
LECTURE 2

(direct) CP violation
neutral meson mixing
measuring an oscillation frequency



CP violation
• what is it?

• why is it interesting?
• big picture: matter versus anti-matter
• small picture: precision tests of SM (electroweak symmetry breaking)

decay width: Γ [E]
cross-section:  " [L2]





same size, same phasesame size, opposite phase



• from amplitudes to counting events

(silly representation
of Fermi’s Golden Rule)

• decay width proportional to amplitude-squared

• consequence: no CP asymmetry if there is only a single ‘diagram’



Interfering amplitudes
• CP violation is consequence of (at least two) interfering amplitudes:

• need both “CP-violating” and “CP-conserving”  phases

Charge or direct asymmetry

CP violation observed in charge asymmetry:

Af ≡ N(B → f̄) − N(B → f)

N(B → f̄) + N(B → f)
=

|A(B → f̄)|2 − |A(B → f)|2

|A(B → f̄)|2 + |A(B → f)|2

≥ 2 interfering amplitudes with weak and ’strong’ phase difference

A1

A2

A

CP

Ā1

Ā2

Ā

For two amplitudes: A =
2 sin ∆φw sin ∆φs

|A1/A2| + |A2/A1| + 2 cos ∆φw cos ∆φs

sizable only if ∆φs %= 0 and |A2/A1| ≈ 1

expect large effects in B → πK decays

extraction of fundamental parameters non-trivial
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• sizable only if interfering amplitudes are of similar magnitude
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weak vs strong phases
• weak (CP-odd) phase: changes sign with CP transformation

• only phases from Higgs-Yukawa couplings 
• called ‘weak’ because only affects (charged) weak interaction vertices

• strong (CP-even) phase: does not change sign with CP transformation
• phases come from ‘time-evolution’

• simplest example: Φ " = $%&'(Φ 0
• same for particle and anti-particle

• called `strong’ because in SM strong interaction generates non-trivial 
CP-even phases



• CP violation is a true quantum interference effect

K-

π+

!"
#$

!%

#$
!"

!%

CPK+

π-

• as we shall see, there are different sources for the interference



Example: !" → $% &'
“CKM-suppressed tree-diagram”

Example: B0 → K±π∓ and B+→ K0π+

B0 → K±π∓: color-suppressed penguin and CKM suppressed tree

d d
b u

u
s

V ∗
ub

Vus

T ∼ λ4eiγ

B0 π−

K+

d d

b

s

u

uV ∗
tb

Vts

P ∼ λ2

tB0
π−

K+

weak phase difference γ: A =
2r sin δ sin γ

1 − 2r cos δ cos γ + r2

SM≈ −0.1

B+→ K0π+: one dominant penguin amplitude

u u

b

s

d

dV ∗
tb

Vts

P ∼ λ2

tB+
π+

K0
no tree amplitude, small Pew and
annihilation contributions
expect small asymmetry (ASM ≈ 0)

ratio of branching ratios also sensitive to γ (e.g.Buras et.al., 2004)

R ≡ Γ(B0 → π−K+) + Γ(B0 → π+K−)
Γ(B+ → π+K0) + Γ(B− → π−K0)

= 1 − 2r cos δ cos γ + r2

— 4

The CKM matrix

quark sector: weak eigenstates != mass eigenstates

W+

qu ∈ {u, c, t}

q̄d ∈ {d̄, s̄, b̄}
Vqq̄

W−

q̄u ∈ {u, c, t}

qd ∈ {d, s, b}
V ∗

qq̄

V is unitary with 4 independent ’physical’ parameters
−→ one complex phase

V =




Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb



 ∼









Wolfenstein parameterization, λ ≈ 0.2

V =




1 − λ2/2 λ Aλ3(ρ − iη)

−λ 1 − λ2/2 Aλ2

Aλ3(1 − ρ − iη) −Aλ2 1



 + O(λ4)

Wouter Hulsbergen (U. Maryland) — 2



Example: !" → $% &'
“penguin-diagram”“CKM-suppressed tree-diagram”
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• penguin amplitude: ‘loop-suppressed’
• tree amplitude: ‘CKM suppressed’

• SM computation difficult because of ‘hadronic stuff’: A ~ -0.1

similar sized amplitudes
with different weak phases!



