Introduction 000	Hamming Quasi-Cyclic	Chosen Ciphertext Attack 000000000	Oracle with SCA 00000000	Countermeasure 000	

A new Key Recovery Side-Channel Attack on HQC with Chosen Ciphertext

Guillaume Goy & Antoine Loiseau & Phillipe Gaborit

CEA Grenoble & University of Limoges

PQcrypto 2022

Introduction •00	Hamming Quasi-Cyclic	Chosen Ciphertext Attack 000000000	Oracle with SCA 00000000	Countermeasure 000	
	1.1				

Introduction

- HQC is a code-based candidate (NIST PQC 4th round)
- SCA protection could be a criteria for standardization
- Decoders are knonwn to be vulnerable against SCA

Chosen Ciphertext Attack

Oracle with SCA

ountermeasure

Conclusion O

3 / 35

State of the Art, SCA against HQC

	Ref	Year	Туре	Nb. of Traces	Target
–	[PT19]	2019	TA	400.000.000	sk
	[WTBB ⁺ 20]	2020	TA	6.000	sk
	[SRSWZ20]	2020	CCA	20.000	sk
	[Sch22, GHJ ⁺ 21]	2021	TA	pprox 850.000	sk
IR.	[GLG22]	2022	Horizontal	1	message
R S	[SHR ⁺ 22]	2022	CCA	50.000	sk
	Our attack	2022	CCA	20.000	sk

• Requierement: Static Secret Key Use

Introduction	Hamming Quasi-Cyclic	Chosen Ciphertext Attack 000000000	Oracle with SCA 00000000	Countermeasure 000	

Notations I

Support of a vector

The support Supp(**x**) of a vector $\mathbf{x} = (x_0, \dots, x_{n-1})$ is the location of its non-zero coordinates.

$$\mathsf{Supp}(\mathbf{x}) = \{i \in \mathbb{Z} \mid x_i \neq 0\}$$

Hamming weight

The hamming weight wt(**x**) of a vector $\mathbf{x} = (x_0, \dots, x_{n-1})$ is the number of non-zero coordinates in **x**.

$$\mathsf{wt}(\mathbf{x}) = \# \{ i \in \mathbb{Z} \mid x_i \neq 0 \} = \# \mathsf{Supp}(\mathbf{x})$$

Chosen Ciphertext Attack

Oracle with SCA

Countermeasure

Conclusion O

Hamming Quasi-Cyclic (HQC) Framework

Figure: HQC PKE Framework

Oracle with SCA 00000000

HQC-PKE Algorithms

$$\mathcal{R} = \mathbb{F}_2[X]/(X^n - 1), \ \mathcal{R}_\omega = \{\mathbf{x} \in \mathcal{R} \mid \mathsf{wt}(\mathbf{x}) = \omega\}$$

Algorithm Keygen	Algorithm Encrypt
Input: param	Input: (pk, m), param
Output: (pk, sk)	Output: ciphertext c
1: $\mathbf{h} \stackrel{\$}{\leftarrow} \mathcal{R}_{\perp}$	1: $\mathbf{e} \xleftarrow{\$} \mathcal{R}_{\omega_{e}}$
2: $(\mathbf{x},\mathbf{y}) \xleftarrow{\$} \mathcal{R}^2_\omega$	2: $(\mathbf{r}_1, \mathbf{r}_2) \xleftarrow{\$} \mathcal{R}^2_{\omega_r}$
3: $\mathbf{s} = \mathbf{x} + \mathbf{h}\mathbf{y}$	3: $u = r_1 + hr_2$
4: $pk = (\mathbf{h}, \mathbf{s})$	4: $\mathbf{v} = \mathbf{m}G + \mathbf{sr}_2 + \mathbf{e}$
5: sk = (\mathbf{x}, \mathbf{y})	5: $\mathbf{c} = (\mathbf{u}, \mathbf{v})$

Figure: HQC-PKE Algorithms [AMAB⁺, AMAB⁺17]

hosen Ciphertext Attack

Oracle with SCA 00000000 Countermeasure 000 Conclusion O

HQC-PKE Decryption Algorithm

Algorithm Decrypt

Input: (sk, c) Output: m

- 1: $\mathbf{m} = C$. Decode($\mathbf{v} \mathbf{uy}$)
 - \bullet Security does not rely on the choice of ${\mathcal C}$
 - \bullet Authors of HQC proprose a concatenated Reed-Muller and Reed-Solomon Codes for ${\cal C}$
 - Hofheinz-Hövelmanns-Kiltz [HHK17] (Fujisaki-Okamoto like [FO99, FO13]) transformation is applied PKE \rightarrow KEM

