

Implementations of Post-Quantum Cryptography Algorithms Secured Against Physical Attacks

CALLE VIERA Andersson Director : VERGNAUD Damien Supervisor: BERZATI Alexandre PhD. Session CARDIS 2023, 16 Nov. 2023

¹ Thales DIS, France ² Sorbonne Université, France

Context

Shor's **quantum algorithm** can **break** standard public key cryptosystems (based on **integer factorization** and **discrete logarithm**), in polynomial time

OPEN

Template: 87211168-DOC-GRP-EN-006

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part or disclosed to a third party without the prior written consent of THALES @ 2023 THALES. All sights reserved.

Implementations of, Post-Quantum Cryptography, Algorithms Secured Against, Physical Attacks

Context

Shor's **quantum algorithm** can **break** standard public key cryptosystems (based on **integer factorization** and **discrete logarithm**), in polynomial time

NIST: National Institute of Standards and Technology

- > 2017: International competition to standardized PQC public-key algorithms
- > 2024: First KEM and DSA Standards finalized

Context

Shor's **quantum algorithm** can **break** standard public key cryptosystems (based on **integer factorization** and **discrete logarithm**), in polynomial time

NIST: National Institute of Standards and Technology

- > 2017: International competition to standardized PQC public-key algorithms
- > 2024: First KEM and DSA Standards finalized

Importance: These algorithms will be implemented securely in a variety of use cases

OPEN

Template: 87211168-DOC-GRP-EN-006

ment may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part or disclosed to a third party without the prior written consent of THALES @ 2023 THALES. All rights reserved

- CALLE VIERA Andersson
- PhD in cryptography from may 2022 to may 2025 (currently 2nd year)
- ALMASTY (Lip6, Sorbonne University) & THALES DIS (Meyreuil)

0	P	E	N	

Template: 87211168-DOC-GRP-EN-006

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part or disclosed to a third party without the prior written consent of THALES @ 2023 THALES. All rights reserved.

- CALLE VIERA Andersson
- PhD in cryptography from may 2022 to may 2025 (currently 2nd year)
- ALMASTY (Lip6, Sorbonne University) & THALES DIS (Meyreuil)

Template: 87211168-DOC-GRP-EN-006

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part or disclosed to a third party without the prior written consent of THALES @ 2023 THALES. All rights reserved.

- CALLE VIERA Andersson
- PhD in cryptography from may 2022 to may 2025 (currently 2nd year)
- ALMASTY (Lip6, Sorbonne University) & THALES DIS (Meyreuil)

· · · · · · · · · · · · · · · · · · ·	Too big overhead for embedded systems
Study PQC	Implement Securely
 A A A 	
 A A A A 	
· · ·	
x A A X A	

OPEN

Template: 87211168-DOC-GRP-EN-006

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part or disclosed to a third party without the prior written consent of THALES @ 2023 THALES. All rights reserved.

- CALLE VIERA Andersson
- PhD in cryptography from may 2022 to may 2025 (currently 2nd year)
- ALMASTY (Lip6, Sorbonne University) & THALES DIS (Meyreuil)

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part or disclosed to a third party without the prior written consent of THALES @ 2023 THALES. All rights reserved

Implementations of, Post-Quantum Cryptography, Algorithms Secured Against, Physical Attacks

- CALLE VIERA Andersson
- PhD in cryptography from may 2022 to may 2025 (currently 2nd year)
- ALMASTY (Lip6, Sorbonne University) & THALES DIS (Meyreuil)

- CALLE VIERA Andersson
- PhD in cryptography from may 2022 to may 2025 (currently 2nd year)
- ALMASTY (Lip6, Sorbonne University) & THALES DIS (Meyreuil)

Template: 87211168-DOC-GRP-EN-006

ment may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part or disclosed to a third party without the prior written consent of THALES @ 2023 THALES. All rights reserved

Implementations of, Post-Quantum Cryptography, Algorithms Secured Against, Physical Attacks

- CALLE VIERA Andersson
- PhD in cryptography from may 2022 to may 2025 (currently 2nd year)
- ALMASTY (Lip6, Sorbonne University) & THALES DIS (Meyreuil)

alata: 97211149-DOC-GPR-EN

ument may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part or disclosed to a third party without the prior written consent of THALES @ 2023 THALES. All rights reserve

Implementations of, Post-Quantum Cryptography, Algorithms Secured Against, Physical Attacks

Optimizing Dilithium Signature Scheme

- Key size storage larger than secure element RAM size
- Reduce RAM consumption for the 3 security levels of Dilithium
- Up to 30% reduction for Dilithium-5
- Conform to standard Dilithium without fancy tricks
- Proprietary Implementation

Template: 87211168-DOC-GRP-EN-006

sument may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part or disclosed to a third party without the prior written consent of THALES @ 2023 THALES. All rights reserved.