Direct CP-violation in B->Kpi

13

B0 à K+π- decays anti-B0 à K-π+ decays





Neutral meson mixing
• SM has small set of ‘stable’ neutral mesons: 

• meson and anti-meson state ‘degenerate’ if only strong+EM
• weak interaction ‘mixes’ the meson and anti-meson states
• removes degeneracy
• leads to interesting mixing and CPV phenomenology

|B(t = 0)i =
��B0

↵

|B(t = 0)i =
||iBL > +BH

p
+

|B(t)i = a(t)
��B0

↵
+ b(t)

��B̄0
↵

|B(t = 0)i =
��B0

↵

|BL,H(t)i e
µL,Ht

|BL,Hi

|BL(t)i = e
�i µL t

|BLi |BH(t)i = e
�i µH t

|BHi

g±(t) =
1

2

�
e
�i µL t

± e
�i µH t

�

µL ⌘ mL �
i

2
�L

g+(t) ⌘
1

2

�
e
�i µL t + e

�i µH t
�

��!0
= e

��t/2
e
�imt cos (�m t) (66)

g�(t) ⌘
1

2

�
e
�i µL t

� e
�i µH t

�
��!0
= i e

��t/2
e
�imt sin (�m t) (67)

name quark content mass/MeV lifetime/ps oscillation period/ps x y

K
0

ds̄ 498 180 1190 1 1
D

0
cū 1865 0.41 630 0.004 0.007

B
0

db̄ 5280 1.5 12.4 0.8 0
B

0

s sb̄ 5367 1.5 0.36 27 0.06

16



Mixing diagram
• leading order diagrams for neutral meson mixing:

3.5 The Amplitude of the Box diagram 35

3.5 The Amplitude of the Box diagram

The short distance contribution to the P 0 ↔ P̄ 0 transitions of neutral meson oscillations
is described by ∆m and can be represented by a Feynman diagram known as the box
diagram, and can be calculated in perturbation theory.

In this section we will calculate the value of ∆m by studying this so-called box diagram.
We will investigate the process of K0 ↔ K̄0 using the CKM matrix. To describe mixing
between a K0 which has strangeness S = 1 and a K̄0 which has S = −1 we must introduce
an amplitude which creates a ∆S = 2 transition. This must necessarily be a second order
weak interaction. The transition necessary for mixing is shown in Fig. 3.2. The calculation
of the box diagram is quite complicated but we will illustrate some of the features in the
calculation of the K0

L −K0
S mass difference.

The mass difference is given by

∆m = mK0
L
−mK0

S
= 〈K0

L|H|K0
L〉 − 〈K0

S|H|K0
S〉 (3.13)

As we saw in the previous section, the mass eigenstates can be expressed as a linear
combination of the flavour eigenstates. The amplitude 〈K0|H|K̄0〉 can now be calculated
via the box diagram of Fig. 3.2. As an example we use the Feynman rules to derive an
expression for the amplitude where both the intermediate quarks are u quarks:

Muu = i

(

−igw
2
√
2

)4

(V ∗
usVudV

∗
usVud)

∫

d4k

(2π)4

(

−igλσ − kλkσ/m2
W

k2 −m2
W

)(

−igαρ − kαkρ/m2
W

k2 −m2
W

)

[

ūsγλ(1− γ5)
k/ +mu

k2 −m2
u

γρ(1− γ5)ud

] [

v̄sγα(1− γ5)
k/+mu

k2 −m2
u

γσ(1− γ5)vd

]

Here we readily recognise the weak coupling constant to the fourth power, the CKMmatrix
elements for the vertices, the W propagator terms, the quark and anti-quark spinors and
the factors for the intermediate fermion lines.

d

K0 K
0

du, c, t

W

s

u, c, t

W

s

Vud,cd,tdV ∗

us,cs,ts

Vud,cd,td V ∗

us,cs,ts

d

K0 K
0

dW

u, c, t

s

W

u, c, t

s

Vud,cd,tdV ∗

us,cs,ts

Vud,cd,td V ∗

us,cs,ts

Figure 3.2: Box diagrams responsible for K0 → K̄0 mixing.
• sensitive to CP-violating phases
• sensitive to virtual quark masses



Mixing formalism
• consider a two-component state

eigenstates of

H = Hstrong +Hem +Hweak (60)

Hstrong +Hem (61)

i~d 
dt

= H (62)

14

• time-evolution follows from Schrodinger equation 

H = Hstrong +Hem +Hweak (60)

Hstrong +Hem (61)

i~d 
dt

= H (62)

14

7 Neutral meson mixing

List of stable SM neutral mesons

��K0
↵
= |ds̄i

��D0
↵
= |cūi

��B0

d

↵
=

��db̄
↵

��B0

s

↵
=

��sb̄
↵

Consider the two neutral eigen states:

��K0
↵
= |ds̄i

��K̄0
↵
=

��d̄s
↵

Assign them a

These do not have definite quantum number for C. The following ’eigenstates’ do:

|Keveni
1p
2

���K0
↵
+
��K̄0

↵�

|Koddi
1p
2

���K0
↵
�
��K̄0

↵�

It there were only strong and EM interaction, these would be degenerate eigenstates,
the first CP-odd and the second CP-even.

| (t)i = a(t)
��B0

↵
+ b(t)

��B̄0
↵

 (t) =

✓
a(t)
b(t)

◆
(59)

13 what is H?



