
Amsterdam University College

Bachelor’s Thesis

Implementing Quantum-Cryptographic
Protocols using SimulaQron

A quantum-internet simulation of 1-2 oblivious transfer
in the noisy-storage model

Author
Lynn Engelberts
Major in Sciences
Amsterdam University College
lynn.engelberts@student.auc.nl

Tutor
Michael P. McAssey
Amsterdam University College
m.p.mcassey@auc.nl

Supervisor
Christian Schaffner

QuSoft
University of Amsterdam

c.schaffner@uva.nl

Reader
Michael Walter

QuSoft
University of Amsterdam

m.walter@uva.nl

June 3, 2019

mailto:lynn.engelberts@student.auc.nl
mailto:M.P.McAssey@auc.nl
mailto:c.schaffner@uva.nl
mailto:m.walter@uva.nl

Abstract

Research is currently devoted to the development of a large-scale quantum network—also known
as a quantum internet. Since a quantum internet is expected to be realised in the near future,
a quantum-internet simulator—called SimulaQron—has been created to function as framework
for the development of quantum-internet applications [DW18]. One of the expected applications
of a quantum internet is the cryptographic primitive secure two-party computation. However,
the suitability of SimulaQron for cryptographic applications has not yet been examined. In
particular, this thesis demonstrates the potential and limitations of SimulaQron as environment
for implementing and analysing cryptographic protocols. Furthermore, we evaluate whether
the considered protocols are suitable for quantum-internet applications. To the best of our
knowledge, this thesis provides the first implementations of quantum-cryptographic protocols
in SimulaQron. Our implementations are based on the protocols for 1-2 oblivious transfer (1-2
OT) proposed in [Sch10]. 1-2 OT is a simple two-party primitive on which any protocol for
secure two-party computation can be based [GV88; Kil88]. Assuming that the laws of quantum
mechanics hold, the protocols in [Sch10] are shown to be secure against attacks in the noisy-
storage model—a realistic cryptographic model which assumes that the adversary’s quantum
storage is noisy. Our work is based on a critical literature analysis of 1-2 OT in the noisy-
storage model and quantum internet, followed by an implementation of the protocols provided
in [Sch10] using SimulaQron. Our implementations will allow us to evaluate whether these
protocols are easy to implement and suitable for quantum internet. By analysing 1-2 OT in the
noisy-storage model as well as evaluating the cryptographic applications of a quantum internet
and the potential of SimulaQron, this research will thus contribute to both the field of quantum
cryptography and the area of quantum-internet development.

Keywords

1-2 oblivious transfer (1-2 OT); error correction; noisy-storage model; quantum internet;
SimulaQron

1

Acknowledgements

Firstly, I would like to thank my supervisor Christian Schaffner for his patience and guidance
during this project and for his time to meet on a regular basis. By introducing me to the area
of quantum cryptography and information theory, Christian provided me with the background
and notions necessary for this Bachelor’s thesis. My grateful thanks are also extended to Axel
Dahlberg for taking the time and effort to help me with any questions related to SimulaQron.
Finally, I would like to thank Michael Walter for taking the time to read my work.

2

Contents

1 Introduction 4

2 Background to quantum theory 7

3 1-2 oblivious transfer in the noisy-storage model 9
3.1 Additional assumptions . 9
3.2 Security in the noisy-storage model . 11
3.3 Protocol for 1-2 OT . 12

4 Error correction and robust 1-2 OT 16
4.1 Noisy communication channel . 17
4.2 Information reconciliation . 17
4.3 Robust protocol for 1-2 OT . 20

5 Quantum internet and SimulaQron 24
5.1 Significance and applications of a quantum internet 24
5.2 Towards the realisation of a large-scale quantum network 25
5.3 Simulating quantum internet: SimulaQron . 29

6 Implementation of the protocols 32
6.1 Methods . 32
6.2 Results . 34
6.3 Discussion and implications . 38

7 Conclusion 41
7.1 Future research . 41

Bibliography 42

A Probability theory 46

B Source code for implementations 47

3

1 Introduction

By 2020, the Dutch research centre QuTech aims to have built a quantum network between
four cities in the Netherlands (Amsterdam, Delft, Leiden, and The Hague) [ALA18; DW18;
QuT]. The ultimate goal is to construct a large-scale quantum network so that quantum infor-
mation can be exchanged between remote quantum processors over an arbitrarily long distance.
Such a large-scale quantum communication network is also known as a quantum internet and
is expected to enable quantum computation and quantum communication over arbitrarily long
distances [Cas18; DW18; DLH17]. Despite the fact that many possible applications of a quan-
tum internet have been suggested in research (e.g. see [Weh08]), the real potential of a quantum
internet is unknown until it will in fact be realised. Nevertheless, the presumed arrival of a
quantum internet will require software that can be run over the quantum network. Researchers
have, therefore, created a quantum internet simulator—called SimulaQron—with the purpose
to function as a test-bed for writing software for quantum internet applications [ALA18; DW18].

One of the potential applications of a future quantum internet is two-party cryptography
[DW18; Weh08]. Cryptography is concerned with the tasks of achieving communication or
computation between two or more parties, even if the parties do not trust each other [NC10].
A typical example is that two parties want to communicate securely over a communication
channel. We often refer to these two parties as “Alice” and “Bob”, and to a (third) party
attempting to intercept their messages as the adversary or attacker. A cryptographic protocol
then describes how Alice and Bob can perform this task securely. In classical cryptography,
the security of such cryptographic protocols is often based on the hardness of an unproven
mathematical conjecture and on the assumption that the attacker has limited computational
power [DLH17; KWW12]. However, the security of these protocols could thus be affected if
the attacker obtains more (e.g. quantum) computational power. For instance, the algorithm
developed by Shor [Sho95] for integer factorisation on a quantum computer could break the
widely-used public-key cryptoscheme called RSA [RSA78]. It is therefore desirable to aim for
protocols that are information-theoretically secure—that is, the security of the protocol can be
proven without restrictions on the attacker’s computational power [Sca+09].

Whereas, on the one hand, the laws of quantum mechanics allow for breaking currently
used classical cryptoschemes, these laws could, on the other hand, be exploited to design
quantum protocols for cryptographic tasks, which is the topic of quantum cryptography. In
fact, information-theoretical security can be achieved in the case of quantum key distribution
(QKD)1, which enables two parties to establish a shared secret key. Nevertheless, not all cryp-
tographic tasks can be performed with information-theoretical security, even with the help of
quantum mechanics. This limitation holds, in particular, for secure two-party computation,
which involves cryptographic tasks in which two parties want to exchange information but do
not trust each other.2 More precisely, it has been shown that additional assumptions on the
attacker are inevitable in order to allow for secure two-party computation [BCS12; Lo97; LC97;
May97].

Consequently, research has been devoted to designing cryptographic models for secure two-
party computation protocols which introduce such additional assumptions on the adversary.
Two cryptographic models that have been proposed are based on physical (instead of com-
putational) assumptions, mimicking the technical difficulties that one encounters when storing
quantum information: the bounded-quantum-storage model [Dam+05; Dam+07] and the noisy-

1For example, see [TL17] for a security analysis for QKD protocols.
2Note that, contrary to the previous example and QKD, Alice and Bob now do not trust each other, and

thus the “adversary” can be either of the two. A concrete application of secure two-party computation is the
so-called millionaire’s problem in which Alice and Bob want to find out who is the richest of the two without
revealing to the other how much money he or she has [Yao82].

4

storage model [KWW12; Sch10; STW09; Weh08]. Whereas the first model gives an explicit
upper bound on the adversary’s quantum storage during the protocol, the latter assumes that
the quantum storage is noisy [KWW12; Sch10; STW09; Weh08]. The noisy-storage model
is perceived as more realistic compared to the bounded-quantum-storage model, as it reflects
more accurately the prevailing technical difficulties of storing quantum information [KWW12;
Sch10].

Several protocols for secure two-party computation have been designed for the noisy-storage
model, among which protocols for the primitive called 1-2 oblivious transfer (1-2 OT), such as
provided in [KWW12] or [Sch10]. 1-2 OT is particularly interesting, since it has been shown
that any protocol for secure two-party computation can be based on this primitive [GV88;
Kil88]. 1-2 OT is a cryptographic primitive in which Alice has two secret strings (messages)
m0, m1 and Bob has a bit c ∈ {0, 1} and the goal is that Bob receives mc corresponding to
his choice bit c, but neither Alice learns Bob’s choice c nor Bob learns the remaining string of
Alice [GV88; KWW12]. The protocols for 1-2 OT in the noisy-storage model require Alice and
Bob to be connected by a quantum channel. Since it is realistic to assume that in any practical
implementation of 1-2 OT such a quantum channel may be unreliable and hence induce errors
on the transmitted quantum information, protocols have also been suggested that are robust
against errors caused by the quantum channel, such as the one in [Sch10]. In particular, both the
idealised and the robust protocol provided in [Sch10] are shown to be information-theoretically
secure against any noisy-storage attack, as long as the laws of quantum mechanics hold and
the amount of noise in the quantum storage channel is above a particular level.

Since secure two-party computation is one of the expected applications of a future quantum
network [Weh08] and any secure two-party computation primitive can be based on 1-2 OT, it
is significant to evaluate the implementation of a protocol for 1-2 OT over such a quantum
network. In particular, since SimulaQron has been designed to develop software for future
quantum-internet applications, it is important to verify its suitability for implementing crypto-
graphic tasks. Nonetheless, there are to the best of our knowledge no implementations of any
cryptographic protocols using SimulaQron. Therefore, the present paper aims to implement
both the idealised and the robust protocol for 1-2 OT from [Sch10] in SimulaQron in order to
(i) examine whether the selected protocols are adequate for quantum internet applications, and
(ii) evaluate the extent to which SimulaQron is a suitable environment for implementing and
analysing cryptographic protocols.

Methodology

The present research consists of a critical and extended literature review, followed by an im-
plementation of the two protocols from [Sch10] using SimulaQron [Sim].

By critically analysing the existing literature on 1-2 OT in the noisy-storage model, this
paper attempts to justify the choice for the protocols in [Sch10] and to be able to provide a
deeper understanding of the protocol for implementation using SimulaQron. Moreover, in order
to clarify the extra steps for error-correction for the implementation of the robust protocol
in an unreliable quantum channel, it was necessary to study the error-correction techniques
that are available. Furthermore, an analysis of the existing literature on quantum internet
and SimulaQron was used for understanding the working of SimulaQron and to evaluate the
potential of SimulaQron.

SimulaQron has been chosen as environment for our implementations, since SimulaQron
allows for simulating the quantum network between Alice and Bob and hence enables to perform
(simulated) quantum communication, which is required for implementing the protocols. In order
to carry out the implementations, we have used several tools provided by the Python classical-

5

quantum-combiner (CQC) library that comes with SimulaQron and made the implementations
feasible. We have written our code in Python [Pyt] and hence used several tools provided by
Python and its libraries. For the decoding part, we use the source code from [Fil], which is also
written in Python.

Knowledge utilisation

This research provides new insights into the area of quantum internet development. Especially
since a quantum internet is not yet realised, the possible applications of a future quantum
internet are still speculative. Therefore, by implementing and evaluating one of the presumed
quantum-internet applications—i.e. cryptography—in a simulated quantum network, our re-
search contributes to a deeper understanding of the suitability of a quantum internet for such
cryptographic applications.

Moreover, since there are to the best of our knowledge no previous implementations of
cryptographic applications using the recently developed SimulaQron, the results of this research
explain the potential of SimulaQron for developing such applications. In addition, we shed light
on the possibilities and current limitations of SimulaQron in general, which is of use for current
and future users of SimulaQron and may contribute to a further development of this quantum-
internet simulator. In fact, we may in this way also contribute to the development of the
quantum network in the Netherlands that is planned to be realised in 2020, since a version of
the CQC interface3 used by SimulaQron is intended to be available on this quantum network
as well.

Lastly, this research contributes to the field of quantum cryptography as there are to the
best of our knowledge no quantum-network implementations of the protocols in [Sch10]. The
only implementations of these and similar 1-2 OT protocols for the noisy-storage model are
achieved by using hardware for QKD, such as done in [Erv+14]. Furthermore, since our code
is written in the high-level language Python and publicly available on GitHub, our code can be
used to provide an illustration of the protocols for 1-2 OT for learning objectives.

Outline of the paper

The remaining part of the paper is organised in the following way. Section 2 describes some
terminology of quantum mechanics used in this paper. Section 3 provides an analysis of the
noisy-storage model and a description of the protocol for 1-2 OT in the idealised setting.
Section 4 addresses how to correct errors in the setting of an unreliable quantum channel and
explains the resulting robust protocol for 1-2 OT. Section 5 presents a background on quantum
internet and SimulaQron. The results of our implementations are provided in Section 6, followed
by a discussion. Finally, we conclude our work and provide some directions for future research
in Section 7.

3See Section 5.

6

2 Background to quantum theory

In this section, we provide a brief introduction to quantum mechanics and focus on the concepts
that are relevant for the remaining part of this thesis. We assume that the reader is familiar
with the basic notions of linear algebra. We use the definitions provided in [NC10].

Qubits

Recall that a classical binary bit either has value 0 or 1. The quantum version of the bit is
often called a qubit, short for quantum bit. Similar to a classical bit, a qubit can be in state
|0〉 or |1〉, where |〉 is the frequently-used Dirac notation. However, the main difference is that
a qubit can actually be in any linear combination of these two states.

More precisely, we define a qubit as a vector in a two-dimensional complex vector space C2

with inner product, also called a Hilbert space. The states

|0〉 =

(
1
0

)
and |1〉 =

(
0
1

)
form an orthonormal basis for the Hilbert space, often referred to as the computational basis.
We write the most general quantum state as: |ψ〉 = α0 |0〉 + α1 |1〉, where α0, α1 ∈ C are
normalised so that |α0|2 + |α1|2 = 1. Such a state is often called a superposition of states |0〉
and |1〉. Moreover, we call αi the amplitude of state |i〉 for i ∈ {0, 1}.

Measurement postulate

Qubits act in a probabilistic manner when measured. According to the Copenhagen inter-
pretation of quantum mechanics, a measurement on a quantum state irrevocably changes its
state: after a measurement on an arbitrary quantum state |ψ〉, if the outcome is i, then |ψ〉
is collapsed (i.e. changed) to state |i〉. Clearly, if the qubit is in state |ψ〉 = |0〉 (i.e. α0 = 1,
α1 = 0), then we get outcome 0 with probability 1. However, it may seem less trivial if a qubit
is in superposition: if the qubit is in state |ψ〉 = α0 |0〉 + α1 |1〉 with α0 and α1 both nonzero,
we either get outcome 0 with probability |α0|2 or 1 with probability |α1|2.

BB84 states

The following four states are often referred to as the BB84 states, since these states were used
in the BB84 protocol [BB84] for QKD (named after the authors Charles Bennett and Gilles
Brassard and the year in which it was proposed).

|0〉 |1〉 |+〉 =
1√
2

(|0〉+ |1〉) |−〉 =
1√
2

(|0〉 − |1〉)

As aforementioned, {|0〉 , |1〉} is called the computational basis. We will refer to {|+〉 , |−〉} as
the Hadamard basis.

Operators

An operator acts on a quantum state and enables us to change the state of the corresponding
qubit. An operator is defined as a linear transformation on the Hilbert space C2. By the
laws of quantum mechanics, an operator U must be unitary, i.e. U†U = I, where I represents
the identity, and U† means the conjugate transpose of U . Below, we provide two examples of
operators, which will also be used in the implementations of this paper.

7

The first operator we consider is denoted X. It acts as follows on the BB84 states:
X |0〉 = |1〉, X |1〉 = |0〉, X |+〉 = |+〉, and X |−〉 = − |−〉. In other words, if the qubit is in one
of the computational basis states, the X operator swaps the states. Note the connection to the
logical NOT gate.

The second operator we consider is the Hadamard operator H, which acts on the four BB84
states as follows: H |0〉 = |+〉, H |1〉 = |−〉, H |+〉 = |0〉, and H |−〉 = |1〉.

An operator can be represented by a matrix. The matrices corresponding to X and H are:

X =

(
0 1
1 0

)
H =

1√
2

(
1 1
1 −1

)
.

8

3 1-2 oblivious transfer in the noisy-storage model

As aforementioned, 1-2 oblivious transfer (1-2 OT) is a cryptographic task belonging to the field
of secure two-party computation on which any other protocol for secure two-party computation
can be based [GV88; Kil88]. Oblivious transfer was first introduced by Rabin [Rab81] and has
been generalised to 1-2 OT by Even, Goldreich, and Lempel [EGL82]. We recall that in the
setting of 1-2 OT, Alice has two secret strings m0, m1 and Bob chooses a bit c ∈ {0, 1}. The
task that 1-2 OT needs to accomplish is that Bob receives Alice’s input string mc corresponding
to his choice bit c, without revealing c to Alice and without learning the other string of Alice.
Note that here, and in the remaining part of this thesis, “Alice” and “Bob” refer to the two
parties that want to achieve the task of 1-2 OT, and that the “attacker” can be any of these
two parties.

3.1 Additional assumptions

We explained in Section 1 that even with the possibility of quantum communication, protocols
for secure two-party computation—and hence 1-2 OT—must impose additional assumptions on
the adversary in order to achieve a desired level of security [BCS12; Lo97; LC97; May97]. It
is reasonable to aim for protocols for secure two-party computation that are based on feasible
and realistic assumptions. Firstly, feasibility is important to ensure that the protocol can
be used in practice. Moreover, the assumptions should be realistic in the sense that they
take into account the current state of the art and technological limitations [KWW12; Sch10].
Therefore, two cryptographic models have been proposed that are based on physical (instead
of computational) assumptions: the bounded-quantum-storage model [Dam+05; Dam+07] and
the noisy-storage model [WST08; STW09; Sch10; KWW12].

