, “QCD medium”) to those mea-
sured in proton-proton (pp, “QCD vacuum”) collisions as a function of centre-of-mass
(c.m.) energy

√
snn, transverse momentum pT, rapidity y, reaction centrality (impact

parameter b), and particle type (mass m). Schematically:

RAA(
√

snn, pT ,y,m;b) =
“hot/dense QCD medium”

“QCD vacuum”
∝

(dN/d pT )AA(
√

snn,y,m;b)
(dN/d pT )pp(

√
s,y,m)

(10.6.8)

Any observed enhancement (RAA > 1) and/or suppression (RAA < 1) in this ratio can
then be linked to the properties of strongly interacting matter after accounting for a re-
alistic (hydrodynamical) modeling of the space-time evolution of the expanding system
of quarks and gluons produced in the collision.
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Appendix A

Units and conversion factors

In particle physics, energy is measured in units of GeV = 106 eV, where 1 eV = 1.6×
10−19 J is the change in kinetic energy of an electron when it traverses a potential
difference of one volt. From the relation E2 = p2c2 +m2c4 it follows that the units
of momentum and mass are GeV/c and GeV/c2, respectively. The dimension of ℏ is
energy×time so that the unit of time is ℏ/GeV; ℏc has dimension energy×length so that
length has unit ℏc/GeV.

One often works in a system of units where ℏ and c have a numerical value of one, so
that these constants can be omitted in expressions, as in E2 = p2 +m2. A disadvantage
is that the dimensions carried by ℏ (energy×time) and c (length/time) also disappear
but these can always be restored, if necessary, by a dimensional analysis afterward.

Here are some useful conversions.

Conversion ℏ= c = 1 units Natural units

Mass 1 kg = 5.61×1026 GeV GeV/c2

Length 1 m = 5.07×1015 GeV−1 ℏc/GeV

Time 1 s = 1.52×1024 GeV−1 ℏ/GeV

Charge e =
√

4πα dimensionless
√
ℏc

1 TeV = 103 GeV = 106 MeV = 109 KeV = 1012 eV

1 fm = 10−15 m = 10−13 cm = 5.07 GeV−1

1 barn = 10−28 m2 = 10−24 cm2

1 fm2 = 10 mb = 104 µb = 107 nb = 1010 pb

1 GeV−2 = 0.389 mb

ℏc = 197 MeV fm

(ℏc)2 = 0.389 GeV2 mb

α = e2/(4πℏc)≈ 1/137
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Appendix B

Covariant notation (c = 1)

• Contravariant space-time coordinate: xµ = (x0,x1,x2,x3) = (t,x)

• Covariant space-time coordinate: xµ = (x0,x1,x2,x3) = (t,−x)

• Contravariant derivative: ∂ µ ≡ ∂/∂xµ = (∂t ,−∇)

• Covariant derivative: ∂µ ≡ ∂/∂xµ = (∂t ,+∇)

• Metric tensor: gµν = gµν = diag(1,−1,−1,−1)

• Index raising/lowering: aµ = gµν aν , aµ = gµν aν

• Lorentz boost along x-axis:1 x′µ = Λ
µ

ν xν and x′µ = Λ ν
µ xν

Λ
µ

ν = Λ
ν
µ =




γ −γβ 0 0
−γβ γ 0 0

0 0 1 0
0 0 0 1


 γ =

1√
1−β 2

• Lorentz scalar: a ·b = aµ bµ = a0 b0 −a ·b = aµ bµ

• a2 > 0 time-like 4-vector → possible causal connection
a2 = 0 light-like 4-vector
a2 < 0 space-like 4-vector → no causal connection

• 4-momentum: pµ = (E, p), pµ = (E,−p)

• Invariant mass: p2 = pµ pµ = pµ pµ = E2 − p2 = m2

• Particle velocity: γ = E/m, β = |p|/E

1 This is the relation between the coordinates xµ of an event observed in a system S and the coordinates x′µ of that same event observed in a
system S′ that moves with a velocity +β along the x-axis of S.
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Appendix C

Vector calculus

∇× (∇ψ) = 0

∇ · (∇×A) = 0

∇× (∇×A) = ∇(∇ ·A)−∇
2A

∫

V
∇ ·A dV =

∫

S
A · n̂ dS (Divergence theorem)

∫

V
(φ∇

2
ψ −ψ∇

2
φ) dV =

∫

S
(φ∇ψ −ψ∇φ) · n̂ dS (Green’s theorem)

∫

S
(∇×A) · n̂ dS =

∮

C
A ·dl (Stokes’ theorem)

• In the above, S is a closed surface bounding V , with n̂ the outward normal unit vector
at the surface element dS.