Mixing formalism
• without weak interaction, solution is, in ”rest frame” (E=m)

H = Hstrong +Hem +Hweak (60)

Hstrong +Hem (61)

H !

✓
m 0
0 m

◆
(62)

✓
a(t)
b(t)

◆
= e

imt

✓
a0

b0

◆
(63)

i~d 
dt

= H (64)

14

degenerate states with equal mass

H = Hstrong +Hem +Hweak (60)

Hstrong +Hem (61)

H !
✓
m 0
0 m

◆
(62)

✓
a(t)
b(t)

◆
= e�imt

✓
a0
b0

◆
(63)

i~d 
dt

= H (64)

H =

✓
M11 M12

M⇤
12

M22

◆
� i

2

✓
�11 �12

�⇤
12

�22

◆
(65)

M11 = M22 �11 = �22

|BLi = p |B0i+ q
��B̄0

↵

|BHi = p |B0i � q
��B̄0

↵

⌦
B0

��B̄0
↵

= 0

hBL|BHi = |p|2 � |q|2 CP
= 0

14



Mixing formalism
• without weak interaction, solution is, in ”rest frame” (E=m)

• with weak interaction
• states mix
• states ‘decay’ à described by ‘open system Hamiltonian’

H = Hstrong +Hem +Hweak (60)
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◆
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B0
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= 0

14

open system à not Hermitian H



Hermitian matrices

reflects transitions into Hilbert space of final states

“exponential decay 



• CPT invariance: M11=M22 and Γ11 = Γ22

à 6 real parameters:

from full Hamiltonian



Interpretation of off-diagonal elements3.3 Eigenvalues and -vectors of Mass-decay Matrix 31

M12

−iΓ122

P0

P0P 0 f

P0

via on−shell states,

via off−shell states,
weak box−diagram

Figure 3.1: The neutral meson oscillation consists of two contributions, namely through
off-shell states and on-shell states.

.

In general there can be a relative phase between Γ12 and M12 [15]:

φ = arg
(

−
M12

Γ12

)

(3.2)

which is the relative phase difference between the on-shell (or dispersive) and off-shell (or
absorbative) transition. This leads to the relations

∆m = 2|M12| (3.3)

∆Γ = 2|Γ12| cosφ. (3.4)

If T is conserved then it follows that Γ∗
12/Γ12 = M∗

12/M12 so that by introducing a free
phase we can make Γ12 and M12 real.

Under these assumptions we can now find the eigenvalues and eigenvectors of the Hamil-
tonian. These will describe the masses and decay widths and the P 0, P̄ 0 superpositions,
that describe the physical particles.

3.3 Eigenvalues and -vectors of Mass-decay Matrix

Given the Schrödinger equation (3.1) we find the eigenvalues of the mass-decay matrix,
by solving the determinantal equation [16]:

∣

∣

∣

∣

M − i
2Γ− λ M12 − i

2Γ12

M∗
12 − i

2Γ
∗
12 M − i

2Γ− λ

∣

∣

∣

∣

= 0

Using the shorthand notation F =
√

(M12 − i
2Γ12)(M∗

12 − i
2Γ

∗
12) we find the eigenvalues

λ± = M − i
2Γ±F . Splitting the real and imaginary part by defining λ− = m1 +

i
2Γ1 and

interference!



diagonalize: mass eigen values
• compute eigenvalues of H (details: your homework)

H = Hstrong +Hem +Hweak (60)

Hstrong +Hem (61)

H !

✓
m 0
0 m

◆
(62)

✓
a(t)
b(t)

◆
= e

imt

✓
a0

b0

◆
(63)

i~d 
dt

= H (64)

H =

✓
M11 M12

M
⇤
12

M22

◆
�

i

2

✓
�11 �12

�⇤
12

�22

◆
(65)

M11 = M22 �11 = �22

⌦
B

0
��B̄0

↵
= 0

hBL|BHi = |p|
2
� |q|

2

µH,L = M11 �
i

2
�11 ±

s✓
M12 �

i

2
�12

◆✓
M

⇤
12
�

i

2
�⇤
12

◆

14

H: “heavy”
L: “light”

• mass and width of the mass eigenstates are

µL ⌘ mL � i

2
�L

mL ⌘ Re (µL) �L ⌘ �2 Im (µL)

mH ⌘ Re (µH) �H ⌘ �2 Im (µH)
(66)

m ⌘ (mH +mL)/2

� ⌘ (�H + �L)/2

�m ⌘ mH �mL

�� = �H � �L

m = M11� = �11�m = 2<

s✓
M12 �

i

2
�12

◆✓
M⇤

12
� i

2
�⇤
12

◆
�� = 2=

s✓
M12 �

i

2
�12

◆✓
M⇤

12
� i

2
�⇤
12

◆

|BLi = p |B0i+ q
��B̄0

↵

|BHi = p |B0i � q
��B̄0

↵

⌦
B0

��B̄0
↵

= 0

hBL|BHi = |p|2 � |q|2 CP
= 0

µH,L = M11 �
i

2
�11 ±

s✓
M12 �

i

2
�12

◆✓
M⇤

12
� i

2
�⇤
12

◆

µH � µL

CP
= 2 |M12|� i |�12|

�m
CP
= 2 |M12| ��

CP
= |�12|

15



• mass and width usually expressed in terms of average and difference
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◆
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• mass and width usually expressed in terms of average and difference
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hard to compute, but we can 
‘measure’ them

also hard to 
compute, but this is 
where the 
interesting physics 
is!