Simplified HQC codes Framework

leti

Figure: Simplified HQC Concatenated RMRS Codes Framework

Introduction	Hamming Quasi-Cyclic	Chosen Ciphertext Attack	Oracle with SCA	Countermeasure	
000	0000€00000	000000000	00000000	000	
Reed-N	Auller Codes				

• RM(1,7) is used for all security levels.

[128,8,64] code over \mathbb{F}_2

- The encoding is done by the multiplication with the generator matrix.
- They are duplicated 3 (HQC-128) or 5 (HQC-192 and HQC-256) times to obtain:

$$[384, \frac{8}{n_2}, \frac{64}{k_2}]$$
 or $[640, \frac{8}{k_2}, 64]$ codes over \mathbb{F}_2

Oracle with SCA

ountermeasure

Conclusion O

Decoding First Order Reed-Muller Codes

- First Order RM are seen as Hadamard Codes.
- Remove the multiplicity of codewords with the expand and sum function.
- Apply the Fast Hadamard Transform (FHT).
- Secover the message with the find peaks function.

Introduction 000	Hamming Quasi-Cyclic	Chosen Ciphertext Attack 000000000	Oracle with SCA 00000000	Countermeasure 000	

Expand and Sum

Algorithm Expand and sum

Input: codeword **c** and the multiplicity mul. Output: expanded codeword **c**' 1: $\mathbf{c}' = \mathbf{0} \in \mathbb{N}^{128}$ 2: for $i \in [\![0, \text{mul}]\!]$ do 3: for $j \in [\![0, 128]\!]$ do 4: $\mathbf{c}'[j] += \mathbf{c}[128 \times i + j]$ 5: end for 6: end for

7: return c'

11 / 35

Fast Hadamard Transform (FHT) Theory

- RM cosets distribution = Hadamard Transform application [MS77]
- Decoding with maximum likelihood strategy.
- Decoding RM(1, m) code \rightarrow vector matrix multiplication with Hadamard matrix H_{2^m}

$$H_{2m} = \begin{pmatrix} H_m & H_m \\ H_m & -H_m \end{pmatrix}, \ H_1 = 1$$

- $2^m \times 2^m$ additions and subtractions.
- $H_{2^m} \rightarrow \text{product of } m \ 2^m \times 2^m \text{ sparse matrices.}$

$$\mathcal{H}_{2^m} = \mathcal{M}_{2^m}^{(1)} \mathcal{M}_{2^m}^{(2)} \cdots \mathcal{M}_{2^m}^{(m)}, \ \mathcal{M}_{2^m}^{(i)} = \mathcal{I}_{2^{m-i}} \otimes \mathcal{H}_2 \otimes \mathcal{I}_{2^{i-1}}, \ 1 \leq i \leq m$$

- I_n the identity matrix of size $n \times n$.
- ullet \otimes the Kronecker product.

1

Oracle with SCA 00000000 ountermeasure

Conclusion O

Fast Hadamard Transform (FHT) Algortihm

Algorithm Fast Hadamard Transform (FHT)

Input: expanded codeword **c** and the multiplicity mul. **Output:** expanded codeword transformed structure **c**

Chosen Ciphertext Attack

Oracle with SCA

ountermeasure

Conclusion O

HQC-KEM Algorithms – IND CCA2 Security

Algorithm Encaps

- Input: pk = (h, s)Output: (c, d)
- 1: $\mathbf{m} \stackrel{\$}{\leftarrow} \mathbb{F}_2^k$ 2: $\theta = \mathcal{G}(\mathbf{m}) \qquad \triangleright \text{ seed}$
- 3: $\mathbf{c} = \text{Encrypt}(\mathbf{m}, \text{pk}, \theta)$
- 4: $K = \mathcal{K}(\mathbf{m}, \mathbf{c})$
- 5: $\mathbf{d} = \mathcal{H}(\mathbf{m})$
- 6: return (c, d)