• In Stokes’ theorem, the direction of n̂ is related by the right-hand rule to the sense of
the contour integral around C.
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Appendix D

Maxwell’s equations in vacuum

• Maxwell’s equations

∇ ·E = ρ ∇ ·B = 0

∇×E +∂B/∂ t = 0 ∇×B−∂E/∂ t = j

• Continuity equation

∇ · j =−∂ρ

∂ t

• The potentials V and A are defined such that the second and third of Maxwell’s equa-
tions are automatically satisfied

B = ∇×A → ∇ ·B = 0

E =−∂A/∂ t −∇V → ∇×E =−∂B/∂ t

• Gauge transformations leave the E and B fields invariant

V ′ =V +
∂λ

∂ t
and A′ = A−∇λ

• Maxwell’s equations in 4-vector notation

4-vector potential Aµ = (V,A)

4-vector current jµ = (ρ, j)

Electromagnetic tensor Fµν = ∂ µAν −∂ νAµ

Maxwell’s equations ∂µFµν = jν

Continuity equation ∂µ jµ = 0

Gauge transformation Aµ → Aµ +∂ µλ

• Lorentz gauge and Coulomb condition
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Lorentz gauge ∂µAµ = 0 → ∂µ∂ µAν = jν

Coulomb condition A0 = 0 or equivalently ∇A = 0



Appendix E

The Lagrangian in classical mechanics

In classical mechanics, the Lagrangian is the difference between the kinetic and poten-
tial energy: L(q, q̇) ≡ T −V . The coordinates q(t) = {q1(t), . . . ,qN(t)} fully describe
the system at any given instant t. The number N of coordinates is called the number of
degrees of freedom of the system.

Let the system move from A(t1) to B(t2) along some given path. The action S[path] is
defined by the integral of the Lagrangian along the path:

S[path] =
∫ t2

t1
dt L(q, q̇)

The action S assigns a number to each path and is thus a function of the path. In math-
ematical terms, S is called a functional.
The principle of least action states that the system will evolve along the path that
minimises the action.

Let q(t) be a path and q(t)+ δq(t) be some deviating path between the same points
A(t1) and B(t2). That is, δq(t1) = δq(t2) = 0. The variation in the action is then given
by

δS =
∫ t2

t1
dt δL(q, q̇) =

∫ t2

t1
dt
(

∂L
∂q

δq+
∂L
∂ q̇

δ q̇
)

=
Iwant

0.

Because
d
dt

(
∂L
∂ q̇

δq
)
=

(
d
dt

∂L
∂ q̇

)
δq+

(
∂L
∂ q̇

)
δ q̇,

we find, by partial integration,

δS =
∫ t2

t1
dt
(

∂L
∂q

− d
dt

∂L
∂ q̇

)
δq+

∫ t2

t1
d
(

∂L
∂ q̇

δq
)

=
Iwant

0.

The second integral vanishes because δq(t1) = δq(t2) = 0.

The first integral vanishes for all δq if and only if the term in brackets vanishes, leading
to the Euler-Lagrange equations, for N degrees of freedom:
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158 E The Lagrangian in classical mechanics

δS
δqi

=
d
dt

(
∂L
∂ q̇i

)
− ∂L

∂qi
= 0 i = 1, . . . ,N

Solving the EL equations for a given Lagrangian lead to the equations of motion of
the system.



Appendix F

The Hamiltonian in classical mechanics

If L does not explicitly depend on time we have for the time derivative

dL
dt

=
∂L
∂ q̇

q̈+
∂L
∂q

q̇

Substituting ∂L/∂q from the Euler-Lagrange equations gives

dL
dt

=
∂L
∂ q̇

q̈+
d
dt

(
∂L
∂q

)
q̇ =

d
dt

(
∂L
∂ q̇

q̇
)

→ d
dt

(
∂L
∂ q̇

q̇−L
)
= 0

The term in brackets is the Legendre transform of L and is called the Hamiltonian:

H def
=

∂L
∂ q̇

q̇−L = pq̇−L with p def
=

∂L
∂ q̇

,

where we have also introduced the canonical momentum p. The Hamiltonian is iden-
tified with the total energy E = T +V which is thus conserved in the time evolution of
the system. This is an example of a conservation law.

In the Lagrangian, the dependence on q̇ resides in the kinetic energy term T while the
dependence on q is contained in the potential energy V . Thus if V = 0 (or a constant)
we have in the EL equations

∂L
∂q

= 0 → d
dt

(
∂L
∂ q̇

)
=

dp
dt

= 0

Thus the momentum p is conserved in a system that is not under the influence of an
external potential. This is another example of a conservation law.

