Bootstrapping Pions at Large N

Leonardo Rastelli Yang Institute, Stony Brook

Based on arXiv:2203.11950 with Jan Albert

Verlinde² Symposium Amsterdam July 14-15 2022

Happy 60th Erik and Herman!

You have been a great inspiration

Carving out the space of large *N* confining gauge theories

A confining gauge theory at $N = \infty$ has an infinite tower of stable hadrons. Meromorphic S-matrix. Consistency of 2-2 scattering imposes constraints on masses, spins and on-shell 3pt couplings. *Carve out* this set of data: $\{m_k, J_k; \lambda_{ijk}\}$

Bootstrap equations take the schematic form*

$$\sum_{n} \frac{\lambda_n^2}{s - m_n^2} P_{J_n}(1 + \frac{2u}{m_n^2}) = \sum_{n} \frac{\lambda_n^2}{u - m_n^2} P_{J_n}(1 + \frac{2s}{m_n^2})$$

(*): for $2 \rightarrow 2$ amplitude M(s, u) of identical massless particles with no t-channel poles and good Regge behavior

Carving out the space of large *N* confining gauge theories

A confining gauge theory at $N = \infty$ has an infinite tower of stable hadrons. Meromorphic S-matrix. Consistency of 2-2 scattering imposes constraints on masses, spins and on-shell 3pt couplings.

Carve out this set of data: $\{m_k, J_k; \lambda_{ijk}\}$

Bootstrap equations take the schematic form*

$$\sum_{n} \frac{\lambda_n^2}{s - m_n^2} P_{J_n}(1 + \frac{2u}{m_n^2}) = \sum_{n} \frac{\lambda_n^2}{u - m_n^2} P_{J_n}(1 + \frac{2s}{m_n^2})$$

(*): for $2 \rightarrow 2$ amplitude M(s, u) of identical massless particles with no t-channel poles and good Regge behavior

Large *N* S-matrix Bootstrap:

Carve out large *N* hadronic data from

- Crossing symmetry
- Unitarity
- Regge boundedness

Does large *N* QCD sit at a special place?

Large N QCD

D = 4 SU(N) Yang-Mills with $N_f = 2$ massless quarks in the `t Hooft limit of fixed Λ_{QCD} .

A theory of glueballs, mesons and (heavy) baryons.

Pions π^a = Goldstone bosons of $SU(2)_L \times SU(2)_R \rightarrow SU(2)_{diag}$

Reminiscent of string theory (`t Hooft), but we won't make any such dynamical assumption.

We'll take a new stab at this classic problem.

Modern theory space perspective & new EFT bootstrap methods ideally suited for this problem.

Pion scattering at large *N*

Effective Field Theory

At low energies ($E < M = m_{\rho}$), we can use EFT, the standard chiral Lagrangian for $U(x) = e^{\frac{i}{f_{\pi}}\sigma^a \pi^a(x)}$

$$\mathscr{L}_{\rm Ch} = -\frac{f_{\pi}^2}{4} \operatorname{Tr}\left(\partial_{\mu}U^{\dagger}\partial^{\mu}U\right) + \frac{\mathscr{\ell}_1}{4} \left[\operatorname{Tr}\left(\partial_{\mu}U^{\dagger}\partial^{\mu}U\right)\right]^2 + \frac{\mathscr{\ell}_2}{4} \operatorname{Tr}\left(\partial_{\mu}U^{\dagger}\partial_{\nu}U\right) \operatorname{Tr}\left(\partial^{\mu}U^{\dagger}\partial^{\nu}U\right) + \cdots$$

At large *N*, EFT pion amplitude is the result of tree-level integrating out the heavy exchanged mesons.

Goal: derive bounds for these low-energy coefficients.