Bounded-quantum-storage model

The physical assumption in the bounded-quantum-storage model is that the adversary’s quan-
tum memory size is limited to a certain number of qubits. No restriction is imposed on the
adversary’s classical memory or computing power. In this model, the version of OT that was
introduced in [Rab81] is proven to be information-theoretically secure [Dam+05]. In particular,
if Alice and Bob are honest, they do not need any quantum memory and the protocols can only
be broken if the dishonest party has a quantum memory of size at least n

2 , where n is the num-
ber of qubits transmitted during the protocol [Dam+05]. Moreover, the findings of [Dam+05]
have been extended to the case of 1-2 OT: 1-2 OT is shown to be secure against a dishonest
player whose quantum memory is of size at most n

4 − 2l [Dam+07]. Here, n amounts again to
the number of qubits that are transmitted during the protocol, and ` (which may be a fraction
of n) is the length of Alice’s input strings m0,m1. In addition, [Dam+05; Dam+07] point out
that their protocols also provide security in the case of imperfect quantum communication, a
situation that will be covered in Section 4.

There are three reasons why we may consider the bounded-quantum-storage model. Firstly,
if Alice and Bob merely communicate over a classical channel—and thus not use quantum
communication—secure 1-2 OT can only be achieved if the adversary’s classical memory size
is at most quadratic in memory size of an honest party [DM04]. However, using quantum
communication, the protocols for the bounded-quantum-storage model only require a bound
on the size of the adversary’s quantum memory. In particular, these protocols achieve a desired
level of security regardless of the size of the adversary’s classical memory, which, consequently,
allows for a bigger ratio between the memory size of the honest parties and that of an adversary
than would be possible in the classical setting. In fact, the honest parties do not need any

9

quantum storage at all, and the bound on the adversary’s quantum memory size only depends
on the number n of qubits that have been sent during the protocol. Therefore, the bounded-
quantum-storage model allows us to outdo the optimal bound for which security is obtained in
the case that a dishonest player only has access to a classical memory [Dam+05]. Secondly,
the limited size of the adversary’s quantum memory ensures that a dishonest party will lose
information: being unable to store all qubits, the adversary must store some information in
his classical memory (i.e. by measuring the qubits) [Dam+05]. It is, in fact, this irreversible
loss of information what allows for 1-2 OT in the bounded-quantum-storage model [Dam+05].
The third reason to consider the bounded-quantum-storage model is a practical one: whereas
quantum transmission and quantum measurements—needed for the honest parties—is possible
with the present state of the art, storing only “a single qubit for more than a fraction of a
second” is technologically still very difficult [Dam+05], impeding the storing possibilities of a
dishonest party.

Despite the aforementioned reasons, it is questionable whether any practical situation will
impose such a limit on the quantum memory size as the bounded-quantum-storage model
requires [WST08]. In fact, [Dam+05] argue that it is more realistic to consider the case that
the adversary’s quantum memory is noisy, instead of bounded. Therefore, we describe the
resulting model and its advantages below.

Noisy-storage model

Whereas the bounded-quantum-storage model gives an explicit upper bound on the adversary’s
quantum memory size during the protocol, the noisy-storage model4 assumes that the quantum
storage (i.e. the quantum memory) is noisy [KWW12; Sch10; STW09; WST08]. More precisely,
this model allows an adversary to have the best available quantum memory, but this memory is
affected by noise over time: the longer the adversary stores quantum information, the higher the
amount of prevailing noise [Sch10]. Two-party protocols for the noisy-storage model (such as
the protocols considered in this paper) make use of this time-dependency by inducing a waiting
time for the participating parties during the protocol: after this waiting time, the higher level
of noise in the adversary’s quantum memory results in information loss, see Section 3.2. As a
consequence, we can evaluate the security of a protocol for this model in terms of the noise level
[WST08]. Furthermore, note that the bounded-quantum-storage model can, in fact, be obtained
from the noisy-storage model by simply assuming that there is no noise in the quantum memory
but that the input of the quantum memory (i.e. the number of qubits that can be stored) is
limited [KWW12].

By exploiting the technological difficulty of building a quantum computer—i.e. the presence
of noise—the noisy-storage model has a significant practical value. In fact, the noisy-storage
model reflects the prevailing technical difficulties of storing quantum information more accu-
rately than the bounded-quantum-storage model. First of all, current quantum memories are
not completely reliable. In particular, with current technology, the time during which quan-
tum information can be stored without going completely lost is limited (e.g. see [Zho+12]).
The imperfection of current quantum memories results from the difficulty to keep the stored
quantum information unaltered over time and the problem that quantum information (i.e. the
photons in which the quantum information is encoded) goes lost during storage [Erv+14]. In
fact, [KWW12] argues that it is not even known whether it is physically possible to build a
fully reliable memory in the future. In addition, noise may arise when quantum information

4Since the noise occurs in the quantum memory, researchers sometimes also call this model the noisy-
quantum-storage model. However, in this thesis we stick to the more common term noisy-storage model. In
particular, we assume in this thesis that there is no noise in the classical communication channel and classical
storage at all.

10

is transferred onto a different physical carrier representing the quantum memory; for example,
when photonic qubits are transferred onto an atomic ensemble or an atomic state [STW09]. In
fact, this transfer onto the quantum memory is often already noisy [KWW12], irrespective of
the (im)perfection of the quantum memory itself [Weh+10].

Yet, we should note that security is only guaranteed if the aforementioned technological
challenges prevail [Erv+14]. Nevertheless, the noisy-storage model is resistant against techno-
logical improvements in the future (i.e. security can still be obtained) as long as the quantum
memory size has a finite upper bound [Erv+14]. This resistance of the model results from the
fact that the level of security depends on the number of qubits that are transmitted during
the protocol, and hence can be monitored. In other words, if the dishonest party has access to
a larger quantum storage, the required level of security can still be obtained by sending more
(quantum) information during the protocol [Erv+14]. Hence, as long as an adversary does
not have access to an unlimited and noiseless quantum memory in the future—which can be
perceived a reasonable assumption—we conclude that the noisy-storage model is a realistic and
feasible model.

3.2 Security in the noisy-storage model

Given the aforementioned reasons why the noisy-storage model could be seen as a realistic
reflection of the prevailing technical difficulties, we based our implementations on protocols for
1-2 OT in the noisy-storage model.5 As previously explained, the noisy-storage model allows
a dishonest party to have access to an unlimited quantum memory, yet this quantum memory
is noisy. This section provides an intuitive description what such a noisy quantum memory
entails for a dishonest party and why this may allow us to achieve security. We also describe
another tool that is used in the considered protocols to provide security in the noisy-storage
model, called privacy amplification.

Noisy-quantum-storage attacks

First of all, note that in the considered protocols for 1-2 OT in the noisy-storage model only
a dishonest Bob (i.e. the receiver) can take advantage of his quantum memory, since he is
the only one that receives quantum information. In particular, security against a dishonest
Alice does not depend on her quantum memory because the only information she receives from
Bob is classical information. Therefore, we only consider noisy-quantum-storage attacks by a
dishonest Bob. Suppose now that Bob tries to store an incoming quantum state in his quantum
memory. Since the quantum memory is noisy, the state is affected by noise and decoheres over
time [KWW12], i.e. the quantum system interacts with its environment and information goes
lost. Then, security in this model can be achieved by imposing a waiting time during the
protocol: the quantum information that a dishonest Bob may store in his quantum memory,
undergoes noise during this waiting time, which results in loss of information. Hence, in this
way, we may exploit the noise in the quantum memory in order to achieve the desired level
of security. Nevertheless, we emphasise that a dishonest Bob is still allowed to perform any
encoding attack on the received information (i.e. the attacker has unlimited computational
power and can do perfect quantum operations) and has an unlimited noiseless classical storage.
Also, after the waiting time, Bob can do any decoding attack. See Figure 1 for an illustration
of a noisy-quantum-storage attack by dishonest Bob.

5For a formal definition of the noisy-storage model, we refer the reader to [Weh+10].

11

Figure 1: (Source: [Weh+10]) An illustration of an attack by dishonest Bob. Here, F represents
the noisy-quantum memory (as formally defined in [Weh+10]) and ∆t the waiting time during
the protocol.

Privacy amplification

We provide an intuition about the tool of privacy amplification [BBR88], which is applied
during the protocol (i.e. Step 5 of Protocol 3.1) to ensure that any leaked information to a
dishonest party is removed, and thus security can be guaranteed. Suppose that Alice holds a
random bit-string A of length n about which a dishonest Bob has partial information.6 This
partial information may allow Bob to guess A, since A does not look completely random to
Bob anymore. Then privacy amplification is performed by using some randomly chosen two-
universal hash function. In short, a hash function is a function that maps a set of some size to
a smaller set [CW79]. We say that a class F of functions f : {0, 1}n → {0, 1}l. is two-universal
if Pf∈RF [f(x) = f(x′)] ≤ s−l for all x 6= x′ ∈ {0, 1}n [CW79]. Note that f ∈R F means
that f is randomly chosen from F . Then, by applying a randomly chosen two-universal hash-
function to her n-bit string A, Alice obtains a shorter string, about which Bob has a negligible
amount of information. In particular, the probability that Bob guesses Alice’s shorter string is
almost uniformly random [Erv+14]. In other words, by shrinking string A in this way, privacy
amplification allows for removing the leaked information and thus increases the level of security.

3.3 Protocol for 1-2 OT

Several protocols for 1-2 OT in the noisy-storage model have been suggested and research
distinguishes two types of attacks from the adversary in their security proofs: individual and
general storage attacks. When the adversary is allowed to only perform measurements on
each incoming qubit individually, we call this an individual attack. However, since multi-qubit
measurements are possible with current technology, it is more realistic to assume that the
attacker can do any arbitrary attack, i.e. a general attack [KWW12]. Whereas the protocols
in [WST08] and [STW09] are proven to be secure only against individual storage attacks, the

6More precisely, in our protocol A is the string xA�Ic̄ .

12

protocols in [KWW12] and [Sch10] allow the dishonest party to do any attack. The latter two
protocols are hence much more realistic to consider.

In particular, the protocols in [KWW12] and [Sch10] are proven to be information-theoretically
secure against general noisy-storage attacks as long as the laws of quantum mechanics hold and
the amount of noise in the quantum storage channel is above a particular level. Recall from
Section 1 that an information-theoretically secure protocol implies that there are no restrictions
on the attacker’s computational power, which is in contrast to many classical cryptographic
protocols that are based on computational assumptions and hence more restricted. Although
the protocol in [KWW12] requires less storage noise for security, the protocol in [Sch10] is
more straightforward and, therefore, simpler to implement. For this reason, we have decided
to implement the protocol given in [Sch10].

Protocol for 1-2 OT in the noisy-storage model

Before we provide Protocol 3.2 for 1-2 OT in the noisy-storage model, we provide a protocol
for randomised 1-2 OT (1-2 ROT), because, as will be further clarified, 1-2 OT can be easily
obtained from 1-2 ROT [Sch10]. In 1-2 ROT, Alice has no input whilst Bob holds his choice
bit c ∈ {0, 1}. After completion of the protocol, Alice holds two bit-strings of the same length,
s0 and s1, and Bob holds sc, i.e. the string received by Alice corresponding to his choice bit c.
See Figure 2 for an illustration.

We first explain some notation, for which we use some terminology from Section 2. Note
that before running Protocol 3.1 and Protocol 3.2, Alice and Bob agree on the length ` of the
strings s0 and s1. The level of security7 is also decided beforehand, and determines the number
n of qubits that will be transmitted in Step 1. Moreover, note that X ∈R Y means that X is
randomly picked from Y . We also note that H in Step 1 is the Hadamard operator, and thus if
yAi = 1, Alice first applies H to bit xAi (for i ∈ [n]) before she sends it to Bob. For clarification,
this implies that in Step 1, Alice randomly sends one of the four BB84 states (|0〉 , |1〉 , |+〉 , |−〉)
to Bob. Finally, in Step 2, when Bob measures his incoming qubit in the Hadamard basis, we
mean that Bob first applies H, and then measures in the computational basis.

Protocol 3.1 below is the protocol for 1-2 ROT as provided in [Sch10]. This protocol
originates from [Ben+92b; Dam+09], and security of this protocol in the noisy-storage model
is proven in [Sch10].

7With the level of security we refer to the security error-probability ε for an ε-secure 1-2 ROT protocol as
defined in [Sch10].

13

Protocol 3.1. [Ben+92b; Dam+09] 1-2 ROTl

1. Alice randomly picks xA ∈R {0, 1}n and yA ∈R {0, 1}n.

At time t = 0, Alice sends HyA
1 |xA1 〉, ...,HyA

n |xAn 〉 to Bob.

2. Bob randomly picks yB ∈R {0, 1}n.
Bob measures the i-th qubit he receives in the computational basis if yBi = 0 and the
Hadamard basis if yBi = 1. He obtains outcome xB ∈ {0, 1}n.

Both parties wait time ∆t.

3. Alice sends her basis string yA to Bob.

4. Bob forms the sets Ic = {i ∈ [n] | yAi = yBi } and Ic̄ = {i ∈ [n] | yAi 6= yBi }, where c is his
choice bit and c̄ the remaining bit.
Bob sends I0 and I1 to Alice.

5. Alice picks two hash functions f0, f1 ∈R F , where F is a class of two-universal hash
functions f : {0, 1}n → {0, 1}l.
Alice sends f0 and f1 to Bob and outputs s0 = f0(xA�I0

) and s0 = f1(xA�I1
).8

6. Bob outputs sc = fc(x
B�Ic).

Note that, after Step 2, whenever yAi = yBi for i ∈ [n], we also have that xAi = xBi , since Bob
measures his i-th incoming qubit in the same basis as in which Alice encoded her i-th bit.

Figure 2: In the setting of 1-2 ROT, Bob inputs a bit c ∈ {0, 1}. After completion, Alice holds
s0, s1 ∈ {0, 1}l and Bob holds sc, which is one of Alice’s output strings. Before running the
protocol, Alice and Bob agree on the length ` of the output strings.

As pointed out in [Sch10], 1-2 OT can be achieved from 1-2 ROT. Recall that in the setting
of 1-2 OT, Alice has two input bit-strings of length `, say m0 and m1, and Bob—holding his
choice bit c ∈ {0, 1}—wants to obtain mc after completion of the protocol. Below we provide
the resulting protocol for 1-2 OT. An illustration of the required steps is provided in Figure 3.
We emphasise that a quantum channel between Alice and Bob is only required for achieving
1-2 ROT, i.e. in Step 1. Moreover, we use the same notation as for Protocol 3.1 and ` and n
are again determined beforehand.

8If the length of xA�I0
or xA�I1

is m < n, then Alice adds n−m 0’s to the string before applying f0 or f1,
respectively.

14

Protocol 3.2. 1-2 OTl

1. Alice and Bob run Protocol 3.1 for 1-2 ROT.
After completion, Alice holds two uniformly random bit-strings s0 and s1 of length `, and
Bob holds sc corresponding to his choice bit c.

2. Alice computes c0 = m0⊕ s0 and c1 = m1⊕ s1, and sends them to Bob over the classical
channel.

3. Bob receives c0 and c1. Bob now obtains mc by computing sc⊕ cc = sc⊕ (mc⊕ sc) = mc.

Figure 3: In the setting of 1-2 OT, Alice inputs two strings m0,m1 ∈ {0, 1}l and Bob inputs
a bit c ∈ {0, 1}. The three indicated steps are those needed to achieve 1-2 OT from 1-2 ROT.
After completion, Bob holds mc, Alice’s input string corresponding to his choice bit c. Contrary
to the setting of 1-2 ROT, Alice now does not have an output.

For an explicit analysis of the correctness and a full proof of security of Protocol 3.1 and
Protocol 3.2 in the noisy-storage model, we refer the reader to [Sch10].

15

4 Error correction and robust 1-2 OT

In the practical implementation of 1-2 OT it is realistic to assume that the quantum channel
connecting Alice and Bob is subject to a particular level of noise. Specifically, imperfections
occur when a quantum channel is implemented in practice, resulting in errors during the trans-
mission of quantum information over the channel [Ben+92a; BS94; EMMM11; GPCZ18]. Apart
from the transmission of the qubits itself, the preparation of the qubits by Alice and the mea-
surements by Bob will also be affected by noise [KWW12]. Therefore, we should make the
protocol for 1-2 OT robust against noise for the honest parties [STW09] so that the protocol is
suitable for real implementations. In other words, we need to find a way to deal with the errors
resulting from the noisy communication channel and the imperfections during the preparation
and measurement of quantum states. This section, in particular, will describe how information
reconciliation—an additional step during which error-correction techniques are applied—can
provide a solution, and subsequently explain the resulting protocol for robust 1-2 OT in the
noisy-storage model.9

Information theory

Before continuing, we formalise some notions of information theory that will be used in this
section. We use the definitions provided in [DS17]. We assume that the reader is familiar
with the basic notions of probability theory; however, the relevant definitions are provided in
Appendix A.

An important measure of uncertainty about information is the Shannon entropy. We provide
three definitions below.

Definition 4.1. (Shannon entropy)
Let X be a random variable on the set X . We define the (Shannon) entropy of X as

H(X) := −
∑
x∈X

PX(x) · log2 PX(x).

In other words, H(X) measures the amount of uncertainty about X: the higher the uncertainty
about X, the higher H(X). Note, however, that it is a function of PX , not of X itself.

Definition 4.2. (Conditional entropy)
Let X and Y be two random variables on the sets X and Y, respectively. Then, the conditional
entropy of Y given X is the average uncertainty about Y when the outcome of X is known, i.e.