A Practical Template Attack on Dilithium

Authors: BERZATI Alexandre, CALLE VIERA Andersson, CHARTOUNI Maya, MADEC Steven, VERGNAUD Damien, VIGILANT David

- Exploits zero value leakage during signature execution
- Allows to Recover (partial) secret key and forge signatures
- . Confirms the need to protect this intermediate value
- Practical demonstration through Template Attack

ia.cr/2023/050

• Published at CHES 2023

0

Template: 87211168-DOC-GRP-EN-006

nent may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part or disclosed to a third party without the prior written consent of THALES @ 2023 THALES. All rights reserved.

Implementations of, Post-Quantum Cryptography, Algorithms Secured Against, Physical Attacks

Fault Attacks sensitivity of Dilithium Verify

- Authors: BERZATI Alexandre, CALLE VIERA Andersson, HEYDEMANN Karine
- Sensitivity Analysis of an implmentation of Verify
- Based on the idea to make ct_12^d smaller than it is
- 4 faults models considered \implies 3 main scenarios detailed
- Allow to accept false signatures
- Published at CARDIS 2023

sbd-research.nl/cardis-2023

OPEN

Template: 87211168-DOC-GRP-EN-006

nent may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part or disclosed to a third party without the prior written consent of THALES @ 2023 THALES. All rights reserved.

Future Work

- Identify vulnerable operations within PQC schemes
 - > SCA/FA on Dilithium/Kyber and NIST round 4 candidates
- Keep studying countermeasures for Dilithium and Kyber
 - > Analyze the security of a potential efficient masking of the Decompose function
- Study novel approaches for implementing Dilithium and Kyber
 - > Balance security and efficiency (changes in arithmetic used for example)

OPEN

Template: 87211168-DOC-GRP-EN-006

nt may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part or disclosed to a third party without the prior written consent of THALES @ 2023 THALES. All rights reserved.

Future Work

- Identify vulnerable operations within PQC schemes
 - > SCA/FA on Dilithium/Kyber and NIST round 4 candidates
- Keep studying countermeasures for Dilithium and Kyber
 - > Analyze the security of a potential efficient masking of the Decompose function
- Study novel approaches for implementing Dilithium and Kyber
 - > Balance security and efficiency (changes in arithmetic used for example)

Template: 87211168-DOC-GRP-EN-006

ument may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part or disclosed to a third party without the prior written consent of THALES @ 2023 THALES. All rights reserved.

Implementations of, Post-Quantum Cryptography, Algorithms Secured Against, Physical Attacks

Attacking Pair-Pointwise Multiplication in CRYSTALS-Kyber Using Deep Learning

Azade Rezaeezade

November 2023

TU Delft

Why We Need Post-Quantum Crypto

- The thread of large-scale quantum computers
- Shor's algorithm breaks RSA and ECC
- CRYSTALS-Kyber is going to be standardized by NIST as

a Key Exchange Mechanism

Key Encapsulation Mechanism

- Alice and Bob want to communicate
- The final goal is exchanging a shared key that can be used for symmetric cryptography.

Key Encapsulation Mechanism (KEM)

Get Deeper in Lattices

Get Deeper in Lattices

Get Deeper in Lattices

From Lattices to Public-Private Key Pair

- Final point is A.s+e = t
- Public key is:
 - Matrix A
 - Vector t
- Private key is:
 - Vector S hidden by error vector e
- This is Learning with Errors Problem

Kyber in Reality

- A is a matrix of polynomials with dimension 2, 3 or 4.
- s, e and t are vectors of polynomials with dimension 2, 3 or 4.
- The polynomials are from the ring R_q :

$$R_q \coloneqq \frac{Z_{[X]}}{(X^n + 1)}, \qquad n = 256, \qquad q = 332$$

NTT Domain

- All the multiplication are happening in NTT domain
- NTT is a kind of Fourier transform
- Kyber polynomials in NTT domain are like: $NTT(a) = a_0 + a_1 x, a_2 + a_3 x, a_4 + a_5 x, ..., a_{254} + a_{255} x$
- Multiplication of two polynomials equals to:

$$c_{1} = a_{0}b_{1} + a_{1}b_{0}$$
$$c_{0} = a_{0}b_{0} + a_{1}b_{1}\zeta$$

The Attack Point

 The pair-pointwise multiplication of secret key and a part of cipher!