mass eigenstates
• define ‘light’ and ‘heavy’ mass states
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combinations of the flavour eigenstates,

|BLi = p |B0i + q |B0i

|BHi = p |B0i � q |B0i
(5)

where the subscripts H and L stand for ‘heavy’ and ‘light’, q and p are complex
numbers and normalization requires |p|2+|q|2 = 1. For q/p = 1 the mass eigenstates
correspond to CP eigenstates. On the other hand, if q/p 6= 1, CP is not conserved

in the time-evolution of the B
0
-B

0

system.
The eigenvalues corresponding to the heavy and light states are written as

!L,H ⌘ mL,H � i

2
�L,H (6)

and are usually recast in terms of the observables

m ⌘ 1

2
(mH +mL) = M11 � ⌘ 1

2
(�H + �L) = �11

�m ⌘ mH �mL �� ⌘ �L � �H .

(7)

Note that the two eigenstates can have both di↵erent mass and lifetimes. By con-
vention the heavy and light solutions are labeled such that �m is positive. Using
that in the B meson systems |�12| ⌧ |M12| one finds

7

�M ⇡ 2|M12| and �� ⇡ 2|�12| cos�12 . (8)

As we shall see later, �m can be measured by observing an asymmetry in the
decay time distribution of B

0
and B

0

, while �� is obtained by combining lifetime
measurements of decays to final states with di↵erent CP content.

The ratio q/p can be written as

q

p
= e

�i�M

vuut |M12|+ i

2
|�12|e

i�12

|M12|+ i

2
|�12|e

�i�12
(9)

where �M ⌘ arg(M12). For �12 6= 0,⇡ the absolute value of q/p is di↵erent from
unity, a case we refer to as CP violation in mixing. Using |�12| ⌧ |M12| we have
for the di↵erence of |q/p|2 with one

1�
����
q

p

����
2

⇡
����
�12

M12

���� sin�12 (10)

Since the time-evolution of the mass eigenstates follows |BH,L(t)i =

exp(�i!H,L) |BH,L(0)i, the time-evolution of a B
0
meson produced in a B

0
or B

0

flavour eigenstate at t = 0 can now be written as

|B0
(t)i = g+(t) |B

0i +
q

p
g�(t) |B

0i

|B0

(t)i = g+(t) |B
0i +

p

q
g�(t) |B

0i
(11)

one should remember that the mixing angle ✓ is given by

tan 2✓ =
2b

a� c
. (11.6)

In the case where a = c, we get a 45� mixing even when the o↵-diagonal term is very small.
Performing a full calculation in the non-Hermitian case gives, e.g. for the B system,

|BL,Hi = p|B0
i± q|B̄0

i (11.7)

subject to the constraint |p|2 + |q|2 = 1. The eigenvalues are

µ↵ = M↵ +
i

2
�↵ (11.8)

where ↵ = 1, 2. Note that we must diagonalize the entire Hamiltonian; this is not generally
the same as separately diagonalizing M and �. The diagonalizations are equivalent only in the
cp-conserving limit as discuss below.

Look very carefully at (11.7). Usually in a rotation between states one has

|A1i = cos ✓|B1i+ sin ✓|B2i (11.9)

|A2i = � sin ✓|B1i+ cos ✓|B2i. (11.10)

Our expression for |BL,Hi is very di↵erent! A rotation from one basis to another typically preserves
the vector length. This is no longer true for |BL,Hi because the Hamiltonian is not Hermitian.
Another consequence of working in an open system is that the overlap of the two eigenstates is no
longer zero, but

hBL|BHi = |p|2 � |q|2. (11.11)

The two eigenstates are not orthogonal! Remember linear algebra from kindergarden: we know
that we only need independent vectors to span a space, not necessarily orthogonal.

This non-orthogonality is related to a phenomena called vacuum regeneration: a mass
eigenstate can be measured to be another mass eigenstate! This is di↵erent from oscillation,
where you start with something that is not a mass eigenstate. This is a direct result of the
fact that the mass eigenstates are not orthogonal.