H(Y |X) := −
∑

y∈Y,x∈X
PY X(y, x) · log2 PY |X(y|x).

Definition 4.3. (Mutual information)
The mutual information of two random variables X and Y is defined as

I(Y ;X) := H(Y)−H(Y |X) = H(X)−H(X|Y).

In words, I(Y ;X) measures the reduction in uncertainty about Y when X is known, and vice
versa.

9Note that a noisy communication channel should not be confused with a noisy quantum memory (as in the
noisy-storage model), as these notions have a completely different meaning. In particular, if Alice and Bob are
both honest, they do not even need a (noisy) quantum memory in order to perform 1-2 OT; however, this does
not imply that the quantum channel connecting Alice and Bob should be noiseless: errors can still occur and
affect the qubits that are sent from Alice to Bob during the protocol.

16

To provide some intuition, suppose that X is the input of a communication channel and Y
the output. Then the mutual information measures how much information output Y reveals
about input X. We will now provide a formal definition of a (discrete) channel:

Definition 4.4. (Discrete channel)
A (discrete) channel is a triple (X , PY |X ,Y) consisting of two finite sets X and Y and a
conditional probability distribution PY |X : Y → [0, 1]. Here, X represents the set of possible
channel inputs and Y the set of possible channel outputs. PY |X(y|x) is the probability of
receiving output y ∈ Y when input x ∈ X is given.

Definition 4.5. (Memoryless channel)
A channel is called memoryless if the probability distribution of the output depends only on
the current input.
In other words, if the memoryless channel is used multiple times, previous inputs and outputs
do not affect the current output.

Definition 4.6. (Noiseless channel)
A channel (X , PY |X ,Y) is noiseless if both H(X|Y) = 0 and H(Y |X) = 0.
In other words, the output of the channel completely determines the input, and vice versa.

4.1 Noisy communication channel

Before we introduce the concept of information reconciliation and describe the protocol for
robust 1-2 OT, we first discuss in more detail the concept of a noisy communication channel.
We consider the case that Alice sends a classical bit-string, A, to Bob over a communication
channel. It is often assumed that the communication channel is reliable or noiseless, i.e. A = B,
where B is the bit-string received by Bob. However, in real implementations, Alice’s string may
be affected by noise (i.e. errors) during transmission so that A 6= B. In the presence of such
noise, we say that the communication channel is unreliable or noisy. Clearly, if Alice and Bob
transmit information over an unreliable communication channel, the correctness and security
of the corresponding cryptographic protocol may be affected [GPCZ18].

A noisy communication channel can be modelled by a binary symmetric channel (BSC)
[BS94]. A BSC is a communication channel in which each transmitted bit is flipped (i.e.
affected by noise) with a certain probability p [Mac03]. In other words, in the case that Alice
sends her bit-string to Bob, each bit is transmitted correctly with probability 1− p. Formally,
i.e. according to Definition 4.4, we define a BSC with parameter p by X = Y = {0, 1} and by

PY |X(0|0) = PY |X(1|1) = 1− p,

PY |X(0|1) = PY |X(1|0) = p,

where p ∈ [0, 1/2] [DS17]. We will use BSC(p) to refer to a BSC with probability parameter p.
Note that a BSC is memoryless, as the probability that a transmitted bit flips (i.e. p) does not
depend on any previous bit that has been transmitted over the channel. Moreover, note that
the channel is noiseless if p = 0. An illustration of the BSC is provided in Figure 4.

4.2 Information reconciliation

As aforementioned, the presence of noise requires an additional step during the protocol in which
Bob can recover the information that Alice has sent so that the correctness of the cryptographic
protocol can still be achieved. In the setting of 1-2 OT, this implies that Bob eventually receives
Alice’s input string mc corresponding to his choice bit c, even if the quantum channel is noisy.

17

Figure 4: A binary symmetric channel between Alice and Bob, where each bit that Alice sends
to Bob is flipped with probability p.

During this additional step, the errors between the transmitted and received information are
identified and error correction is performed. In the context of QKD, this process of finding
the differences between the strings and performing error correction is often called informa-
tion reconciliation or, simply, reconciliation (e.g. in [Ben+92a; BS94; EMMM11]). Informa-
tion reconciliation occurs via a public classical channel connecting the two parties [Ben+92a;
EMMM11].

We provide an simple example of an information-reconciliation protocol by adjusting the
description in [BS94] to the setting of 1-2 OT. Suppose again that Alice sends a bit-string
A to Bob over a noisy communication channel, and Bob receives the bit-string B. As B is
affected by noise, we may assume that B ≡ A+N (mod 2), where the bit-string N represents
the noise. In the setting of 1-2 OT, an information-reconciliation protocol aims to generate an
estimate, Â, of Alice’s string A, given B. As we will see, this string Â is obtained by exchanging
some classical information over a public channel connecting Alice and Bob. At the end of the
reconciliation protocol, Bob holds the string Â. Clearly, the protocol should minimise the
amount of information revealed to a potential adversary and the probability that the protocol
fails to produce the final string (i.e. Â) should be low [BS94].

Privacy amplification

Nevertheless, it is important to note that—by transmitting some extra information over a public
channel—information reconciliation allows a dishonest party to gain additional information.
Recall the tool of privacy amplification discussed in Section 3.2, which allows us to reduce
the amount of information leaked to a potential dishonest party. In particular, since there is
additional information leaked during the information-reconciliation protocol, we should perform
more privacy amplification to achieve a desired level of security than would be the case if the
quantum channel is noiseless and we need not perform information reconciliation. For example,
suppose that there are m bits of additional information sent during information reconciliation,
then the hash function should map the initial string to a string that is m bits shorter than in
the case that the channel is noiseless.

18

Error-correcting codes

Shannon [Sha48] described that reliable communication over a noisy channel can be obtained
by means of encoding and decoding. We refer to an encoding and decoding system as an
error-correcting code. Intuitively, we may describe encoding and decoding as follows. Instead
of immediately sending her message A to Bob, Alice first encodes her message into T (the
so-called codeword), by adding some redundancy to A [Mac03]. Subsequently, T is transmitted
over the noisy channel, which outputs the received codeword R ≡ T +N (mod 2). Here, N is
a bit-string representing the noise induced by the channel. The decoder then uses the (known)
redundancy in order to translates R into the bit-string Â, Bob’s estimate of A. Figure 5 provides
an illustration.

Figure 5: An illustration of an error-correcting communication system for the setting that Alice
wants to send a message A to Bob over a noisy communication channel.

Shannon’s noisy-channel coding theorem

It is important to mention that there is an upper bound on the amount of reliable communi-
cation that can be achieved in the presence of a noisy communication channel. This limit is
known as Shannon’s noisy-channel coding theorem [Sha48], and hence also referred to as the
Shannon limit. Before we state the theorem, we provide two more definitions, obtained from
[DS17].

Definition 4.7. (Information rate)
The information rate R is the number of bits of information that are transmitted per channel
use.

Definition 4.8. (Channel capacity)
Let (X , PY |X ,Y) be a discrete, memoryless channel. Then its channel capacity C is defined as

C := max
PX

I(X;Y).

In other words, the channel capacity measures the maximum amount of mutual information
between the input X and the output Y of a the channel.

Theorem 4.1 below shows that information can only be transmitted with arbitrarily small
error-probability over a given channel as long as the channel capacity is not exceeded. Theo-
rem 4.1 is a slightly adapted version of the one provided in [DS17], and we refer the reader to
this work for the proof.

19

Theorem 4.1. Noisy-channel coding theorem
Consider a discrete memoryless channel with capacity C. Then, (i) for any rate R < C, there is
a method of encoding such that information can be transmitted over the channel with negligible
maximal error-probability (i.e. the maximal error-probability approaches 0 as the number of
channel uses approaches infinity); and (ii) for any rate R > C, it is impossible to find a coding
system that achieves such a negligible average error-probability.

In other words, whilst the channel capacity C indicates the maximal information rate that
theoretically can be realised, Theorem 4.1 shows that it should also be possible in practice to
achieve any rate R < C. We therefore aim to find a coding system that approaches the Shannon
limit as much as possible.

4.3 Robust protocol for 1-2 OT

In order to make our protocol for 1-2 OT robust against noise for the honest parties, we should
add the extra step of information reconciliation. For our implementation of reconciliation in
the robust 1-2 OT protocol, we use a class of error-correcting codes called Reed-Solomon (RS)
codes. Before we explicitly describe how information reconciliation works in the setting of 1-2
OT and providing the robust protocol, we briefly introduce the class of RS codes.

Reed-Solomon codes

We provide a high-level description of RS codes obtained from [LC83] and refer the reader to
this work for a more explicit explanation. RS codes are a class of codes that were introduced
by Reed and Solomon in 1960 [RS60]. Each message consists of elements from the Galois (i.e.
finite) field GF(pr), for p prime. If the original message has length n and the transmitted
codeword length m, then there are m− n redundant symbols, and an RS code can correct up
to m−n

2 errors.
In the following we briefly explain how encoding and decoding of RS codes is established, and

use, for clarity, the same notation as in Figure 5. Each message A of length n is associated with
a polynomial of the same length. Then, the transmitted codeword obtained after encoding can
be considered as a polynomial T (x) of some length m > n. The noisy communication channel
then adds some noise N(x) (also called the error pattern in [LC83]) to T (x). Hence, we can
decompose the received message as R(x) = T (x) + N(x). If all coefficients of N(x) are zero,
then there are clearly no errors. However, if there are errors, the information from the received
message R(x) is recovered by the decoder. In short, the decoding process consists of four steps
[LC83]. First, the syndrome of R(x) is computed, which, intuitively, is an indicator of the error
pattern (in particular, if the syndrome is zero, we assume that there are no errors). Then, from
this syndrome we may determine the so-called error-location polynomial. In the third step, the
error locations are retrieved by computing the roots of the error-location polynomial, and thus
the error pattern (i.e. N(x)) is obtained. In the last step, we compute R(x)−N(x) to obtain
the transmitted codeword T (x).

Information reconciliation for 1-2 ROT

Having provided some intuition into RS codes, we can now give a complete description of the
setting of randomised 1-2 OT when the quantum channel is noisy. Although the channel is noisy,
we assume that the noise in the quantum channel is independent and identically distributed
(i.i.d.), so each qubit that is transmitted over the channel is affected by noise with the same
probability.

20

Recall from Protocol 3.1 for 1-2 ROT that Alice randomly picks two n-bit strings xA and
yA, and Bob randomly picks an n-bit string yB . In this section, we consider the case that Alice

sends each bit xAi encoded as HyA
i |xAi 〉 to Bob over a noisy quantum channel. Bob measures

each received qubit either in the computational (yBi = 0) or Hadamard (yBi = 1) basis . We
now explain what may go wrong in the noisy setting. Recall that if the channel was noiseless,
then for each i such that yAi = yBi (i.e. Alice sends the qubit in the same basis as in which Bob
will measure) we have that xAi = xBi with probability 1. However, if the channel is noisy, then
the noise in the channel may affect the qubits that Bob has received. Therefore, when Bob
measures each received qubit in basis corresponding to yBi , it is possible that his outcome xBi
is no longer such that xAi = xBi .

Now, recall that at a certain point during the protocol Bob forms the set Ic containing
all indices i such that yAi = yBi , where c is his choice bit. 10 Thus, in the presence of noise,
it is possible that xA�Ic 6= xB�Ic , whereas equality would necessarily hold if the qubits were
transmitted over a noiseless channel. Consequently, classical error-correction techniques need
to be applied so that Bob obtains an estimate for xA�Ic .

In order to understand how information reconciliation works in this setting, we explain how
we can represent the occurring noise. For simplicity, let A = xA�Ic and B = xB�Ic . Let n be
the length of the bit-strings A and B.11 We assume that B is affected by noise such that A 6= B.
Note that since the noisy quantum channel is i.i.d., each of the qubits is affected by noise with
the same probability p, and thus (without loss of generality) we can assume that each bit of B
is affected by noise with probability p. Hence, we may model the situation by sending A over
a BSC with error-probability p. Note, however, that the BSC is not the physical channel, but
refers to the theoretical channel model. In fact, the BSC represents a noisy classical channel.
To make this more precise, note that Alice sends her n qubits to Bob over the physical quantum
channel. Only after Bob performs his measurements, he obtains classical information. However,
if noise has occurred,it is possible that Bob’s classical bit-string B differs from the corresponding
classical bit-string A encoded by Alice, i.e./ that xB�Ic 6= xA�Ic . These differences can hence
be represented by the BSC, even though in practice these classical bits were not transmitted
over a classical channel.

As aforementioned, we use RS codes to correct the errors induced by the channel. We note
that our method of information reconciliation is slightly different from the one described in the
protocol from [Sch10]. In particular, [Sch10] considers the case that Alice sends the syndromes
(which are of length n − k) of her two n-bit strings xA�I0

and xA�I1
to Bob. Instead, to

keep the implementations relatively simpler, in our approach, Alice first encodes her two n-bit
strings into codewords of length m > n, and then sends the last m − n (redundant) bits of
both of the codewords to Bob. Bob will attach the m−n bits that belong to xA�Ic to his n-bit
string xB�Ic , and then use RS decoding techniques to obtain Alice’s string xA�Ic . Although our
method might be slightly less efficient than the method provided in [Sch10], we note that the
correctness and security of the protocol from [Sch10] still apply for our approach. Furthermore,
we note that as in our approach m−n additional bits are sent over the classical channel, privacy
amplification must be adapted accordingly: i.e. the final length of ` of the output strings must
be shortened by m bits. Nevertheless, we will assume that when Alice and Bob agree on the
values for l and n already take into account this reduction in final string length,

The resulting protocol for information reconciliation is given below. All communication is
achieved over a noiseless classical channel. We assume that both Alice and Bob are able to
perform RS encoding and decoding and have agreed on a parameter m, which is the length of

10We will only describe the situation for Ic, as the situation for Ic̄ is similar (we only need to replace c by c̄).
11As in Protocol 3.1, for d ∈ {0, 1}, if the size m of Id is smaller than n, we add n −m zeros to xA�Id to

obtain an n-bit string, as this is according to[Sch10].

21

the encoded list and determines the maximal number of errors that can be corrected. Recall
that given the length n of Alice’s and Bob’s strings, using RS codes we can correct up to m−n

2
errors.

Protocol 4.1. Information reconciliation for 1-2 ROT
We assume that Alice holds two n-bit strings xA�I0

and xA�I1
, and Bob holds an n-bit string

xB�Ic , where c is his choice bit.

1. Alice encodes xA�I0
and xA�I1

using an RS encoder and sends the last m− n bits of the
encoded strings to Bob.

2. Bob attaches the m− n bits corresponding to xA�Ic to his n-bit string xB�Ic .

3. Bob uses an RS decoder to correct the errors in his resulting m-bit string, if possible.
If the number of errors is greater than m−n

2 , the protocol is aborted.

Robust protocol for 1-2 OT

We will now provide the protocol for robust 1-2 ROT in the noisy-storage model on which our
code is based. 4.2 is a slightly adapted from the protocol in [Sch10]. In particular, the protocol
in [Sch10] takes into account the possibility that some of the qubits that are transmitted by
Alice will eventually not be detected by Bob, which may result from imperfections in Bob’s
detection apparatus. However, in order to keep the implementation simple and understandable,
we assume that all n qubits arrive at Bob. Therefore, a few steps in the protocol from [Sch10]
are omitted. We acknowledge, however, that it would be more realistic to assume that not
all qubits are detected by Bob. Nevertheless, we emphasise that the correctness and security
analysis from [Sch10] still hold in our case.

We use the notation from Section 3.3 and again assume that Alice and Bob agree on l and
a particular security error-probability, which determines n. Alice and Bob also agree on the
value for m for information reconciliation.

22

Protocol 4.2. [Sch10] Robust 1-2 ROTl

1. Alice randomly picks xA ∈R {0, 1}n and yA ∈R {0, 1}n.

2. Bob randomly picks yB ∈R {0, 1}n.

3. For each i ∈ [n], Alice sends her bit xAi encoded as HyA
i |xAi 〉 to Bob.

If yBi = 0, Bob measures the i-th incoming qubit in the computational basis. Otherwise,
he measures the qubit in the Hadamard basis.

Both parties wait time ∆t.

4. Alice sends her basis string yA to Bob.

5. Bob forms the sets Ic = {i ∈ [n] | yAi = yBi } and Ic̄ = {i ∈ [n] | yAi 6= yBi }, where c is his
choice bit.
Bob sends I0 and I1 to Alice.

6. Alice performs privacy amplification: she picks two hash functions f0, f1 ∈R F , where F
is a class of two-universal hash functions f : {0, 1}n → {0, 1}l. Alice sends sends f0, f1 to
Bob.
Alice performs her part of information reconciliation: she encodes xA�I0

and xA�I1
using

an RS encoder and sends the last m− n bits (say r0, r1) of the encoded strings to Bob.
Alice outputs s0 = f0(xA�I0

) and s1 = f1(xA�I1
).

7. Bob performs his part of information reconciliation: Bob attaches rc to his own string and
uses an RS decoder to correct the errors on his bit-string xB�Ic . He obtains the corrected
bit-string xBcor.
Bob outputs ŝc = fc(x

B
cor).

We emphasise that robust 1-2 ROT can be converted into robust 1-2 OT in a similar way
as has been done for the idealised setting in Protocol 3.2. We therefore omit the resulting
protocol.

23

5 Quantum internet and SimulaQron

A quantum internet is a quantum communication network that allows for the exchange of
quantum information over arbitrarily long distances [Cas18; DW18; DLH17]. One of the key
aspects of a quantum internet is that it will allow for quantum entanglement between any two
points in the world [CCB18; Cas18; DLH17; Kim08]. Quantum entanglement is a type of cor-
relation between two quantum systems, which has two important features that can be used for
several applications. The first is that two maximally entangled qubits are perfectly correlated:
measuring one quantum state will immediately affect the outcome of measuring the other state
as well [DLH17; CCB18; WEH18].12 The second feature of quantum entanglement—complete
privacy— is particularly interesting for security-related tasks: no more than two qubits can be
maximally entangled, and hence no third party can participate in the entanglement [WEH18].