Algorithm Decaps **Input:** c, d, sk, pk **Output:** shared key K or \perp 1: $\mathbf{m'} = \text{Decrypt}(\mathbf{c}, \text{sk})$ 2: $\theta' = \mathcal{G}(\mathbf{m}')$ ⊳ seed 3: $\mathbf{c}' = \text{Encrypt}(\mathbf{m}', \text{pk}, \theta')$ 4: if $\mathbf{c} \neq \mathbf{c}$ or $\mathbf{d} \neq \mathcal{H}(\mathbf{m}')$ then 5: return 6: else return $K = \mathcal{K}(\mathbf{m}, \mathbf{c})$ 7: 8: end if

Figure: HQC-KEM Algorithms [AMAB⁺, AMAB⁺17] (Same key gen. as PKE)

Introduction	Hamming Quasi-Cyclic	Chosen Ciphertext Attack	Oracle with SCA	Countermeasure	
000	0000000000	●00000000	00000000	000	
Attack	Scenario				

- Goal: Recover the static secret key $\mathbf{y} \in \mathbb{F}_2^n$ with wt $(\mathbf{y}) = \omega$
- Focus on the function

$$\mathcal{C}$$
. Decode($\mathbf{v} - \mathbf{u}\mathbf{y}$)

- Choosing $(\mathbf{u}, \mathbf{v}) = (1,0)$ leads to compute \mathcal{C} . Decode (\mathbf{y})
 - $\bullet~\mathrm{IND}\text{-}\mathrm{CCA2}$ Security \rightarrow Invalid ciphertext
- $\bullet\,$ Choose the v value in order to find collisions with y
- Oracle $\mathcal{O}_b^{\rm RM}$ that determine the number of corrected error by the RM decoder.
 - $\bullet~\mbox{Goal}$: Reach $\widetilde{\nu}=y$ and then decode

$$C. Decode(\widetilde{\mathbf{v}} - \mathbf{y}) = C. Decode(0)$$

Support Probability Distribution between \mathbf{y}' and \mathbf{y}''

The secret key y has n bits but only n₁n₂ are manipulated by the decoder. l = n - n₁n₂ bits are truncated.

•
$$\mathbf{y} = (\mathbf{y}', \mathbf{y}'')$$
 with $\mathbf{y}' \in \mathbb{F}_2^{n_1 n_2}$ and $\mathbf{y}'' \in \mathbb{F}_2'$.
 $Q_k = \mathbb{P}(\operatorname{wt}(\mathbf{y}'') = k) \cong {\omega \choose k} p^k (1-p)^{\omega-k}, \ p = \frac{|\mathbf{y}'|}{|\mathbf{y}|}$

λ	n	<i>n</i> ₁ <i>n</i> ₂	ω	Q_0	Q_1	Q_2	$Q_{\geq 2}$
128	17.669	17.664	66	98,15%	1,83%	0,02%	$\leq 10^{-3}$ %
192	35.851	35.840	100	96,98%	2,98%	0,05%	$\leq 10^{-3}\%$
256	57.637	57.600	131	91,93%	7,73%	0,32%	$\leq 10^{-2}\%$

Support Probability Distribution among the blocs of \mathbf{y}'

• RM decoder manipulates n_1 blocs of size n_2

λ	n_1	<i>n</i> ₂	ω
128	46	384	66
192	56	640	100
256	90	640	131

$$\mathbf{y}' = \left(\mathbf{y}_0', \mathbf{y}_1', \cdots, \mathbf{y}_{n_1-1}'
ight)$$
 and for all $i, \ \mathbf{y}_i' \in \mathbb{F}_2^{n_2}$

$$P_k = \mathbb{P}\left(\mathsf{wt}(\mathbf{y}'_i) = k \mid \mathbf{y} \stackrel{\$}{\leftarrow} \mathcal{R}_{\omega}, \ i \stackrel{\$}{\leftarrow} \llbracket 0, n_1 - 1 \rrbracket
ight)$$

λ	P_0	P_1	P_2	P ₃	P_4	$P_{\geq 5}$
128	23,44%	34, 38%	24,83%	11,77%	4,12%	1,45%
192	16,50%	30,00%	27,00%	16,04%	7,07%	3.40%
256	23,14%	34,06%	24,87%	12,02%	4,32%	1,59%