Problem 11.3. Diagonalizing the kaon Hamiltonian. It’s a useful exercise to actually
diagonalize the open system Hamiltonian (11.1), that way you’ll believe the following results. De-
termine the eigenvalues µ↵ and eigenvectors (KL and KS) of the kaon Hamiltonian. In particular,
show that the eigenvalues are given by

µL,S = M11 �
i

2
�11 ±

s✓
M12 �

i

2
�12

◆✓
M⇤

12
�

i

2
�⇤

12

◆
(11.12)

and that eigenvectors are given by

KL,S ⇠ |K0
i±

s
M⇤

12
�

i
2
�⇤

12

M12 �
i
2
�12

|K̄0
i. (11.13)
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normalization:

Note especially that

p

q
=

s
M12 �

i
2
�12

M⇤

12
�

i
2
�⇤

12

. (11.14)

Let us now consider the case where cp is conserved. cp exchanges B0
$ B̄0 and so guarantees

that |p| = |q|. In this case hBL|BHi = 0. The Hamiltonian, however, is still not Hermitian.
The di↵erence in the eigenvectors is

µH � µL = 2

s✓
M12 �

i

2
�12

◆✓
M⇤

12
�

i

2
�⇤

12

◆
CP
= 2Re M12 � iRe �12, (11.15)

where
CP
= means “in the limit of cp conservation.” We can thus identify the di↵erences in masses

and widths between the long and short states:

�m
CP
= 2|M12| ��

CP
= 2|�12|. (11.16)

Writing 2� = �1 + �2, we can define three physical parameters:

x =
�m

�
y =

��

2�
� = arg (�⇤

12
M12) . (11.17)

Why are these particular ratios important? We show below that x tells us about how many
oscillations the meson undergoes before decaying, y measures the relevance of the decay width
di↵erences between the flavor eigenstates, and � measures cp violation. The range of values for
the parameters is x 2 [0,1), y 2 [�1, 1], and � 2 [0, ⇡). In the cp-conserving limit, M and � are
relatively real so that � = 0.

In the limit where cp is conserved, |p| = |q| and the KS is a cp-even state while the KL is a
cp-odd state. The KS can decay to the cp-even final state ⇡⇡ whereas the KL must decay into
⇡⇡⇡. Because the kaons are so light, the phase space for the latter decay is rather small and the
KS has a much shorter lifetime.

Because cp is not conserved in Nature, the KS and KL are not cp eigenstates. Define the cp-
even and cp-odd neutral kaon states by KE ⇠ |K0

i+ |K̄0
i and KO ⇠ |K0

i� |K̄0
i. The di↵erence

between the open system Hamiltonian eigenstates and the cp eigenstates is parameterized by ✏,

|KS,Li =
1

p
1 + ✏2

(|KE,Oi+ ✏|KO,Ei) . (11.18)

Recalling that KS,L ⇠ p|K0
i ⌥ q|K̄0

i, we have

p

q
=

1 + ✏

1� ✏
. ) ✏ =

p� q

p+ q
⇡

i

2

Im M12 � iIm �12

Re M12 � iRe �12

. (11.19)

This is the reason why KL has been observed to decay into two pions. The ✏ e↵ect comes from
the KL having some admixture of the KE state which may decay into two pions. Constraints on
✏K provide strong bounds on new physics contributing to the flavor sector.
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• these are eigenstates of H if

• common phase of p and q can 
be absorbed in states

• the physical parameters are 
phase and magnitude of  !/q



CP violation in mixing
• suppose arg Γ%& = arg (%& ≡ *+

• we shall later see that |- / . | ≠ 1 leads to “CP violation in mixing”

• in case of no CPV in mixing, we have

H = Hstrong +Hem +Hweak (60)

Hstrong +Hem (61)

H !

✓
m 0
0 m

◆
(62)

✓
a(t)
b(t)

◆
= e

imt

✓
a0

b0

◆
(63)

i~d 
dt

= H (64)

H =

✓
M11 M12

M
⇤
12

M22

◆
�

i

2

✓
�11 �12

�⇤
12

�22

◆
(65)

M11 = M22 �11 = �22

⌦
B

0
��B̄0

↵
= 0

hBL|BHi = |p|
2
� |q|

2

µH,L = M11 �
i

2
�11 ±
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M12 �

i

2
�12
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M

⇤
12
�

i

2
�⇤
12

◆

µH � µL
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= 2 |M12|� i |�12|

�m
CP
= 2 |M12| ��

CP
= |�12|
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H = Hstrong +Hem +Hweak (60)

Hstrong +Hem (61)
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✓
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✓
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M11 = M22 �11 = �22
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hBL|BHi = |p|
2
� |q|

2

µH,L = M11 �
i

2
�11 ±

s✓
M12 �

i

2
�12

◆✓
M

⇤
12
�

i

2
�⇤
12

◆

µH � µL

CP
= 2 |M12|� i |�12|

�m
CP
= 2 |M12| ��

CP
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CP eigenstates

• if we can produce an ‘even’ (or ‘odd) state, then without CP violation, 
it will remain even (or odd)

• flavour eigenstates

• CP eigenstates



epsilon
• alternative parametrization, traditional for Kaon system

• mass eigenstates expressed in terms of the CP-even and CP-odd states

in practice, 
epsilon turns out to be
small

CPV in mixing: Re($) ≠ 0



summary of definition of states
• flavour eigenstates: can be produced in hadronization process

• mass eigenstates: eigenstates of ‘open’ Hamiltonian

• CP eigenstates: states with definite CP



K-short and K-long
• without CPV in mixing, mass eigenstates correspond to “CP eigenstates”

CP-even

CP-odd

• as a result, the !" decays are predominantly

much less phase space: 
much longer lifetime!