5.1 Significance and applications of a quantum internet

Instead of substituting the classical internet, it is expected that a quantum internet will be
used next to it [WEH18]. Therefore, we explain the significance of having quantum internet
next to the classical internet. Moreover, we explain what the benefits may be of constructing
a quantum internet rather than building a large-scale quantum computer. We conclude with
some potential applications of a quantum internet.

Comparison with the classical internet and the quantum computer

A quantum network may allow us to enlarge the state space used for quantum computation.
In particular, with a quantum network we may not only surpass the capabilities of a classical
network, but potentially also those of a single quantum processor.

Firstly, each node in a quantum network consists of a quantum processor, which has several
advantages over a classical computer. In particular, a quantum computer allows us to exploit the
laws of quantum mechanics—e.g. by making use of quantum entanglement—in order to tackle
problems that are hard to solve, or unsolvable, with only classical means. Moreover, the state
space of a quantum processor (i.e. the number of states on which it operates) scales exponentially
with the number of qubits it entails, as a consequence of the superposition principle [Kim08;
CCB18]. Recall from Section 2 that a single qubit can exist in a superposition of two states,
and therefore n qubits can exist in a superposition of 2n states. Therefore, whereas a classical
processor consisting of n classical bits has a computational space of dimension n, a quantum
processor consisting of n qubits has a computational space of dimension 2n. Consequently, this
larger state space of the quantum processors in the network may allow us to solve problems
exponentially faster than would classically be possible [Kim08; WEH18].

However, the potential of a quantum internet is not only explained from the fact that its
individual components—i.e. the quantum processors—may perform better than if they would
be substituted by classical processors, but also from the fact that interconnecting the quantum
processors with each other increases the overall computational power of the network. This
feature is called “quantum connectivity” by [Kim08] and is explained as follows. Suppose that
we have k quantum processors, consisting of n qubits each (i.e. each has computational space
of dimension 2n). Then, if these quantum processors are connected via quantum channels, the
overall computational space of the network is of dimension 2kn. In contrast, if these k quantum
processors (nodes) would be connected via classical channels, then the computational space is
only of dimension k2n. In other words, because of its quantum connectivity, a quantum internet

12Note that we consider the Copenhagen interpretation of quantum mechanics.

24

potentially allows for an improved performance than each of its quantum processors is capable
of individually.

In particular, some researchers (e.g. [DLH17]) speculate that the realisation of a quantum
internet is more feasible than building a large-scale quantum computer. The development of
quantum computers places a maximum on the attainable size of individual quantum processors
[Kim08], despite the fact that technological progress may increase this maximum over time. In
contrast, a quantum internet is potentially able to exceed this maximum by interconnecting
these individual processors, as previously explained. Moreover, many of the potential applica-
tions of a quantum network require only a quantum processor consisting of a single qubit, and
thus not necessarily a large quantum computer. We may therefore consider quantum internet as
a possible (temporary) solution for the challenges that prevail in building a large-scale quantum
computer.

Potential applications

The possibility of quantum communication over long distances opens many potential appli-
cations for a future quantum internet. One of the main expected applications of a quantum
internet is quantum cryptography, and thus a quantum internet can be used to provide secure
communication [DLH17]. For example, we could implement QKD [DLH17; WEH18] in order
to establish a secure secret key between any two points in the network. Besides QKD, a quan-
tum internet will also allow us to realise protocols for two-party cryptographic tasks [DW18;
WEH18].13 Another application of a quantum internet is distributed quantum computation
[DLH17; Cac+18]: by linking different small-sized quantum computers via quantum channels
[DLH17], we can scale up the computational space of each individual node, as explained before.
Therefore, a quantum internet consisting of multiple quantum processors may allow us to solve
problems (exponentially) faster than would be possible with only a single quantum processor.
Other applications of a quantum internet include, but are not limited to, clock synchronisation
[Kóm+14] and improving the achievable resolution of telescopes [GJC12].

5.2 Towards the realisation of a large-scale quantum network

Having discussed the significance and some potential applications of a future quantum internet,
we will now provide a high-level description of how a quantum internet could be constructed
and analyse the feasibility of this construction. Before continuing, however, we first describe
how quantum information is transmitted.

Transmission of quantum information

The direct transmission of information in a classical or quantum communication network is
affected by imperfections, i.e. by signal losses or noise. Classical information is often transmitted
as electromagnetic waves over optical or free-space fibres [DLH17]. In the presence of noise or
signal losses, the affected classical information can be recovered by reamplifying the signal at a
so-called classical repeater [DLH17] or simply by resending the information [WEH18]. However,
these classical solutions of amplification and repetition cannot be applied when the transmission
of quantum information is affected by such imperfections. For direct transmission, quantum
information is encoded as photons and, similar to classical communication, these photons are
transmitted over optical or free-space fibres [DLH17]. However, if a transmitted photon is either

13The realisation of these cryptographic protocols obviously depends on the assumptions imposed by the
protocol, e.g. that the adversary’s quantum storage is noisy for the realisation of the 1-2 OT protocols in this
paper.

25

lost or affected by noise, then the quantum information it carries is destroyed. More precisely,
as a consequence of the no-cloning theorem [Die82; WZ82], which states that we cannot copy
the quantum state of a qubit, we cannot recover the lost quantum information by sending it
again. As a result, the occurrence of losses and dephasing errors during transmission only
allow for sending photons over a few hundred kilometres [DLH17], and hence we need to find
a different way to transmit quantum information over longer distances in order to establish a
large-scale network.

Although quantum error correction may provide a method to overcome the photon losses
and errors, and thus may still enable the direct transmission of photons over long distances
[DLH17], further research in this direction is required before we can conclude whether this
is an acceptable solution. More precisely, this approach is currently still challenging as it
requires a relatively low error rate [DLH17]. Nevertheless, an alternative technique to enable
the exchange of quantum information between two remote nodes is proposed and is known
as quantum teleportation [Ben+93]. Quantum teleportation14 is a method to transmit an
unknown quantum state for which the sender and receiver are solely required to share two
entangled qubits and to be connected by a classical communication channel. Hence, quantum
teleportation does not require a quantum communication channel between the sender and the
receiver at the moment of transmission. In particular, quantum teleportation achieves long-
distance transmission of quantum information without physically sending the particle that
stores it [Cac+18] and without violating the principles of quantum mechanics [NC10]. Since
the quantum information is not transmitted directly (i.e. physically), quantum teleportation
prevents that the transmission is affected by noise or photon losses.

Although we have explained that quantum teleportation is a crucial technique to establish
a large-scale quantum network, teleporting quantum information between two remote nodes
forces these two nodes to be entangled with each other. Once entangled, the distance between
the two nodes can be arbitrarily long. However, establishing quantum entanglement between
the nodes cannot be done over an arbitrarily long distance, since the entanglement distribution
rate gradually decreases over distance [Cac+18]. In other words, before we can apply quantum
teleportation over arbitrarily long distances we still need to find a way to provide entanglement
over such a distance. In the next section, we explain that such distributed entanglement can
be obtained by placing intermediate nodes, called quantum repeaters, which apply a technique
called entanglement swapping.

Constructing a quantum internet

Having explained how one can transmit quantum information from one node to another, we
will now describe how a quantum internet can be constructed.

The three concrete building blocks for a quantum internet are end nodes, photonic com-
munication channels and quantum repeaters, which will be described below [WEH18]. See
Figure 6 for a simplified illustration. The end nodes are quantum processors, which may vary
from a single qubit to multiple qubits forming a large-scale quantum computer, depending on
the task that must be performed.15 At the end nodes, quantum states are generated, processed
and stored [Kim08]. Moreover, these end nodes are connected to the network via a photonic
channel—i.e. a quantum channel—to enable the transmission of (quantum) information and
distribute entanglement across the network [Kim08]. Similar to the classical internet, this

14For a specific description of the working of quantum teleportation, we refer the reader to Chapter 1 of
[NC10].

15As will also be pointed out later on, Wehner, Elkouss and Hanson [WEH18] explain that not all applications
of a quantum internet require a full-blown quantum internet; sometimes a slightly less developed “version” is
already sufficient to perform a certain task.

26

physical connection can be established via fibre-based channels (e.g. optical fibres), free-space
channels, or a combination of them, provided that photon loss and decoherence (i.e. loss of
quantum information stored in a qubit over time) is minimal [WEH18].

The third component of a quantum internet is a device that increases the distance through
which the quantum information is transmitted: a quantum repeater. More precisely, a quantum
repeater enables the distribution of entanglement over a long distance. Consequently, we can
take advantage of this established entanglement to “teleport” quantum information over this
longer distance. As was explained before, quantum teleportation provides a solution to the
imperfections that hinder the long-distance transmission of quantum information via photons.
When the distance between two end nodes is too large to establish the entanglement required
to perform quantum teleportation, quantum repeaters are positioned along the communication
channel as intermediate nodes to bridge this distance. In particular, quantum repeaters are
placed in such a way that the distance to each end node is small enough to establish entan-
glement over the channel [WEH18]. After generating entanglement between itself and each of
the end nodes, the quantum repeater implements entanglement swapping (see Figure 7): it
teleports the entangled qubit that it shares with one of the end nodes to the other end node,
such that the two end nodes eventually share an entangled qubit [WEH18]. In this way, entan-
glement is established over a distance that could be longer than the maximum distance possible
via direct transmission [WEH18].

Figure 6: A simplification of the components of a quantum internet. The end nodes are the
quantum processors where quantum states are generated, processed and stored. The quantum
repeaters function as intermediate nodes, bridging the distances between the end nodes. The
end nodes and quantum repeaters are connected via photonic channels (lines), over which
quantum information is distributed.

Difficulties of establishing a quantum internet

From the above, it is clear that different issues arise when aiming to establish a quantum
internet. These challenges are imposed by quantum mechanical features such as quantum
entanglement and no-cloning [Cac+18]. Since these features do not have a classical counterpart,
a considerable “paradigm shift” is needed in order to counteract these barriers. An example
of such a barrier is the occurrence of errors (e.g. due to decoherence or imperfect operations)
when qubits interact with the environment [Cac+18]. Specifically, since quantum information

27

Figure 7: (Source: [MT13]) In order to increase the distance between two end nodes, one or
more quantum repeaters are placed along the quantum channel that connects the end nodes.
Here, three quantum repeaters are placed between end node A and end node E. For the end
nodes and repeaters, entangled pairs are shared between the adjacent nodes. First, repeater B
teleports the qubit she shares with A to repeater C using her entanglement with repeater C.
After this process of entanglement swapping, node A now shares an entangled pair with repeater
C. In a similar way, entanglement swapping between repeater C, repeater D and end node E
results in an entangled pair between repeater C and end node E. Then, once more entanglement
swapping takes place to ensure that end node A and end node E share an entangled pair. All
other qubits are freed.

cannot be copied, we are unable to apply classical error-correction methods that depend on
information cloning, and thus a new solution is required [Cac+18]. Nevertheless, research is
devoted to overcome the challenges posed by the development of a quantum internet [Kim08]
and the realisation seems to be technologically possible, even though we are still at an early stage
[DLH17]. Specifically, Wehner, Elkouss and Hanson [WEH18] even predict that a small-scale
quantum internet will be established within a few years. Therefore, the current developments
seem to provide an optimistic outlook for the establishment of a quantum internet.

Secure two-party computation on a quantum internet

Fortunately, a fully developed world-wide quantum internet is not required to implement pro-
tocols for secure two-party computation. In particular, the process of establishing a quantum
internet is divided into several developmental stages by [WEH18], including a description of
the known applications of a quantum internet that can (already) be established at each stage.
This work demonstrates that protocols for secure two-party computation can already to some
extent16 be realised in the stage that allows for end-to-end transmission of qubits as well as
the preparation and measurement of a quantum state at any node [WEH18]. Moreover, ex-
perimental results show that the essential elements required for this stage—including quantum

16Nevertheless, the realisation of these protocols is only possible if the inaccuracies in transmission and
measurement and the probability that the prepared quantum state is lost are below a certain level. It is still an
open question, however, what the specific bounds are for these three parameters [WEH18].

28

repeaters—are within reach [WEH18]. Therefore, we may expect that the realisation of secure
two-party computation is feasible in a near-future implementation of a quantum internet.

5.3 Simulating quantum internet: SimulaQron

If a quantum internet will be deployed in the future, we will need adequate software for
quantum-internet applications. For this reason, the quantum-internet simulator SimulaQron
has been created [DW18]. SimulaQron has the purpose to serve as framework in which software
for quantum-internet applications can be written and debugged. To the best of our knowledge,
SimulaQron is the only framework for developing software for quantum-internet applications
currently available.17

Working of SimulaQron

We will briefly describe the working of SimulaQron based on Figure 8.18 The virtual simulation
network is established by classically connecting so-called virtual nodes with each other. A
virtual node is labelled by a name (say Alice) and can be viewed as a server program running on
a local classical computer that wants to connect to the network. The network can be simulated
locally by running the different server programs all on one physical computer, but a distributed
simulation is also possible (i.e. different virtual nodes are connected to different computers).
In other words, the virtual nodes corresponding to “Alice Computer”, “Bob Computer”, and
“Charlie Computer” in Figure 8 could either be run on one single computer, but also on two or
three distinct classical computers. SimulaQron uses an existing quantum-hardware simulator
to simulate the quantum processor on each virtual node, enabling a virtual node to simulate
and manipulate qubits. By default, SimulaQron uses the stabilizer formalism19 as quantum-
hardware simulator, but it also supports ProjectQ [SHT18] and QuTip [JNN12].20

Besides simulating and manipulating qubits, a virtual node can also connect to other nodes
in the network to enable classical and (simulated) quantum communication. This communica-
tion between virtual nodes is illustrated in Figure 8 by the lines between the different comput-
ers. The SimulaQron servers on the distinct virtual nodes allow for connecting the underlying
simulated quantum hardware in order to establish (simulated) quantum communication and
quantum entanglement, which is labelled “SimulaQron internal communication” in the figure.
The classical-quantum-combiner (CQC) server in each node functions as a link between the
SimulaQron back end and the level at which applications are written. In other words, appli-
cations on a particular computer (i.e. virtual node) communicate with the SimulaQron server
via this CQC server. In addition, as quantum-network applications will often require classical
communication as well, SimulaQron also allows for classical communication between distinct
virtual nodes, labelled “application communication” in the figure.21

17Another quantum-network simulator called NetSquid is currently under development at QuTech in Delft,
but not yet publicly available.

18For an extended description of the working of SimulaQron we refer the reader to [DW18].
19The stabilizer formalism is a specific approach to simulate so-called stabilizer circuits on a classical computer,

which are quantum circuits that are restricted to specific quantum operations. For example, see [Got97] for
more information.

20The underlying back end can be changed to ProjectQ or QuTip in the settings via simulaqron set backend.
However, one could also implement another existing simulator as long as it supports working with Python
[DW18].

21More precisely, this classical communication can be established by opening a socket connection between
the nodes. We are allowed to program such a client/server setup in Python, but the Python CQC library of
SimulaQron also provides a built-in feature to establish classical communication via the methods sendClassical
and recvClassical (see Section 6.1).

29

Figure 8: (Source: [DW18]) An illustration of the communication in a quantum network simu-
lated by SimulaQron.

Figure 9 illustrates how we can program quantum-internet applications in SimulaQron.
There are two ways to program the quantum network simulated by SimulaQron. The first
method—called programming “in native mode”—is by directly assessing the back end of Simu-
laQron using the Twisted [Twi] library for Python. However, the recommended way is via the
provided classical-quantum-combiner (CQC) interface. The CQC interface could be perceived
as an intermediate point between the application level and the SimulaQron back end, which
allows the user to program at a higher level and hence facilitates the writing of code. Moreover,
the CQC interface comes with both a Python and a C library that consists of useful methods
to perform quantum operations in Python and C, respectively.

Figure 9: (Source: [DW18]) An illustration of programming a quantum network simulated by
SimulaQron, which can be done either by directly assessing the SimulaQron back end using
Twisted (left) or by running applications via the CQC interface (right).

30

Benefits of SimulaQron

Using SimulaQron has several advantages, as explained in [DW18]. First of all, SimulaQron
provides software developers with a toolkit to write software that could later be put into practice
on a real quantum internet, with little or no adjustments. In particular, application development
is independent of the underlying quantum hardware (as a result of the CQC interface) and is
promoted by providing programming libraries for Python as well as C. Furthermore, the fact
that it is written in Python facilitates a further extension of SimulaQron. Another benefit,
which is of particular interest to our work, is that we may implement noise in the channel by
turning the setting noisy-qubits on. Hence, SimulaQron seems to provide the right tools in
order to implement our protocols for 1-2 OT.

Expected limitations

Nevertheless, SimulaQron also creates some drawbacks, which may become a limitation for our
implementations. A first drawback of SimulaQron that is relevant to our implementations is that
time is not modelled accurately, and hence we cannot simulate time-dependent noise [DW18].
It is therefore important to keep in mind that we cannot use SimulaQron to accurately evaluate
the robustness of our protocols. Nonetheless, we are still able to simulate a noisy quantum
channel, and hence can still implement our protocols. Another drawback of SimulaQron is that
we cannot rely on its security for real usage. More precisely, since the entanglement created with
SimulaQron is only a simulation of entanglement, the security guarantees of real entanglement
do not hold [DW18]. However, as we do not need to establish entanglement for our protocols,
we do not expect this to become a limitation.