Chosen Ciphertext Attack

Oracle with SCA

ountermeasure

Conclusion O

Fast Hadamard Transform (FHT) Behavior

Fast Hadamard Transform (FHT) Behavior with HME

Chosen Ciphertext Attack

Oracle with SCA 00000000 Countermeasure 000 Conclusion O

Higher Magnitude Errors (HME)

• Expand and sum algorithm can create a collision

$$\mathbb{P}(\mathsf{HME}) = \sum_{k=0}^{n_2} \mathbb{P}(\mathsf{wt}(\mathbf{y}'_i) = k) \times \mathbb{P}(\mathsf{HME} \mid \mathsf{wt}(\mathbf{y}'_i) = k)$$
$$= \sum_{k=0}^{n_2} P_k \times (1 - \mathbb{P}(\overline{\mathsf{HME}} \mid \mathsf{wt}(\mathbf{y}'_i) = k))$$
$$= \sum_{k=0}^{n_2} P_k \times \left(1 - \prod_{i=0}^k \frac{n_2 - (\mathsf{mul} - 1) \times i}{n_2}\right)$$

• An HME happens in vector **y**' with probabilities 0, 53%, 0, 97% and 0, 65% for respectively HQC-128, HQC-192 and HQC-256.

Introduction 000	Hamming Quasi-Cyclic	Chosen Ciphertext Attack	Oracle with SCA 00000000	Countermeasure 000	

Attack Description

n₁ decoding Oracles O^{RM}_{i,b} able to determine the number of errors corrected by the RM decoder in the *i*th bloc y'_i for *i* ∈ [[0, n₁ − 1]]

$$egin{aligned} &(1,0) \longrightarrow \mathcal{C}.\, \mathsf{Decode}(\mathbf{y}) \ &(1,0) \stackrel{\mathcal{O}_b^{\mathsf{RM}}}{\longrightarrow} (b_0,b_1,\cdots,b_{n_1-1}) \ \ [\mathsf{reference\ values}] \end{aligned}$$

select v and call again the Oracle

$$\begin{array}{l} (1, \mathbf{v}) \longrightarrow \mathcal{C}. \ \mathsf{Decode}(\mathbf{v} - \mathbf{y}) \\ (1, \mathbf{v}) \stackrel{\mathcal{O}_b^{\mathsf{RM}}}{\longrightarrow} (b_0', b_1', \cdots, b_{n_1-1}') \ \text{[attack values]} \end{array}$$

 $(1,\widetilde{\mathbf{v}}) \xrightarrow{\mathcal{O}_b^{\mathsf{RM}}} (0,0,\cdots,0)$

• GOAL: find
$$\tilde{\mathbf{v}} = \mathbf{y}$$

Attack Description II

- Focus on a given bloc \mathbf{y}'_j
- Try all **v**_j of hamming weight 1
 - Supp(y'_j) ∩ Supp(v_j) = Supp(v_j). Then wt(v_j − y'_j) = wt(y'_j) − 1, the decoder will correct one error less than the reference decoding of y'_j.

$$\mathcal{O}_{j,b}^{\mathsf{RM}}(\mathbf{v}-\mathbf{y})=O_{j,b}^{\mathsf{RM}}(\mathbf{y})-1$$

Supp(y'_j) ∩ Supp(v_j) = Ø. Then wt(v_j − y_j) = wt(y_j) + 1, the decoder will correct one error more than the reference decoding of y.

$$\mathcal{O}^{\mathsf{RM}}_{j,b}(\mathbf{v}-\mathbf{y})=O^{\mathsf{RM}}_{j,b}(\mathbf{y})+1$$

• Remember the locations where the Oracle outputs 1 less than the reference value

Divide and Conquer Strategy

- Blocs decoding are independent
- Queries on each bloc can be done at the same time
- Number of queries = number of bits in a single blocs $\mathbf{y}'_i = n_2$

λ	$n_1 n_2$	<i>n</i> ₁	<i>n</i> ₂	ω
128	17.664	46	384	66
192	35.840	56	640	100
256	57.600	90	640	131

 Remark Total number of attack traces = number of queries * number of traces requiered to classify with accuracy 1.