Three Assumptions

Crossing symmetry: M(s, u) = M(u, s)Unitarity: S = 1 + iM $SS^{\dagger} = 1$ spectral density Im $M(s, u) = \sum_{J} \rho_{J}(s) P_{J}\left(1 + \frac{2u}{s}\right)$ Gegenbauer polynomials $2 \ge \rho_{J}(s) \ge 0$ (s > 0)

Regge behavior:

• At finite N: Controlled by the pomeron (1stglueball).

$$M(s,u) \sim s^{2-\delta}$$

• At large N: Controlled by the rho meson, which has intercept ~ 0.5

$$\lim_{|s| \to \infty} \frac{M(s, u)}{s} = 0 \qquad \lim_{|s| \to \infty} \frac{M(s, -s - u)}{s} = 0 \qquad \text{(fixed } u < 0\text{)}$$

Dispersion Relations

Dispersion Relations

Expanding around $u \sim 0$,

$$k = 1: \qquad g_{1,0} + 2g_{2,1}u + g_{3,1}u^2 + \dots = \left\langle \frac{P_J(1)}{m^2} + 2\frac{P_J'(1)}{m^4}u + 2\frac{P_J''(1)}{m^6}u^2 + \dots \right\rangle$$

$$/ P_J(1) \qquad P_J'(1) \qquad \lambda$$

$$k = 2$$
: $g_{2,0} + g_{3,1}u + \dots = \left\langle \frac{Tf(1)}{m^4} + 2\frac{Tf(1)}{m^6}u + \dots \right\rangle$

Sum Rules and Null Constraints

Sum rules:
$$g_{1,0} = \left\langle \frac{1}{m^2} \right\rangle$$
, $g_{2,0} = \left\langle \frac{1}{m^4} \right\rangle$, $2g_{2,1} = \left\langle \frac{J(J+1)}{m^4} \right\rangle$, ...
(Due to low-energy
 $g_{3,1} = \left\langle 2\frac{P_J'(1)}{m^6} \right\rangle = \left\langle 2\frac{P_J''(1)}{m^6} \right\rangle$ [Caron-Huot & Van Duong 2021,
Tolley, Wang & Zhou 2021]

Sum Rules and Null Constraints

Sum rules:
$$g_{1,0} = \left\langle \frac{1}{m^2} \right\rangle$$
, $g_{2,0} = \left\langle \frac{1}{m^4} \right\rangle$, $2g_{2,1} = \left\langle \frac{J(J+1)}{m^4} \right\rangle$, ...

(Due to low-energy crossing symmetry)

$$g_{3,1} = \left\langle 2\frac{P_J'(1)}{m^6} \right\rangle = \left\langle 2\frac{P_J''(1)}{m^6} \right\rangle$$

[Caron-Huot & Van Duong 2021, Tolley, Wang & Zhou 2021]

Null constraints:

$$\mathscr{X}_{3,1}(m^2, J) = \frac{P_J'(1)}{m^6} - \frac{P_J''(1)}{m^6}$$

$$\left\langle \mathcal{X}_{3,1}(m^2, J) \right\rangle = 0$$

New set of null constraints

$$\left\langle \mathscr{Y}_{n,k}(m^2,J) \right\rangle = 0$$

Additional set of dispersion relations

$$\frac{1}{2\pi i} \oint_{\infty} ds' \frac{M(s', -s'-u)}{s'^{k+1}} = 0$$

Sum Rules and Null Constraints

Sum rules:
$$g_{1,0} = \left\langle \frac{1}{m^2} \right\rangle$$
, $g_{2,0} = \left\langle \frac{1}{m^4} \right\rangle$, $2g_{2,1} = \left\langle \frac{J(J+1)}{m^4} \right\rangle$, ...
(Due to low-energy
crossing symmetry) $g_{3,1} = \left\langle 2\frac{P_J'(1)}{m^6} \right\rangle = \left\langle 2\frac{P_J''(1)}{m^6} \right\rangle$ [Caron-Huot & Van Duong 2021,
Tolley, Wang & Zhou 2021]
Null constraints: $\mathcal{X}_{3,1}(m^2, J) = \frac{P_J'(1)}{m^6} - \frac{P_J''(1)}{m^6} \quad \left\langle \mathcal{X}_{3,1}(m^2, J) \right\rangle = 0$
Additional set of $\frac{1}{2\pi i} \oint ds' \frac{M(s', -s'-u)}{s'^{k+1}} = 0$ \longrightarrow New set of null constraints
 $\int O(t_1 - t_2, t_3) \int ds' ds' \frac{M(s', -s'-u)}{s'^{k+1}} = 0$

dispersion relations

$$\frac{1}{2\pi i} \oint_{\infty} ds' \frac{M(s', -s'-u)}{s'^{k+1}} = 0$$

 $\left\langle \mathscr{Y}_{n,k}(m^2,J) \right\rangle = 0$

Two-sided bounds: By unitarity, $\langle ... \geq 0 \rangle \Rightarrow \langle ... \rangle \geq 0$. $g_{i,j} \geq 0$