31

6 Implementation of the protocols

6.1 Methods

In this section, we explain how we have implemented the protocols for 1-2 ROT (and 1-2 OT)
in the noisy-storage model using SimulaQron and the Python CQC library. The version of
SimulaQron we work with is version 3.0.3 and our code is written in Python [Pyt].

Before we continue, we provide our reasoning for the choice of the Python environment for
our code. Firstly, SimulaQron is itself written in Python and comes with a Python CQC library
that provides us with the right tools to implement our algorithms in the simulated quantum
network. Therefore, our code corresponds to the examples provided in the SimulaQron docu-
mentation [Sim], making it understandable for current and future SimulaQron users. Secondly,
Python is a well-known high-level programming language. Hence, by providing our implemen-
tations in Python, we expect that our code is clear to other users, which may allow for further
optimisation and use.

How to get started with SimulaQron

Section 5.3 explains how SimulaQron establishes a simulated quantum network. We will now
explain in more detail how SimulaQron allows us to program our protocols and which tools of
SimulaQron we have used for our implementations.

Before we can run our code we have to configure the simulated quantum network. Since
we consider two parties for our protocols, the setup for our implementations only requires two
virtual nodes: Alice and Bob. Although SimulaQron allows for a distributed simulation, we
use the default configuration of SimulaQron in which the servers run in a centralised setting
(i.e. localhost). In order to start the SimulaQron back end that consists of the virtual nodes
we run the command simulaqron start, which will by default start a network with five nodes
(labelled Alice, Bob, Charlie, David and Eve). We use the default back end (i.e. the stabilizer
formalism), as this back end is the most efficient in the number of qubits [Sim]. We need to
change two of the default settings for our implementations, which should be done before starting
the back end. These two settings are max-qubits, the number of qubits allowed per quantum
register in a virtual node (by default set to 20), and noisy-qubits, the option to apply noise
to the qubits transmitted over the network (by default turned off).

Furthermore, for our implementations we make use of the functionalities provided by the
Python CQC library SimulaQron. As explained in Section 5.3, this library allows us to program
our protocols using the CQC interface without needing to access the SimulaQron back end
directly. In order to use the library, we need to initialise a CQCConnection object, which takes
as input the name of the node (say, Alice) to which it corresponds. A CQCConnection object
enables the node to communicate with SimulaQron and with other virtual nodes. Several
methods can be applied to a CQCConnection object, of which the following are of use for our
work:

1. sendQubit(q, name), which sends qubit q to node name;

2. recvQubit(), which receives a qubit sent to this node;

3. sendClassical(name, msg), which opens a socket connection and sends msg (integer or
list of integers) to name;

4. recvClassical(), which receives a classical message sent to this node and closes the
socket connection.

32

The second tool from the Python CQC library that we use is the qubit object, which takes
as input the corresponding CQCConnection (allowing for communication with SimulaQron) and
is initialised to be in state |0〉. The useful methods for a qubit object are:

1. X(), which applies the X operator to the qubit

2. H(), which applies the Hadamard operator to the qubit

3. measure(), which measures the qubit and returns the outcome

For example, the following code corresponds to sending qubit q in state |1〉 to node “Bob”:

i n i t i a l i s e the connect ion
with CQCConnection (” A l i c e ”) as A l i c e :

the code
q = qubit (A l i c e)
q .X()
A l i c e . sendQubit (q , ”Bob”)

For a more explicit description of the possibilities of SimulaQron and the Python CQC
library, we refer the reader to the documentation [Sim].

Construction of the code

Our code is based on Protocol 3.1, 3.2, 4.1, and 4.2. Using the above methods provided by the
Python CQC library, we can implement the required quantum and classical information in the
protocol, as well as the manipulation of the qubits (i.e. the encoding of Alice’s random string
xA as qubits to be sent to Bob). In order to facilitate the computations in the code, Alice’s and
Bob’s strings (s_0, s_1, m_0, and m_1) are programmed as Python list objects. Furthermore,
during the protocol we print several messages to indicate that communication between Alice
and Bob has occurred. For the privacy amplification step we use random binary matrices to
serve as two-universal hash functions.

Additional methods for robust 1-2 OT

As explained in Section 4, in a realistic setting we may expect that the quantum channel is
noisy. In order to implement Protocol 4.2 for robust 1-2 ROT we therefore need to find a
way to deal with the errors induced by the channel. As explained, we have decided to work
with Reed-Solomon (RS) codes and use the reedsolo library [Fil]. We are aware that there
are more efficient encoding and decoding techniques available, such as sum-product decoding
for low-parity-density-check (LDPC) codes as introduced by [Gal62]. However, there is to the
best of our knowledge no suitable open-source implementation of such decoding algorithms
that could be easily extended to our setting. Moreover, our implementations are currently not
designed with the purpose to be as efficient as possible, and we do not intend to work with
very large values for the length of the encoded word. Therefore, we do not expect that using
the slightly less efficient Reed-Solomon coding techniques will introduce significant problems.

Furthermore, in order to simulate the noise in the quantum channel, we turn the setting
noisy-qubits on. However, as also mentioned in [DW18], SimulaQron currently does not
allow for an accurate simulation of noise. Although the setting noisy-qubits induces some
noise in the channel, and the level of noise can be somewhat monitored via the setting t1,
the resulting noise turned out to be unrealistic: the error-probability22 approaches 1

2 as the
number of qubits increases, which implies that the received information is completely random.

22Note that this error-probability is the probability parameter for the BSC model, as explained in Section 4.1.

33

Therefore, we have made a change to the underlying SimulaQron code by manually setting the
error-probability to be 1

10 , as this would be more plausible in a real setting.

6.2 Results

We have implemented both the idealised and the robust protocols for 1-2 ROT and 1-2 OT
in the noisy-storage model using SimulaQron. The code is written in Python and available on
GitHub. The source code can also be found in Appendix B. We emphasise that in order to
run our code both simulaqron and cqc need to be installed as specified in the SimulaQron
documentation [Sim].

Implementation of the idealised protocols

We have implemented Protocols 3.1 and 3.2 for 1-2 ROT and 1-2 OT, respectively, in the noisy-
storage model using SimulaQron. We have tested our code both in the setting of a noiseless
quantum channel and in the setting that Alice and Bob are connected by a noisy quantum
channel, which is simulated by turning the option noisy-qubits on and manually setting the
error-probability to be p = 1

10 . In the presence of noise, running our implementation of the
idealised protocol results in an incorrect output for Bob. So the idealised protocol breaks down
in a noisy setting. We provide a few examples of running our code.23

Example 6.1. The first example is our implementation of Protocol 3.1 for 1-2 ROT in the
idealised setting. 1-2 ROT is realised by the functions called Alice_ROT(l, n, waiting_time)

and Bob_ROT(c, l, n). Here, the length of the output lists is l = 10 and Bob holds choice
bit c = 0. We also set n = 100 and the waiting time in seconds between Step 2 and Step 3
is waiting_time = 2. Before starting the SimulaQron back, we set the maximal number of
qubits to 500, as we want to transmit n = 100 qubits (i.e. any other number greater or equal
to 100 would also work). We therefore run the following commands:

$ simulaqron s e t max−qub i t s 500
$ simulaqron s t a r t

We run the code in two separate Python processes,24 one for Alice and one for Bob.
In Alice’s terminal we run:

>>> Alice ROT (l =10, n=100 , wa i t ing t ime =2)

In Bob’s terminal we run:

>>> Bob ROT(c=0, l =10, n=100)

The resulting prints and outputs are illustrated in Figure 10. As the figure illustrates, Bob has
indeed received Alice’s output list s_0, corresponding to his choice bit c = 0.

Example 6.2. In our second example, we show our implementation of Protocol 3.2 for 1-2 OT
in the idealised setting.
For 1-2 OT, we wrote two functions called Alice_OT(m_0, m_1, l, n, waiting_time) and

23Note that our examples have the purpose to show the working of our implementations. In reality the number
n of transmitted qubits is very large, much larger than we will consider for our examples.

24Our code needs to be run in two separate Python processes in order to enable Alice and Bob to exchange
classical information via the sendClassical and recvClassical commands, because the sendClassical method
will wait until a socket is set up to a remote node and will wait forever if such a socket is never set up.
Nevertheless, starting the SimulaQron back end and changing the settings can be done from within one of the
two terminals.

34

https://github.com/lengelberts/simulaqron-qc.git

(a) Alice’s terminal (b) Bob’s terminal

Figure 10: 1-2 ROT for Alice and Bob. Alice receives two lists, s 0 and s 1. Bob holds choice
bit 0 and receives Alice’s output list s 0.

(a) Alice’s terminal (b) Bob’s terminal

Figure 11: 1-2 OT for Alice and Bob. Alice inputs m 0 and m 1. Bob holds choice bit 1 and
receives m 1.

Bob_OT(c, l, n). Again, we set l = 10, n = 100, and waiting_time = 2. However, Bob
now holds choice bit c = 1 and, since we will now run 1-2 OT, Alice holds two 10-bit lists
m_0 = [0,1,1,0,0,1,0,1,1,0] and m_1 = [0,1,1,1,0,1,1,0,1,1]. We use the same set-
tings as in Example 6.1.
In Alice’s terminal we now run:

>>> Alice OT (m 0 , m 1 , l =10, n=100 , wa i t ing t ime =2)

In the second Bob’s terminal we run:

>>> Bob OT(c=1, l =10, n=100)

The resulting prints and outputs are illustrated in Figure 11. As expected, Bob receives Alice’s
input list m_1, corresponding to his choice bit c = 1.

Example 6.3. In our third example, we show what happens when we run 1-2 ROT in a noisy-
setting. Hence, we use the functions Alice_ROT and Bob_ROT. We therefore first have to stop
the SimulaQron back end, change the settings, and then start the back end again. We do this
by typing the following commands:

$ simulaqron stop
$ simulaqron s e t noisy−qub i t s on
$ simulaqron s t a r t

35

(a) Alice’s terminal (b) Bob’s terminal

Figure 12: 1-2 ROT for Alice and Bob in a noisy setting. Alice receives two lists, s 0 and s 1.
Bob holds choice bit 0, but does not receive the same output as Alice’s output list s 0.

Note that this will automatically set the value for t1 to be 1. We use the same inputs as for
our first example. That is, c = 0, l = 10, n = 100, and waiting_time = 2.
From Python in Alice’s terminal, we run:

>>> Alice ROT (l =10, n=100 , wa i t ing t ime =2)

In the second terminal we run:

>>> Bob ROT(c=0, l =10, n=100)

The resulting prints and outputs are illustrated in Figure 12. However, the list received by Bob
does no longer correspond to Alice’s output list s_0. The present noise has affected the output.

Implementation of the robust protocol

In addition, we have considered the case for the robust protocol for 1-2 OT in the presence
of noise. We have therefore investigated the noise model that is used in SimulaQron (when
turning the option noisy-qubits on). As briefly explained before, we may manipulate the
error-probability via the setting t1, which represents the coherence time of the qubits: the
lower the value, the more noise is added to the channel [Sim]. Nevertheless, as we mentioned
before, the noise in the channel is unrealistic, regardless of how we tune t1, and thus we decided
to manually fix the error-probability to be p = 1

10 .
However, regardless of whether we allow noise in the channel or not, the implementation of

the robust protocol for 1-2 ROT turned out to be currently infeasible. More precisely, we wrote
the two functions Alice_robust_ROT and Bob_robust_ROT according to Protocol 4.2. Yet,
when we run the code, the Python terminals do no longer respond, which occurs more or less
halfway the information reconciliation part of the code. In order to find out what may cause
the problem, we have experimented with our code. In particular, we have provided a separate
code for the part of robust 1-2 ROT during which information reconciliation (i.e. according
to Protocol 4.1) is applied. The example below will illustrate that are code for information
reconciliation results in the expected outcome and is a working code. However, we note that we
obtain the same problem as when running our implementation of Protocol 4.2 if Alice runs her
code before Bob (i.e. before we have called the function for Bob). More precisely, the Python
terminal again stops responding. Nevertheless, as the code returns the desired outcomes in the
case that Bob first runs his code, we expect that the problem is not caused by our use of the
reedsolo library, but by something else.

36

From further experimenting with the code, we speculate that the problem is caused by the
way classical communication is achieved: via the methods sendClassical and recvClassical.
We recall from Section 6.1 that each time sendClassical is called by (say) Alice, a socket
connection is opened to Bob, which is only closed after Bob has received his message by
recvClassical. In fact, note that the information reconciliation protocol requires Alice to
send two more classical strings to Bob (i.e. the two m − n strings r0 and r1). Therefore, we
presume that the problem is caused by an imperfect opening or closing of the socket connection
between Alice and Bob during this additional classical information. However, we emphasise the
need to further investigate this encountered problem, in order to eventually realise our robust
1-2 ROT implementation.

Despite the fact that running the code currently does not work, we still provide the code of
our implementation of the robust protocol for 1-2 ROT in Appendix B. However, as previously
explained, we have been able to provide a running code for Protocol 4.1 which establishes the
information reconciliation part needed for robust 1-2 ROT. The two implemented functions
are called Alice_reconciliation and Bob_reconciliation. We provide an example of usage
below. Recall that for the setting of 1-2 ROT in a noisy quantum channel, when information
reconciliation is applied Alice has two strings x0 and x1, an Bob holds a string x̃c for his choise
bit c, say 0. In particular, we may assume that the noise in the quantum channel entails that
x̃c 6= x0. Hence, the task of information reconciliation is to achieve xc for c = 0.

Example 6.4. We illustrate our implementation of Protocol 4.1. Our implementation only
requires classical information to be transmitted, and hence we do not need to change any of
the default settings and can start SimulaQron immediately:

$ simulaqron s t a r t

Alice holds two binary lists of length 10: namely x_0 = [0,1,1,1,0,0,1,1,0,1] and x_1 =

[0,1,0,0,0,1,0,0,1,0]. Bob holds choice bit c = 0 and x_c = [0,1,1,0,0,0,1,0,0,1].
Note that the lists x_0 and x_c differ in two elements, since we assume that the quantum
channel is noisy. Moreover, Alice and Bob agree on m = 16. Recall that RS codes can correct
up to m−n

2 = 3 errors, i.e. we may expect that the reedsolo codes from [Fil] will be able to
correct the two errors on Bob’s x_c. Indeed, that is what we see below.
In Alice’s terminal we run:

>>> A l i c e r e c o n c i l i a t i o n (x 0 , x 1 , m=16, n=10)

In Bob’s terminal we run:

>>> B o b r e c o n c i l i a t i o n (c=0, x c , m=16, n=10)

The resulting prints and outputs are illustrated in Figure 13. As the figure illustrates, Bob
returns Alice’s input list x_0, corresponding to his choice bit c = 0.

37

(a) Alice’s terminal

(b) Bob’s terminal

Figure 13: An illustration of our information reconciliation implementation.

6.3 Discussion and implications

In the previous section we have provided the results of our implementations and some examples.
We will now, in more detail, discuss what these results entail.

Potential of SimulaQron

First of all, our implementations elucidate the potential of SimulaQron and some current limi-
tations. SimulaQron turns out to be an accessible platform for users to explore the possibilities
of a potential future quantum network. SimulaQron is written in Python and provides a Python
CQC library which consists of an extensive number of useful commands that facilitate the user
to simulate quantum communication and applying quantum operations. In particular, since a
version of this CQC interface is intended to be available on the expected quantum network in
the Netherlands in 2020 [DW18], software written for SimulaQron could possibly be extended
for use on this real quantum network.

In addition, recall that SimulaQron has been designed with the goal to provide a develop-
mental framework for writing and testing software for quantum-internet applications, among
which quantum cryptography. Despite some limitations, our results demonstrate the feasibility
of implementing 1-2 OT in SimulaQron, and hence the possibility of extending it to implement-
ing any other secure two-party computation protocol. Furthermore, since the quantum part of
the considered protocols is similar to that of the BB84 protocol [BB84] for QKD, our imple-
mentations also suggest the possibility of a QKD implementation in SimulaQron. Hence, our
results indicate the potential of using SimulaQron as environment for implementing quantum-
cryptographic protocols. In particular, our results show that SimulaQron could be used for
quantum-cryptographic implementations as long as a realistic time-dependent noise model is
not desired for testing and the user (i.e. the writer of the code) has sufficient programming expe-
rience. However, note that the security of SimulaQron itself is not comparable to the security of
a real quantum internet. Therefore, we emphasise that SimulaQron is intended as a framework
to develop software for quantum-internet applications such as quantum cryptography, and not
to actually use this software.

Nevertheless, we encountered two main problems for our implementations which explain
some limitations with respect to SimulaQron. Firstly, the methods provided by the Python
CQC library (sendClassical and recvClassical) to enable classical communication have
very limited possibilities. These methods merely allow us to transmit (lists of) integers and, for
example, no arrays or Python str objects. In addition, we speculate that the current way for

38

establishing a socket connection between any two nodes for classical communication is causing
the problem why our implementation of 1-2 ROT did not fully succeed. Although we are aware
that SimulaQron also allows for implementing one’s own socket connection [DW18], we consider
a built-in feature for classical communication essential, since many quantum-cryptographic
application will require the use of classical communication [DW18]. For these reasons, we
recommend further updating the possibilities of the Python CQC library to allow for more
realistic classical communication.

A second limitation was that noise is not accurately modelled by SimulaQron, as is also
explained in [DW18]. Although our results show that the noise model allows us to demon-
strate that protocols may break down in the case of a noisy quantum channel, the level of
noise it achieves is unrealistic, as we explained before. For this reason, it becomes difficult to
demonstrate the working of protocols in a noisy setting. Nevertheless, by manually setting the
error-probability to a certain (time-independent) level, we were able to get a more realistic level
of noise, and we may expect that this approach may be sufficient for future users as well.