Algorithm 1 KYBER.CPAPKE.Dec(sk, c): decryption

Input: Secret key $sk \in \mathcal{B}^{12 \cdot k \cdot n/8}$ Input: Ciphertext $c \in \mathcal{B}^{d_u \cdot k \cdot n/8 + d_v \cdot n/8}$ Output: Message $m \in \mathcal{B}^{32}$ 1: $\mathbf{u} \coloneqq \text{Decompress}_q(\text{Decode}_{d_u}(c), d_u)$ 2: $v \coloneqq \text{Decompress}_q(\text{Decode}_{d_v}(c + d_u \cdot k \cdot n/8), d_v)$ 3: $\hat{\mathbf{s}} \coloneqq \text{Decode}_{12}(sk)$ 4: $m \coloneqq \text{Encode}_1(\text{Compress}_q(v - \text{NTT}^{-1}(\hat{\mathbf{s}}^T \circ \text{NTT}(\mathbf{u})), 1))$ 5: return m

Assembly Implementation of Attack Point

 This assembly code repeats 64 time

```
macro doublebasemul frombytes asm 16 32
 2
     rptr tmp, bptr, zeta, poly0, poly2, poly1,
 3
     poly3, tmp, q, qa, qinv
 4
 5
       ldr \poly0, [\bptr], #4
 6
       ldr \polv2, [\bptr], #4
 7
                                                   a_1\zeta
 8
       smulwt \tmp, \zeta, \poly1
 9
       smlabt \tmp, \tmp, \q, \qa
                                                                         C_1
                                                  a_1b_1\zeta
10
       smultt \tmp, \poly0, \tmp
                                              a_0b_0 + a_1b_1\zeta
       smlabb \tmp, \poly0, \poly1, \tmp
11
12
       str \tmp, [\rptr tmp], #4
13
                                               a_0b_1 + a_1b_0
14
       smuadx \tmp, \poly0, \poly1
                                                                         C_0
15
       str \tmp, [\rptr tmp], #4
16
17
       neg \zeta, \zeta
18
19
       smulwt \tmp, \zeta, \poly3
20
       smlabt \tmp, \tmp, \q, \qa
21
       smultt \tmp, \poly2, \tmp
22
       smlabb \tmp, \poly2, \poly3, \tmp
23
       str \tmp, [\rptr tmp], #4
24
25
       smuadx \tmp, \poly2, \poly3
26
       str \tmp, [\rptr tmp], #4
27
     .endm
```

Leakage-Model-Free Deep Learning

- 2 layers CNN
- 24 separate MLP to learn 24 bits separately
- This is multitask learning

Results on Chipwhisperer

 This is the results on Chipwhisperer

Thank you!

Overview of The Kyber Algorithm

 At first the algorithm is Chosen Plaintext Secure (CPA Secure)

What Have We Done?

- Target implementation: unprotected kyber768 in pqm4
- Used platform: ARM Cortex M4
 - Power analysis: ChipWhisperer-Lite and CW308-STM32F4
 - Power analysis: Lecroy and CW308-STM32F4
- Target procedure: decapsulation
- The attack recovers secret key
- We are now collecting traces

Efficient Implementation of Kyber on RISC-V

PHAM Hoang Nguyen Hien 1st-year PhD Student 16/11/2023

© Eviden SAS - Confidential - Commercial in confidence

an atos business

Content overview

01 Modular Multiplications

02 Kyber on RISC-V 03 Results

04 Future work

01 Modular Multiplications

Modular Multiplications

Signed Montgomery multiplication [7]

Input: a, b such that $-2^{n-1}q \le a \cdot b < -2^{n-1}q$ where $0 < q < 2^{n-1}$, $R = q^{-1} \mod 2^n$ **Output:** r = a · b · 2⁻ⁿ mod q and -q < r < q

- 1. m = $[[a \cdot b]_n \cdot R]_{\pm n}$
- 2. t = [m · q]ⁿ
- 3. $r = [a \cdot b]^n t$
- 4. return r

Plantard multiplication [6]

Input: a, b such that 0 < a, b < q, q <
$$2^{n}/\phi$$
, $\phi = \frac{1+\sqrt{5}}{2}$, R = q⁻¹ mod 2^{2n}