Γ$%&'( ≫ Γ'*+,-

“K-short”

“K-long”

µH,L = M11 �
i

2
�11 ±

s✓
M12 �

i

2
�12

◆✓
M

⇤
12
�

i

2
�⇤
12
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µH � µL
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= 2 |M12|� i |�12|

�m
CP
= 2 |M12| ��
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= |�12|

”
CP
= ” , arg(M12/�12) = 0
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↵ �
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1
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�
|K

0
i �
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⌘ |Koddi
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Kheavy ! ⇡⇡⇡

7.1 Time-evolution

��B0
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p
(|BLi+ |BHi)
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q
(|BLi � |BHi)
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↵
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↵

|BHi = p
��B0

↵
� q

��B̄0
↵
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!" → $%$&
Effect is tiny:

about 2/1000

Discovery of CP-Violation
• Create a pure !" beam (“wait” for !' to decay)
• If CP is conserved, should not see !" → $%$&

q
Background: !" → $%$&$(

Signal: !" → $%$&

James Cronin Val Fitch

cos q

!(

15!': Short-lived is CP even: 
!)( → $%$& (fast)
!": Long-lived is CP odd: 
!*( → $%$&$( (slow)

mass, θ



Time evolution
• production happens through flavour eigenstates (strong interaction)
• detection (usually) also happens through flavour eigenstates (EM interaction)
• in between: propagation of mass eigenstates

anti-b
-quark

b-quark

B0-meson

d-quark

lepton



Time-evolution
• time-evolution of mass eigenstates follows from SE:

eigenvalue of ‘open’ Hamiltonian

|B(t = 0)i =
��B0

↵

|B(t = 0)i =
||iBL > +BH

p
+

|B(t)i = a(t)
��B0

↵
+ b(t)
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|B(t = 0)i =
��B0

↵

|BL,H(t)i e
µL,Ht

|BL,Hi

|BL(t)i = e
�i µL t

|BLi |BH(t)i = e
�i µH t

|BHi

16

• remember: mu is complex, so this includes the decay:

|B(t = 0)i =
��B0

↵

|B(t = 0)i =
||iBL > +BH

p
+

|B(t)i = a(t)
��B0

↵
+ b(t)
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|B(t = 0)i =
��B0
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|BL,H(t)i e
µL,Ht

|BL,Hi

|BL(t)i = e
�i µL t

|BLi |BH(t)i = e
�i µH t

|BHi

g±(t) =
1

2

�
e
�i µL t

± e
�i µH t

�

µL ⌘ mL �
i

2
�L

16

oscillation exponential decay



Time-evolution

• now consider time-evolution of flavour eigenstates 

• time-evolution of mass eigenstates follows from SE:

eigenvalue of ‘open’ Hamiltonian

|B(t = 0)i =
��B0

↵

|B(t = 0)i =
||iBL > +BH

p
+

|B(t)i = a(t)
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|BHi
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Time-evolution
• after doing the math, find that for state produced as !"

with

|B(t = 0)i =
��B0

↵

|B(t = 0)i =
||iBL > +BH

p
+

|B(t)i = a(t)
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Mixing ‘probability’
• mixing probability:

name quark content mass/MeV lifetime/ps oscillation period/ps x y
K0 ds̄ 498 180 1190 1 1
D0 cū 1865 0.41 630 0.004 0.007
B0 db̄ 5280 1.5 12.4 0.8 0
B0

s
sb̄ 5367 1.5 0.36 27 0.06
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8 Mixing probability
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• what is                       ? 