Furthermore, we note that SimulaQron is still at a developmental stage: in the period of
this work SimulaQron has been updated from version 1.3 to version 3.0.3. The main diffi-
culties we encountered when using SimulaQron in general occurred during the installing of
SimulaQron and when updating to the newer versions. In particular, we encountered problems
when installing SimulaQron in Windows and hence recommend future users to avoid installing
SimulaQron in Windows, if possible. Moreover, one needs to be careful when using Simu-
laQron, since small typos could already force one to reset and restart SimulaQron. Although
these difficulties have provided significant obstacles during the process of writing our code, the
updated newer versions of SimulaQron also led to a more consistent and clearer documentation.
In addition, the frequent updates of SimulaQron forced us to be very aware of the any new
change in SimulaQron, which resulted in a deeper understanding of the working of SimulaQron
and its possibilities.

Quantum internet and quantum cryptography

Our implementations provide an illustration of performing the task of 1-2 OT over a poten-
tial quantum internet. Secure two-party computation is one of the potential applications of a
quantum internet [WEH18], and this thesis shows how such cryptographic applications may be
realised in a quantum network. Moreover, we may expect that our implementations might be
of use in a future quantum internet: the protocols on which our code is based are designed in
a relatively simple way and our code is written in Python, which is a well-known, high-level
language. Nevertheless, we speculate whether we would really need a quantum internet to im-
plement secure two-party computation. In particular, secure two-party computation is already
shown to be possible with QKD hardware (e.g. see [Erv+14]). Moreover, it is questionable
whether we really need a large-scale network in order to implement the considered protocols
in practice. In particular, it is reasonable to consider that secure two-party computation is
performed at a short distance [Ben+92b].

In particular, we have not only showed how the idealised setting of 1-2 OT (for the noisy-
storage model) can be implemented in a future quantum internet, but also considered a more
practical setting—that is, when the quantum communication is affected by noise. Although we
have not been able to run our code for robust 1-2 ROT in SimulaQron, we have demonstrated the
need for such protocols, since the idealised protocols break down in a noisy setting. Moreover,
having provided an explicit description of information reconciliation in the context of 1-2 OT
and a working code to establish it, we may expect that it will become feasible to eventually
implement (a version of) our code for robust 1-2 ROT in SimulaQron.

39

Other implications of our work

One of the benefits of our work is that our implementations are all publicly available on GitHub.
Also the decoding algorithm25 that we have chosen to use for the implementation of the robust
protocol is publicly accessible. This is in contrast to the (to our knowledge) currently existing
implementations of 1-2 OT (namely implemented using QKD hardware), for which the used
code are licensed and not publicly available. Therefore, our work is more easily accessible, and
could hence be used for future research in this direction and further improving the code.

Moreover, as our implementations are simple, clear, and publicly accessible, our work could
be used for learning purposes. More precisely, since we have explicitly described the steps in our
work and since our code is properly documented, it may be a good source for newcomers in the
field in order to explain both the working of SimulaQron (and hence a future quantum internet)
and of secure two-party computation in the setting of a noisy-quantum memory. Previous work,
such as in [Sch10] and [KWW12], provides a complete description of 1-2 OT in the noisy-storage
model, yet some steps are left away. Although these steps are trivial to experts in the field, our
work may be a valuable clarification for newcomers and outsiders. In addition, our code could
potentially be used to provide some more examples in the SimulaQron documentation, as the
documentation currently consists of a limited number of examples.

25However, we note that our code is most likely not optimal, since most techniques previously used are not
available for public use but are probably “better” in terms of efficiency. Therefore, we recommend to further
improve our code.

40

7 Conclusion

The two primary aims of this study were (i) to ascertain the suitability of the protocols of [Sch10]
for quantum-internet applications and (ii) to investigate the extent to which SimulaQron is an
adequate environment for implementing and analysing quantum-cryptographic protocols.

To the best of our knowledge we have provided the first implementations of quantum-
cryptographic protocols in SimulaQron. As a result, this thesis elucidates the potential of
SimulaQron and some of its limitations. In particular, our implementations show that Sim-
ulaQron may be a suitable environment for implementing quantum-cryptographic protocols,
and indicate some limitations that may be overcome in the future. In this way we contribute
to a further development of SimulaQron, but also to the current development of a quantum
internet. More precisely, we have illustrated how quantum cryptography may be established
on a future quantum internet. The analysis in our work may thereby be significant as quantum
cryptography is one of the expected applications of a future quantum internet. On the other
hand, we contributed to the field of quantum cryptography by providing a quantum-internet
simulation of protocols for 1-2 OT. Additionally, our work shows that the protocols provided
in [Sch10] are indeed adequate for quantum-internet applications and feasible to implement.

7.1 Future research

At the same time, our work results in several potential areas for future research.
Firstly, we emphasise that our code is currently not designed to be efficient, and hence

could be further optimised. In particular, future research may be devoted to improving the
decoding part in our implementations of robust 1-2 OT. In addition, it would be valuable
to further investigate why our code for robust 1-2 OT currently does not work, which may
become beneficial for the development SimulaQron as well. Moreover, as previously explained,
the current built-in client/server setup for classical communication in SimulaQron is quite
restrictive and inefficient, and hence we would advise to provide an improved feature.

Furthermore, it may be noteworthy to consider the simulation of possible adversarial attacks.
Although the security of the implemented protocols is already proven for the given parameters,
such an imitation of possible attacks may further clarify the setting of secure two-party com-
putation. This could prove useful for a better understanding of these protocols, but may also
explain to outsiders of the field the significance and relevance of such quantum-cryptographic
protocols.

Another significant research direction may be to compare our implementations with imple-
mentations of 1-2 OT using QKD hardware. Although our quantum-cryptographic implementa-
tions are (to the best of our knowledge) the first ones in the setting of a quantum internet, there
are already experimental implementations of 1-2 OT using QKD hardware (e.g. see [Erv+14]).
Therefore, it would be an interesting direction of future research to compare the performance
and feasibility of the implementations in both settings. However, it should be noted that—as
previously argued—SimulaQron does not allow for realistically compare the time performance,
and therefore we recommend to use another simulator (potentially NetSquid) to continue in
this direction.

Lastly, SimulaQron is to date and to our knowledge the only quantum-internet simula-
tor. However, as another simulation framework—i.e. NetSquid [Net]—is under development,
it would be interesting to compare SimulaQron’s working (and limitations) with NetSquid. In
particular, we have explained that although our results show that SimulaQron provides a suit-
able developmental framework for quantum-internet applications, it is not ideal. Therefore it
may be interesting to investigate whether NetSquid overcomes the limitations of SimulaQron.

41

Bibliography

[ALA18] Ebrahim Ardeshir-Larijani and Farhad Arbab. “Reo coordination model for sim-
ulation of quantum internet software”. In: Software Technologies: Applications
and Foundations. STAF 2018. Ed. by Manuel Mazzara, Iulian Ober, and Gwen
Salaün. Vol. 11176. Lecture Notes in Computer Science. Springer, Cham, 2018,
pp. 311–319. isbn: 9783030047702.

[BB84] C. H. Bennett and G. Brassard. “Quantum cryptography: Public key distribution
and coin tossing”. In: Proceedings of IEEE International Conference on Comput-
ers, Systems, and Signal Processing. Bangalore, 1984, pp. 175–179.

[BBR88] Charles H. Bennett, Gilles Brassard, and Jean-Marc Robert. “Privacy Amplifica-
tion by Public Discussion”. In: SIAM Journal on Computing 17.2 (1988), pp. 210–
229. doi: 10.1137/0217014.

[Ben+92a] Charles H. Bennett et al. “Experimental quantum cryptography”. In: Journal
of Cryptology 5.1 (1992), pp. 3–28. issn: 1432-1378. doi: 10.1007/BF00191318.
url: https://doi.org/10.1007/BF00191318.

[Ben+92b] Charles H. Bennett et al. “Practical quantum oblivious transfer”. In: vol. 576.
Springer Verlag, 1992, pp. 351–366. isbn: 9783540551881.

[Ben+93] Charles H. Bennett et al. “Teleporting an unknown quantum state via dual classi-
cal and Einstein-Podolsky-Rosen channels”. eng. In: Physical review letters 70.13
(1993). issn: 1079-7114.

[BS94] Gilles Brassard and Louis Salvail. “Secret-key reconciliation by public discussion”.
In: vol. 765. Springer Verlag, 1994, pp. 410–423. isbn: 9783540576006.

[BCS12] Harry Buhrman, Matthias Christandl, and Christian Schaffner. “Complete inse-
curity of quantum protocols for classical two-party computation”. In: Physical Re-
view Letters 109.16 (2012), p. 160501. doi: 10.1103/PhysRevLett.109.160501.
arXiv: 1201.0849v2.

[Cac+18] Angela Sara Cacciapuoti et al. “Quantum Internet: Networking Challenges in
Distributed Quantum Computing”. In: (Oct. 19, 2018). arXiv: 1810.08421v2

[quant-ph].

[CCB18] Marcello Caleffi, Angela Sara Cacciapuoti, and Giuseppe Bianchi. “Quantum in-
ternet: from communication to distributed computing!” In: (2018). arXiv: 1805.
04360v1.

[CW79] J.Lawrence Carter and Mark N. Wegman. “Universal classes of hash functions”.
In: Journal of Computer and System Sciences 18.2 (1979), pp. 143–154. doi:
10.1016/0022-0000(79)90044-8.

[Cas18] Davide Castelvecchi. “The quantum internet has arrived (and it hasn’t)”. In:
Nature 554 (2018), pp. 289–292. doi: 10.1038/d41586-018-01835-3.

[DW18] Axel Dahlberg and Stephanie Wehner. “SimulaQron—a simulator for developing
quantum internet software”. In: Quantum Science and Technology 4.1 (2018),
p. 015001. doi: 10.1088/2058-9565/aad56e.

[Dam+09] Ivan Damgaard et al. “Improving the Security of Quantum Protocols via Commit-
and-Open”. In: Advances in Cryptology - CRYPTO 2009, LNCS 5677, pages 408-
427 (Feb. 23, 2009). arXiv: 0902.3918v4 [quant-ph].

42

https://doi.org/10.1137/0217014
https://doi.org/10.1007/BF00191318
https://doi.org/10.1007/BF00191318
https://doi.org/10.1103/PhysRevLett.109.160501
http://arxiv.org/abs/1201.0849v2
http://arxiv.org/abs/1810.08421v2
http://arxiv.org/abs/1810.08421v2
http://arxiv.org/abs/1805.04360v1
http://arxiv.org/abs/1805.04360v1
https://doi.org/10.1016/0022-0000(79)90044-8
https://doi.org/10.1038/d41586-018-01835-3
https://doi.org/10.1088/2058-9565/aad56e
http://arxiv.org/abs/0902.3918v4

[Dam+05] Ivan B. Damg̊ard et al. “Cryptography in the bounded quantum-storage model”.
In: Proceedings of the 46th IEEE Symposium on Foundations of Computer Science
— FOCS 2005 (2005), pp. 449–458. arXiv: quant-ph/0508222v2.

[Dam+07] Ivan B. Damg̊ard et al. “A tight high-order entropic quantum uncertainty relation
With applications”. In: Advances in Cryptology — CRYPTO 2007. Vol. 4622.
Lecture Notes in Computer Science. Springer, Berlin, Heidelberg, 2007, pp. 360–
378. arXiv: quant-ph/0612014v2.

[Die82] Dennis Dieks. “Communication by EPR devices”. In: Physics Letters A 92.6
(1982), pp. 271–272. doi: 10.1016/0375-9601(82)90084-6.

[DS17] Yfke Dulek and Christian Schaffner. Information Theory. Lecture Notes. Univer-
sity of Amsterdam, Master of Logic. 2017.

[DLH17] Wolfgang Dür, Raphael Lamprecht, and Stefan Heusler. “Towards a quantum
internet”. In: European Journal of Physics 38.4 (2017), p. 043001. doi: 10.1088/
1361-6404/aa6df7.

[DM04] Stefan Dziembowski and Ueli Maurer. “On Generating the Initial Key in the
Bounded-Storage Model”. In: Advances in Cryptology - EUROCRYPT 2004. Ed.
by Christian Cachin and Jan L. Camenisch. Springer Berlin Heidelberg, 2004,
pp. 126–137. isbn: 1978-3-540-24676-3.

[EMMM11] David Elkouss, Jesus Martinez-Mateo, and Vicente Martin. “Information Recon-
ciliation for Quantum Key Distribution”. In: Quantum Information and Compu-
tation, 11.34 (2011). arXiv: 1007.1616v2 [quant-ph].

[Erv+14] Christopher Erven et al. “An experimental implementation of oblivious transfer
in the noisy storage model”. In: Nature Communications 5.1 (2014). doi: 10.
1038/ncomms4418.

[EGL82] Shimon Even, Oded Goldreich, and Abraham Lempel. “A randomized protocol
for signing contracts”. In: Advances in Cryptology-CRYPTO ’82. Plenum, 1982,
pp. 205–210.

[Fil] Tomer Filiba. reedsolo 0.3. url: https://pypi.org/project/reedsolo/.

[Gal62] Robert G. Gallager. “Low-density parity-check codes”. In: IRE Transactions on
Information Theory 8.1 (1962), pp. 21–28. issn: 0096-1000.

[GPCZ18] Ran Gelles, Anat Paskin-Cherniavsky, and Vassilis Zikas. Secure Two-Party Com-
putation over Unreliable Channels. Cryptology ePrint Archive, Report 2018/506.
https://eprint.iacr.org/2018/506. 2018.

[GV88] Oded Goldreich and Ronen Vainish. “How to solve any protocol problem - an effi-
ciency improvement (extended abstract)”. In: Advances in Cryptology — CRYPTO
’87. Ed. by Carl Pomerance. Vol. 293. Lecture Notes in Computer Science. Springer,
Berlin, Heidelberg, 1988, pp. 73–86. doi: 10.1007/3-540-48184-2_6.

[Got97] Daniel Gottesman. “Stabilizer Codes and Quantum Error Correction”. In: (May 28,
1997). arXiv: quant-ph/9705052v1 [quant-ph].

[GJC12] Daniel Gottesman, Thomas Jennewein, and Sarah Croke. “Longer-Baseline Tele-
scopes Using Quantum Repeaters”. In: Physical Review Letters 109.7 (2012). doi:
10.1103/physrevlett.109.070503.

43

http://arxiv.org/abs/quant-ph/0508222v2
http://arxiv.org/abs/quant-ph/0612014v2
https://doi.org/10.1016/0375-9601(82)90084-6
https://doi.org/10.1088/1361-6404/aa6df7
https://doi.org/10.1088/1361-6404/aa6df7
http://arxiv.org/abs/1007.1616v2
https://doi.org/10.1038/ncomms4418
https://doi.org/10.1038/ncomms4418
https://pypi.org/project/reedsolo/
https://eprint.iacr.org/2018/506
https://doi.org/10.1007/3-540-48184-2_6
http://arxiv.org/abs/quant-ph/9705052v1
https://doi.org/10.1103/physrevlett.109.070503

[JNN12] J.R. Johansson, P.D. Nation, and Franco Nori. “QuTiP: An open-source Python
framework for the dynamics of open quantum systems”. In: Computer Physics
Communications 183.8 (2012), pp. 1760–1772. doi: 10.1016/j.cpc.2012.02.
021.

[Kil88] Joe Kilian. “Founding cryptography on oblivious transfer”. In: Proceedings of the
Twentieth Annual ACM Symposium on Theory of Computing. STOC ’88. ACM,
1988, pp. 20–31. doi: 10.1145/62212.62215.

[Kim08] H. J. Kimble. “The quantum internet”. In: Nature 453 (2008), pp. 1023–1030.
doi: 10.1038/nature07127. arXiv: 0806.4195v1.

[Kóm+14] Peter Kómár et al. “A quantum network of clocks”. In: Nature Physics 10.8
(2014), pp. 582–587. doi: 10.1038/nphys3000.

[KWW12] Robert König, Stephanie Wehner, and Jürg Wullschleger. “Unconditional security
from noisy quantum storage”. In: IEEE Transactions on Information Theory 58.3
(2012), pp. 1962–1984. doi: 10.1109/TIT.2011.2177772. arXiv: 0906.1030v4.

[LC83] Shu Lin and Daniel J. Costello. Error Control Coding: Fundamentals and Appli-
cations. Prentice Hall, 1983. isbn: 013283796x.

[Lo97] Hoi-Kwong Lo. “Insecurity of quantum secure computations”. In: Physical Review
A 56.2 (1997), pp. 1154–1162. doi: 10.1103/PhysRevA.56.1154.

[LC97] Hoi-Kwong Lo and Hoi Fung Chau. “Is quantum bit commitment really possi-
ble?” In: Physical Review Letters 78.17 (1997), pp. 3410–3413. doi: 10.1103/
PhysRevLett.78.3410.

[Mac03] David J. C. MacKay. Information Theory, Inference and Learning Algorithms.
Cambridge University Pr., Sept. 1, 2003. isbn: 0521642981.

[May97] Dominic Mayers. “Unconditionally secure quantum bit commitment is impossi-
ble”. In: Physical Review Letters 78.17 (1997), pp. 3414–3417. doi: 10.1103/
PhysRevLett.78.3414.

[MT13] Rodney Meter and Joe Touch. “Designing quantum repeater networks”. In: IEEE
Communications Magazine 51.8 (2013), pp. 64–71. doi: 10.1109/mcom.2013.
6576340.

[Net] NetSquid. url: https://netsquid.org/.

[NC10] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum
Information. Cambridge University Pr., Dec. 1, 2010. isbn: 1107002176.

[Pyt] Python. url: https://www.python.org/.