Introduction 000	Hamming Quasi-Cyclic	Chosen Ciphertext Attack 000000000	Oracle with SCA ●0000000	Countermeasure 000	

Building 6 Classes

leti

Classe
$$i = \left\{ EM[FHT(\mathbf{x})] \middle| \mathbf{x} = EAS(\mathbf{X}), \ \mathbf{X} \leftarrow {}^{\mathbf{S}} \mathbb{F}_{2}^{3 \times n_{2}}, \ \operatorname{wt}(\mathbf{X}) = i \right\} \ 0 \le i \le 5$$

- 50.000 electromagnetic measurement per class.
- Randomness provided by the microcontroller
- Same HME distribution as in real case

T-test Leakage Assessment

• Two sets S_0 and S_1 with Cardinalities n_0 and n_1 , means μ_0 and μ_1 and variances σ_0 and σ_1

$$t\text{-value} = \frac{\mu_0 - \mu_1}{\sqrt{\left(\frac{\sigma_0^2}{n_0} + \frac{\sigma_1^2}{n_1}\right)}}$$

- Threshold $|t| \ge 4.5$
- if $|t| \ge 4.5 \rightarrow$ Statistical difference with confidence 99.9999%
- if $|t| < 4.5 \rightarrow$ No (first order) leakage with confidence 99.9999%

Introduction 000	Hamming Quasi-Cyclic	Chosen Ciphertext Attack 000000000	Oracle with SCA 00●00000	Countermeasure 000	

T-test Leakage Assessment

(a) Cl. 0 and 1 (b) Cl. 0 and 2 (c) Cl. 0 and 3 (d) Cl. 0 and 4 (e) Cl. 0 and 5

(f) Cl. 1 and 2 (g) Cl. 1 and 3 (h) Cl. 1 and 4 (i) Cl. 1 and 5 (j) Cl. 2 and 3

k) Cl. 2 and 4 (I) Cl. 2 and 5 (m) Cl. 3 and 4 (n) Cl. 3 and 5 (o) Cl. 4 and 5

leti

Introduction 000	Hamming Quasi-Cyclic	Chosen Ciphertext Attack 000000000	Oracle with SCA 000€0000	Countermeasure 000	

Results

Introduction 000	Hamming Quasi-Cyclic 0000000000	Chosen Ciphertext Attack 000000000	Oracle with SCA 0000●000	Countermeasure 000	

Results

Introduction	Hamming Quasi-Cyclic	Chosen Ciphertext Attack	Oracle with SCA	Countermeasure	
000	0000000000	000000000	00000●00	000	
LDA					

- Use of the Linear Discriminant Analisys (LDA) [Linear Classifier]
- We set the number training traces (1k to 40k per classes).
- To increase the accuracy, we send k traces from the same class to the Oracle.
- We reconcile the results with a soft-max strategy (with $\tau = 6$ the number of classes):

$$\operatorname{argmax}(p_1,\cdots,p_{ au}) = \operatorname{argmax}(\sum_{i=1}^k (p_{1,i},\cdots,p_{ au,i}))$$

Introduction 000	Hamming Quasi-Cyclic 0000000000	Chosen Ciphertext Attack 000000000	Oracle with SCA 00000000	Countermeasure 000	

Introduction 000	Hamming Quasi-Cyclic	Chosen Ciphertext Attack 000000000	Oracle with SCA 0000000●	Countermeasure 000	
Cost					

- 50 attack traces are enough to obtain 100% accuracy
- Each bloc of **y** can be recover indendently and at the same time.
- Total Number of attack traces: $50 \times n_2 = 50 \times 384 = 19.200$ for HQC-128.

Masking-based Countermeasure

- Using a Mask
- Hide Sensitive data by dividing the knwoledge in *n* shares

$$\mathbf{c} = \sum_{i=0}^{n} \mathbf{c}_{i}$$

• Linearity of the Hadamard Transform.

$$\mathsf{FHT}(\mathbf{c}) = \sum_{i=0}^{n} \mathsf{FHT}(\mathbf{c}_i)$$

- n-1 first \mathbf{c}_i must be sampled uniformly at random
- **c**_n is chosen to satisfy the relation.
- **COST:** Compute *n* + 1 times the FHT.