For future simplicity, we define the functions

g±(t) =
1

2

�
e�iµLt ± e�iµH t

�
. (E.19)

Now let us consider the decay B(t) ! f . The object which appears in our CP asymmetries
is �(B(t) ! f), where � ⇠ |A|2, where we’ve written A as the amplitude for the process. Let’s
calculate this quantity (the other factors cancel in the expression for the asymmetry).
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It’s very useful to write out the relevant products of g±(t) before going further. Again, note
that some sources (e.g. Branco, Lavoura, and Silva) use di↵erent conventions so that their g±(t)
expressions are di↵erent.
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Similarly,

g±(t)
⇤g⌥(t) =

1

4

�
e�iMLte��Lt/2 ± e�iMH te��H t/4

�⇤ �
e�iMLte��Lt/2 ⌥ e�iMH te��H t/4

�
(E.29)

=
1

4

�
eiMLte��Lt/2 ± eiMH te��H t/4

� �
e�iMLte��Lt/2 ⌥ e�iMH te��H t/4

�
(E.30)

=
1

4

�
e��Lt ⌥ ei(ML�MH)te�(�L+�H)t/2

± ei(MH�ML)te�(�H+�L)t/2 � e��H t
�

(E.31)

=
e��t

4

�
e��t/2

⌥ e�i�Mt
± ei�Mt

� e���t/2
�
. (E.32)

This gives (recall 2i sin ✓ = ei✓ � e�i✓),
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CP violation in mixing:



Mixing probability
• after some algebra find

name quark content mass/MeV lifetime/ps oscillation period/ps x y
K0 ds̄ 498 180 1190 1 1
D0 cū 1865 0.41 630 0.004 0.007
B0 db̄ 5280 1.5 12.4 0.8 0
B0

s
sb̄ 5367 1.5 0.36 27 0.06

��B0(t)
↵

= e��t/2 e�imt


cos

�
1

2
�m t

� ��B0
↵
+

iq

p
sin

�
1

2
�m t

� ��B̄0
↵�

��B̄0(t)
↵

= e��t/2 e�imt


cos

�
1

2
�m t

� ��B̄0
↵
+

ip

q
sin

�
1

2
�m t

� ��B0
↵�

8 Mixing probability

�(B0 ! B0) /
��⌦B0

��B0(t)
↵��2 = |g+(t)|2

�(B̄0 ! B̄0) /
��⌦B0

��B0(t)
↵��2 = |g+(t)|2

�(B0 ! B̄0) /
��⌦B0

��B0(t)
↵��2 = |g�(t)|2

����
q

p

����
2

�(B̄0 ! B0) /
��⌦B0

��B0(t)
↵��2 = |g�(t)|2

����
p

q

����
2

|g±(t)|2 =
e��t

2


cosh

��t

2
± cos�mt

�

�(B0 ! B̄0) /
��⌦B0

��B0(t)
↵��2 =

����
p

q

����
2

e��t sin2
�
1

2
�m t

�
= 1

2

����
p

q

����
2

e��t [1� cos (�m t)]

�(B0 ! B0) /
��⌦B0

��B0(t)
↵��2 = e��t cos2

�
1

2
�m t

�
= 1

2
e��t [1 + cos (�m t)]

18

• in the !"# system, ΔΓ ≪ Γ, giving for the ‘mixing asymmetry’
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8 More on eigenvalues

Something confused me about the eigenvalue/vector story, so I redid it. If you
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exponential decay oscillation with period 2(/Δ*



Time-evolution
to characterize time-behaviour define x = Δm/Γ



<t>
[ps]

Δm

[hbar/ps]

x=Δm/Γ y=ΔΓ/2Γ

K0 180 0.005 ~1 ~1

D0 0.41 ~0.01 ~0 0.01

B0 1.5 0.507 0.8 ~0

Bs
0 1.5 17.8 27 ~0.05

3.5 The Amplitude of the Box diagram 37
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Figure 3.3: If one starts with a pure P 0-meson beam the probability to observe a P 0 or a
P̄ 0-meson at time t is shown, Prob(t) = e−Γt

2

(

cosh 1
2∆Γt± cos∆mt

)

.
.

At this point we can see how the neutral mesons K0, D0, B0 and B0
s in reality oscillate and

what the differences are. As mentioned earlier, the oscillations consist of two components,
M12 and

1
2Γ12. As a general rule, all possible quark exchanges contribute to M12, but only

actual final states contribute to Γ12 [16]. The short-distance, off-shell contribution from
M12 depends on the size of the CKM-elements at the corners of the box-diagram, and on
the mass of the particles in the box. In the case of D0-mixing, the mass of the heaviest
down-type quark in the box, mb is not large enough to compensate the suppression of
the CKM-elements |VubVcb|. As a result, the light quarks dominate the short-range D0-
mixing and proceeds proportional to ∼ |VusVcs|2m2

s ∼ λ2m2
s. As a consequence, the

mixing parameters are expected to be small, and the D-mesons decay before they have
the chance to oscillate.