[QuT] QuTech. Quantum Internet and Networked Computing. url: https://qutech.
nl/roadmap/quantum-internet/.

[Rab81] Michael O. Rabin. How to exchange secrets by oblivious transfer. Technical Report
TR-81. Harvard University, 1981.

[RS60] I. S. Reed and G. Solomon. “Polynomial Codes Over Certain Finite Fields”. In:
Journal of the Society for Industrial and Applied Mathematics 8.2 (1960), pp. 300–
304. doi: 10.1137/0108018.

[RSA78] R. L. Rivest, A. Shamir, and L. Adleman. “A method for obtaining digital sig-
natures and public-key cryptosystems”. In: Communications of the ACM 21.2
(1978), pp. 120–126. doi: 10.1145/359340.359342.

44

https://doi.org/10.1016/j.cpc.2012.02.021
https://doi.org/10.1016/j.cpc.2012.02.021
https://doi.org/10.1145/62212.62215
https://doi.org/10.1038/nature07127
http://arxiv.org/abs/0806.4195v1
https://doi.org/10.1038/nphys3000
https://doi.org/10.1109/TIT.2011.2177772
http://arxiv.org/abs/0906.1030v4
https://doi.org/10.1103/PhysRevA.56.1154
https://doi.org/10.1103/PhysRevLett.78.3410
https://doi.org/10.1103/PhysRevLett.78.3410
https://doi.org/10.1103/PhysRevLett.78.3414
https://doi.org/10.1103/PhysRevLett.78.3414
https://doi.org/10.1109/mcom.2013.6576340
https://doi.org/10.1109/mcom.2013.6576340
https://netsquid.org/
https://www.python.org/
https://qutech.nl/roadmap/quantum-internet/
https://qutech.nl/roadmap/quantum-internet/
https://doi.org/10.1137/0108018
https://doi.org/10.1145/359340.359342

[Sca+09] Valerio Scarani et al. “The Security of Practical Quantum Key Distribution”.
In: Reviews of Modern Physics 81.3 (2009), pp. 1301–1350. doi: 10 . 1103 /

RevModPhys.81.1301. arXiv: 0802.4155v3.

[Sch10] Christian Schaffner. “Simple protocols for oblivious transfer and secure identifi-
cation in the noisy-quantum-storage model”. In: Physical Review A 82.3 (2010),
p. 032308. doi: 10.1103/PhysRevA.82.032308. arXiv: 1002.1495v2.

[STW09] Christian Schaffner, Barbara M. Terhal, and Stephanie Wehner. “Robust cryp-
tography in the noisy-quantum-storage model”. In: Quantum Information and
Computation 9.11-12 (2009), pp. 963–996. arXiv: 0807.1333v3.

[Sha48] Claude E. Shannon. “A mathematical theory of communication”. eng. In: The
Bell System Technical Journal 27.3 (1948), pp. 379–423. issn: 0005-8580.

[Sho95] Peter W. Shor. “Polynomial-Time Algorithms for Prime Factorization and Dis-
crete Logarithms on a Quantum Computer”. In: SIAM J.Sci.Statist.Comput. 26
(1997) 1484 (Aug. 30, 1995). doi: 10.1137/S0097539795293172. arXiv: quant-
ph/9508027v2 [quant-ph].

[Sim] SimulaQron. url: http://simulaqron.org/.

[SHT18] Damian S. Steiger, Thomas Häner, and Matthias Troyer. “ProjectQ: an open
source software framework for quantum computing”. In: Quantum 2 (2018), p. 49.
doi: 10.22331/q-2018-01-31-49.

[TL17] Marco Tomamichel and Anthony Leverrier. “A largely self-contained and com-
plete security proof for quantum key distribution”. In: Quantum 1 (2017), p. 14.
doi: 10.22331/q-2017-07-14-14.

[Twi] Twisted. url: https://twistedmatrix.com/trac/.

[Weh08] Stephanie Wehner. “Cryptography in a Quantum World”. In: (2008). arXiv:
0806.3483v1 [quant-ph].

[WEH18] Stephanie Wehner, David Elkouss, and Ronald Hanson. “Quantum internet: a
vision for the road ahead”. In: Science 362.6412 (2018). doi: 10.1126/science.
aam9288.

[WST08] Stephanie Wehner, Christian Schaffner, and Barbara M. Terhal. “Cryptography
from noisy storage”. In: Physical Review Letters 100.22 (2008), p. 220502. doi:
10.1103/PhysRevLett.100.220502. arXiv: 0711.2895v3.

[Weh+10] Stephanie Wehner et al. “Implementation of two-party protocols in the noisy-
storage model”. eng. In: Physical Review A: Atomic, Molecular and Optical Physics
81 (2010), urn:issn:1050–2947. issn: 1050-2947.

[WZ82] William K. Wootters and Wojciech H. Zurek. “A single quantum cannot be
cloned”. In: Nature 299.5886 (1982), pp. 802–803. doi: 10.1038/299802a0.

[Yao82] Andrew C. Yao. “Protocols for secure computations”. In: 23rd Annual Symposium
on Foundations of Computer Science (sfcs 1982). IEEE, 1982. doi: 10.1109/
sfcs.1982.38.

[Zho+12] Zong-Quan Zhou et al. “Realization of Reliable Solid-State Quantum Memory
for Photonic Polarization Qubit”. In: Physical Review Letters 108.19 (2012). doi:
10.1103/physrevlett.108.190505.

45

https://doi.org/10.1103/RevModPhys.81.1301
https://doi.org/10.1103/RevModPhys.81.1301
http://arxiv.org/abs/0802.4155v3
https://doi.org/10.1103/PhysRevA.82.032308
http://arxiv.org/abs/1002.1495v2
http://arxiv.org/abs/0807.1333v3
https://doi.org/10.1137/S0097539795293172
http://arxiv.org/abs/quant-ph/9508027v2
http://arxiv.org/abs/quant-ph/9508027v2
http://simulaqron.org/
https://doi.org/10.22331/q-2018-01-31-49
https://doi.org/10.22331/q-2017-07-14-14
https://twistedmatrix.com/trac/
http://arxiv.org/abs/0806.3483v1
https://doi.org/10.1126/science.aam9288
https://doi.org/10.1126/science.aam9288
https://doi.org/10.1103/PhysRevLett.100.220502
http://arxiv.org/abs/0711.2895v3
https://doi.org/10.1038/299802a0
https://doi.org/10.1109/sfcs.1982.38
https://doi.org/10.1109/sfcs.1982.38
https://doi.org/10.1103/physrevlett.108.190505

A Probability theory

We define some basic notions of probability theory, using the definitions from [DS17].

Definition A.1. (Probability measure)
A probability measure P is a function P : Ω→ R≥0 such that∑

ω∈Ω

P(ω) = 1.

Definition A.2. (Probability space)
A (discrete) probability space is a triple (Ω,F ,P), where Ω is a non-empty sample space, F is
an event space, and P is a probability measure.

Definition A.3. (Random variable)
A discrete random variable X on a discrete probability space (Ω,F , P) is a function X : Ω→ X ,
where X is a (discrete) set.

Definition A.4. (Probability distribution)
Let X be a random variable on the set X . The probability distribution of X is a function
PX : X → [0, 1] defined as

PX(x) := P[X = x],

where X = x denotes the event {ω ∈ Ω|X(ω) = x}. Note that PX is often called the marginal
probability distribution of X.

Definition A.5. (Joint probability distribution)
Let X and Y be two random variables defined on the same probability space, with ranges
X and Y, respectively. The pair XY is a random variable and has probability distribution
PXY : X × Y → [0, 1] given by

PXY (x, y) := P[X = x, y = Y].

Definition A.6. (Conditional probability distribution)
If A is an even such that P [A] > 0, then we define the conditional probability distribution of
X given A by

PX|A(x) :=
P [X = x,A]

P [A]
.

If Y is another random variable and PY (y) > 0, then we write

PX|Y (x|y) := PX|Y =y(x) =
PXY (x, y)

PY (y)

for the conditional distribution of X given Y = y.

46

B Source code for implementations

We provide the source code for our implementations. The code is also available on GitHub,
click here.

Source code for the idealised 1-2 ROT protocol

1 from time import s l e e p
2 from numpy import matrix , random
3 from cqc . pythonLib import CQCConnection , qubit
4

5 de f Alice ROT (l , n=100 , wa i t ing t ime =2) :
6 ”””
7 Perform 1−2 ROT f o r A l i c e and return two random l i s t s o f l ength l .
8

9 Input arguments :
10 l −− i n t ege r , l ength o f output l i s t s (must be sma l l e r than n)
11 n −− i n t ege r , l ength o f i n i t i a l x A and y A (d e f a u l t 100)
12 wai t ing t ime −− i n t ege r , number o f seconds that A l i c e and Bob wait a f t e r
13 s tep 2 during the p ro to co l (d e f a u l t 2)
14

15 Output :
16 s 0 −− l i s t o f l b i t s
17 s 1 −− l i s t o f l b i t s
18 ”””
19 # Error handl ing .
20 i f l > n :
21 r a i s e Exception (” Input argument l cannot be g r e a t e r than n . ”)
22

23 # (Step 1)
24 # Al i c e randomly p i ck s x A and y A in {0 ,1}ˆn .
25 x A = [random . rand int (2) f o r i in range (n)]
26 y A = [random . rand int (2) f o r i in range (n)]
27

28 with CQCConnection (” A l i c e ”) as A l i c e :
29 # Al i c e sends n qub i t s (BB84 s t a t e s) to Bob .
30 f o r i in range (n) :
31 q = qubit (A l i c e)
32 i f x A [i] == 1 :
33 q .X()
34 i f y A [i] == 1 :
35 q .H()
36 Al i c e . sendQubit (q , ”Bob”)
37 pr in t (” A l i c e has sent {} qub i t s to Bob . ” . format (n))
38

39 # Wait .
40 pr in t (”Both p a r t i e s wait {} seconds . ” . format (wa i t ing t ime))
41 s l e e p (wa i t ing t ime)
42

43 #(Step 3)
44 # Al i c e sends y A to Bob .
45 Al i c e . s e n d C l a s s i c a l (”Bob” , y A)
46 pr in t (” A l i c e has sent y A to Bob . ”)
47

48 #(Step 4)
49 # Al i c e r e c e i v e s I 0 and I 1 from Bob .
50 data0 = Al i c e . r e c v C l a s s i c a l ()
51 I 0 = l i s t (data0)
52 data1 = Al i c e . r e c v C l a s s i c a l ()

47

https://github.com/lengelberts/simulaqron-qc.git

53 I 1 = l i s t (data1)
54

55 # (Step 5)
56 # Al i c e randomly p i ck s two two−u n i v e r s a l (lxn) hash f u n c t i o n s
57 # f 0 , f 1 and sends them to Bob .
58 f 0 = [[random . rand int (2) f o r i in range (n)] f o r j in range (l)]
59 f 1 = [[random . rand int (2) f o r i in range (n)] f o r j in range (l)]
60 f o r i in range (l) :
61 Al i c e . s e n d C l a s s i c a l (”Bob” , f 0 [i])
62 pr in t (” A l i c e has sent f 0 . ”)
63 f o r i in range (l) :
64 Al i c e . s e n d C l a s s i c a l (”Bob” , f 1 [i])
65 pr in t (” A l i c e has sent f 1 . ”)
66 # Construct x 0 = x A | I 0 and x 1 = x A | I 1 .
67 x 0 = []
68 f o r i in I 0 :
69 x 0 . append (x A [i])
70 f o r i in range (l en (x A) − l en (I 0)) :
71 x 0 . append (0)
72 x 1 = []
73 f o r i in I 1 :
74 x 1 . append (x A [i])
75 f o r i in range (l en (x A) − l en (I 1)) :
76 x 1 . append (0)
77 # Trans late x 0 and x 1 in to a numpy nx1 matrix f o r computation .
78 x 0 = matrix (x 0) . t ranspose ()
79 x 1 = matrix (x 1) . t ranspose ()
80 # Al i c e computes s 0 = f 0 (x 0) and s 1 = f 1 (x 1) .
81 s 0 = f 0 ∗x 0 % 2
82 s 0 = [s 0 [i , 0] f o r i in range (l en (s 0))]
83 s 1 = f 1 ∗x 1 % 2
84 s 1 = [s 1 [i , 0] f o r i in range (l en (s 1))]
85

86 pr in t (” A l i c e outputs s 0 and s 1 . ”)
87 r e turn s 0 , s 1

Listing 1: 1-2 ROT for Alice

1 from numpy import matrix , random
2 from cqc . pythonLib import CQCConnection
3

4 de f Bob ROT(c , l , n=100) :
5 ”””
6 Perform 1−2 ROT f o r Bob and return l i s t s c o f l ength l without r e v e a l i n g c .
7

8 Input arguments :
9 c −− i n t e g e r 0 or 1 , Bob ’ s cho i c e b i t c

10 l −− i n t ege r , l ength o f output l i s t (must be sma l l e r than n)
11 n −− i n t ege r , l ength o f i n i t i a l y B (d e f a u l t 100)
12

13 Output :
14 s c −− l i s t o f l b i t s cor re spond ing to l i s t s c returned by Al i c e
15 ”””
16 # Error handl ing .
17 i f c != 0 and c != 1 :
18 r a i s e Exception (” Input argument c must be e i t h e r 0 or 1 . ”)
19 i f l > n :
20 r a i s e Exception (” Input argument l cannot be g r e a t e r than n . ”)
21

22 # (Step 2)
23 # Bob randomly p i ck s y B in {0 ,1}ˆn .
24 y B = [random . randint (2) f o r i in range (n)]

48

25

26 with CQCConnection (”Bob”) as Bob :
27 # Bob measures the i t h r e c e i v e d qubit in b a s i s y B [i]
28 # and obta ins outcome x B , a l i s t o f l ength n .
29 x B = []
30 f o r i in range (n) :
31 q = Bob . recvQubit ()
32 i f y B [i] == 1 :
33 q .H()
34 m = q . measure ()
35 x B . append (m)
36

37 # Wait .
38

39 # (Step 3)
40 # Bob r e c e i v e s y A from Al i c e .
41 b a s i s i n f o = Bob . r e c v C l a s s i c a l ()
42 y A = l i s t (b a s i s i n f o)
43

44 # (Step 4)
45 # Bob forms the s e t s I c and I c b a r .
46 I c = []
47 I c b a r = []
48 f o r i in range (n) :
49 i f y A [i] == y B [i] :
50 I c . append (i)
51 e l s e :
52 I c b a r . append (i)
53 # Bob sends I 0 and I 1 to A l i c e .
54 i f c == 0 :
55 I 0 = I c
56 I 1 = I c b a r
57 e l s e :
58 I 0 = I c b a r
59 I 1 = I c
60 Bob . s e n d C l a s s i c a l (” A l i c e ” , I 0)
61 pr in t (”Bob has sent I 0 . ”)
62 Bob . s e n d C l a s s i c a l (” A l i c e ” , I 1)
63 pr in t (”Bob has sent I 1 . ”)
64

65 # (Step 5)
66 # Bob r e c e i v e s f 0 and f 1 from Al i c e .
67 # Here , f i i s a l i s t o f l l i s t s o f s i z e n .
68 f 0 = []
69 f o r i in range (l) :
70 data0 = Bob . r e c v C l a s s i c a l ()
71 f 0 . append (l i s t (data0))
72 f 1 = []
73 f o r i in range (l) :
74 data1 = Bob . r e c v C l a s s i c a l ()
75 f 1 . append (l i s t (data1))
76

77 # (Step 6)
78 # Construct x c = x B | I c .
79 x c = []
80 f o r i in I c :
81 x c . append (x B [i])
82 f o r i in range (l en (x B) − l en (I c)) :
83 x c . append (0)
84 # Trans late x c in to a numpy nx1 matrix f o r computation .
85 x c = matrix (x c) . t ranspose ()
86 # Bob computes s c = f c (x c) .