Countermeasure Algorithm

Algorithm Hadamard Transform with first order mask

Input: expanded codeword **c** and the multiplicity mul. **Output:** expanded codeword transformed structure **c**

- 1: $\mathbf{c}_0 \xleftarrow{\ } expanded codeword$
- 2: $\mathbf{c}_1 = c c_0$
- 3: $\mathbf{c}_0 = \mathsf{FHT}(\mathbf{c}_0)$
- 4: $\mathbf{c}_1 = \mathsf{FHT}(\mathbf{c}_1)$
- 5: $\mathbf{c} = \mathbf{c}_0 + \mathbf{c}_1$
- 6: return c

Introduction	Hamming Quasi-Cyclic	Chosen Ciphertext Attack	Oracle with SCA	Countermeasure	
000	0000000000	000000000	00000000	OO●	
Counte	ermeasure T-	test Leakage	Assessmen	t	

(a) Cl. 0 and 1 (b) Cl. 0 and 2 (c) Cl. 0 and 3 (d) Cl. 0 and 4 (e) Cl. 0 and 5

Ceatech

Introduction 000	Hamming Quasi-Cyclic 0000000000	Chosen Ciphertext Attack 000000000	Oracle with SCA 00000000	Countermeasure 000	Conclusion

Conclusion

• I presented:

- New SCA against RMRS HQC
- Simple Strategy to recover the secret key
- Less than 20.000 attack traces
- Threat for HQC \rightarrow Countermeasure (local)
- Future works:
 - Reduce the number of requiered attack traces
 - Target other HQC function for a new Oracle

Thank you for your attention

Bibliography I

- Carlos Aguilar-Melchor, Nicolas Aragon, Slim Bettaieb, Loïc Bidoux, Olivier Blazy, Jean-Christophe Deneuville, Philippe Gaborit, Edoardo Persichetti, and Gilles Zémor. HQC reference implementation.
- Carlos Aguilar-Melchor, Nicolas Aragon, Slim Bettaieb, Loïc Bidoux, Olivier Blazy, Jean-Christophe Deneuville, Philippe Gaborit, Edoardo Persichetti, and Gilles Zémor. Hamming Quasi-Cyclic (HQC), 2017.

Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric and symmetric encryption schemes.

In Annual International Cryptology Conference, pages 537–554. Springer, 1999.

Bibliography II

🔋 Eiichiro Fujisaki and Tatsuaki Okamoto.

Secure integration of asymmetric and symmetric encryption schemes.

Journal of cryptology, 26(1):80–101, 2013.

- Qian Guo, Clemens Hlauschek, Thomas Johansson, Norman Lahr, Alexander Nilsson, and Robin Leander Schröder.
 Don't reject this: Key-recovery timing attacks due to rejection-sampling in hqc and bike.
 Cryptology ePrint Archive, 2021.
- Guillaume Goy, Antoine Loiseau, and Philippe Gaborit. Estimating the strength of horizontal correlation attacks in the hamming weight leakage model: A side-channel analysis on hqc kem.

2022.

Bibliography III

Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz.
 A modular analysis of the fujisaki-okamoto transformation.
 In Yael Kalai and Leonid Reyzin, editors, *Theory of Cryptography*, pages 341–371, Cham, 2017. Springer International Publishing.

- Florence Jessie MacWilliams and Neil James Alexander Sloane. *The theory of error correcting codes*, volume 16. Elsevier, 1977.
- Thales Bandiera Paiva and Routo Terada.
 A timing attack on the HQC encryption scheme.
 In International Conference on Selected Areas in Cryptography, pages 551–573. Springer, 2019.

Leander Schröder.

A novel timing side-channel assisted key-recovery attack against HQC.

PhD thesis, Wien, 2022.

Bibliography IV

Thomas Schamberger, Lukas Holzbaur, Julian Renner, Antonia Wachter-Zeh, and Georg Sigl. A power side-channel attack on the reed-muller reed-solomon version of the hqc cryptosystem. *Cryptology ePrint Archive*, 2022.

Thomas Schamberger, Julian Renner, Georg Sigl, and Antonia Wachter-Zeh.

A power side-channel attack on the CCA2-Secure HQC KEM. In 19th Smart Card Research and Advanced Application Conference (CARDIS2020), 2020.

Guillaume Wafo-Tapa, Slim Bettaieb, Loïc Bidoux, Philippe Gaborit, and Etienne Marcatel.

A practicable timing attack against HQC and its countermeasure.

Advances in Mathematics of Communications, 2020.