[Pham & Truong 1985]

$$0 \le \tilde{g}_2 \equiv \frac{g_{2,0}M^2}{g_{1,0}} = \frac{\left\langle \frac{M^4}{m^4} \right\rangle}{\left\langle \frac{M^2}{m^2} \right\rangle} \le 1 \qquad 0 \le \tilde{g}_2^{'} \equiv \frac{2g_{2,1}M^2}{g_{1,0}} \le ?$$

Exclusion plot

Allowed region in the space of two-derivative couplings. Healthy theories must lie in the colored region.

Comparison of the region allowed by unitarity to experiment.

Skyrme model

Used to describe **baryons** as solitons of the chiral Lagrangian.

$$\mathscr{L}_{\text{Skyr}} = -\frac{f_{\pi}^{2}}{4} \text{Tr}\left(\partial_{\mu}U^{\dagger}\partial^{\mu}U\right) + \frac{1}{32e^{2}} \text{Tr}\left(\left[U^{\dagger}\partial_{\mu}U, U^{\dagger}\partial_{\nu}U\right]\left[U^{\dagger}\partial^{\mu}U, U^{\dagger}\partial^{\nu}U\right]\right)$$
Particular choice: $-\ell_{1} = \ell_{2} = \frac{1}{4e^{2}}, \qquad \tilde{g}_{2}^{'} = 4 \tilde{g}_{2} = \frac{1}{e^{2}} \frac{M^{2}}{f_{\pi}^{2}}$
Lower bound on the coupling:
$$e \ f_{\pi} \ge \sqrt{\frac{M^{2}}{4 \ \tilde{g}_{2}^{(\text{kink})}}} \simeq 551 \text{ MeV}$$
Fitting the nucleon and Δ mass:
$$e \ f_{\pi} \simeq 352 \text{ MeV}$$
[Adkins, Nappi & Witten 1983]

Including the rho meson

New EFT: We account for the $\rho_{\mu'}^a$ an isospin triplet of spin J = 1 and mass m_{ρ} . $\mathcal{T}_{ab}^{cd} = \begin{array}{c} & & \\$ $M_{\text{low}}^{(\rho)}(s,u) = \frac{1}{2}g_{\pi\pi\rho}^2 \left(\frac{m_{\rho}^2 + 2u}{m_{\rho}^2 - s} + \frac{m_{\rho}^2 + 2s}{m_{\rho}^2 - u}\right) + \sum_{n=0}^{\infty} \sum_{\ell=0}^{\lfloor n/2 \rfloor} \hat{g}_{n,\ell}\left(s^{n-\ell}u^{\ell} + u^{n-\ell}s^{\ell}\right)$ new cutoff m^2_{o}

New exclusion plot

Allowed region in the space of two-derivative couplings, as a function of the gap above the rho meson.

Rho coupling plot

Upper bound on the rho coupling as a function of the gap above the rho.

Analytically ruling in

Simple solutions to crossing turn out to saturate (some of) the bounds.

Analytically ruling in

The same (blue) bounds are reproduced with the refined spectrum:

Analytically ruling in

1

`

Our best candidate:
$$M_{\text{guess}} = M_{su-\text{pole}}(m_{\text{hs}}) - \alpha_1 M_{\text{spin}-1}^{(\text{UV})}(m_{hs}) + \alpha_1 M_{\text{spin}-1}^{(\text{UV})}(m_{\rho})$$

Further ruling in achieved by $M_{\rm guess}$.

A possible fix: $M_{\text{spin}-1}^{(\text{UV})} \longrightarrow M_{\text{spin}-1}^{(\text{UV})} - M_{(?)}(m_{\infty})$ such that it only changes $g_{1,0}$.

Outlook

Summary:

- A new stab at a very old problem
- New methods yield new bounds
- Exclusion plots show interesting features. Does QCD lie there?
- Intriguing connections with ``vodoo QCD"

In progress:

- Mixed amplitudes with external rhos and pions
- Form factors and anomalies
- Glueball scattering

Future:

- Which assumptions are needed to corner large *N* QCD or other theories of interest?
- Relation with worldsheet bootstrap?
- D = 3, susy, ...

Happy Birthday!