49

87 i f c == 0 :
88 f c = f 0
89 e l s e :
90 f c = f 1
91 s c = f c ∗ x c % 2
92 s c = [s c [i , 0] f o r i in range (l en (s c))]
93

94 pr in t (”Bob outputs s c . ”)
95 r e turn s c

Listing 2: 1-2 ROT for Bob

Source code for the idealised 1-2 OT protocol

1 from cqc . pythonLib import CQCConnection
2 from Alice ROT import Alice ROT
3

4 de f Alice OT (m0, m1, l , n=100 , wa i t ing t ime =2) :
5 ”””
6 Perform 1−2 OT f o r Al ice , without r e v e a l i n g A l i c e ’ s other input l i s t to Bob .
7

8 Input arguments :
9 m0 −− l i s t o f l ength l c o n s i s t i n g o f 0 s and 1 s

10 m1 −− l i s t o f l ength l c o n s i s t i n g o f 0 s and 1 s
11 l −− i n t ege r , l ength o f input l i s t s (must be sma l l e r than n)
12 n −− i n t ege r , l ength o f n f o r ROT (d e f a u l t 100)
13 wai t ing t ime −− i n t ege r , number o f seconds that A l i c e and Bob wait a f t e r
14 s tep 2 during the p ro to co l f o r 1−2 ROT (d e f a u l t 2)
15

16 There i s no output .
17 ”””
18 # Error handl ing .
19 i f l > n :
20 r a i s e Exception (” Input argument l cannot be g r e a t e r than n . ”)
21

22 # (Step 1)
23 # Al i c e runs 1−2 ROT.
24 s0 , s1 = Alice ROT (l , n , wa i t ing t ime)
25

26 # (Step 2)
27 # Al i c e sends (m0 XOR s0) and (m1 XOR s1) to Bob .
28 xor 0 = []
29 xor 1 = []
30 f o r i in range (l) :
31 xor 0 . append ((m0[i] + s0 [i]) %2)
32 xor 1 . append ((m1[i] + s1 [i]) %2)
33 with CQCConnection (” A l i c e ”) as A l i c e :
34 Al i c e . s e n d C l a s s i c a l (”Bob” , xor 0)
35 Al i c e . s e n d C l a s s i c a l (”Bob” , xor 1)
36

37 pr in t (” A l i c e i s f i n i s h e d . ”)

Listing 3: 1-2 OT for Alice

50

1 from cqc . pythonLib import CQCConnection
2 from Bob ROT import Bob ROT
3

4 de f Bob OT(c , l , n=100) :
5 ”””
6 Perform 1−2 OT f o r Bob and return Al i c e ’ s input l i s t m c without r e v e a l i n g c

.
7

8 Input arguments :
9 c −− i n t e g e r 0 or 1 , Bob ’ s cho i c e b i t c

10 l −− i n t ege r , l ength o f output l i s t s (must be sma l l e r than n)
11 n −− i n t ege r , l ength o f n f o r ROT (d e f a u l t 100)
12

13 Output :
14 m c −− l i s t o f l b i t s cor re spond ing to A l i c e ’ s input l i s t m c
15 ”””
16 # Error handl ing .
17 i f c != 0 and c != 1 :
18 r a i s e Exception (” Input argument c must be e i t h e r 0 or 1 . ”)
19 i f l > n :
20 r a i s e Exception (” Input argument l cannot be g r e a t e r than n . ”)
21

22 # (Step 1)
23 # Bob runs 1−2 ROT.
24 s c = Bob ROT(c , l , n)
25

26 # (Step 3)
27 # Bob r e c e i v e s (m0 XOR s0) and (m1 XOR s1) from Al i c e .
28 with CQCConnection (”Bob”) as Bob :
29 data0 = Bob . r e c v C l a s s i c a l ()
30 xor 0 = l i s t (data0)
31 data1 = Bob . r e c v C l a s s i c a l ()
32 xor 1 = l i s t (data1)
33

34 # Bob computes m c .
35 i f c == 0 :
36 xor c = xor 0
37 e l s e :
38 xor c = xor 1
39 m c = []
40 f o r i in range (l) :
41 m c . append ((s c [i] + xor c [i]) %2)
42

43 pr in t (”Bob outputs m c . ”)
44 r e turn m c

Listing 4: 1-2 OT for Bob

Source code for information reconciliation during robust 1-2 ROT

1 from cqc . pythonLib import CQCConnection
2 import r e e d s o l o
3

4 de f A l i c e r e c o n c i l i a t i o n (x 0 , x 1 , m, n) :
5 ”””
6 Perform Al i c e ’ s part o f r e c o n c i l i a t i o n f o r 1−2 ROT protoco l , us ing RS codes .
7

8 Input arguments :
9 x 0 −− l i s t o f l ength n c o n s i s t i n g o f b i t s

10 x 1 −− l i s t o f l ength n c o n s i s t i n g o f b i t s

51

11 m −− i n t ege r , l ength o f input l i s t s x 0 and x 1
12 n −− i n t ege r , l ength o f input l i s t s x 0 and x 1
13

14 A message i s p r in ted when Al i c e i s f i n i s h e d . There i s no output .
15

16 NOTE: the number o f e r r o r s that can be c o r r e c t e d i s <= (m−n/2)
17 ”””
18 # Error handl ing .
19 i f l en (x 0) != l en (x 1) :
20 r a i s e Exception (” Inputs x 0 and x 1 must be o f the same length . ”)
21 i f n != l en (x 0) :
22 r a i s e Exception (” Input n must be the same length as x 0 and x 1 ”)
23

24 # I n i t i a l i s e code .
25 r s = r e e d s o l o . RSCodec (m−n)
26

27 enc 0 = r s . encode (x 0)
28 enc 1 = r s . encode (x 1)
29 r ed 0 = enc 0 [n :]
30 r ed 1 = enc 1 [n :]
31

32 # Send red 0 and red 1 to Bob .
33 with CQCConnection (” A l i c e ”) as A l i c e :
34 Al i c e . s e n d C l a s s i c a l (”Bob” , red 0)
35 Al i c e . s e n d C l a s s i c a l (”Bob” , red 1)
36

37 pr in t (” A l i c e i s f i n i s h e d . ”)
38 r e turn

Listing 5: information reconciliation for Alice

1 from cqc . pythonLib import CQCConnection
2 import r e e d s o l o
3

4 de f B o b r e c o n c i l i a t i o n (c , x c , m, n) :
5 ”””
6 Perform Bob ’ s part o f r e c o n c i l i a t i o n f o r 1−2 ROT protoco l , us ing RS codes .
7

8 Input arguments :
9 c −− i n t ege r , Bob ’ s cho i c e b i t

10 x c −− l i s t o f l ength n c o n s i s t i n g o f b i t s
11 m −− i n t ege r , l ength o f input l i s t s x 0 and x 1
12 n −− i n t ege r , l ength o f input l i s t s x 0 and x 1
13

14 Output argument :
15 x cor −− l i s t o f l ength n , c o r r e c t e d v e r s i on o f x c (Bob ’ s e s t imate

f o r A l i c e ’ s x c)
16

17 NOTE: the number o f e r r o r s that can be c o r r e c t e d i s <= (m−n/2)
18 ”””
19 # Error handl ing .
20 i f c != 0 and c != 1 :
21 r a i s e Exception (” Input c must be e i t h e r 0 or 1 . ”)
22 i f n != l en (x c) :
23 r a i s e Exception (” Input n must be the same length as x c ”)
24

25 # I n i t i a l i s e code .
26 r s = r e e d s o l o . RSCodec (m−n)
27

28 # Receive red 0 and red 1 from Al i c e .
29 with CQCConnection (”Bob”) as Bob :
30 r ed 0 = Bob . r e c v C l a s s i c a l ()

52

31 r ed 1 = Bob . r e c v C l a s s i c a l ()
32

33 i f c == 0 :
34 r ed c = red 0
35 e l s e :
36 r ed c = red 1
37

38 # Error c o r r e c t i o n .
39 enc B = x c + l i s t (r ed c)
40 x cor = r s . decode (enc B)
41

42 r e turn l i s t (x co r)

Listing 6: information reconciliation for Bob

Source code for the robust 1-2 ROT protocol

1 from time import s l e e p
2 from numpy import matrix , random
3 from cqc . pythonLib import CQCConnection , qubit
4 import r e e d s o l o
5

6 de f Alice robust ROT (l , n=20, m=30, wa i t ing t ime =2) :
7 ”””
8 Perform robust 1−2 ROT f o r A l i c e and return two random s t r i n g s o f l ength l .
9

10 Input arguments :
11 l −− i n t ege r , l ength o f output l i s t s (must be sma l l e r than n)
12 n −− i n t ege r , l ength o f x A and y A (d e f a u l t 20 < m)
13 m −− i n t ege r , l ength o f RS encoded l i s t s (d e f a u l t 30)
14 wai t ing t ime −− i n t ege r , number o f seconds that A l i c e and Bob wait a f t e r
15 s tep 3 during the p ro to co l (d e f a u l t 2)
16

17 Output :
18 s 0 −− l i s t o f l b i t s
19 s 1 −− l i s t o f l b i t s
20

21 Encoding i s handled v ia r e e d s o l o .
22 NOTE: We can c o r r e c t up to (m−n) /2 e r r o r s with RS encoding / decoding .
23 ”””
24 # Error handl ing .
25 i f l > n :
26 r a i s e Exception (” Input argument l cannot be g r e a t e r than n . ”)
27 i f n > m:
28 r a i s e Exception (” Input argument n cannot be g r e a t e r than m. ”)
29

30 # (Step 1)
31 # Al i c e randomlys p i ck s x A and y B in {0 ,1}ˆn .
32 x A = [random . rand int (2) f o r i in range (n)]
33 y A = [random . rand int (2) f o r i in range (n)]
34

35 with CQCConnection (” A l i c e ”) as A l i c e :
36 # (Step 3)
37 # Al i c e sends each send x A [i] encoded in b a s i s y A [i] to Bob .
38 f o r i in range (n) :
39 q = qubit (A l i c e)
40 i f x A [i] == 1 :
41 q .X()
42 i f y A [i] == 1 :

53

43 q .H()
44 Al i c e . sendQubit (q , ”Bob”)
45 pr in t (” A l i c e has sent {} (random) qub i t s to Bob . ” . format (n))
46

47 # Wait .
48 pr in t (”Both p a r t i e s wait {} seconds . ” . format (wa i t ing t ime))
49 s l e e p (wa i t ing t ime)
50

51 # (Step 4)
52 # Al i c e sends y A to Bob .
53 Al i c e . s e n d C l a s s i c a l (”Bob” , y A)
54 pr in t (” A l i c e has sent y A to Bob . ”)
55

56 # (Step 5)
57 # Al i c e r e c e i v e s I 0 and I 1 from Bob .
58 data0 = Al i c e . r e c v C l a s s i c a l ()
59 I 0 = l i s t (data0)
60 data1 = Al i c e . r e c v C l a s s i c a l ()
61 I 1 = l i s t (data1)
62

63 # (Step 6)
64 # Al i c e randomly p i ck s two two−u n i v e r s a l (lxn) hash f u n c t i o n s
65 # f 0 , f 1 and sends them to Bob .
66 f 0 = [[random . rand int (2) f o r i in range (n)] f o r j in range (l)]
67 f 1 = [[random . rand int (2) f o r i in range (n)] f o r j in range (l)]
68 f o r i in range (l) :
69 Al i c e . s e n d C l a s s i c a l (”Bob” , f 0 [i])
70 pr in t (” A l i c e has sent f 0 . ”)
71 f o r i in range (l) :
72 Al i c e . s e n d C l a s s i c a l (”Bob” , f 1 [i])
73 pr in t (” A l i c e has sent f 1 . ”)
74

75 # Al i c e c o n s t r u c t s x 0 = x A | I 0 and x 1 = x A | I 1 .
76 x 0 = []
77 f o r i in I 0 :
78 x 0 . append (x A [i])
79 f o r i in range (l en (x A) − l en (I 0)) :
80 x 0 . append (0)
81 x 1 = []
82 f o r i in I 1 :
83 x 1 . append (x A [i])
84 f o r i in range (l en (x A) − l en (I 1)) :
85 x 1 . append (0)
86

87 # Informat ion r e c o n c i l i a t i o n part :
88 # Al i c e sends red 0 and red 1 to Bob .
89 # I n i t i a l i s e RS code .
90 r s = r e e d s o l o . RSCodec (m−n)
91 # Al i c e encodes x 0 and x 1 and forms red 0 , red 0 c o n s i s t i n g
92 # of the l a s t (m−n) ” redundancy” b i t s o f the encoded l i s t s .
93 enc 0 = r s . encode (x 0)
94 enc 1 = r s . encode (x 1)
95 r ed 0 = enc 0 [n :] # n i s l ength o f x 0 and x 1
96 r ed 1 = enc 1 [n :]
97 Al i c e . s e n d C l a s s i c a l (”Bob” , red 0)
98 pr in t (” A l i c e has sent red 0 . ”)
99 Al i c e . s e n d C l a s s i c a l (”Bob” , red 1)

100

101 # Trans late x 0 and x 1 in to a numpy nx1 matrix f o r computation .
102 x 0 = matrix (x 0) . t ranspose ()
103 x 1 = matrix (x 1) . t ranspose ()
104 # Al i c e computes s 0 = f 0 (x 0) and s 1 = f 1 (x 1) .

54

105 s 0 = f 0 ∗x 0 % 2
106 s 0 = [s 0 [i , 0] f o r i in range (l en (s 0))]
107 s 1 = f 1 ∗x 1 % 2
108 s 1 = [s 1 [i , 0] f o r i in range (l en (s 1))]
109

110 pr in t (” A l i c e outputs s 0 and s 1 . ”)
111

112 r e turn s 0 , s 1

Listing 7: robust 1-2 ROT for Alice

1 from numpy import matrix , random
2 from cqc . pythonLib import CQCConnection
3 import r e e d s o l o
4

5 de f Bob robust ROT (c , l , n=20, m=30) :
6 ”””
7 Perform robust 1−2 ROT f o r Bob and return s t r i n g s c o f l ength l without

r e v e a l i n g c .
8

9 Input arguments :
10 c −− i n t e g e r 0 or 1 , Bob ’ s cho i c e b i t c
11 l −− i n t ege r , l ength o f output l i s t s (must be sma l l e r than n)
12 n −− i n t ege r , l ength o f y B (d e f a u l t 20 < m)
13 m −− i n t ege r , l ength o f RS encoded l i s t s (d e f a u l t 30)
14

15 Output :
16 s c −− l i s t o f l b i t s cor re spond ing to l i s t s c returned by Al i c e
17

18 Encoding and decoding i s handled v ia r e e d s o l o .
19 NOTE: We can c o r r e c t up to (m−n) /2 e r r o r s with RS encoding / decoding .
20 ”””
21 # Error handl ing .
22 i f c != 0 and c != 1 :
23 r a i s e Exception (” Input argument c must be e i t h e r 0 or 1 . ”)
24 i f l > n :
25 r a i s e Exception (” Input argument l cannot be g r e a t e r than n . ”)
26 i f n > m:
27 r a i s e Exception (” Input argument n cannot be g r e a t e r than m. ”)
28

29 # (Step 2)
30 # Bob randomly p i ck s y B in {0 ,1}ˆn .
31 y B = [random . randint (2) f o r i in range (n)]
32

33 with CQCConnection (”Bob”) as Bob :
34 # (Step 3)
35 # Bob measures the i t h incoming qubit in b a s i s cor re spond ing to y B [i]
36 # and obta ins outcome x B , a l i s t o f l ength n .
37 x B = []
38 f o r i in range (n) :
39 q = Bob . recvQubit ()
40 i f y B [i] == 1 :
41 q .H()
42 m = q . measure ()
43 x B . append (m)
44

45 #Wait .
46

47 # (Step 4)
48 # Bob r e c e i v e s y A from Al i c e .
49 b a s i s i n f o = Bob . r e c v C l a s s i c a l ()
50 y A = l i s t (b a s i s i n f o)

55

51

52 # (Step 5)
53 # Bob forms the s e t s I c and I c b a r .
54 I c = []
55 I c b a r = []
56 f o r i in range (n) :
57 i f y A [i] == y B [i] :
58 I c . append (i)
59 e l s e :
60 I c b a r . append (i)
61 # Bob sends I 0 and I 1 to A l i c e .
62 i f c == 0 :
63 I 0 = I c
64 I 1 = I c b a r
65 e l s e :
66 I 0 = I c b a r
67 I 1 = I c
68 Bob . s e n d C l a s s i c a l (” A l i c e ” , I 0)
69 pr in t (”Bob has sent I 0 . ”)
70 Bob . s e n d C l a s s i c a l (” A l i c e ” , I 1)
71 pr in t (”Bob has sent I 1 . ”)
72

73 # (Step 6)
74 # Bob r e c e i v e s f 0 , f 1 from Al i c e .
75 # Here , f i i s a l i s t o f l l i s t s o f s i z e n .
76 f 0 = []
77 f o r i in range (l) :
78 data0 = Bob . r e c v C l a s s i c a l ()
79 f 0 . append (l i s t (data0))
80 f 1 = []
81 f o r i in range (l) :
82 data1 = Bob . r e c v C l a s s i c a l ()
83 f 1 . append (l i s t (data1))
84

85 # (Step 7)
86 # Bob c o n s t r u c t s x c = x B | I c .
87 x c = []
88 f o r i in I c :
89 x c . append (x B [i])
90 f o r i in range (l en (x B) − l en (I c)) :
91 x c . append (0)
92

93 # Bob r e c e i v e s red 0 and red 1 from Al i c e .
94 r ed 0 = Bob . r e c v C l a s s i c a l ()
95 pr in t (”Bob r e c e i v e d red 0 . ”)
96 r ed 1 = Bob . r e c v C l a s s i c a l ()
97 pr in t (”Bob r e c e i v e d red 1 . ”)
98

99 # I n i t i a l i s e f c and red c .
100 i f c ==0:
101 f c = f 0
102 r ed c = red 0
103 e l s e :
104 f c = f 1
105 r ed c = red 1
106

107 # Informat ion r e c o n c i l i a t i o n part :
108 # Bob c o r r e c t s e r r o r s on x B | I c and output est imated s c h a t .
109 # I n i t i a l i s e RS code .
110 r s = r e e d s o l o . RSCodec (m−n)
111 # Bob c o r r e c t s e r r o r s .
112 enc B = x c + l i s t (r ed c)

56

113 x cor = r s . decode (enc B)
114 x cor = l i s t (x co r)
115

116 # Trans late x c in to a numpy nx1 matrix .
117 x cor = matrix (x cor) . t ranspose ()
118 # Bob computes s c h a t = f c (x cor) .
119 s c h a t = f c ∗ x cor % 2
120 s c h a t = [s c h a t [i , 0] f o r i in range (l en (s c h a t))]
121

122 pr in t (”Bob outputs s c h a t . ”)
123

124 r e turn s c h a t

Listing 8: robust 1-2 ROT for Bob

57

	Introduction
	Background to quantum theory
	1-2 oblivious transfer in the noisy-storage model
	Additional assumptions
	Security in the noisy-storage model
	Protocol for 1-2 OT

	Error correction and robust 1-2 OT
	Noisy communication channel
	Information reconciliation
	Robust protocol for 1-2 OT

	Quantum internet and SimulaQron
	Significance and applications of a quantum internet
	Towards the realisation of a large-scale quantum network
	Simulating quantum internet: SimulaQron

	Implementation of the protocols
	Methods
	Results
	Discussion and implications

	Conclusion
	Future research

	Bibliography
	Probability theory
	Source code for implementations