The oscillation probability of D-mesons is clearly suppressed compared to B0-mixing,
see Fig. 3.3, which is proportional to ∼ |VtbVtd|2m2

t ∼ λ6m2
t . B0

s -mixing on the other
hand, is more pronounced, see Fig. 3.3d), due to the magnitude of Vts: ∼ |VtbVts|2m2

t ∼
λ4m2

t . Finally, K0-oscillation is dominated by the (light) charm quark in the loop, ∼
|VcdVcs|2m2

c ∼ λ2m2
c . However, the kaons profit from the fact that their lifetime is much

higher compared to the B-mesons. Note that the sum of the B0 and B̄0 distributions in
Fig. 3.3 give a perfect exponential decay, because the mass eigenstates BH and BL happen
to have equal lifetimes, ∆Γ = 0. In contrast, the sum of the K0 and K̄0 distributions
results in the sum of two exponential distributions, corresponding to the KS and KL with
short and long lifetime, respectively.





Measuring the oscillation frequency

• we can identify flavour at decay by looking at final state 
• but how do we know the flavour at production?

!" produced in flavour
eigenstate at t’=0

!" decays to flavour
eigenstate at t’=t

!" oscillates
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Flavour tagging

PoS(LHCP2018)230

Davide Fazzini

PV
SV

u� → u�u� → u�u�−
SV u� → u�

same side

opposite side

u�
u�

u�/u�u�∗0u�
u�u� u�+

u�
u�−

u�+

u�0

ℎu�

SS pion
SS proton
SS kaon (for 𝘉0𝘴 )

OS muon
OS electron

OS kaon

OS vertex charge
OS Charm

Figure 1: Schematic representation of the FT algorithms available at LHCb.

sion (d) equal to 1 if the signal candidate is a B meson, equal to -1 if the candidate is an antimeson
and null if the algorithm is not able to assign a decision on the initial flavour. The tagging decisions
are based on the charge of the tagging particle, correlated to the signal B meson flavour. How-
ever the flavour tagging algorithms are not perfect tools and their performance can be estimated by
means of three different quantities: the mistag rate, the tagging efficiency and the tagging power.

The tagging efficiency represents the fraction of B candidates for which the tagging algorithm
is able to provide a tagging decision and a mistag rate. It is defined as:

etag =
NR +NW

NR +NW +NU
(3.1)

where NW and NR and NU are the numbers of events wrongly tagged, rightly tagged and for which
the algorithm in not able to give a response, respectively.

In addition to the tagging decision, each tagger provides also an estimation of the probability
(w) for the tag decision to be wrong. The mistag rate is a continuous variable in the range [0, 0.5]
and can be defined as:

w =
NW

NR +NW
. (3.2)

The mistag rate can be measured only on flavour specific decays. In particular the formula in
Eq. (3.2) is relevant only for the charged B mesons where it is possible to compare directly the
flavour of the reconstructed meson with the flavour tagging decision. The estimation of the mistag
rate is more complicated when neutral B mesons are involved, since they are affected by neutral
flavour oscillations. In this case the mistag rate has to be extracted by means of a time-dependent
fit on the B flavour oscillations as a function of the proper decay-time. Finally, when the flavour
tagging algorithms are applied to non-flavour specific decays, it is not possible to measure directly
the mistag rate but it has to be estimated, as described in Sec. 4.

The mistag rate and the tagging efficiency allow a determination of the sensitivity to the CP
asymmetry. The measured time-dependent CP asymmetry (Ameas

CP ) related to the tagged events is

2



Flavour tagging
two different inputs:

1. “opposite-side flavour tagging”
• measure the flavour of the other b-quark in the event
• at production, it has the opposite charge

2. “same-side flavour tagging”
• measure correlation with other particles during hadronization phase
• only available at LHC (not at B-factories)

no perfect method: all information combined in MV classifier



For the exercise
• in the exercise we will measure Δ"# on a sample of $% → '(∗% events 

$%

J/'
*+
*,

(∗%

(+

-,



The ‘Feynman diagram’

New page

• charge of the Kaon is related to the flavour of the B at decay

• in the ntuple, B flavour at decay is represented by the variable pid



mistag rate

• flavour tag determines B flavour at production, but it makes errors:
• oscillations of tag side B
• picked wrong OS kaon/lepton
• picked wrong SS pion

• output of flavour tagger in ntuple is
• q: flavour of B
• eta: estimate of mistag rate

Prob(right tag)    = (1 – η)
Prob(tag wrong) = η



Dilution from mistag rate
• tagging errors lead to a ‘dilution’ of observed asymmetry

• perfect tagging:
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• tagging with mistag rate !:
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“dilution factor:” Dtag = (1� 2⌘)
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Asymmetry dilution due to resolution
• finite decay time resolution also leads to a ‘dilution’

• effective dilution factor from gaussian resolution !":
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• dilution from resolution is 
• tiny effect for measurement of $%& oscillations
• big effect for measurement of $'& oscillations
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+ non-oscillation backgrounds
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+ non-oscillation backgrounds

+ acceptance effects due to cuts 
removing prompt backgrounds



Exercises
• see README.md file at

• now: exercises 5-7

https://github.com/wouterhuls/FlavourPhysicsBND2023/

https://github.com/wouterhuls/FlavourPhysicsBND2023/blob/main/README.md