Output: $r = a \cdot b \cdot (-2^{-2n}) \mod q$ and $0 \le r \le q$

1.
$$r = [([[a \cdot b \cdot R]_{2n}]^n + 1) \cdot q]^n$$

2. return r

- 3 multiplications
- Montgomery representation

- 3 multiplications
 => Only 2 multiplications
- Plantard representation

eviden

General Ideas

- RISQ-V: Tightly Coupled RISC-V Accelerators for Post-Quantum Cryptography [3] Tim Fritzmann, Georg Sigl, Johanna Sepúlveda
 - --- Tightly coupled accelerators for NewHope, Saber and Kyber:
 - ► 5 instructions for PQC: modular addition/subtraction/multiplication, CT butterfly, GS butterfly
 - ▶ 1 instruction for a complete round of Keccak
 - ► 5 instructions for binomial sampling
 - --- PULPino: single-issued, 4-stage 32-bit RISC-V, SystemVerilog
 - --- Kyber Round 2: η = 2

General Ideas

- Improved Plantard Arithmetic for Lattice-based Cryptography [4] Ray C. C. Cheung, Junhao Huang, Jipeng Zhang, Haosong Zhao, Zhe Liu, Çetin Kaya Koç, Donglong Chen
 - --- Signed Plantard modular multiplication
 - --- Larger input range: [-q2 $^{\ell}$, q2 $^{\ell}$] ---> [-q²2^{2 ℓ} , q²2^{2 ℓ}] ====> Lazy reduction

Input: a, b such that $-q2^{\ell} \le a$, $b \le q2^{\ell}$, $q < 2^{n-\ell-1}$, $R = q^{-1} \mod 2^{2n}$ **Output:** $r = a \cdot b \cdot (-2^{-2n}) \mod q$ and -q/2 < r < q/2

- 1. $r = [([[a \cdot b \cdot R]_{2n}]^n + 2^{\ell}) \cdot q]^n$
- 2. return r

EVIDEN

General Ideas

- Faster Kyber and Dilithium on the Cortex-M4 [1] Amin Abdulrahman, Vincent Hwang, Matthias J. Kannwischer, Amber Sprenkels
 - --- Use Cooley-Tukey (CT) butterfly for both NTT and INTT (with fp registers) --- Merge layers of (I)NTT 4-3 (instead of 3-3-1)

General Ideas - Summary

Combining all previous approaches:

- 3 instructions for CT butterfly: gp registers/fp registers/light butterfly
- 1 instruction for modular multiplication
- 1 instruction for basemul
- 2 instructions for binomial sampling supporting Kyber Round 3
- Signed Plantard reduction \rightarrow lazy reduction for (I)NTT
- 4-3 merging for (I)NTT

Results

Results

Simulation using Questa. Results are in number of cycles: k = 1000.

Target	Keypair	Encap.	Decap.
Kyber512 [FSS20/21]	150k/116k	193k/176k	204k/186k
This work	72k (52%/37,9%)	101k (47,7% / 42,6%)	117k (42,7% / 37,1%)
Kyber768 [FSS20/21]	273k/213k	325k/298k	340k/313k
This work	112k (59% / 47,4%)	148k (54,5% / 50,3%)	171k (49,7% / 45,4%)
Kyber1024 [FSS20/21]	349k/266k	405k/368k	424k/392k
This work	163k (53,3%/38,7%)	208k (48,6% / 43,5%)	238k (43,9% / 39,3%)

04 Future work

Future work

- Implement Dilithium with Plantard reduction on (64-bit) RISC-V
- Implement MASKED Kyber and Dilithium on RISC-V

EVIDEN Conclusion

- Plantard reduction is interesting for Kyber and Dilithium.
- Specific instructions for butterflies help accelerating the implementation.
- 40-50% of improvement compared to [3].

hoang-nguyen-hien.pham@eviden.com Hoang-nguyen-hien.pham@univ-grenoble-alpes.fr

Confidential information owned by Eviden SAS, to be used by the recipient only. This document, or any part of it, may not be reproduced, copied, circulated and/or distributed nor quoted without prior written approval from Eviden SAS.