The Hamiltonian equations of motion are

q̇ =
∂H
∂ p

and ṗ =−∂H
∂q

This can be derived as follows. Consider the total differential

159



160 F The Hamiltonian in classical mechanics

dL =
∂L
∂q

dq+
∂L
∂ q̇

dq̇

Now
∂L
∂q

= ṗ (from EL),
∂L
∂ q̇

= p (by definition),

and thus, using pdq̇ = d(pq̇)− q̇dp, we obtain

dL = ṗdq+d(pq̇)− q̇dp → d(pq̇−L) = dH = q̇dp− ṗdq,

from which the Hamiltonian equations immediately follow.



Appendix G

Dirac δ -function

• The Dirac δ -function can be defined by1

δ (x) =
{

0, if x ̸= 0
∞, if x = 0 with

∫
∞

−∞

δ (x)dx = 1

• Generalisation to more dimensions is trivial, like δ (r)≡ δ (x)δ (y)δ (z).

• For x → 0 we may write f (x)δ (x) = f (0)δ (x) so that
∫

∞

−∞

f (x)δ (x)dx = f (0) and
∫

∞

−∞

f (x)δ (x−a)dx = f (a)

• For a linear transformation y = k(x−a) we have

δ (y) =
1
|k| δ (x−a)

This is straight-forward to prove by showing that δ (y) satisfies the definition of the
δ -function given above.

• Likewise, if {xi} is the set of points for which f (xi) = 0, then it is easy to show by
Taylor expansion around the xi that

δ [ f (x)] = ∑
i

1
| f ′(xi)|

δ (x− xi)

• There exist many representations of the δ -function, for instance,

δ (r) =
1

(2π)3

∫
eik·rd3k or δ (x) =

dθ(x)
dx

,

with θ(x) =
{

0, for x < 0
1, for x ≥ 0 (Heaviside step function).

1 A more rigorous mathematical definition is usually in terms of a limiting sequence of functions.
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Appendix H

Green functions

• Let Ω be some linear differential operator. A Green function of the operator Ω is a
solution of the differential equation

Ω G(r) = δ (r)

These Green functions can be viewed as some potential caused by a point source at
r.

• Once we have the Green function we can immediately solve the differential equation
for any source density s(r)

Ω ψ(r) = s(r)

By substitution it is easy to see that (ψ0 is the solution of Ω ψ0 = 0)

ψ(r) = ψ0(r)+
∫

G(r− r′)s(r′) dr′

Here it is clearly seen that G(r − r′) ‘propagates’ the contribution from the source
element s(r′)dr′ to the potential ψ(r).

• A few well-known Green functions are ...

∇2 G(r) = δ (r) G(r) =−1/(4πr)

(∇2 + k2)G(r) = δ (r) G±(r) =−exp(±ikr)/(4πr)

(∇2 −m2)G(r) = δ (r) G(r) =−exp(−mr)/(4πr)

• ... and here are their Fourier transforms

G(r) =−1/(4πr) G̃(q) =−1/q2

G+(r) =−exp(ikr)/(4πr) G̃+(q) = 1/(k2 −q2 + iε)

G(r) =−exp(−mr)/(4πr) G̃(q) =−1/(q2 +m2)
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Appendix I

Non-relativistic scattering theory I

• Classical relation E = p2/2m+V with substitution E → i∂/∂ t and p = −i∇ gives
the Schroedinger equation

i
∂

∂ t
ψ(r, t) =−

[
∇2

2m
−V (r, t)

]
ψ(r, t)

• Separate ψ(r, t) = φ(t)ψ(r). Dividing through by φψ gives

i∂tφ(t)
φ(t)

=− [∇2 −2mV (r, t)]ψ(r)
2mψ(r)

Assume now that V does not depend on t. The left and right-hand side must then be
equal to a constant, say E, and we have

∂φ(t)
∂ t

=−iE φ(t) → φ(t) = e−iEt

[∇2 + k2]ψ(r) = 2mV (r)ψ(r)

where we have set k2 = 2mE. Using Green functions we get

ψ(r) = ψ0(r)−
m
2π

∫ eik|r−r′|

|r− r′|V (r′)ψ(r′)dr′

• For large r ≫ r′ we have |r− r′| ≈ r− r̂r′ so that

ψ(r) = ψ0(r)−
m
2π

eikr

r

∫
e−ikr̂r′V (r′)ψ(r′)dr′

• We set k′ ≡ kr̂ and write, formally,

ψ(r) = ψ0(r)+ f (k′)
eikr

r
with f (k′)≡− m

2π

∫
e−ik′r′V (r′)ψ(r′)dr′

The function f (k′) is called the scattering amplitude.
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Appendix J