© Eviden SAS - Confidential - Commercial in confidence

EVIDEN

References

- 1. Abdulrahman, A., Hwang, V., Kannwischer, M. J., & Sprenkels, A. (2022, June). Faster kyber and dilithium on the cortex-M4. In *International Conference on Applied Cryptography and Network Security* (pp. 853-871). Cham: Springer International Publishing.
- 2. Avanzi, R., Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., ... & Stehlé, D. (2019). CRYSTALS-Kyber algorithm specifications and supporting documentation. *NIST PQC Round*, 2(4), 1-43.
- 3. Fritzmann, T., Sigl, G., & Sepúlveda, J. (2020). RISQ-V: Tightly coupled RISC-V accelerators for postquantum cryptography. *IACR Transactions on Cryptographic Hardware and Embedded Systems*, 239-280.
- 4. Huang, J., Zhang, J., Zhao, H., Liu, Z., Cheung, R. C., Koç, Ç. K., & Chen, D. (2022). Improved Plantard arithmetic for lattice-based cryptography. *IACR Transactions on Cryptographic Hardware and Embedded Systems*, 2022(4), 614-636.
- 5. Lyubashevsky, V., Ducas, L., Kiltz, E., Lepoint, T., Schwabe, P., Seiler, G., ... & Bai, S. (2020). Crystalsdilithium. *Algorithm Specifications and Supporting Documentation*.
- 6. Plantard, T. (2021). Efficient word size modular arithmetic. *IEEE Transactions on Emerging Topics in Computing*, 9(3), 1506-1518.
- 7. Seiler, G. (2018). Faster AVX2 optimized NTT multiplication for Ring-LWE lattice cryptography. *Cryptology ePrint Archive*.

EVIDEN

Thank you for your attention!

The Screaming Gate Array: Study and characterization of IP data leakages in mixedsignal FPGA SoC

Jeremy Guillaume¹ Directeur de thèse: Maxime Pelcat² Co-directeur: Amor Nafkha¹ Encadrant: Ruben Salvador ³

¹ Equipe ASIC, CentraleSupelec, IETR - UMR CNRS 6164
² Equipe VAADER, INSA Rennes, IETR - UMR CNRS 6164
³ Equipe CIDRE, CentraleSupelec, IRISA - UMR CNRS 6074

CNRS Images. C Jean-Claude MOSCHETTI / IETR / CNRS Photothèque

IETR Screaming channel attacks

[1] G. Camurati, S. Poeplau, M. Muench, T. Hayes, and A. Francillon, "Screaming Channels: When Electromagnetic Side Channels Meet Radio Transceivers," ACM SIGSAC, 2018

IETR RFSoC (Radio Frequency System on Chip)

5G and LTE Wireless

Baseband

Remote Radio for Massive MIMO

Wireless Backhaul Throughput - Power - Form Factor

Phased Array Radar/Digital Array RADAR - Radar On A Chip

Test & Measurement

Lidar

Sources: Zyng UltraScale+ RFSoC (xilinx.com)

Satellite Communications

IFTR Trace synchronisation

- Problematic: How to **remove the need of a trigger signal** in context of screaming-channel attacks?
- Method used in all previous works on screaming-channel attacks: Frequency trigger mechanism

IETR Frequency Trigger Mechanism

Frequency Trigger Mechanism

Advantage:

• Removes the need of a trigger signal

Limitations:

- Suppose that such a frequency component (FC) exists on the target device.
- More complex/costly setup to analyze the frequency spectrum to find the FC.
- Some parameters like the threshold are very sensitive and need to be well adjusted, making the method unstable and difficult in practice

Virtual trigger (VT) [3]

Concept

- A series of Cryptographic Process (CP) is executed recursively without interruptions
- By knowing precisely enough the CP execution time: possibility to create a Virtual Trigger (VT) that points to a common instant in each CP
- Trace segmentation: separate the CP segments using VT

[2] J.Guillaume, M.Pelcat, A.Nafkha, R.Salvador, "Virtual Triggering: a Technique to Segment Cryptographic Processes in Side-Channel Traces," SIPS, 2022. 6

CentraleSupéle

Université

de Rennes

- The leakage is present at each harmonic of the digital clock frequency
- Initial works on screaming channel used only the second at 2,528 GHz

• Could the combination of multiple frequency improve the screaming channel attack?

- The leakage is collected at the harmonics with a distance of 30 cm
- Only one harmonic is both unpolluted and sufficiently strong to mount a successful attack
- The harmonics are therefore not enough to provide frequency diversity

- Objective: **Keeping the attack feasible** in a polluted environment where all the harmonics are covered by noise.
- **Detection of frequencies** where leakage is present
- **Demontrating attacks** at other frequencies than the harmonics

IFTR Frequency combination

Frequency combination

IETR Frequency combination

Frequency combination

Frequency combination

Can weak frequencies be used to improve the attack?

COLS

\$

CentraleSupéleo

IN Nantes ✔ Université

Université

Thank you !