Non-relativistic scattering theory II

• An incoming plane wave ψin = Beikz describes beam particles moving along the z
axis with momentum k. The wave function is normalised such that ρ = ψ∗ψ = |B|2
is the particle density (number of particles per unit volume). The current density is

jin =
1

2mi
(ψ∗

∇ψ −ψ
∗
∇ψ) = |B|2 k

m
= ρ

k
m

= ρv

with v the velocity of the particle. The number of beam particles passing per second
through an area A is Rin = ρvA = | jin|A. Likewise, the number of scattered particles
that pass per second through an area r2dΩ is Rsc = | jsc|r2dΩ .

• We now imagine a hypothetical area dσ such that the number of beam particles that
pass through that area is equal to the number of particles that scatter in the solid angle
dΩ . We then have, by definition, | jin|dσ = | jsc|r2dΩ , or

dσ

dΩ
=

r2 | jsc|
| jin|

The quantity dσ/dΩ is called a differential cross section.

• For our scattered wave ψsc = f (k′)eikr/r we find

jsc =
1

2mi

(
ψ

∗∂ψ

∂ r
−ψ

∂ψ∗

∂ r

)
= | f (k′)|2 k

mr2

and thus
dσ

dΩ
= | f (k′)|2

where we have assumed ρ = 1 and ksc = kin (elastic scattering).
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Appendix K

Non-relativistic scattering theory III

• Recall that for scattering on a potential, the outgoing wave is

ψout(r) = ψ0(r)+ f (k′)
eikr

r
with

f (k′)≡− m
2π

∫
e−ik′r′V (r′)ψout(r′)dr′

Here k′ is the momentum vector of the scattered particle.

• The problem now is that ψout occurs on both sides of the equation above. A first order
approximation is achieved by setting in the scattering amplitude ψout ≈ ψin = eikz =
eikr. This gives

f (k,k′)≡− m
2π

∫
ei(k−k′)r′V (r′)dr′ =− m

2π

∫
e−iqr′V (r′)dr′

where we have set the momentum transfer q ≡ k′−k. In this so-called Born approx-
imation, the scattering amplitude f (k,k′)≡ f (q) is thus the Fourier transform of the
potential.

• Example: Yukawa potential V (r) = Q1Q2 e−ar/r

f (q) =−mQ1Q2

2π

∫ e−ar′

r′
e−iqr′dr′ = · · ·= 2mQ1Q2

q2 +a2

dσ

dΩ
= | f (q)|2 =

[
2mQ1Q2

q2 +a2

]2

• Example: Coulomb potential V (r) = Q1Q2/r set a = 0 above:

dσ

dΩ
=

[
2mQ1Q2

q2

]2

=

[
Q1Q2

2mv2 sin2(θ/2)

]2

This is the famous formula for Rutherford scattering.
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Appendix L

Dirac’s bra-ket notation I

• A state vector ψα can be represented by a column vector of complex numbers in a
Hilbert space and is denoted by the ket |α⟩. To each ket is associated a bra vector ⟨α|
in a dual Hilbert space. This bra is represented by the conjugate transpose ψ

†
α , that is,

by the row vector of complex conjugates. The operation of Hermitian conjugation
turns a bra into a ket and vice versa

|α⟩† = ⟨α| and (c|α⟩)† = ⟨α|c∗ (c any complex number)

Note that the Hermitian conjugate of a c-number is the complex conjugate. The in-
product ψ

†
α ·ψβ is denoted by ⟨α|β ⟩ and is a c-number so that

⟨β |α⟩ ≡ ⟨α|β ⟩† = c† = c∗ = ⟨α|β ⟩∗

• An operator O transforms a ket |α⟩ into another ket, say |γ⟩. The operator and its
Hermitian conjugate are then defined by

O|α⟩= |γ⟩ and ⟨α|O† = ⟨γ|
Multiplying from the left with ⟨β | and from the right with |β ⟩ we find the relation
between the matrix elements of O and O†

Oβα ≡ ⟨β |O|α⟩= ⟨β |γ⟩
O†

αβ
≡ ⟨α|O†|β ⟩= ⟨γ|β ⟩= ⟨β |γ⟩∗ = ⟨β |O|α⟩∗ = O∗

βα

• An operator for which O=O† is called self-adjoint or Hermitian. Observable quan-
tities are always represented by Hermitian operators. Indeed, the expectation value
⟨α|O|α⟩ is then real, as it should be, since

⟨α|O|α⟩ ≡ ⟨α|O†|α⟩= ⟨α|O|α⟩∗
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Appendix M

Dirac’s bra-ket notation II

• An orthonormal basis is written as |ei⟩ with ⟨ei|e j⟩= δi j. On this basis, a state |α⟩ is
given by the linear combination

|α⟩= ∑
i
|ei⟩⟨ei|α⟩

The operator |ei⟩⟨ei| is called a projection operator, for obvious reasons. The clo-
sure relation reads ∑i |ei⟩⟨ei|= 1

• We denote the wave function ψα(r) by ⟨r|α⟩ and its Hermitian conjugate ψ
†
α(r) by

⟨α|r⟩. In particular, the wave function of a momentum eigenstate is ⟨r|k⟩ ∝ eikr.

• For the complete set of states |r⟩ the closure relation reads
∫

|r⟩⟨r| dr = 1

From this, we nicely recover the expression for the inproduct of two wave functions

⟨α|β ⟩=
∫
⟨α|r⟩⟨r|β ⟩dr =

∫
ψ

∗
α(r)ψβ (r)dr

that of the delta function

δ (k− k′) = ⟨k′|k⟩=
∫
⟨k′|r⟩⟨r|k⟩dr ∝

1
(2π)3

∫
ei(k−k′)rdr

and also that of Fourier transforms

ψ(k) = ⟨k|ψ⟩=
∫
⟨k|r⟩⟨r|ψ⟩dr ∝

∫
e−ikr

ψ(r)dr
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Appendix N

Dirac equation

• Dirac equation:

iγµ∂µψ −mψ = 0

(/p−m)u = 0
︸ ︷︷ ︸

particle in

, ū(/p−m) = 0
︸ ︷︷ ︸

particle out

, (/p+m)v = 0
︸ ︷︷ ︸

antiparticle out

, v̄(/p+m) = 0
︸ ︷︷ ︸

antiparticle in

ψ = ψ†γ0, /a = γµaµ

• Pauli matrices:

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)

σiσ j = δi j + iεi jkσk, σ
†
i = σi = σ

−1
i , [σi,σ j] = 2εi jkσk

(a ·σ)(b ·σ) = a ·b+ iσ · (a×b)

exp(iθ ·σ) = cos |θ |+ i(θ̂ ·σ)sin |θ |

• Dirac matrices:

γ0 =

(
1 0
0 −1

)
, γ i =

(
0 σi

−σi 0

)
, γ5 = iγ0γ1γ2γ3 =

(
0 1
1 0

)

γ0†
= γ0, γ i† =−γ i, γ0γµ †

γ0 = γµ

{γµ ,γν}= 2gµν , {γµ ,γ5}= 0,
(
γ5
)2

= 1
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Appendix O

Traces

Using Casimir’s identity reduces the calculation of a complicated matrix element to a
calculation of the trace of a complicated product of γ-matrices. This algebra is facili-
tated by a number of theorems which will be listed here for your convenience.

• For three matrices A, B, C and a is a scalar:

– Tr(A+B) = Tr(A)+Tr(B)

– Tr(aA) = aTr(A)

– Tr(AB) = Tr(BA)

– Tr(ABC) = Tr(CAB) = Tr(BCA)

• gµνgµν = 4

• Contraction theorems

– γµγµ = 4

– γµγνγµ =−2γν

– γµ/aγµ =−2/a

– γµγνγλ γµ = 4gνλ

– γµ/a/bγµ =−4(ab)

– γµγνγλ γσ γµ =−2γσ γλ γν

– γµ/a/b/cγµ =−2/c/b/a

• Trace theorems

– The trace of the product of odd number of γ-matrices is 0

– Tr(I) = 4

– Tr(γµγν) = 4gµν

– Tr(/a/b) = 4(ab)
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178 O Traces

– Tr(γµγνγλ γσ) = 4
(
gµνgλσ −gµλ gνσ +gµσ gνλ

)

– Tr(/a/b/c/d) = 4
[
(ab)(cd)− (ac)(bd)+(ad)(bc)

]

– Since γ5 = iγ0γ1γ2γ3 i.e. the product of even number of γ-matrices, then Tr(γ5γµ)=
Tr(γ5γµγνγλ ) = 0

· Tr(γ5) = 0

· Tr(γ5γµγν) = 0

· Tr(γ5/a/b) = 0

· Tr(γ5γµγνγλ γσ) = 4iεµνλσ

· Tr(γ5/a/b/c/d) = 4iεµνλσ aµbνcλ dσ

In the previous:

ε
µνλσ =



−1 if µνλσ is an even permutation of 0123
+1 if µνλσ is an odd permutation of 0123
0 if any two indices are the same