E-mail: Jeremy.guillaume@centralesupelec.fr

CNRS Images. © Jean-Claude MOSCHETTI / IETR / CNRS Photothèque

Universiteit Leiden The Netherlands

PROACT Project (Hardware)

University of Amsterdam CARDIS Conference NOV. 16, 2023

liacs

Abolfazl Sajadi

The Faculty of Science and the Leiden Institute of Advanced Computer Science

PROACT

(Physical Attack Resistance of Cryptographic Algorithms and Circuits with Reduced Time to Market)

- Increase [Physical] Security strength of Cryptographic Algorithms
 - Maximize the Probability of First-Time-Right Cryptographic Hardware Implementation

Universiteit Leiden Radboud Universiteit 👘

riscure

driving your security forward

01010

SOB1110 01

FIFRS

- Accelerate Time-to-Market
- Improve Design Quality
- Implement and Validate Pre-Silicon Leakage Analysis Tools (Simulators)
 - \circ Leakage analysis (Power SCA) ightarrow Need for an Experimental Platform

• [ASIC Tape-out]

Experimental Platform

Leakage:

- Leakage for SW running on RISC-V
- Leakage for Co-processors
 - Leakage for RISC-V ISA Extensions
 - Leakage after adding countermeasures

.

-

4

SOFTU

0

SUCKER

COMPARE

GENT

Two Ibex RISC-V Cores

Controller (Ctrl-RV) Software Target (SW-RV)

INTERIDECT

BIBlide

0020

RE

CO

.

5

11111111111

UART Bridge

FRRON DE

ing

2200

Current Prototype Board

- Part Number: XC7Z020-1CLG400C
- Logic Cells: 13,300 logic slices
- (4 6-input LUTs and 8 flip-flops)
- Block RAM: 630 KB
- DSP Slices: 220
- DDR3: 512 MB w/ 1050Mbps bandwidth
- Internal clock: 650 MHz+

GUI

- Developed with PyQT
- Control Resets Signals
- Recognize and connect to SPI and UART Automatically

Australian and desir subgrades

• Send Controller Program via SPI

	SUBSTITUTE READING TY INCOMPANY REAL REAL REAL REAL REAL REAL REAL REAL	(116) ····						
PROACT CHIP GUI ver0 _ ×								
Inputs None ✓ Default (Programming) Controller Reset SPI Reset Resets Controller Global SPI ✓ For quick information about each tool, hover your mouse over the tool. ✓ Some Note about Important Actions or others Some Note about Important Actions or others	.Vmem File Browse /home/abish/PROACT_PRO MCP2210(SPI) Connect SPI: Connected UART Port /dev/ttyACM0 ~ Baud Rate 111 Terminal: Connected DateTime DateTime Mode	DJECT/software/hello_test.vmem						
	Send CMD 0x Send							
	UART Commands File Apply Browse No Path							
Brogramma	UART Additions							
Status: Programming	Stop Work Read Status Regis	ster Read Data						
31%	Write Control Regi	ister Write Data						

- **Read Status Registers**
- Write Control Registers
- **Read from specific address**

UC_AD

- Write to specific address
- Send program to SW-RV

	.0 =				CRET A PRIAT	
	PRO	ACT CHIP GUI ver0		_ ×		
Programme Programme	Vmem File Browse /home/abish/PROACT_PROJECT/software/hello_test.vmem MCP2210(SPI) Connect SPI: Connected UART Port /dev/ttyACM0 * Baud Rate 115200 * Start [] Terminal: Connected Clear DateTime Mode 16:02:34 Receive SEND command 16:02:34 16:02:34 Receive Hellol It's PROACT Design22		Clear	Read Data Address Length Info: SW-RV Instruction m SW-RV Data mem Control Register Co-Processor 1 Co-Processor 2 UART Custom Read Attention: Put Address and Legnt		
	Send CMD 0x Send UART Commands File Apply Browse No Path UART Additions Stop Work Read Status Register Read Data				Address Length Info: SW-RV Instruction m SW-RV Data mem Control Register	
0%		Write Control Register	Write Data		Co-Pro Co-Pro UART Custor	cessor 2
						Write

2000

C Etirior

GUI-UART Additions

1111

on mem

ttention: Put Address and Legnth in Inputs

Future Work

- Connect Crypto-Cores (AES, Xoodyak, Ascon)
- Leakage Analysis (Power SCA)
- Develop a Pre-silicone leakage Analysis Tools
- Optimizations

10

• ASIC Flow (in parallel)

